1
|
Zhong J, Li L, Zhang Q, Zou J, Liu W, Xu CH. Expression and prognostic value of Cripto-1 in early non-small cell lung cancer. THE CLINICAL RESPIRATORY JOURNAL 2023; 17:1203-1208. [PMID: 37528674 PMCID: PMC10730460 DOI: 10.1111/crj.13680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/24/2023] [Accepted: 07/23/2023] [Indexed: 08/03/2023]
Abstract
OBJECTIVE We aim to explore the expression of Cripto-1 (CR-1) protein in patients with early stage non-small cell lung cancer (NSCLC). METHODS We investigated CR-1 expression status in specimens obtained from 240 patients with resected NSCLC and 30 cases of para-carcinous normal lung tissues. RESULTS Compared with normal lung tissue, the positive expression of CR-1 protein in NSCLC was significantly increased (p < 0.005). Cox multivariate regression analysis showed that the expression of CR-1 protein was an independent prognostic factor for early stage NSCLC (p = 0.002). CONCLUSION Detecting CR-1 protein can predict the prognosis and recurrence in patients with NSCLC.
Collapse
Affiliation(s)
- Jian Zhong
- Department of Thoracic SurgeryAffiliated Nanjing Brain Hospital, Nanjing Medical UniversityNanjingChina
| | - Li Li
- Department of Respiratory MedicineAffiliated Nanjing Brain Hospital, Nanjing Medical UniversityNanjingChina
- Clinical Center of Nanjing Respiratory Diseases and ImagingNanjingChina
| | - Qian Zhang
- Department of Respiratory MedicineAffiliated Nanjing Brain Hospital, Nanjing Medical UniversityNanjingChina
- Clinical Center of Nanjing Respiratory Diseases and ImagingNanjingChina
| | - Jue Zou
- Department of PathologyAffiliated Nanjing Brain Hospital, Nanjing Medical UniversityNanjingChina
| | - Wei Liu
- Department of Respiratory MedicineAffiliated Nanjing Brain Hospital, Nanjing Medical UniversityNanjingChina
| | - Chun Hua Xu
- Department of Respiratory MedicineAffiliated Nanjing Brain Hospital, Nanjing Medical UniversityNanjingChina
- Clinical Center of Nanjing Respiratory Diseases and ImagingNanjingChina
| |
Collapse
|
2
|
Balatskyi VV, Sowka A, Dobrzyn P, Piven OO. WNT/β-catenin pathway is a key regulator of cardiac function and energetic metabolism. Acta Physiol (Oxf) 2023; 237:e13912. [PMID: 36599355 DOI: 10.1111/apha.13912] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/24/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023]
Abstract
The WNT/β-catenin pathway is a master regulator of cardiac development and growth, and its activity is low in healthy adult hearts. However, even this low activity is essential for maintaining normal heart function. Acute activation of the WNT/β-catenin signaling cascade is considered to be cardioprotective after infarction through the upregulation of prosurvival genes and reprogramming of metabolism. Chronically high WNT/β-catenin pathway activity causes profibrotic and hypertrophic effects in the adult heart. New data suggest more complex functions of β-catenin in metabolic maturation of the perinatal heart, establishing an adult pattern of glucose and fatty acid utilization. Additionally, low basal activity of the WNT/β-catenin cascade maintains oxidative metabolism in the adult heart, and this pathway is reactivated by physiological or pathological stimuli to meet the higher energy needs of the heart. This review summarizes the current state of knowledge of the organization of canonical WNT signaling and its function in cardiogenesis, heart maturation, adult heart function, and remodeling. We also discuss the role of the WNT/β-catenin pathway in cardiac glucose, lipid metabolism, and mitochondrial physiology.
Collapse
Affiliation(s)
- Volodymyr V Balatskyi
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Adrian Sowka
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Pawel Dobrzyn
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Oksana O Piven
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
- Department of Human Genetics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
3
|
Skurikhin E, Pershina O, Zhukova M, Widera D, Ermakova N, Pan E, Pakhomova A, Morozov S, Kubatiev A, Dygai A. Potential of Stem Cells and CART as a Potential Polytherapy for Small Cell Lung Cancer. Front Cell Dev Biol 2021; 9:778020. [PMID: 34926461 PMCID: PMC8678572 DOI: 10.3389/fcell.2021.778020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/18/2021] [Indexed: 12/15/2022] Open
Abstract
Despite the increasing urgency of the problem of treating small cell lung cancer (SCLC), information on the causes of its development is fragmentary. There is no complete understanding of the features of antitumor immunity and the role of the microenvironment in the development of SCLC resistance. This impedes the development of new methods for the diagnosis and treatment of SCLC. Lung cancer and chronic obstructive pulmonary disease (COPD) have common pathogenetic factors. COPD is a risk factor for lung cancer including SCLC. Therefore, the search for effective approaches to prevention, diagnosis, and treatment of SCLC in patients with COPD is an urgent task. This review provides information on the etiology and pathogenesis of SCLC, analyses the effectiveness of current treatment options, and critically evaluates the potential of chimeric antigen receptor T cells therapy (CART therapy) in SCLC. Moreover, we discuss potential links between lung cancer and COPD and the role of endothelium in the development of COPD. Finally, we propose a new approach for increasing the efficacy of CART therapy in SCLC.
Collapse
Affiliation(s)
- Evgenii Skurikhin
- Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Tomsk, Russia
| | - Olga Pershina
- Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Tomsk, Russia
| | - Mariia Zhukova
- Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Tomsk, Russia
| | - Darius Widera
- Stem Cell Biology and Regenerative Medicine Group, School of Pharmacy, University of Reading, Reading, United Kingdom
| | - Natalia Ermakova
- Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Tomsk, Russia
| | - Edgar Pan
- Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Tomsk, Russia
| | - Angelina Pakhomova
- Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Tomsk, Russia
| | - Sergey Morozov
- Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Aslan Kubatiev
- Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Alexander Dygai
- Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Tomsk, Russia
- Institute of General Pathology and Pathophysiology, Moscow, Russia
| |
Collapse
|
4
|
Freeman DW, Rodrigues Sousa E, Karkampouna S, Zoni E, Gray PC, Salomon DS, Kruithof-de Julio M, Spike BT. Whence CRIPTO: The Reemergence of an Oncofetal Factor in 'Wounds' That Fail to Heal. Int J Mol Sci 2021; 22:10164. [PMID: 34576327 PMCID: PMC8472190 DOI: 10.3390/ijms221810164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/08/2021] [Accepted: 09/13/2021] [Indexed: 02/06/2023] Open
Abstract
There exists a set of factors termed oncofetal proteins that play key roles in ontogeny before they decline or disappear as the organism's tissues achieve homeostasis, only to then re-emerge in cancer. Although the unique therapeutic potential presented by such factors has been recognized for more than a century, their clinical utility has yet to be fully realized1. This review highlights the small signaling protein CRIPTO encoded by the tumor derived growth factor 1 (TDGF1/Tdgf1) gene, an oft cited oncofetal protein whose presence in the cancer literature as a tumor promoter, diagnostic marker and viable therapeutic target continues to grow. We touch lightly on features well established and well-reviewed since its discovery more than 30 years ago, including CRIPTO's early developmental roles and modulation of SMAD2/3 activation by a selected set of transforming growth factor β (TGF-β) family ligands. We predominantly focus instead on more recent and less well understood additions to the CRIPTO signaling repertoire, on its potential upstream regulators and on new conceptual ground for understanding its mode of action in the multicellular and often stressful contexts of neoplastic transformation and progression. We ask whence it re-emerges in cancer and where it 'hides' between the time of its fetal activity and its oncogenic reemergence. In this regard, we examine CRIPTO's restriction to rare cells in the adult, its potential for paracrine crosstalk, and its emerging role in inflammation and tissue regeneration-roles it may reprise in tumorigenesis, acting on subsets of tumor cells to foster cancer initiation and progression. We also consider critical gaps in knowledge and resources that stand between the recent, exciting momentum in the CRIPTO field and highly actionable CRIPTO manipulation for cancer therapy and beyond.
Collapse
Affiliation(s)
- David W. Freeman
- Department of Oncological Sciences, School of Medicine, University of Utah, Salt Lake City, UT 84113, USA;
| | - Elisa Rodrigues Sousa
- Urology Research Laboratory, Department for BioMedical Research DBMR, University of Bern, 3012 Bern, Switzerland; (E.R.S.); (S.K.); (E.Z.)
| | - Sofia Karkampouna
- Urology Research Laboratory, Department for BioMedical Research DBMR, University of Bern, 3012 Bern, Switzerland; (E.R.S.); (S.K.); (E.Z.)
| | - Eugenio Zoni
- Urology Research Laboratory, Department for BioMedical Research DBMR, University of Bern, 3012 Bern, Switzerland; (E.R.S.); (S.K.); (E.Z.)
| | - Peter C. Gray
- Peptide Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA;
| | - David S. Salomon
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 20893, USA;
| | - Marianna Kruithof-de Julio
- Urology Research Laboratory, Department for BioMedical Research DBMR, University of Bern, 3012 Bern, Switzerland; (E.R.S.); (S.K.); (E.Z.)
- Translational Organoid Models, Department for BioMedical Research, University of Bern, 3012 Bern, Switzerland
- Bern Center for Precision Medicine, Inselspital, University Hospital of Bern, 3010 Bern, Switzerland
- Department of Urology, Inselspital, University Hospital of Bern, 3010 Bern, Switzerland
| | - Benjamin T. Spike
- Department of Oncological Sciences, School of Medicine, University of Utah, Salt Lake City, UT 84113, USA;
| |
Collapse
|
5
|
Wang Y, Li X, Wang S, Song Z, Bao Y, Zheng L, Wang G, Sun Y. miR-3929 Inhibits Proliferation and Promotes Apoptosis by Downregulating Cripto-1 Expression in Cervical Cancer Cells. Cytogenet Genome Res 2021; 161:425-436. [PMID: 34569498 DOI: 10.1159/000518521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/15/2021] [Indexed: 11/19/2022] Open
Abstract
Cripto-1 is highly expressed in many cancers, and downregulating its expression may become a promising approach for cancer treatment. However, the regulation of Cripto-1 expression is not well characterized. In this study, we focused on the post-transcriptional regulation of Cripto-1 expression and analyzed the potential miRNAs that bind to the 3'UTR of Cripto-1 mRNA. miR-3929 was found to be able to bind to the 3'UTR and downregulate the expression of Cripto-1 in cervical cancer cells. Then, we analyzed the effect of miR-3929 on the biological behavior of cervical cancer cells, finding that miR-3929 could reduce cell viability, DNA synthesis, and Ki67 expression and induce cell cycle arrest in the G2/M phase; overexpression of Cripto-1 reversed the inhibitory effect of miR-3929 on proliferation. Moreover, DAPI staining and flow cytometry revealed that miR-3929-induced cell apoptosis is dependent on the mitochondrial pathway; the overexpression of Cripto-1 reversed the proapoptotic effect of miR-3929. Finally, the in vivo results showed that miR-3929 significantly inhibits the growth of HeLa xenograft tumors in nude mice. Therefore, our findings suggest that miR-3929 inhibits the proliferation and induces the apoptosis of cervical cancer cells by downregulating Cripto-1 via specifically targeting the 3'UTR of its mRNA.
Collapse
Affiliation(s)
- Ying Wang
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
| | - Xiaoli Li
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
| | - Shuyue Wang
- Research Center of Agriculture and Medicine Gene Engineering of Ministry of Education, Northeast Normal University, Changchun, China
| | - Zhenbo Song
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
| | - Yongli Bao
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
| | - Lihua Zheng
- Research Center of Agriculture and Medicine Gene Engineering of Ministry of Education, Northeast Normal University, Changchun, China
| | - Guannan Wang
- Research Center of Agriculture and Medicine Gene Engineering of Ministry of Education, Northeast Normal University, Changchun, China
| | - Ying Sun
- Research Center of Agriculture and Medicine Gene Engineering of Ministry of Education, Northeast Normal University, Changchun, China
| |
Collapse
|
6
|
Arboretto P, Cillo M, Leonardi A. New Insights into Cancer Targeted Therapy: Nodal and Cripto-1 as Attractive Candidates. Int J Mol Sci 2021; 22:ijms22157838. [PMID: 34360603 PMCID: PMC8345935 DOI: 10.3390/ijms22157838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 12/12/2022] Open
Abstract
The transforming growth factor beta (TGF-β) signaling is fundamental for correct embryonic development. However, alterations of this pathway have been correlated with oncogenesis, tumor progression and sustaining of cancer stem cells (CSCs). Cripto-1 (CR-1) and Nodal are two embryonic proteins involved in TGF-β signaling. Their expression is almost undetectable in terminally differentiated cells, but they are often re-expressed in tumor cells, especially in CSCs. Moreover, cancer cells that show high levels of CR-1 and/or Nodal display more aggressive phenotypes in vitro, while in vivo their expression correlates with a worse prognosis in several human cancers. The ability to target CSCs still represents an unmet medical need for the complete eradication of certain types of tumors. Given the prognostic role and the selective expression of CR-1 and Nodal on cancer cells, they represent archetypes for targeted therapy. The aim of this review is to clarify the role of CR-1 and Nodal in cancer stem populations and to summarize the current therapeutic strategy to target CSCs using monoclonal antibodies (mAbs) or other molecular tools to interfere with these two proteins.
Collapse
|
7
|
Ren Q, Chen J, Liu Y. LRP5 and LRP6 in Wnt Signaling: Similarity and Divergence. Front Cell Dev Biol 2021; 9:670960. [PMID: 34026761 PMCID: PMC8134664 DOI: 10.3389/fcell.2021.670960] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/14/2021] [Indexed: 12/15/2022] Open
Abstract
The canonical Wnt/β-catenin signaling plays a fundamental role in regulating embryonic development, injury repair and the pathogenesis of human diseases. In vertebrates, low density lipoprotein receptor-related proteins 5 and 6 (LRP5 and LRP6), the single-pass transmembrane proteins, act as coreceptors of Wnt ligands and are indispensable for Wnt signal transduction. LRP5 and LRP6 are highly homologous and widely co-expressed in embryonic and adult tissues, and they share similar function in mediating Wnt signaling. However, they also exhibit distinct characteristics by interacting with different protein partners. As such, each of them possesses its own unique functions. In this review, we systematically discuss the similarity and divergence of LRP5 and LRP6 in mediating Wnt and other signaling in the context of kidney diseases. A better understanding of the precise role of LRP5 and LRP6 may afford us to identify and refine therapeutic targets for the treatment of a variety of human diseases.
Collapse
Affiliation(s)
- Qian Ren
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiongcheng Chen
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Youhua Liu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
8
|
Shafiei S, Farah O, Dufort D. Maternal Cripto is required for proper uterine decidualization and peri-implantation uterine remodeling. Biol Reprod 2021; 104:1045-1057. [PMID: 33590845 DOI: 10.1093/biolre/ioab020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 11/19/2020] [Accepted: 02/10/2021] [Indexed: 02/06/2023] Open
Abstract
Cripto encodes for a cell surface receptor whose role in embryonic development and stem cell maintenance has been studied. Cripto mRNA and protein have been detected in the human uterus at all stages of the menstrual cycle. To date, there is not much known about Cripto's role in female reproduction. As Cripto null Knockout (KO) is embryonic lethal, we created a conditional KO (cKO) mouse model in which Cripto is deleted only in the reproductive tissues using a Cre-loxP system. Pregnancy rate and number of pups per litter were evaluated as general fertility indices. We observed a significant decrease in pregnancy rate and litter size with loss of uterine Cripto indicating that Cripto cKO females are subfertile. We showed that although the preimplantation period is normal in Cripto cKO females, 20% of cKO females fail to establish pregnancy and an additional 20% of females undergo full litter loss after implantation between day 5.5 postcoitum (d5.5pc) and d8.5pc. We showed that subfertility caused by loss of uterine Cripto is due to defects in uterine decidualization, remodeling, and luminal closure and is accompanied by significant downregulation of Bmp2, Wnt4 and several components of Notch signaling pathway which all are known to be important factors in uterine remodeling and decidualization. Our study demonstrates that Cripto is expressed in the uterus during critical stages of early pregnancy and its deletion results in subfertility due to implantation failure, impaired peri-implantation uterine remodeling and impaired uterine decidualization.
Collapse
Affiliation(s)
- Shiva Shafiei
- Division of Experimental Medicine, McGill University, Montreal, Canada.,Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Omar Farah
- Division of Experimental Medicine, McGill University, Montreal, Canada.,Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Daniel Dufort
- Division of Experimental Medicine, McGill University, Montreal, Canada.,Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montreal, Canada.,Department of Obstetrics and Gynecology, McGill University , Montreal, Canada.,Department of Biology, McGill University, Montreal, Canada
| |
Collapse
|
9
|
Balcioglu O, Heinz RE, Freeman DW, Gates BL, Hagos BM, Booker E, Mirzaei Mehrabad E, Diesen HT, Bhakta K, Ranganathan S, Kachi M, Leblanc M, Gray PC, Spike BT. CRIPTO antagonist ALK4 L75A-Fc inhibits breast cancer cell plasticity and adaptation to stress. Breast Cancer Res 2020; 22:125. [PMID: 33187540 PMCID: PMC7664111 DOI: 10.1186/s13058-020-01361-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 10/20/2020] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND CRIPTO is a multi-functional signaling protein that promotes stemness and oncogenesis. We previously developed a CRIPTO antagonist, ALK4L75A-Fc, and showed that it causes loss of the stem cell phenotype in normal mammary epithelia suggesting it may similarly inhibit CRIPTO-dependent plasticity in breast cancer cells. METHODS We focused on two triple negative breast cancer cell lines (MDA-MB-231 and MDA-MB-468) to measure the effects of ALK4L75A-Fc on cancer cell behavior under nutrient deprivation and endoplasmic reticulum stress. We characterized the proliferation and migration of these cells in vitro using time-lapse microscopy and characterized stress-dependent changes in the levels and distribution of CRIPTO signaling mediators and cancer stem cell markers. We also assessed the effects of ALK4L75A-Fc on proliferation, EMT, and stem cell markers in vivo as well as on tumor growth and metastasis using inducible lentiviral delivery or systemic administration of purified ALK4L75A-Fc, which represents a candidate therapeutic approach. RESULTS ALK4L75A-Fc inhibited adaptive responses of breast cancer cells under conditions of nutrient and ER stress and reduced their proliferation, migration, clonogenicity, and expression of EMT and cancer stem cell markers. ALK4L75A-Fc also inhibited proliferation of human breast cancer cells in stressed tumor microenvironments in xenografts and reduced both primary tumor size and metastatic burden. CONCLUSIONS Cancer cell adaptation to stresses such as nutrient deprivation, hypoxia, and chemotherapy can critically contribute to dormancy, metastasis, therapy resistance, and recurrence. Identifying mechanisms that govern cellular adaptation, plasticity, and the emergence of stem-like cancer cells may be key to effective anticancer therapies. Results presented here indicate that targeting CRIPTO with ALK4L75A-Fc may have potential as such a therapy since it inhibits breast cancer cell adaptation to microenvironmental challenges and associated stem-like and EMT phenotypes.
Collapse
Affiliation(s)
- Ozlen Balcioglu
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 84112, USA
| | - Richard E Heinz
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 84112, USA
| | - David W Freeman
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 84112, USA
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, 84112, USA
| | - Brooke L Gates
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 84112, USA
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, 84112, USA
| | - Berhane M Hagos
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 84112, USA
| | - Evan Booker
- Peptide Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | | | - Hyrum T Diesen
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, 84112, USA
| | - Kishan Bhakta
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, 84112, USA
| | - Supraja Ranganathan
- Department of Biochemistry, University of Utah, Salt Lake City, UT, 84112, USA
| | - Masami Kachi
- Peptide Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Mathias Leblanc
- Peptide Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Peter C Gray
- Peptide Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
- Present Address: Biotheranostics Inc., San Diego, CA, 92121, USA
| | - Benjamin T Spike
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 84112, USA.
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
10
|
Beneficial effects of Cripto-1 for transarterial chemoembolization in hepatocellular carcinoma. Aging (Albany NY) 2020; 11:2998-3011. [PMID: 31136302 PMCID: PMC6555445 DOI: 10.18632/aging.101951] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 04/30/2019] [Indexed: 01/27/2023]
Abstract
Cripto-1 may act as an independent predictor for prognosis in hepatocellular carcinoma (HCC). However, the function of Cripto-1 in HCC cells and its response to postoperative transarterial chemoembolization (TACE) in HCC patients remains unclearly. Up-regulated Cripto-1 expression boosted the ability of cell proliferation, migration and invasion in HCC cells in vitro. While opposite results were observed in HCC cells with down-regulated Cripto-1 expression. Cripto-1 expression was correlated with epithelial-mesenchymal transition (EMT) relevant biomarkers. Furthermore, in high Cripto-1 expression patients, those with adjuvant TACE had favorable TTR and OS times. On contrary, adjuvant TACE may promote tumor recurrence but had no influence on OS time in patients with low Cripto-1 expression. In different subgroups of vascular invasion, larger tumor size or liver cirrhosis, patients with adjuvant TACE had longer TTR and OS times than those without TACE in patients with high Cripto-1 expression, while they could not obtain benefits from adjuvant TACE in patients with low-expressed Cripto-1 expression. In conclusion, Cripto-1 may be a potential prognostic factor in predicting outcome of HCC patients with TACE therapy, and combined with Cripto-1 and tumor features may be helpful to stratify patients with respect to prognosis and response to adjuvant TACE.
Collapse
|
11
|
Rodrigues Sousa E, Zoni E, Karkampouna S, La Manna F, Gray PC, De Menna M, Kruithof-de Julio M. A Multidisciplinary Review of the Roles of Cripto in the Scientific Literature Through a Bibliometric Analysis of its Biological Roles. Cancers (Basel) 2020; 12:cancers12061480. [PMID: 32517087 PMCID: PMC7352664 DOI: 10.3390/cancers12061480] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 12/21/2022] Open
Abstract
Cripto is a small glycosylphosphatidylinisitol (GPI)-anchored and secreted oncofetal protein that plays important roles in regulating normal physiological processes, including stem cell differentiation, embryonal development, and tissue growth and remodeling, as well as pathological processes such as tumor initiation and progression. Cripto functions as a co-receptor for TGF-β ligands such as Nodal, GDF1, and GDF3. Soluble and secreted forms of Cripto also exhibit growth factor-like activity and activate SRC/MAPK/PI3K/AKT pathways. Glucose-Regulated Protein 78 kDa (GRP78) binds Cripto at the cell surface and has been shown to be required for Cripto signaling via both TGF-β and SRC/MAPK/PI3K/AKT pathways. To provide a comprehensive overview of the scientific literature related to Cripto, we performed, for the first time, a bibliometric analysis of the biological roles of Cripto as reported in the scientific literature covering the last 10 years. We present different fields of knowledge in comprehensive areas of research on Cripto, ranging from basic to translational research, using a keyword-driven approach. Our ultimate aim is to aid the scientific community in conducting targeted research by identifying areas where research has been conducted so far and, perhaps more importantly, where critical knowledge is still missing.
Collapse
Affiliation(s)
- Elisa Rodrigues Sousa
- Department for Biomedical Research, Urology Research Laboratory, University of Bern, 3008 Bern, Switzerland; (E.R.S.); (E.Z.); (S.K.); (F.L.M.); (M.D.M.)
| | - Eugenio Zoni
- Department for Biomedical Research, Urology Research Laboratory, University of Bern, 3008 Bern, Switzerland; (E.R.S.); (E.Z.); (S.K.); (F.L.M.); (M.D.M.)
- Department of Urology, Inselspital, Bern University Hospital, 3010 Bern, Switzerland
| | - Sofia Karkampouna
- Department for Biomedical Research, Urology Research Laboratory, University of Bern, 3008 Bern, Switzerland; (E.R.S.); (E.Z.); (S.K.); (F.L.M.); (M.D.M.)
| | - Federico La Manna
- Department for Biomedical Research, Urology Research Laboratory, University of Bern, 3008 Bern, Switzerland; (E.R.S.); (E.Z.); (S.K.); (F.L.M.); (M.D.M.)
- Department of Urology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | | | - Marta De Menna
- Department for Biomedical Research, Urology Research Laboratory, University of Bern, 3008 Bern, Switzerland; (E.R.S.); (E.Z.); (S.K.); (F.L.M.); (M.D.M.)
| | - Marianna Kruithof-de Julio
- Department for Biomedical Research, Urology Research Laboratory, University of Bern, 3008 Bern, Switzerland; (E.R.S.); (E.Z.); (S.K.); (F.L.M.); (M.D.M.)
- Department of Urology, Inselspital, Bern University Hospital, 3010 Bern, Switzerland
- Correspondence:
| |
Collapse
|
12
|
Zimmerlin L, Zambidis ET. Pleiotropic roles of tankyrase/PARP proteins in the establishment and maintenance of human naïve pluripotency. Exp Cell Res 2020; 390:111935. [PMID: 32151493 DOI: 10.1016/j.yexcr.2020.111935] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 02/25/2020] [Accepted: 02/29/2020] [Indexed: 12/19/2022]
Abstract
Tankyrase 1 (TNKS1; PARP-5a) and Tankyrase 2 (TNKS2; PARP-5b) are poly-ADP-ribosyl-polymerase (PARP)-domain-containing proteins that regulate the activities of a wide repertoire of target proteins via post-translational addition of poly-ADP-ribose polymers (PARylation). Although tankyrases were first identified as regulators of human telomere elongation, important and expansive roles of tankyrase activity have recently emerged in the development and maintenance of stem cell states. Herein, we summarize the current state of knowledge of the various tankyrase-mediated activities that may promote human naïve and 'extended' pluripotency'. We review the putative role of tankyrase and PARP inhibition in trophectoderm specification, telomere elongation, DNA repair and chromosomal segregation, metabolism, and PTEN-mediated apoptosis. Importantly, tankyrases possess PARP-independent activities that include regulation of MDC1-associated DNA repair by homologous recombination (HR) and autophagy/pexophagy, which is an essential mechanism of protein synthesis in the preimplantation embryo. Additionally, tankyrases auto-regulate themselves via auto-PARylation which augments their cellular protein levels and potentiates their non-PARP tankyrase functions. We propose that these non-PARP-related activities of tankyrase proteins may further independently affect both naïve and extended pluripotency via mechanisms that remain undetermined. We broadly outline a hypothetical framework for how inclusion of a tankyrase/PARP inhibitor in small molecule cocktails may stabilize and potentiate naïve and extended pluripotency via pleiotropic routes and mechanisms.
Collapse
Affiliation(s)
- Ludovic Zimmerlin
- Institute for Cell Engineering, And Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, 733 N. Broadway, Miller Research Building, Room 755, Baltimore, MD, 21205, United States.
| | - Elias T Zambidis
- Institute for Cell Engineering, And Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, 733 N. Broadway, Miller Research Building, Room 755, Baltimore, MD, 21205, United States.
| |
Collapse
|
13
|
Infection-induced signals generated at the plasma membrane epigenetically regulate Wnt signaling in vitro and in vivo. J Biol Chem 2020. [DOI: 10.1016/s0021-9258(17)49912-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
14
|
Ahmed I, Roy BC, Rao Jakkula LUM, Subramaniam D, Dandawate P, Anant S, Sampath V, Umar S. Infection-induced signals generated at the plasma membrane epigenetically regulate Wnt signaling in vitro and in vivo. J Biol Chem 2019; 295:1021-1035. [PMID: 31836665 DOI: 10.1074/jbc.ra119.010285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 12/05/2019] [Indexed: 12/14/2022] Open
Abstract
Wnt signaling regulates immunomodulatory functions during infection and inflammation. Employing NCCIT and HCT116 cells, having high endogenous Wnt signaling, we observed elevated levels of low-density lipoprotein receptor-related protein 5/6 (LRP5/6) and Frizzled class receptor 10 (FZD10) and increases in β-catenin, doublecortin-like kinase 1 (DCLK1), CD44 molecule (CD44), and aldehyde dehydrogenase 1 family member A1 (ALDH1A1). siRNA-induced knockdown of these receptors antagonized TOPflash reporter activity and spheroid growth in vitro and elevated Wnt-inhibitory factor 1 (WIF1) activity. Elevated mRNA and protein levels of LRP5/6 and FZD10 paralleled expression of WNT2b and WNT4 in colonic crypts at days 6 and 12 post-infection with Citrobacter rodentium (CR) and tended to decline at days 20-34. The CR mutant escV or the tankyrase inhibitor XAV939 attenuated these responses. A three-dimensional organoid assay in colonic crypts isolated from CR-infected mice revealed elevated levels of LRP5/6 and FZD10 and β-catenin co-localization with enhancer of zeste 2 polycomb repressive complex 2 subunit (EZH2). Co-immunoprecipitation in the membrane fraction revealed that axin associates with LRP5/6 in CR-infected crypts, and this association was correlated with increased β-catenin. Colon tumors from either CR-infected ApcP Min/+ or azoxymethane/dextran sodium sulfate (AOM/DSS)-treated mice had high LRP5/6 or FZD10 levels, and chronic Notch blockade through the γ-secretase inhibitor dibenzazepine down-regulated LRP5/6 and FZD10 expression. In CR-responsive CT-26 cells, siRNA-induced LRP5/6 or FZD10 knockdown antagonized TOPflash reporter activity. Elevated miR-153-3p levels correlated with LRP5/6 and FZD10, and miR-153-3p sequestration via a plasmid-based miR inhibitor system attenuated Wnt signaling. We conclude that infection-induced signals from the plasma membrane epigenetically regulate Wnt signaling.
Collapse
Affiliation(s)
- Ishfaq Ahmed
- Department of Surgery, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Badal Chandra Roy
- Department of Surgery, University of Kansas Medical Center, Kansas City, Kansas 66160
| | | | | | - Prasad Dandawate
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Shrikant Anant
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Venkatesh Sampath
- Division of Neonatology, Children's Mercy Hospital, Kansas City, Missouri 64108
| | - Shahid Umar
- Department of Surgery, University of Kansas Medical Center, Kansas City, Kansas 66160
| |
Collapse
|
15
|
Jiang Y, Wang W, Wu X, Shi J. Pizotifen inhibits the proliferation and invasion of gastric cancer cells. Exp Ther Med 2019; 19:817-824. [PMID: 32010241 PMCID: PMC6966152 DOI: 10.3892/etm.2019.8308] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 07/07/2019] [Indexed: 01/04/2023] Open
Abstract
Gastric cancer is the fifth most common malignancy and the third highest cause of cancer-associated mortality worldwide. Therefore, research on the pathogenesis of gastric cancer is of utmost importance. It has been reported that aberrant activation of the Wnt/β-catenin signaling pathway is involved in the occurrence and development of gastric cancer. In the present study, it was found that pizotifen could inhibit the viability of gastric cancer cell lines MNK45 and AGS cells in a dose-dependent manner. Pizotifen treatment suppressed cell migration and invasion in MNK45 and AGS cells, whilst also inducing apoptosis. Western blot analysis demonstrated that pizotifen blocked the expression of Wnt3a, β-catenin and N-cadherin, whilst increasing E-cadherin expression. In addition, BML-284, a pharmacological Wnt signaling activator, partially reversed the changes in the expression levels of β-catenin, N-cadherin and E-cadherin in MNK45 and AGS cells induced by pizotifen. Collectively, these findings suggested that pizotifen demonstrates potential as a novel anti-cancer drug for the treatment of gastric cancer by inhibiting the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Ying Jiang
- Department of Gastroenterology, National Center of Gerontology, Beijing Hospital, Beijing 100730, P.R. China
| | - Wei Wang
- Department of Gastroenterology, National Center of Gerontology, Beijing Hospital, Beijing 100730, P.R. China
| | - Xi Wu
- Department of Gastroenterology, National Center of Gerontology, Beijing Hospital, Beijing 100730, P.R. China
| | - Jihua Shi
- Department of Gastroenterology, National Center of Gerontology, Beijing Hospital, Beijing 100730, P.R. China
| |
Collapse
|
16
|
Sandomenico A, Ruvo M. Targeting Nodal and Cripto-1: Perspectives Inside Dual Potential Theranostic Cancer Biomarkers. Curr Med Chem 2019; 26:1994-2050. [PMID: 30207211 DOI: 10.2174/0929867325666180912104707] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/13/2018] [Accepted: 07/17/2018] [Indexed: 12/25/2022]
Abstract
BACKGROUND Elucidating the mechanisms of recurrence of embryonic signaling pathways in tumorigenesis has led to the discovery of onco-fetal players which have physiological roles during normal development but result aberrantly re-activated in tumors. In this context, Nodal and Cripto-1 are recognized as onco-developmental factors, which are absent in normal tissues but are overexpressed in several solid tumors where they can serve as theranostic agents. OBJECTIVE To collect, review and discuss the most relevant papers related to the involvement of Nodal and Cripto-1 in the development, progression, recurrence and metastasis of several tumors where they are over-expressed, with a particular attention to their occurrence on the surface of the corresponding sub-populations of cancer stem cells (CSC). RESULTS We have gathered, rationalized and discussed the most interesting findings extracted from some 370 papers related to the involvement of Cripto-1 and Nodal in all tumor types where they have been detected. Data demonstrate the clear connection between Nodal and Cripto-1 presence and their multiple oncogenic activities across different tumors. We have also reviewed and highlighted the potential of targeting Nodal, Cripto-1 and the complexes that they form on the surface of tumor cells, especially of CSC, as an innovative approach to detect and suppress tumors with molecules that block one or more mechanisms that they regulate. CONCLUSION Overall, Nodal and Cripto-1 represent two innovative and effective biomarkers for developing potential theranostic anti-tumor agents that target normal as well as CSC subpopulations and overcome both pharmacological resistance and tumor relapse.
Collapse
Affiliation(s)
- Annamaria Sandomenico
- Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche (IBB-CNR), via Mezzocannone, 16, 80134, Napoli, Italy
| | - Menotti Ruvo
- Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche (IBB-CNR), via Mezzocannone, 16, 80134, Napoli, Italy
| |
Collapse
|
17
|
Gudbergsson JM, Duroux M. An evaluation of different Cripto-1 antibodies and their variable results. J Cell Biochem 2019; 121:545-556. [PMID: 31310365 DOI: 10.1002/jcb.29293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 06/27/2019] [Indexed: 12/14/2022]
Abstract
Cripto-1 is a protein expressed during embryonal development and has been linked to several malignant processes in cancer. Since the discovery of cripto-1 in the late 1980s, it has become a subject of biomarker investigation in several types of cancer which in many cases relies on immunolocalization of cripto-1 using antibodies. Investigating cripto-1 expression and localization in primary glioblastoma cells, we discovered nonspecific binding of cripto-1 antibody to the extracellular matrix Geltrex. A panel of four cripto-1 antibodies was investigated with respect to their binding to the Geltrex matrix and to the cripto-1 positive control cells NTERA2. The cripto-1 expression was varied for the different antibodies with respect to cellular localization and fixation methods. To further elaborate on these findings, we present a systematic review of cripto-1 antibodies found in the literature and highlight some possible cross reactants with data on sequence alignments and structural comparison of EGF domains.
Collapse
Affiliation(s)
- Johann Mar Gudbergsson
- Laboratory of Immunology and Cancer Biology, Institute of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Meg Duroux
- Laboratory of Immunology and Cancer Biology, Institute of Health Science and Technology, Aalborg University, Aalborg, Denmark
| |
Collapse
|
18
|
Garland MA, Sengupta S, Mathew LK, Truong L, de Jong E, Piersma AH, La Du J, Tanguay RL. Glucocorticoid receptor-dependent induction of cripto-1 ( one-eyed pinhead) inhibits zebrafish caudal fin regeneration. Toxicol Rep 2019; 6:529-537. [PMID: 31249786 PMCID: PMC6584771 DOI: 10.1016/j.toxrep.2019.05.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/27/2019] [Accepted: 05/28/2019] [Indexed: 12/15/2022] Open
Abstract
We previously used a chemical genetics approach with the larval zebrafish to identify small molecule inhibitors of tissue regeneration. This led to the discovery that glucocorticoids (GC) block early stages of tissue regeneration by the inappropriate activation of the glucocorticoid receptor (GR). We performed a microarray analysis to identify the changes in gene expression associated with beclomethasone dipropionate (BDP) exposure during epimorphic fin regeneration. Oncofetal cripto-1 showed > eight-fold increased expression in BDP-treated regenerates. We hypothesized that the mis-expression of cripto-1 was essential for BDP to block regeneration. Expression of cripto-1 was not elevated in GR morphants in the presence of BDP indicating that cripto-1 induction was GR-dependent. Partial translational suppression of Cripto-1 in the presence of BDP restored tissue regeneration. Retinoic acid exposure prevented increased cripto-1 expression and permitted regeneration in the presence of BDP. We demonstrated that BDP exposure increased cripto-1 expression in mouse embryonic stem cells and that regulation of cripto-1 by GCs is conserved in mammals.
Collapse
Key Words
- AEC, apical epithelial cap
- BDP, beclomethasone dipropionate
- Beclomethasone dipropionate
- Cripto-1
- DMSO, dimethyl sulfoxide
- EB, embryoid body
- ECM, extracellular matrix
- EMT, epithelial-to-mesenchymal transition
- ERK, extracellular signal-regulated kinase
- Epimorphic regeneration
- FGF, fibroblast growth factor
- GC, glucocorticoid
- GR, glucocorticoid receptor
- Glucocorticoids
- ISH, in situ hybridization
- MIAME, Minimum Information About a Microarray Experiment
- MO, morpholino oligonucleotide
- One-eyed pinhead
- RA, retinoic acid
- SEM, standard error of the mean
- TGF-β, transforming growth factor beta
- Zebrafish
- dpa, days post-amputation
- dpf, days post-fertilization
- eSC, embryonic stem cell
- hpa, hours post-amputation
- hpf, hours post-fertilization
- mLIF, murine leukemia inhibitory factor
- qRT-PCR, quantitative reverse transcription polymerase chain reaction
- zf, zebrafish
Collapse
Affiliation(s)
| | - Sumitra Sengupta
- Department of Environmental and Molecular Toxicology, United States
| | - Lijoy K Mathew
- Department of Environmental and Molecular Toxicology, United States
| | - Lisa Truong
- Department of Environmental and Molecular Toxicology, United States
| | - Esther de Jong
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands.,National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Aldert H Piersma
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands.,National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Jane La Du
- Department of Environmental and Molecular Toxicology, United States
| | - Robert L Tanguay
- Department of Environmental and Molecular Toxicology, United States
| |
Collapse
|
19
|
Focà G, Iaccarino E, Focà A, Sanguigno L, Untiveros G, Cuevas-Nunez M, Strizzi L, Leonardi A, Ruvo M, Sandomenico A. Development of conformational antibodies targeting Cripto-1 with neutralizing effects in vitro. Biochimie 2019; 158:246-256. [PMID: 30703478 DOI: 10.1016/j.biochi.2019.01.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 01/22/2019] [Indexed: 01/14/2023]
Abstract
Human Cripto-1 (Cripto-1), the founding member of the EGF-CFC superfamily, is a key regulator of many processes during embryonic development and oncogenesis. Cripto-1 is barely present or even absent in normal adult tissues while it is aberrantly re-expressed in various tumors. Blockade of the CFC domain-mediated Cripto-1 functions is acknowledged as a promising therapeutic intervention point to inhibit the tumorigenic activity of the protein. In this work, we report the generation and characterization of murine monoclonal antibodies raised against the synthetic folded CFC [112-150] domain of the human protein. Through subtractive ELISA assays clones were screened for the ability to specifically recognize "hot spot" residues on the CFC domain, which are crucial for the interaction with Activin Type I receptor (ALK4) and GRP78. On selected antibodies, SPR and epitope mapping studies have confirmed their specificity and have revealed that recognition occurs only on a conformational epitope. Furthermore, FACS analyses have confirmed the ability of 1B4 antibody to recognize the membrane-anchored and soluble native Cripto-1 protein in a panel of human cancer cells. Finally, we have evaluated its functional effects through in vitro cellular signaling assays and cell cycle analysis. These findings suggest that the selected anti-CFC mAbs have the potential to neutralize the protein oncogenic activity and may be used as theranostic molecules suitable as tumor homing agents for Cripto-1-overexpressing cancer cells and tissues and to overcome drug-resistance in routine cancer therapies.
Collapse
Affiliation(s)
- Giuseppina Focà
- Institute of Biostructure and Bioimaging, National Research Council (IBB-CNR), Naples, Italy
| | - Emanuela Iaccarino
- Institute of Biostructure and Bioimaging, National Research Council (IBB-CNR), Naples, Italy
| | - Annalia Focà
- Institute of Biostructure and Bioimaging, National Research Council (IBB-CNR), Naples, Italy
| | - Luca Sanguigno
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Gustavo Untiveros
- Midwestern University, Colleges of Graduate Studies, Dwners Grove, Chicago, IL, USA
| | - Maria Cuevas-Nunez
- Midwestern University, Colleges of Graduate Studies, Dwners Grove, Chicago, IL, USA; College of Dental Medicine, Dwners Grove, Chicago, IL, USA
| | - Luigi Strizzi
- Midwestern University, Colleges of Graduate Studies, Dwners Grove, Chicago, IL, USA
| | - Antonio Leonardi
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Menotti Ruvo
- Institute of Biostructure and Bioimaging, National Research Council (IBB-CNR), Naples, Italy.
| | - Annamaria Sandomenico
- Institute of Biostructure and Bioimaging, National Research Council (IBB-CNR), Naples, Italy.
| |
Collapse
|
20
|
Wu D, Shi Z, Xu H, Chen R, Xue S, Sun X. Knockdown of Cripto-1 inhibits the proliferation, migration, invasion, and angiogenesis in prostate carcinoma cells. J Biosci 2018; 42:405-416. [PMID: 29358554 DOI: 10.1007/s12038-017-9700-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cripto-1 (CR-1) is a member of the epidermal growth factor-Cripto-1/FRL1/Cryptic gene family that plays a key role in the various malignant cancers. However, the role of CR-1 in prostate carcinoma (PCa) remains limited. The expression of CR-1 was down-regulated by small interfering RNA (siRNA). Western blot measured the expression levels of CR-1 and some related proteins. We performed Cell Counting Kit-8, 5-ethynyl-2-deoxyuridine (EdU) incorporation assay and flow cytometry to detect the cellular proliferation and cycle. The transwell assay was used to observe cellular migration and invasion. The ability of angiogenesis was evaluated by tube formation assay. Our results showed that CR-1 knockdown markedly inhibited cell proliferation and induced cycle arrest in G1 phase, as p21 and p27 were up-regulated, whereas cyclin D1 and cyclin E1 were diminished. Moreover, silencing of CR-1 dramatically inhibited cell migration and invasion, repressed matrix metalloproteinases, and disturbed epithelial-mesenchymal transition. CR-1 siRNA suppressed the secreted level of vascular endothelial growth factor, and reduced protein level of Vascular endothelial growth factor receptor 2. We further found that decreased CR-1 expression inhibited FAK/Src/PI3K and Wnt/b-catenin signalling in PCa cells. These results suggested CR-1 might be served as an effective therapeutic target in PCa.
Collapse
Affiliation(s)
- Ding Wu
- Department of Urology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, People's Republic of China
| | | | | | | | | | | |
Collapse
|
21
|
Zhang Y, Xu H, Chi X, Fan Y, Shi Y, Niu J. High level of serum Cripto-1 in hepatocellular carcinoma, especially with hepatitis B virus infection. Medicine (Baltimore) 2018; 97:e11781. [PMID: 30170372 PMCID: PMC6392992 DOI: 10.1097/md.0000000000011781] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Human Cripto-1 (CR-1), a member of the epidermal growth factor-Cripto-1/FRL-1/Cryptic protein family (EGF-CFC), is highly expressed in a variety of human cancers. We aimed to detect serum CR-1 level in liver diseases especially in hepatocellular carcinoma (HCC) patients. METHODS Serum CR-1 level was Sandwich-type enzyme-linked immuno sorbent assay (ELISA) detected in 330 patients with liver diseases including HCC, cirrhosis, and chronic hepatitis and 50 volunteers without hepatitis B virus (HBV) or hepatitis C virus (HCV) infection as control. RESULTS The serum CR-1 level was significantly higher in HCC patients than volunteer controls and it was also significantly higher in HBV-related HCC than HCV-related HCC. In addition, serum CR-1 level was correlated with serum alpha-feto-protein (AFP) in HBV-related HCC patients. The serum CR-1 was also higher in cirrhosis and chronic hepatitis than volunteer controls. The serum CR-1 in HBV-related cirrhosis was higher than chronic hepatitis B, but there was no significant difference between HCV-related cirrhosis and chronic hepatitis C. CONCLUSIONS Serum CR-1 was higher in HCC patients and might serve as a complementary biomarker to clinical diagnosis of HBV-related HCC. The high level of serum CR-1 in HBV-related liver disease might be partly attributed to HBV infection.
Collapse
Affiliation(s)
- Yingyu Zhang
- Department of Hepatology, The First Hospital of Jilin University, Changchun, Jilin, China
| | | | | | | | | | | |
Collapse
|
22
|
Cripto-1 contributes to stemness in hepatocellular carcinoma by stabilizing Dishevelled-3 and activating Wnt/β-catenin pathway. Cell Death Differ 2018; 25:1426-1441. [PMID: 29445127 PMCID: PMC6113239 DOI: 10.1038/s41418-018-0059-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 12/28/2017] [Accepted: 01/08/2018] [Indexed: 01/10/2023] Open
Abstract
Identification and characterization of functional molecular targets conferring stemness properties in hepatocellular carcinoma (HCC) offers crucial insights to overcome the major hurdles of tumor recurrence, metastasis and chemoresistance in clinical management. In the current study, we investigated the significance of Cripto-1 in contributing to HCC stemness. Cripto-1 was upregulated in the sorafenib-resistant clones derived from HCC cell lines and patient-derived xenograft that we previously developed, suggesting an association between Cripto-1 and stemness. By in vitro experiments, Cripto-1 fostered cell proliferation, migration, and invasion. It also enhanced self-renewal ability and conferred chemoresistance of HCC cells. Consistently, silencing of Cripto-1 suppressed in vivo tumorigenicity on serial transplantation. On the downstream signaling mechanism, expression of major components of Wnt/β-catenin pathway β-catenin, AXIN2, and C-MYC, accompanied by β-catenin activity was reduced upon Cripto-1 knockdown. The suppressive effects on stemness properties with Cripto-1 knockdown in vitro and in vivo were partially rescued by forced expression of constitutively active β-catenin. Further elucidation revealed the binding of Cripto-1 to Frizzled-7 (FZD7), low-density lipoprotein receptor-related protein 6 (LRP6) and Dishevelled-3 (DVL3) of the Wnt/β-catenin pathway and stabilized DVL3 protein. Analyses with clinical samples validated Cripto-1 overexpression in HCC tissues, as well as a positive correlation between Cripto-1 and AXIN2 expressions. High Cripto-1 level in tumor was associated with poorer disease-free survival of HCC patients. Taken together, Cripto-1 binds to FZD7/LRP6 and DVL3, stabilizes DVL3 expression and activates the Wnt/β-catenin signaling cascade to confer stemness in HCC. Our study findings substantiated the role of Cripto-1 in determining stemness phenotypes of HCC and mechanistically in modulating the Wnt/β-catenin signaling cascade, one of the most frequently deregulated pathways in liver cancer.
Collapse
|
23
|
Nickel J, Ten Dijke P, Mueller TD. TGF-β family co-receptor function and signaling. Acta Biochim Biophys Sin (Shanghai) 2018; 50:12-36. [PMID: 29293886 DOI: 10.1093/abbs/gmx126] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 11/08/2017] [Indexed: 01/04/2023] Open
Abstract
Transforming growth factor-β (TGF-β) family members, which include TGF-βs, activins and bone morphogenetic proteins, are pleiotropic cytokines that elicit cell type-specific effects in a highly context-dependent manner in many different tissues. These secreted protein ligands signal via single-transmembrane Type I and Type II serine/threonine kinase receptors and intracellular SMAD transcription factors. Deregulation in signaling has been implicated in a broad array of diseases, and implicate the need for intricate fine tuning in cellular signaling responses. One important emerging mechanism by which TGF-β family receptor signaling intensity, duration, specificity and diversity are regulated and/or mediated is through cell surface co-receptors. Here, we provide an overview of the co-receptors that have been identified for TGF-β family members. While some appear to be specific to TGF-β family members, others are shared with other pathways and provide possible ways for signal integration. This review focuses on novel functions of TGF-β family co-receptors, which continue to be discovered.
Collapse
Affiliation(s)
- Joachim Nickel
- Universitätsklinikum Würzburg, Lehrstuhl für Tissue Engineering und Regenerative Medizin und Fraunhofer Institut für Silicatforschung (ISC), Translationszentrum "Regenerative Therapien", Röntgenring 11, D-97070 Würzburg, Germany
| | - Peter Ten Dijke
- Department of Molecular and Cell Biology and Cancer Genomics Centre Netherlands, Leiden University Medical Center, Einthovenweg 20, 2300 RC Leiden, The Netherlands
| | - Thomas D Mueller
- Lehrstuhl für molekulare Pflanzenphysiologie und Biophysik, Julius-von-Sachs Institut für Biowissenschaften, Universität Würzburg, Julius-von-Sachs-Platz 2, D-97082 Würzburg, Germany
| |
Collapse
|
24
|
Park KS, Moon YW, Raffeld M, Lee DH, Wang Y, Giaccone G. High cripto-1 and low miR-205 expression levels as prognostic markers in early stage non-small cell lung cancer. Lung Cancer 2017; 116:38-45. [PMID: 29413049 DOI: 10.1016/j.lungcan.2017.12.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 12/07/2017] [Accepted: 12/13/2017] [Indexed: 01/04/2023]
Abstract
OBJECTIVES Cripto-1 (CR-1) plays a critical role in the activation of SMAD, SRC, and epithelial-to-mesenchymal transition (EMT) pathways and has been shown to be prognostic in several cancer types. In addition, we showed that CR-1 renders EGFR-mutated NSCLC cells resistant to EGFR-TKI through the activation of SRC and EMT via miR-205 downregulation. This study aimed to investigate the correlation between expression of CR-1 and miR-205 and prognosis of NSCLC patients with or without EGFR mutations. MATERIALS AND METHODS A total of 265 patients with stage I (AJCC 6th edition) radically resected NSCLC were tested for CR-1 expression and EGFR mutations by immunohistochemistry and miR-205 expression via qPCR assay. RESULTS CR-1 expression was evaluated with immunohistochemistry using a tissue microarray on 265 T1-2N0 surgical NSCLC samples. Of the 265 tumors, 250 (94%) expressed various levels of CR-1. A significant inverse correlation was identified between expression of miR-205 and CR-1. NSCLC patients (T1N0, n = 106) with high CR-1 expression had worse prognosis (shorter recurrence-free survival, p = .045) than those with low CR-1 expression. A similar trend was observed in NSCLC patients with normal preoperative carcinoembryonic antigen (CEA) levels (serum CEA levels <5 ng/ml; n = 179; p = .085); however, no significant correlation was found between CR-1 expression and survival rate in the T2N0 or high CEA groups. In addition, NSCLC patients with low miR-205 expression (n = 126) had poorer prognosis in terms of recurrence than those with high miR-205 expression (n = 127; p = .001). CONCLUSION High CR-1 expression is correlated with poor prognosis in NSCLC with low tumor burden and may be used to select high-risk patients for adjuvant chemotherapy in early NSCLC. Moreover, low miR-205 expression likely related to high CR-1 expression could be a prognostic marker for patients with NSCLC.
Collapse
Affiliation(s)
- Kang-Seo Park
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington DC 20057, USA; Institute for Innovative Cancer Research, University of Ulsan College of Medicine, Asan Medical Center, Seoul 138-736, Republic of Korea; Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea
| | - Yong Wha Moon
- Medical Oncology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam-si, Gyeonggi-do, 463-712, Republic of Korea
| | - Mark Raffeld
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Dae Ho Lee
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea
| | - Yisong Wang
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington DC 20057, USA
| | - Giuseppe Giaccone
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington DC 20057, USA.
| |
Collapse
|
25
|
Xie K, Zhang K, Kong J, Wang C, Gu Y, Liang C, Jiang T, Qin N, Liu J, Guo X, Huo R, Liu M, Ma H, Dai J, Hu Z. Cancer-testis gene PIWIL1 promotes cell proliferation, migration, and invasion in lung adenocarcinoma. Cancer Med 2017; 7:157-166. [PMID: 29168346 PMCID: PMC5774002 DOI: 10.1002/cam4.1248] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/07/2017] [Accepted: 10/08/2017] [Indexed: 12/15/2022] Open
Abstract
Piwi-like RNA-mediated gene silencing 1 (PIWIL1) has been identified as a novel extremely highly expressed cancer-testis (CT) gene in lung adenocarcinoma. However, the exact function and mechanism of PIWIL1 in lung adenocarcinoma remains unclear. Herein, we sought to investigate the role of PIWIL1 in the occurrence and development of lung adenocarcinoma. We examined the expression pattern of PIWIL1 in The Cancer Genome Atlas (TCGA) lung adenocarcinoma samples, and validated it by Real-Time PCR (RT-PCR) in additional 21 paired lung adenocarcinoma tissues and 16 normal tissues. Subsequently, we explored the biological function of PIWIL1 in A549 and H1299 cell lines by gain and loss-of-function analyses. Using TCGA lung adenocarcinoma data, we further performed coexpression and Gene Ontology (GO) analyses, and analyzed the association of DNA methylation levels in PIWIL1 promoter region with its expression. Finally, we evaluated its expression in different mutation status of significantly mutated genes (SMGs) in TCGA lung adenocarcinoma data. We observed that PIWIL1 was expressed in testis and lung adenocarcinoma but not in other normal tissues, and its high expression was associated with shortened survival of lung cancer patients. Overexpression of PIWIL1 could facilitate the proliferation, invasion and migration of lung adenocarcinoma cells and vice versa. GO analysis revealed that PIWIL1 upregulated genes were enriched in embryonic development, cell proliferation and regulation of transcription. Moreover, promoter DNA hypomethylation of PIWIL1 could contribute to its aberrant expression in tumors. Interestingly, PIWIL1 expression was significantly higher in patients without hepatocyte growth factor (HGF) or serine/threonine kinase 11 (STK11) mutation (P = 0.006 and 0.005, respectively). PIWIL1 is an epidriver gene in lung adenocarcinoma, indicating a potential target for further therapy.
Collapse
Affiliation(s)
- Kaipeng Xie
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China.,Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Kai Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China.,Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Jing Kong
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China.,Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Cheng Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China.,Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Yayun Gu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China.,Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Cheng Liang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China.,Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Tingting Jiang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China.,Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Na Qin
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China.,Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Jibin Liu
- Tumor Biobank, Nantong Tumor Hospital, Nantong, 226000, China
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Ran Huo
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Mingxi Liu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Hongxia Ma
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China.,Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Juncheng Dai
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China.,Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Zhibin Hu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China.,Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China
| |
Collapse
|
26
|
Ma J, Lu W, Chen D, Xu B, Li Y. Role of Wnt Co-Receptor LRP6 in Triple Negative Breast Cancer Cell Migration and Invasion. J Cell Biochem 2017; 118:2968-2976. [PMID: 28247948 PMCID: PMC10928515 DOI: 10.1002/jcb.25956] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 02/27/2017] [Indexed: 03/14/2024]
Abstract
The low-density lipoprotein receptor-related protein 6 (LRP6) is an essential Wnt co-receptor of the Wnt/β-catenin signaling pathway. Although studies have shown an increased expression of LRP6 in several types of cancer, its function in tumor development and progression remains to be elucidated. We herein demonstrated that LRP6 expression is up-regulated in human triple negative breast cancer (TNBC) patients and human TNBC cell lines, and that knockdown of LRP6 expression and treatment of recombinant Mesd protein (a specific inhibitor of LRP6) significantly decreased cell migration and invasion of TNBC MDA-MB-231 and BT549 cells. Interestingly, the effects of LRP6 knockdown and Mesd treatment on TNBC cell migration and invasion were more prominent than on TNBC cell proliferation/viability. Mechanistically, LRP6 knockdown and Mesd treatment inhibited Wnt/β-catenin signaling and decreased the expression of S100A4, a mediator of cancer metastasis and a specific target of Wnt/β-catenin signaling, in TNBC cells. Together, our data suggest that LRP6 promotes TNBC cell migration and invasion by regulating the expression and function of S100A4 via the Wnt/β-catenin signaling pathway. J. Cell. Biochem. 118: 2968-2976, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jinlu Ma
- Department of Radiation Oncology, the First Affiliated Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, 710061, China
- Department of Oncology, Drug Discovery Division, Southern Research Institute, 2000 Ninth Avenue South, Birmingham, AL 35255, USA
| | - Wenyan Lu
- Department of Oncology, Drug Discovery Division, Southern Research Institute, 2000 Ninth Avenue South, Birmingham, AL 35255, USA
| | - Dongquan Chen
- Division of Preventive Medicine and Comprehensive Cancer Center; Department of Medicine; University of Alabama at Birmingham; Birmingham, AL USA
| | - Bo Xu
- Department of Oncology, Drug Discovery Division, Southern Research Institute, 2000 Ninth Avenue South, Birmingham, AL 35255, USA
| | - Yonghe Li
- Department of Oncology, Drug Discovery Division, Southern Research Institute, 2000 Ninth Avenue South, Birmingham, AL 35255, USA
| |
Collapse
|
27
|
Aykul S, Parenti A, Chu KY, Reske J, Floer M, Ralston A, Martinez-Hackert E. Biochemical and Cellular Analysis Reveals Ligand Binding Specificities, a Molecular Basis for Ligand Recognition, and Membrane Association-dependent Activities of Cripto-1 and Cryptic. J Biol Chem 2017; 292:4138-4151. [PMID: 28126904 PMCID: PMC5354514 DOI: 10.1074/jbc.m116.747501] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 01/25/2017] [Indexed: 12/31/2022] Open
Abstract
Transforming growth factor β (TGF-β) pathways are key determinants of cell fate in animals. Their basic mechanism of action is simple. However, to produce cell-specific responses, TGF-β pathways are heavily regulated by secondary factors, such as membrane-associated EGF-CFC family proteins. Cellular activities of EGF-CFC proteins have been described, but their molecular functions, including how the mammalian homologs Cripto-1 and Cryptic recognize and regulate TGF-β family ligands, are less clear. Here we use purified human Cripto-1 and mouse Cryptic produced in mammalian cells to show that these two EGF-CFC homologs have distinct, highly specific ligand binding activities. Cripto-1 interacts with BMP-4 in addition to its known partner Nodal, whereas Cryptic interacts only with Activin B. These interactions depend on the integrity of the protein, as truncated or deglycosylated Cripto-1 lacked BMP-4 binding activity. Significantly, Cripto-1 and Cryptic blocked binding of their cognate ligands to type I and type II TGF-β receptors, indicating that Cripto-1 and Cryptic contact ligands at their receptor interaction surfaces and, thus, that they could inhibit their ligands. Indeed, soluble Cripto-1 and Cryptic inhibited ligand signaling in various cell-based assays, including SMAD-mediated luciferase reporter gene expression, and differentiation of a multipotent stem cell line. But in agreement with previous work, the membrane bound form of Cripto-1 potentiated signaling, revealing a critical role of membrane association for its established cellular activity. Thus, our studies provide new insights into the mechanism of ligand recognition by this enigmatic family of membrane-anchored TGF-β family signaling regulators and link membrane association with their signal potentiating activities.
Collapse
Affiliation(s)
- Senem Aykul
- From the Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1319
| | - Anthony Parenti
- From the Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1319
| | - Kit Yee Chu
- From the Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1319
| | - Jake Reske
- From the Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1319
| | - Monique Floer
- From the Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1319
| | - Amy Ralston
- From the Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1319
| | - Erik Martinez-Hackert
- From the Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1319
| |
Collapse
|
28
|
Cripto is essential to capture mouse epiblast stem cell and human embryonic stem cell pluripotency. Nat Commun 2016; 7:12589. [PMID: 27586544 PMCID: PMC5025790 DOI: 10.1038/ncomms12589] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 07/14/2016] [Indexed: 01/01/2023] Open
Abstract
Known molecular determinants of developmental plasticity are mainly transcription factors, while the extrinsic regulation of this process has been largely unexplored. Here we identify Cripto as one of the earliest epiblast markers and a key extracellular determinant of the naive and primed pluripotent states. We demonstrate that Cripto sustains mouse embryonic stem cell (ESC) self-renewal by modulating Wnt/β-catenin, whereas it maintains mouse epiblast stem cell (EpiSC) and human ESC pluripotency through Nodal/Smad2. Moreover, we provide unprecedented evidence that Cripto controls the metabolic reprogramming in ESCs to EpiSC transition. Remarkably, Cripto deficiency attenuates ESC lineage restriction in vitro and in vivo, and permits ESC transdifferentiation into trophectoderm lineage, suggesting that Cripto has earlier functions than previously recognized. All together, our studies provide novel insights into the current model of mammalian pluripotency and contribute to the understanding of the extrinsic regulation of the first cell lineage decision in the embryo. Stem cell plasticity is crucial for early embryo development and the differentiation of stem cells. Here, the authors show that the extracellular protein Cripto sustains mouse ESC self-renewal and maintains mouse EpiSC as well as human ESC pluripotency and controls the metabolic reprogramming in ESCs to EpiSC transition.
Collapse
|
29
|
Wang JH, Wei W, Xu J, Guo ZX, Xiao CZ, Zhang YF, Jian PE, Wu XL, Shi M, Guo RP. Elevated expression of Cripto-1 correlates with poor prognosis in hepatocellular carcinoma. Oncotarget 2016; 6:35116-28. [PMID: 26375669 PMCID: PMC4741514 DOI: 10.18632/oncotarget.5057] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 08/24/2015] [Indexed: 01/06/2023] Open
Abstract
Cripto-1 could promote tumorigenesis in a wide range of carcinomas, yet little is known in hepatocellular carcinoma (HCC). The expression of Cripto-1 and MMP-9 were assessed by immunohistochemistry in 205 HCC specimens. The correlation between Cripto-1 and MMP-9, clinicopathological/prognostic value in HCC was examined. Cripto-1 overexpression was correlated with larger tumor, TNM stage, BCLC stage and tumor recurrence. In multivariate analyses, Cripto-1 was an independent predictor for overall survival (OS) and time to recurrence (TTR). Cripto-1 expression was increased in TNM and BCLC stage-dependent manner. Cripto-1 overexpression was associated with poor prognosis in patients subgroups stratified by tumor size, tumor differentiation, TNM and BCLC stage. In addition, Cripto-1 was positively correlated with MMP-9 among 205 HCC samples. Patients with Cripto-1 upregulation had poor OS and shorter TTR in low and high aggressiveness groups. Furthermore, Cripto-1 had predictive validity for early and late recurrence in HCC patients. Combination of Cripto-1 and serum AFP was correlated with OS and TTR. In conclusion, Cripto-1 overexpression contributes to aggressiveness and poor prognosis of HCC. Cripto-1/AFP expression could be a potential prognostic biomarker for survival in HCC patients.
Collapse
Affiliation(s)
- Jia-Hong Wang
- Department of Hepatobilliary Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Wei Wei
- Department of Hepatobilliary Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Jing Xu
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Zhi-Xing Guo
- Department of Ultrasonics, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Cheng-Zuo Xiao
- Department of Hepatobilliary Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yong-Fa Zhang
- Department of Hepatobilliary Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Pei-En Jian
- Department of Hepatobilliary Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Xiao-Liang Wu
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Ming Shi
- Department of Hepatobilliary Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Rong-Ping Guo
- Department of Hepatobilliary Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| |
Collapse
|
30
|
Rangel MC, Bertolette D, Castro NP, Klauzinska M, Cuttitta F, Salomon DS. Developmental signaling pathways regulating mammary stem cells and contributing to the etiology of triple-negative breast cancer. Breast Cancer Res Treat 2016; 156:211-26. [PMID: 26968398 PMCID: PMC4819564 DOI: 10.1007/s10549-016-3746-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 03/04/2016] [Indexed: 12/17/2022]
Abstract
Cancer has been considered as temporal and spatial aberrations of normal development in tissues. Similarities between mammary embryonic development and cell transformation suggest that the underlying processes required for mammary gland development are also those perturbed during various stages of mammary tumorigenesis and breast cancer (BC) development. The master regulators of embryonic development Cripto-1, Notch/CSL, and Wnt/β-catenin play key roles in modulating mammary gland morphogenesis and cell fate specification in the embryo through fetal mammary stem cells (fMaSC) and in the adult organism particularly within the adult mammary stem cells (aMaSC), which determine mammary progenitor cell lineages that generate the basal/myoepithelial and luminal compartments of the adult mammary gland. Together with recognized transcription factors and embryonic stem cell markers, these embryonic regulatory molecules can be inappropriately augmented during tumorigenesis to support the tumor-initiating cell (TIC)/cancer stem cell (CSC) compartment, and the effects of their deregulation may contribute for the etiology of BC, in particular the most aggressive subtype of BC, triple-negative breast cancer (TNBC). This in depth review will present evidence of the involvement of Cripto-1, Notch/CSL, and Wnt/β-catenin in the normal mammary gland morphogenesis and tumorigenesis, from fMaSC/aMaSC regulation to TIC generation and maintenance in TNBC. Specific therapies for treating TNBC by targeting these embryonic pathways in TICs will be further discussed, providing new opportunities to destroy not only the bulk tumor, but also TICs that initiate and promote the metastatic spread and recurrence of this aggressive subtype of BC.
Collapse
Affiliation(s)
- Maria Cristina Rangel
- Tumor Growth Factor Section, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Building 560, Room 32-40B, 1050 Boyles Street, Ft. Detrick, Frederick, MD, 21702, USA
| | - Daniel Bertolette
- Tumor Growth Factor Section, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Building 560, Room 32-40B, 1050 Boyles Street, Ft. Detrick, Frederick, MD, 21702, USA
| | - Nadia P Castro
- Tumor Growth Factor Section, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Building 560, Room 32-40B, 1050 Boyles Street, Ft. Detrick, Frederick, MD, 21702, USA
| | - Malgorzata Klauzinska
- Tumor Growth Factor Section, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Building 560, Room 32-40B, 1050 Boyles Street, Ft. Detrick, Frederick, MD, 21702, USA
| | - Frank Cuttitta
- Tumor Growth Factor Section, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Building 560, Room 32-40B, 1050 Boyles Street, Ft. Detrick, Frederick, MD, 21702, USA
| | - David S Salomon
- Tumor Growth Factor Section, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Building 560, Room 32-40B, 1050 Boyles Street, Ft. Detrick, Frederick, MD, 21702, USA.
| |
Collapse
|
31
|
Park S, Blaser S, Marchal MA, Houston DW, Sheets MD. A gradient of maternal Bicaudal-C controls vertebrate embryogenesis via translational repression of mRNAs encoding cell fate regulators. Development 2016; 143:864-71. [PMID: 26811381 PMCID: PMC4813341 DOI: 10.1242/dev.131359] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 01/16/2016] [Indexed: 12/16/2022]
Abstract
Vertebrate Bicaudal-C (Bicc1) has important biological roles in the formation and homeostasis of multiple organs, but direct experiments to address the role of maternal Bicc1 in early vertebrate embryogenesis have not been reported. Here, we use antisense phosphorothioate-modified oligonucleotides and the host-transfer technique to eliminate specifically maternal stores of both bicc1 mRNA and Bicc1 protein from Xenopus laevis eggs. Fertilization of these Bicc1-depleted eggs produced embryos with an excess of dorsal-anterior structures and overexpressed organizer-specific genes, indicating that maternal Bicc1 is crucial for normal embryonic patterning of the vertebrate embryo. Bicc1 is an RNA-binding protein with robust translational repression function. Here, we show that the maternal mRNA encoding the cell-fate regulatory protein Wnt11b is a direct target of Bicc1-mediated repression. It is well established that the Wnt signaling pathway is crucial to vertebrate embryogenesis. Thus, the work presented here links the molecular function of Bicc1 in mRNA target-specific translation repression to its biological role in the maternally controlled stages of vertebrate embryogenesis.
Collapse
Affiliation(s)
- Sookhee Park
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Susanne Blaser
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | - Michael D Sheets
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
32
|
Abstract
Inhibitors of Wnt signaling have been shown to be involved in prostate cancer (PC) metastasis; however the role of Sclerostin (Sost) has not yet been explored. Here we show that elevated Wnt signaling derived from Sost deficient osteoblasts promotes PC invasion, while rhSOST has an inhibitory effect. In contrast, rhDKK1 promotes PC elongation and filopodia formation, morphological changes characteristic of an invasive phenotype. Furthermore, rhDKK1 was found to activate canonical Wnt signaling in PC3 cells, suggesting that SOST and DKK1 have opposing roles on Wnt signaling in this context. Gene expression analysis of PC3 cells co-cultured with OBs exhibiting varying amounts of Wnt signaling identified CRIM1 as one of the transcripts upregulated under highly invasive conditions. We found CRIM1 overexpression to also promote cell-invasion. These findings suggest that bone-derived Wnt signaling may enhance PC tropism by promoting CRIM1 expression and facilitating cancer cell invasion and adhesion to bone. We concluded that SOST and DKK1 have opposing effects on PC3 cell invasion and that bone-derived Wnt signaling positively contributes to the invasive phenotypes of PC3 cells by activating CRIM1 expression and facilitating PC-OB physical interaction. As such, we investigated the effects of high concentrations of SOST in vivo. We found that PC3-cells overexpressing SOST injected via the tail vein in NSG mice did not readily metastasize, and those injected intrafemorally had significantly reduced osteolysis, suggesting that targeting the molecular bone environment may influence bone metastatic prognosis in clinical settings.
Collapse
|
33
|
Klauzinska M, McCurdy D, Rangel MC, Vaidyanath A, Castro NP, Shen MM, Gonzales M, Bertolette D, Bianco C, Callahan R, Salomon DS, Raafat A. Cripto-1 ablation disrupts alveolar development in the mouse mammary gland through a progesterone receptor-mediated pathway. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:2907-22. [PMID: 26429739 DOI: 10.1016/j.ajpath.2015.07.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 06/24/2015] [Accepted: 07/28/2015] [Indexed: 01/08/2023]
Abstract
Cripto-1, a member of the epidermal growth factor-Cripto-1/FRL-1/Cryptic family, is critical for early embryonic development. Together with its ligand Nodal, Cripto-1 has been found to be associated with the undifferentiated status of mouse and human embryonic stem cells. Several studies have clearly shown that Cripto-1 is involved in regulating branching morphogenesis and epithelial-mesenchymal transition of the mammary gland both in vitro and in vivo and together with the cofactor GRP78 is critical for the maintenance of mammary stem cells ex vivo. Our previous studies showed that mammary-specific overexpression of human Cripto-1 exhibited dramatic morphological alterations in nulliparous mice mammary glands. The present study shows a novel mechanism for Cripto-1 regulation of mammary gland development through direct effects on progesterone receptor expression and pathways regulated by progesterone in the mammary gland. We demonstrate a strict temporal regulation of mouse Cripto-1 (mCripto-1) expression that occurs during mammary gland development and a stage-specific function of mCripto-1 signaling during mammary gland development. Our data suggest that Cripto-1, like the progesterone receptor, is not required for the initial ductal growth but is essential for subsequent side branching and alveologenesis during the initial stages of pregnancy. Dissection of the mechanism by which this occurs indicates that mCripto-1 activates receptor activator NF-κB/receptor activator NF-κB ligand, and NF-κB signaling pathways.
Collapse
Affiliation(s)
- Malgorzata Klauzinska
- Mouse Cancer Genetics Program, National Cancer Institute, National Institutes of Health, Frederick, Maryland
| | - David McCurdy
- Basic Research Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Maria Cristina Rangel
- Mouse Cancer Genetics Program, National Cancer Institute, National Institutes of Health, Frederick, Maryland
| | - Arun Vaidyanath
- Basic Research Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Nadia P Castro
- Mouse Cancer Genetics Program, National Cancer Institute, National Institutes of Health, Frederick, Maryland
| | - Michael M Shen
- Departments of Medicine Genetics and Development, Urology, and Systems Biology, Columbia University Medical Center, New York, New York
| | - Monica Gonzales
- Mouse Cancer Genetics Program, National Cancer Institute, National Institutes of Health, Frederick, Maryland
| | - Daniel Bertolette
- Mouse Cancer Genetics Program, National Cancer Institute, National Institutes of Health, Frederick, Maryland
| | - Caterina Bianco
- Mouse Cancer Genetics Program, National Cancer Institute, National Institutes of Health, Frederick, Maryland
| | - Robert Callahan
- Basic Research Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - David S Salomon
- Mouse Cancer Genetics Program, National Cancer Institute, National Institutes of Health, Frederick, Maryland
| | - Ahmed Raafat
- Basic Research Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
34
|
He S, Lu Y, Liu X, Huang X, Keller ET, Qian CN, Zhang J. Wnt3a: functions and implications in cancer. CHINESE JOURNAL OF CANCER 2015; 34:554-62. [PMID: 26369691 PMCID: PMC4593336 DOI: 10.1186/s40880-015-0052-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 08/18/2015] [Indexed: 12/30/2022]
Abstract
Wnt3a, one of Wnt family members, plays key roles in regulating pleiotropic cellular functions, including self-renewal, proliferation, differentiation, and motility. Accumulating evidence has suggested that Wnt3a promotes or suppresses tumor progression via the canonical Wnt signaling pathway depending on cancer type. In addition, the roles of Wnt3a signaling can be inhibited by multiple proteins or chemicals. Herein, we summarize the latest findings on Wnt3a as an important therapeutic target in cancer.
Collapse
Affiliation(s)
- Sha He
- Key Laboratory of Longevity and Ageing-related Diseases, Ministry of Education, Nanning, Guangxi, 530021, P.R. China. .,Center for Translational Medicine, Guangxi Medical University, Nanning, Guangxi, 530021, P.R. China.
| | - Yi Lu
- Key Laboratory of Longevity and Ageing-related Diseases, Ministry of Education, Nanning, Guangxi, 530021, P.R. China. .,Center for Translational Medicine, Guangxi Medical University, Nanning, Guangxi, 530021, P.R. China.
| | - Xia Liu
- Key Laboratory of Longevity and Ageing-related Diseases, Ministry of Education, Nanning, Guangxi, 530021, P.R. China. .,Center for Translational Medicine, Guangxi Medical University, Nanning, Guangxi, 530021, P.R. China.
| | - Xin Huang
- Key Laboratory of Longevity and Ageing-related Diseases, Ministry of Education, Nanning, Guangxi, 530021, P.R. China. .,Center for Translational Medicine, Guangxi Medical University, Nanning, Guangxi, 530021, P.R. China.
| | - Evan T Keller
- Department of Urology and Pathology, School of Medicine, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Chao-Nan Qian
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong, 51006, P.R. China.
| | - Jian Zhang
- Key Laboratory of Longevity and Ageing-related Diseases, Ministry of Education, Nanning, Guangxi, 530021, P.R. China. .,Center for Translational Medicine, Guangxi Medical University, Nanning, Guangxi, 530021, P.R. China. .,Department of Urology and Pathology, School of Medicine, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
35
|
Xu Y, Zhang J, Jiang W, Zhang S. Astaxanthin induces angiogenesis through Wnt/β-catenin signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2015; 22:744-751. [PMID: 26141761 DOI: 10.1016/j.phymed.2015.05.054] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 05/21/2015] [Accepted: 05/24/2015] [Indexed: 06/04/2023]
Abstract
OBJECTIVE In the present study, we sought to elucidate whether astaxanthin contributes to induce angiogenesis and its mechanisms. MATERIALS AND METHODS To this end, we examined the role of astaxanthin on human brain microvascular endothelial cell line (HBMEC) and rat aortic smooth muscle cell (RASMC) proliferation, invasion and tube formation in vitro. For study of mechanism, the Wnt/β-catenin signaling pathway inhibitor IWR-1-endo was used. HMBECs and RASMCs proliferation were tested by cell counting. Scratch adhesion test was used to assess the ability of invasion. A matrigel tube formation assay was performed to test capillary tube formation ability. The Wnt/β-catenin pathway activation in HMBECs and RASMCs were tested by Western blot. RESULTS Our data suggested that astaxanthin induces angiogenesis by increasing proliferation, invasion and tube formation in vitro. Wnt and β-catenin expression were increased by astaxanthin and counteracted by IWR-1-endo in HMBECs and RASMCs. Tube formation was increased by astaxanthin and counteracted by IWR-1-endo. CONCLUSIONS It may be suggested that astaxanthin induces angiogenesis in vitro via a programmed Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Yangyang Xu
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, PR. China
| | - Jie Zhang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, PR. China
| | - Wanglin Jiang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, PR. China.
| | - Shuping Zhang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, PR. China.
| |
Collapse
|
36
|
Cheli Y, Bonnazi VF, Jacquel A, Allegra M, De Donatis GM, Bahadoran P, Bertolotto C, Ballotti R. CD271 is an imperfect marker for melanoma initiating cells. Oncotarget 2015; 5:5272-83. [PMID: 25105565 PMCID: PMC4170612 DOI: 10.18632/oncotarget.1967] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Understanding the molecular and cellular processes underlying melanoma plasticity and heterogeneity is of paramount importance to improve the efficiency of current treatment and to overcome resistance to chemotherapy drugs. The notion of plasticity and heterogeneity implies the existence of melanoma cell populations with different phenotypic and tumorigenic properties. Using melanoma cell lines and melanoma cells freshly isolated from patient biopsies, we investigated the relationship between ABCB5+, CD271+ and low-MITF, expressing populations that were reported to display melanoma initiating cell properties. Here, we showed that ABCB5+ and CD271+ populations poorly overlap. However, we found that the CD271+ population is enriched in low-MITF cells and expresses a higher level of stemness genes, such as OCT4, NANOG and NES. These features could explain the increased tumorigenicity of the CD271+ cells. The rapid conversion of CD271+ to CD271− cells in vitro demonstrates the plasticity ability of melanoma cells. Finally, we observed that the transient slow-growing population contains only CD271+ cells that are highly tumorigenic. However, the fast growing/CD271+ population exhibits a poor tumorigenic ability. Taking together, our data show that CD271 is an imperfect marker for melanoma initiating cells, but may be useful to identify melanoma cells with an increased stemness and tumorigenic potential.
Collapse
Affiliation(s)
- Yann Cheli
- INSERM U1065, Equipe 1, Biologie et pathologies des mélanocytes: de la pigmentation cutanée au mélanome, Equipe labellisée Ligue 2013, Centre Méditerranéen de Médecine Moléculaire, Nice, France; Université de Nice Sophia-Antipolis, UFR Médecine, Nice, France
| | - Vanessa F Bonnazi
- INSERM U1065, Equipe 1, Biologie et pathologies des mélanocytes: de la pigmentation cutanée au mélanome, Equipe labellisée Ligue 2013, Centre Méditerranéen de Médecine Moléculaire, Nice, France; Université de Nice Sophia-Antipolis, UFR Médecine, Nice, France
| | - Arnaud Jacquel
- INSERM U1065, Equipe 2, Cell death, differentiation and cancer, Centre Méditerranéen de Médecine Moléculaire, Nice, France; Université de Nice Sophia-Antipolis, UFR Médecine, Nice, France
| | - Maryline Allegra
- INSERM U1065, Equipe 1, Biologie et pathologies des mélanocytes: de la pigmentation cutanée au mélanome, Equipe labellisée Ligue 2013, Centre Méditerranéen de Médecine Moléculaire, Nice, France; Université de Nice Sophia-Antipolis, UFR Médecine, Nice, France; CHU Nice, Service de Dermatologie, Nice, France
| | - Gian Marco De Donatis
- INSERM U1065, Equipe 1, Biologie et pathologies des mélanocytes: de la pigmentation cutanée au mélanome, Equipe labellisée Ligue 2013, Centre Méditerranéen de Médecine Moléculaire, Nice, France; Université de Nice Sophia-Antipolis, UFR Médecine, Nice, France
| | - Philippe Bahadoran
- INSERM U1065, Equipe 1, Biologie et pathologies des mélanocytes: de la pigmentation cutanée au mélanome, Equipe labellisée Ligue 2013, Centre Méditerranéen de Médecine Moléculaire, Nice, France; Université de Nice Sophia-Antipolis, UFR Médecine, Nice, France; CHU Nice, Service de Dermatologie, Nice, France; CHU Nice, Clinical Research Center, Nice, France
| | - Corine Bertolotto
- INSERM U1065, Equipe 1, Biologie et pathologies des mélanocytes: de la pigmentation cutanée au mélanome, Equipe labellisée Ligue 2013, Centre Méditerranéen de Médecine Moléculaire, Nice, France; Université de Nice Sophia-Antipolis, UFR Médecine, Nice, France; CHU Nice, Service de Dermatologie, Nice, France
| | - Robert Ballotti
- INSERM U1065, Equipe 1, Biologie et pathologies des mélanocytes: de la pigmentation cutanée au mélanome, Equipe labellisée Ligue 2013, Centre Méditerranéen de Médecine Moléculaire, Nice, France; Université de Nice Sophia-Antipolis, UFR Médecine, Nice, France; CHU Nice, Service de Dermatologie, Nice, France
| |
Collapse
|
37
|
Ruggiero D, Nappo S, Nutile T, Sorice R, Talotta F, Giorgio E, Bellenguez C, Leutenegger AL, Liguori GL, Ciullo M. Genetic variants modulating CRIPTO serum levels identified by genome-wide association study in Cilento isolates. PLoS Genet 2015; 11:e1004976. [PMID: 25629528 PMCID: PMC4309561 DOI: 10.1371/journal.pgen.1004976] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 12/29/2014] [Indexed: 02/07/2023] Open
Abstract
Cripto, the founding member of the EGF-CFC genes, plays an essential role in embryo development and is involved in cancer progression. Cripto is a GPI-anchored protein that can interact with various components of multiple signaling pathways, such as TGF-β, Wnt and MAPK, driving different processes, among them epithelial-mesenchymal transition, cell proliferation, and stem cell renewal. Cripto protein can also be cleaved and released outside the cell in a soluble and still active form. Cripto is not significantly expressed in adult somatic tissues and its re-expression has been observed associated to pathological conditions, mainly cancer. Accordingly, CRIPTO has been detected at very low levels in the plasma of healthy volunteers, whereas its levels are significantly higher in patients with breast, colon or glioblastoma tumors. These data suggest that CRIPTO levels in human plasma or serum may have clinical significance. However, very little is known about the variability of serum levels of CRIPTO at a population level and the genetic contribution underlying this variability remains unknown. Here, we report the first genome-wide association study of CRIPTO serum levels in isolated populations (n = 1,054) from Cilento area in South Italy. The most associated SNPs (p-value<5*10-8) were all located on chromosome 3p22.1-3p21.3, in the CRIPTO gene region. Overall six CRIPTO associated loci were replicated in an independent sample (n = 535). Pathway analysis identified a main network including two other genes, besides CRIPTO, in the associated regions, involved in cell movement and proliferation. The replicated loci explain more than 87% of the CRIPTO variance, with 85% explained by the most associated SNP. Moreover, the functional analysis of the main associated locus identified a causal variant in the 5’UTR of CRIPTO gene which is able to strongly modulate CRIPTO expression through an AP-1-mediate transcriptional regulation. Cripto gene has a fundamental role in embryo development and is also involved in cancer. The protein is bound to the cell membrane through an anchor, that can be cleaved, causing the secretion of the protein, in a still active form. In the adult, CRIPTO is detected at very low levels in normal tissues and in the blood, while its increase in both tissues and blood is associated to pathological conditions, mainly cancer. As other GPI linked proteins such as the carcinoembryonic antigen (CEA), one of the most used tumor markers, CRIPTO is able to reach the bloodstream. Therefore, CRIPTO represents a new promising biomarker and potential therapeutic target, and blood CRIPTO levels might be associated to clinical features. Here we examined the variability of blood CRIPTO levels at a population level (population isolates from the Cilento region in South Italy) and we investigated the genetic architecture underlying this variability. We reported the association of common genetic variants with the levels of CRIPTO protein in the blood and we identified a main locus on chromosome 3 and additional five associated loci. Moreover, through functional analyses, we were able to uncover the mechanism responsible for the variation in CRIPTO levels, which is a regulation mediated by the transcriptional factor AP-1.
Collapse
Affiliation(s)
- Daniela Ruggiero
- Institute of Genetics and Biophysics A. Buzzati-Traverso, CNR, Naples, Italy
| | - Stefania Nappo
- Institute of Genetics and Biophysics A. Buzzati-Traverso, CNR, Naples, Italy
| | - Teresa Nutile
- Institute of Genetics and Biophysics A. Buzzati-Traverso, CNR, Naples, Italy
| | - Rossella Sorice
- Institute of Genetics and Biophysics A. Buzzati-Traverso, CNR, Naples, Italy
| | - Francesco Talotta
- Institute of Genetics and Biophysics A. Buzzati-Traverso, CNR, Naples, Italy
| | - Emilia Giorgio
- Institute of Genetics and Biophysics A. Buzzati-Traverso, CNR, Naples, Italy
| | - Celine Bellenguez
- Institut Pasteur de Lille, Lille, France
- Inserm, U744, Lille, France
- Université Lille-Nord de France, Lille, France
| | - Anne-Louise Leutenegger
- Inserm, U946, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, IUH, UMR-S 946, Paris, France
| | - Giovanna L. Liguori
- Institute of Genetics and Biophysics A. Buzzati-Traverso, CNR, Naples, Italy
| | - Marina Ciullo
- Institute of Genetics and Biophysics A. Buzzati-Traverso, CNR, Naples, Italy
- * E-mail:
| |
Collapse
|
38
|
Abstract
Wnt/β-catenin signaling is an evolutionarily conserved, highly complex, key developmental pathway that regulates cell fate, organ development, tissue homeostasis, as well as injury and repair. Although relatively silent in normal adult kidney, Wnt/β-catenin signaling is re-activated after renal injury in a wide variety of animal models and in human kidney disorders. Whereas some data point to a protective role of this signaling in healing and repair after acute kidney injury, increasing evidence suggests that sustained activation of Wnt/β-catenin is associated with the development and progression of renal fibrotic lesions. In kidney cells, Wnt/β-catenin promotes the expression of numerous fibrosis-related genes such as Snail1, plasminogen activator inhibitor-1, and matrix metalloproteinase-7. Recent studies also indicate that multiple components of the renin-angiotensin system are the direct downstream targets of Wnt/β-catenin. Consistently, inhibition of Wnt/β-catenin signaling by an assortment of strategies ameliorates kidney injury and mitigates renal fibrotic lesions in various models of chronic kidney disease, suggesting that targeting this signaling could be a plausible strategy for therapeutic intervention. In this mini review, we will briefly discuss the regulation, downstream targets, and mechanisms of Wnt/β-catenin signaling in the pathogenesis of kidney fibrosis.
Collapse
|
39
|
Cripto-1 expression and its prognostic value in human bladder cancer patients. Tumour Biol 2014; 36:1105-13. [DOI: 10.1007/s13277-014-2695-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 09/30/2014] [Indexed: 11/25/2022] Open
|
40
|
The multifaceted role of the embryonic gene Cripto-1 in cancer, stem cells and epithelial-mesenchymal transition. Semin Cancer Biol 2014; 29:51-8. [PMID: 25153355 DOI: 10.1016/j.semcancer.2014.08.003] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 08/07/2014] [Indexed: 01/04/2023]
Abstract
Cripto-1 (CR-1)/Teratocarcinoma-derived growth factor1 (TDGF-1) is a cell surface glycosylphosphatidylinositol (GPI)-linked glycoprotein that can function either in cis (autocrine) or in trans (paracrine). The cell membrane cis form is found in lipid rafts and endosomes while the trans acting form lacking the GPI anchor is soluble. As a member of the epidermal growth factor (EGF)/Cripto-1-FRL-1-Cryptic (CFC) family, CR-1 functions as an obligatory co-receptor for the transforming growth factor-β (TGF-β) family members, Nodal and growth and differentiation factors 1 and 3 (GDF1/3) by activating Alk4/Alk7 signaling pathways that involve Smads 2, 3 and 4. In addition, CR-1 can activate non-Smad-dependent signaling elements such as PI3K, Akt and MAPK. Both of these pathways depend upon the 78kDa glucose regulated protein (GRP78). Finally, CR-1 can facilitate signaling through the canonical Wnt/β-catenin and Notch/Cbf-1 pathways by functioning as a chaperone protein for LRP5/6 and Notch, respectively. CR-1 is essential for early embryonic development and maintains embryonic stem cell pluripotentiality. CR-1 performs an essential role in the etiology and progression of several types of human tumors where it is expressed in a population of cancer stem cells (CSCs) and facilitates epithelial-mesenchymal transition (EMT). In this context, CR-1 can significantly enhance tumor cell migration, invasion and angiogenesis. Collectively, these facts suggest that CR-1 may be an attractive target in the diagnosis, prognosis and therapy of several types of human cancer.
Collapse
|
41
|
Herion NJ, Salbaum JM, Kappen C. Traffic jam in the primitive streak: the role of defective mesoderm migration in birth defects. BIRTH DEFECTS RESEARCH. PART A, CLINICAL AND MOLECULAR TERATOLOGY 2014; 100:608-22. [PMID: 25115487 PMCID: PMC9828327 DOI: 10.1002/bdra.23283] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Revised: 06/19/2014] [Accepted: 06/20/2014] [Indexed: 01/12/2023]
Abstract
Gastrulation is the process in which the three germ layers are formed that contribute to the formation of all major tissues in the developing embryo. We here review mouse genetic models in which defective gastrulation leads to mesoderm insufficiencies in the embryo. Depending on severity of the abnormalities, the outcomes range from incompatible with embryonic survival to structural birth defects, such as heart defects, spina bifida, or caudal dysgenesis. The combined evidence from the mutant models supports the notion that these congenital anomalies can originate from perturbations of mesoderm specification, epithelial-mesenchymal transition, and mesodermal cell migration. Knowledge about the molecular pathways involved may help to improve strategies for the prevention of major structural birth defects.
Collapse
Affiliation(s)
- Nils J. Herion
- Pennington Biomedical Research Center, Department of Developmental Biology, Baton Rouge, Louisiana
| | - J. Michael Salbaum
- Pennington Biomedical Research Center, Laboratory for Regulation of Gene Expression, Baton Rouge, Louisiana
| | - Claudia Kappen
- Pennington Biomedical Research Center, Department of Developmental Biology, Baton Rouge, Louisiana,Correspondence to: Claudia Kappen, Pennington Biomedical Research Center, Department of Developmental Biology, 6400 Perkins Road, Baton Rouge, LA 70808.
| |
Collapse
|
42
|
Elevated expression of Cripto-1 correlates with poor prognosis in non-small cell lung cancer. Tumour Biol 2014; 35:8673-8. [DOI: 10.1007/s13277-014-2039-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 04/28/2014] [Indexed: 12/17/2022] Open
|
43
|
Giorgio E, Liguoro A, D'Orsi L, Mancinelli S, Barbieri A, Palma G, Arra C, Liguori GL. Cripto haploinsufficiency affects in vivo colon tumor development. Int J Oncol 2014; 45:31-40. [PMID: 24805056 PMCID: PMC4079161 DOI: 10.3892/ijo.2014.2412] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 02/12/2014] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer is one of the most common and aggressive cancers arising from alterations in various signaling pathways, such as the WNT, RAS-MAPK, PI3K and transforming growth factor-β (TGF-β) pathways. Cripto (also called Teratocarcinoma-derived growth factor), the original member of the vertebrate EGF-CFC family, plays a key role in all of these pathways and is deeply involved in early embryo development and cancer progression. The role of Cripto in colon and breast cancer, in particular, has been investigated, as it is still not clearly understood. In this article, we provide the first in vivo functional evidence of a role of Cripto in colon cancer development. We analyzed the effect of Cripto haploinsufficiency on colon tumor formation by treating Cripto heterozygous mice with the colonotropic carcinogen azoxymethane (AOM). Of note, in our model system, Cripto haploinsufficiency increased tumorigenesis. Moreover, we revealed a correlation between the differential AOM response found in wt and Cripto⁺/⁻ mice and the expression levels of glucose regulated protein-78 (Grp78), a heat shock protein required for Cripto signaling pathways. We hypothesize that the balance between Cripto and Grp78 expression levels might be crucial in cancer development and may account for the increased tumorigenesis in Cripto heterozygous mice. In summary, our results highlight the heterogeneous effect of Cripto on tumorigenesis and the consequent high level of complexity in the Cripto regulatory pathway, whose imbalance causes tumors.
Collapse
Affiliation(s)
- Emilia Giorgio
- Institute of Genetics and Biophysics 'Adriano Buzzati-Traverso' (IGB), Consiglio Nazionale delle Ricerche (CNR), 80131 Naples, Italy
| | - Annamaria Liguoro
- Institute of Genetics and Biophysics 'Adriano Buzzati-Traverso' (IGB), Consiglio Nazionale delle Ricerche (CNR), 80131 Naples, Italy
| | - Luca D'Orsi
- Institute of Genetics and Biophysics 'Adriano Buzzati-Traverso' (IGB), Consiglio Nazionale delle Ricerche (CNR), 80131 Naples, Italy
| | - Sara Mancinelli
- Institute of Genetics and Biophysics 'Adriano Buzzati-Traverso' (IGB), Consiglio Nazionale delle Ricerche (CNR), 80131 Naples, Italy
| | - Antonio Barbieri
- Istituto Nazionale per lo studio e la cura dei Tumori IRCCS 'Fondazione G. Pascale', 80131 Naples, Italy
| | - Giuseppe Palma
- Istituto Nazionale per lo studio e la cura dei Tumori IRCCS 'Fondazione G. Pascale', 80131 Naples, Italy
| | - Claudio Arra
- Istituto Nazionale per lo studio e la cura dei Tumori IRCCS 'Fondazione G. Pascale', 80131 Naples, Italy
| | - Giovanna L Liguori
- Institute of Genetics and Biophysics 'Adriano Buzzati-Traverso' (IGB), Consiglio Nazionale delle Ricerche (CNR), 80131 Naples, Italy
| |
Collapse
|
44
|
Zhang Y, Cooke A, Park S, Dewey CN, Wickens M, Sheets MD. Bicaudal-C spatially controls translation of vertebrate maternal mRNAs. RNA (NEW YORK, N.Y.) 2013; 19:1575-82. [PMID: 24062572 PMCID: PMC3851724 DOI: 10.1261/rna.041665.113] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The Xenopus Cripto-1 protein is confined to the cells of the animal hemisphere during early embryogenesis where it regulates the formation of anterior structures. Cripto-1 protein accumulates only in animal cells because cripto-1 mRNA in cells of the vegetal hemisphere is translationally repressed. Here, we show that the RNA binding protein, Bicaudal-C (Bic-C), functioned directly in this vegetal cell-specific repression. While Bic-C protein is normally confined to vegetal cells, ectopic expression of Bic-C in animal cells repressed a cripto-1 mRNA reporter and associated with endogenous cripto-1 mRNA. Repression by Bic-C required its N-terminal domain, comprised of multiple KH motifs, for specific binding to relevant control elements within the cripto-1 mRNA and a functionally separable C-terminal translation repression domain. Bic-C-mediated repression required the 5' CAP and translation initiation factors, but not a poly(A) tail or the conserved SAM domain within Bic-C. Bic-C-directed immunoprecipitation followed by deep sequencing of associated mRNAs identified multiple Bic-C-regulated mRNA targets, including cripto-1 mRNA, providing new insights and tools for understanding the role of Bic-C in vertebrate development.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Amy Cooke
- Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Sookhee Park
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Colin N. Dewey
- Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Marvin Wickens
- Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Michael D. Sheets
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- Corresponding authorE-mail
| |
Collapse
|