1
|
Kim GY, Kim S, Park K, Lim HJ, Kim WH. Gasoline exhaust particles induce MMP1 expression via Nox4-derived ROS-ATF3-linked pathway in human umbilical vein endothelial cells. Toxicology 2025; 511:154051. [PMID: 39793954 DOI: 10.1016/j.tox.2025.154051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/29/2024] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
Gasoline exhaust particles (GEP) are risk factors for cardiovascular disease. Activating transcription factor 3 (ATF3) is a transcription factor known to form a heterodimer with AP-1 transcription factors for its target gene expression. However, the involvement of ATF3 in GEP-induced gene expression in human umbilical vein endothelial cells (HUVECs) has not been investigated. In this study, we found that GEP, at IC50 value of 59 μg/ml, induced the expression of ATF3, which led to the expression of matrix metalloproteinase 1 (MMP1) in HUVECs. GEP induce an interaction between c-Jun and ATF3, and c-Jun depletion attenuates GEP-induced MMP1 expression. Depletion of NADPH oxidase 4 (Nox4) suppressed GEP-induced reactive oxygen species (ROS) generation and the subsequent upregulation of ATF3 and MMP1, suggesting that Nox4-derived ROS play a role as upstream regulators of GEP-induced ATF3 expression and MMP1 upregulation. Furthermore, Nox4 depletion attenuated the interaction between ATF3 and c-Jun and their binding to the AP-1 binding site of the MMP1 promoter. Taken together, these findings demonstrate that GEP induce the expression of MMP1 by generating Nox4-dependent ROS, which subsequently increase ATF3 expression and its interaction with c-Jun. This leads to their binding to the promoter region of MMP1 and its transcription. These findings suggest that Nox4-derived ROS and ATF3 are critical for GEP-induced MMP1 expression.
Collapse
Affiliation(s)
- Geun-Young Kim
- Division of Cardiovascular Disease Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, Cheongju, Republic of Korea.
| | - Suji Kim
- Division of Cardiovascular Disease Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, Cheongju, Republic of Korea
| | - Kihong Park
- School of Earth Science and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Hyun-Joung Lim
- Division of Cardiovascular Disease Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, Cheongju, Republic of Korea
| | - Won-Ho Kim
- Division of Cardiovascular Disease Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, Cheongju, Republic of Korea
| |
Collapse
|
2
|
Mansouri V, Vafaee R, Mohammadi Maram M, Bandarian F, Sarabi P, Razi F, Razzaghi Z, Rezaei Tavirani M, Karimi H, Rezaei-Tavirani M. Inflammation and immunological disarrays are associated with acute exercise in type 2 diabetes. J Diabetes Metab Disord 2024; 23:1243-1250. [PMID: 38932912 PMCID: PMC11196459 DOI: 10.1007/s40200-024-01417-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/08/2024] [Indexed: 06/28/2024]
Abstract
Objective Type 2 diabetes (T2D) is the most common metabolic disorder that is associated with insulin resistance. The aim of the present study is to discover details of the molecular mechanism of exercise on control or progress of diabetic condition in patients via network analysis. Methods Gene expression profiles of patients with T2D before and after doing exercise are retrieved from Gene Expression Omnibus (GEO) and are pre-evaluated by the GEO2R program. Data are studied based on expression values, regulatory relationships between the differentially expressed genes (DEGs), gene ontology analyses, and protein-protein interaction PPI network analysis. Results A number of 118 significant DEGs were identified and classified based on fold change (FC) values as most dysregulated genes and dysregulated individuals. Action map analysis revealed that 18 DEGs appeared as the critical genes. Gene ontology analysis showed that 24 DEGs are connected to at least four pathways. JUN, IL6, IL1B, PTGS2, FOS, MYC, ATF3, CXCL8, EGR1, EGR2, NR4A1, PLK3, TTN, and UCP3 were identified as central DEGs. Conclusion Finally; JUN, IL6, IL1B, PTGS2, FOS, ATF3, CXCL8, EGR1, and EGR2 were introduced as the critical targeted genes by exercise. Since the critical genes after exercise are upregulated and mostly are known as the risk factors of T2D, it can be concluded that unsuitable exercise can develop diabetic conditions in patients. Acute exercise-induced inflammation and immune disturbances seem to be associated with the development of T2D in patients.
Collapse
Affiliation(s)
- Vahid Mansouri
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Vafaee
- Anesthesiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Fatemeh Bandarian
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Sarabi
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farideh Razi
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Razzaghi
- Laser application in medical sciences research center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Hassan Karimi
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Rezaei-Tavirani
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Huo S, Wang Q, Shi W, Peng L, Jiang Y, Zhu M, Guo J, Peng D, Wang M, Men L, Huang B, Lv J, Lin L. ATF3/SPI1/SLC31A1 Signaling Promotes Cuproptosis Induced by Advanced Glycosylation End Products in Diabetic Myocardial Injury. Int J Mol Sci 2023; 24:ijms24021667. [PMID: 36675183 PMCID: PMC9862315 DOI: 10.3390/ijms24021667] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/23/2022] [Accepted: 12/30/2022] [Indexed: 01/18/2023] Open
Abstract
Cuproptosis resulting from copper (Cu) overload has not yet been investigated in diabetic cardiomyopathy (DCM). Advanced glycosylation end products (AGEs) induced by persistent hyperglycemia play an essential role in cardiotoxicity. To clarify whether cuproptosis was involved in AGEs-induced cardiotoxicity, we analyzed the toxicity of AGEs and copper in AC16 cardiomyocytes and in STZ-induced or db/db-diabetic mouse models. The results showed that copper ionophore elesclomol induced cuproptosis in cardiomyocytes. It was only rescued by copper chelator tetrathiomolybdate rather than by other cell death inhibitors. Intriguingly, AGEs triggered cardiomyocyte death and aggravated it when incubated with CuCl2 or elesclomol-CuCl2. Moreover, AGEs increased intracellular copper accumulation and exhibited features of cuproptosis, including loss of Fe-S cluster proteins (FDX1, LIAS, NDUFS8 and ACO2) and decreased lipoylation of DLAT and DLST. These effects were accompanied by decreased mitochondrial oxidative respiration, including downregulated mitochondrial respiratory chain complex, decreased ATP production and suppressed mitochondrial complex I and III activity. Additionally, AGEs promoted the upregulation of copper importer SLC31A1. We predicted that ATF3 and/or SPI1 might be transcriptional factors of SLC31A1 by online databases and validated that by ATF3/SPI1 overexpression. In diabetic mice, copper and AGEs increases in the blood and heart were observed and accompanied by cardiac dysfunction. The protein and mRNA profile changes in diabetic hearts were consistent with cuproptosis. Our findings showed, for the first time, that excessive AGEs and copper in diabetes upregulated ATF3/SPI1/SLC31A1 signaling, thereby disturbing copper homeostasis and promoting cuproptosis. Collectively, the novel mechanism might be an alternative potential therapeutic target for DCM.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Jiagao Lv
- Correspondence: (J.L.); or (L.L.); Tel.: +86-13971600239 (J.L.); +86-18971097627 (L.L.)
| | - Li Lin
- Correspondence: (J.L.); or (L.L.); Tel.: +86-13971600239 (J.L.); +86-18971097627 (L.L.)
| |
Collapse
|
4
|
Liu X, Zhang J, Xiong X, Chen C, Xing Y, Duan Y, Xiao S, Yang B, Ma J. An Integrative Analysis of Transcriptome and GWAS Data to Identify Potential Candidate Genes Influencing Meat Quality Traits in Pigs. Front Genet 2021; 12:748070. [PMID: 34745221 PMCID: PMC8567094 DOI: 10.3389/fgene.2021.748070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/27/2021] [Indexed: 11/13/2022] Open
Abstract
Understanding the genetic factors behind meat quality traits is of great significance to animal breeding and production. We previously conducted a genome-wide association study (GWAS) for meat quality traits in a White Duroc × Erhualian F2 pig population using Illumina porcine 60K SNP data. Here, we further investigate the functional candidate genes and their network modules associated with meat quality traits by integrating transcriptomics and GWAS information. Quantitative trait transcript (QTT) analysis, gene expression QTL (eQTL) mapping, and weighted gene co-expression network analysis (WGCNA) were performed using the digital gene expression (DGE) data from 493 F2 pig's muscle and liver samples. Among the quantified 20,108 liver and 23,728 muscle transcripts, 535 liver and 1,014 muscle QTTs corresponding to 416 and 721 genes, respectively, were found to be significantly (p < 5 × 10-4) correlated with 22 meat quality traits measured on longissiums dorsi muscle (LM) or semimembranosus muscle (SM). Transcripts associated with muscle glycolytic potential (GP) and pH values were enriched for genes involved in metabolic process. There were 42 QTTs (for 32 genes) shared by liver and muscle tissues, of which 10 QTTs represent GP- and/or pH-related genes, such as JUNB, ATF3, and PPP1R3B. Furthermore, a genome-wide eQTL mapping revealed a total of 3,054 eQTLs for all annotated transcripts in muscle (p < 2.08 × 10-5), including 1,283 cis-eQTLs and 1771 trans-eQTLs. In addition, WGCNA identified five modules relevant to glycogen metabolism pathway and highlighted the connections between variations in meat quality traits and genes involved in energy process. Integrative analysis of GWAS loci, eQTL, and QTT demonstrated GALNT15/GALNTL2 and HTATIP2 as strong candidate genes for drip loss and pH drop from postmortem 45 min to 24 h, respectively. Our findings provide valuable insights into the genetic basis of meat quality traits and greatly expand the number of candidate genes that may be valuable for future functional analysis and genetic improvement of meat quality.
Collapse
Affiliation(s)
- Xianxian Liu
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Junjie Zhang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Xinwei Xiong
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Congying Chen
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Yuyun Xing
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Yanyu Duan
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Shijun Xiao
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Bin Yang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Junwu Ma
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
5
|
Kan HW, Chang CH, Chang YS, Ko YT, Hsieh YL. Genetic loss-of-function of activating transcription factor 3 but not C-type lectin member 5A prevents diabetic peripheral neuropathy. J Transl Med 2021; 101:1341-1352. [PMID: 34172832 PMCID: PMC8440213 DOI: 10.1038/s41374-021-00630-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 06/15/2021] [Accepted: 06/15/2021] [Indexed: 12/16/2022] Open
Abstract
We investigated the mediating roles of activating transcription factor 3 (ATF3), an injury marker, or C-type lectin member 5A (CLEC5A), an inflammatory response molecule, in the induction of endoplasmic reticulum (ER) stress and neuroinflammation in diabetic peripheral neuropathy in ATF3 and CLEC5A genetic knockout (aft3-/- and clec5a-/-, respectively) mice. ATF3 was expressed intranuclearly and was upregulated in mice with diabetic peripheral neuropathy (DN) and clec5a-/- mice. The DN and clec5a-/- groups also exhibited neuropathic behavior, but not in the aft3-/- group. The upregulation profiles of cytoplasmic polyadenylation element-binding protein, a protein translation-regulating molecule, and the ER stress-related molecules of inositol-requiring enzyme 1α and phosphorylated eukaryotic initiation factor 2α in the DN and clec5a-/- groups were correlated with neuropathic behavior. Ultrastructural evidence confirmed ER stress induction and neuroinflammation, including microglial enlargement and proinflammatory cytokine release, in the DN and clec5a-/- mice. By contrast, the induction of ER stress and neuroinflammation did not occur in the aft3-/- mice. Furthermore, the mRNA of reactive oxygen species-removing enzymes such as superoxide dismutase, heme oxygenase-1, and catalase were downregulated in the DN and clec5a-/- groups but were not changed in the aft3-/- group. Taken together, the results indicate that intraneuronal ATF3, but not CLEC5A, mediates the induction of ER stress and neuroinflammation associated with diabetic neuropathy.
Collapse
Affiliation(s)
- Hung-Wei Kan
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Chin-Hong Chang
- Department of Surgery, Chi Mei Medical Center, Tainan, Taiwan
| | - Ying-Shuang Chang
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Ting Ko
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Lin Hsieh
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
- School of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| |
Collapse
|
6
|
Lupse B, Annamalai K, Ibrahim H, Kaur S, Geravandi S, Sarma B, Pal A, Awal S, Joshi A, Rafizadeh S, Madduri MK, Khazaei M, Liu H, Yuan T, He W, Gorrepati KDD, Azizi Z, Qi Q, Ye K, Oberholzer J, Maedler K, Ardestani A. Inhibition of PHLPP1/2 phosphatases rescues pancreatic β-cells in diabetes. Cell Rep 2021; 36:109490. [PMID: 34348155 PMCID: PMC8421018 DOI: 10.1016/j.celrep.2021.109490] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 06/06/2021] [Accepted: 07/14/2021] [Indexed: 12/16/2022] Open
Abstract
Pancreatic β-cell failure is the key pathogenic element of the complex metabolic deterioration in type 2 diabetes (T2D); its underlying pathomechanism is still elusive. Here, we identify pleckstrin homology domain leucine-rich repeat protein phosphatases 1 and 2 (PHLPP1/2) as phosphatases whose upregulation leads to β-cell failure in diabetes. PHLPP levels are highly elevated in metabolically stressed human and rodent diabetic β-cells. Sustained hyper-activation of mechanistic target of rapamycin complex 1 (mTORC1) is the primary mechanism of the PHLPP upregulation linking chronic metabolic stress to ultimate β-cell death. PHLPPs directly dephosphorylate and regulate activities of β-cell survival-dependent kinases AKT and MST1, constituting a regulatory triangle loop to control β-cell apoptosis. Genetic inhibition of PHLPPs markedly improves β-cell survival and function in experimental models of diabetes in vitro, in vivo, and in primary human T2D islets. Our study presents PHLPPs as targets for functional regenerative therapy of pancreatic β cells in diabetes.
Collapse
Affiliation(s)
- Blaz Lupse
- Centre for Biomolecular Interactions Bremen, University of Bremen, 28359 Bremen, Germany
| | - Karthika Annamalai
- Centre for Biomolecular Interactions Bremen, University of Bremen, 28359 Bremen, Germany
| | - Hazem Ibrahim
- Centre for Biomolecular Interactions Bremen, University of Bremen, 28359 Bremen, Germany
| | - Supreet Kaur
- Centre for Biomolecular Interactions Bremen, University of Bremen, 28359 Bremen, Germany
| | - Shirin Geravandi
- Centre for Biomolecular Interactions Bremen, University of Bremen, 28359 Bremen, Germany
| | - Bhavishya Sarma
- Centre for Biomolecular Interactions Bremen, University of Bremen, 28359 Bremen, Germany
| | - Anasua Pal
- Centre for Biomolecular Interactions Bremen, University of Bremen, 28359 Bremen, Germany
| | - Sushil Awal
- Centre for Biomolecular Interactions Bremen, University of Bremen, 28359 Bremen, Germany
| | - Arundhati Joshi
- Centre for Biomolecular Interactions Bremen, University of Bremen, 28359 Bremen, Germany
| | - Sahar Rafizadeh
- Centre for Biomolecular Interactions Bremen, University of Bremen, 28359 Bremen, Germany
| | - Murali Krishna Madduri
- Centre for Biomolecular Interactions Bremen, University of Bremen, 28359 Bremen, Germany
| | - Mona Khazaei
- Centre for Biomolecular Interactions Bremen, University of Bremen, 28359 Bremen, Germany
| | - Huan Liu
- Centre for Biomolecular Interactions Bremen, University of Bremen, 28359 Bremen, Germany
| | - Ting Yuan
- Centre for Biomolecular Interactions Bremen, University of Bremen, 28359 Bremen, Germany
| | - Wei He
- Centre for Biomolecular Interactions Bremen, University of Bremen, 28359 Bremen, Germany
| | | | - Zahra Azizi
- Centre for Biomolecular Interactions Bremen, University of Bremen, 28359 Bremen, Germany; Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 1449614535, Iran
| | - Qi Qi
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Keqiang Ye
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jose Oberholzer
- Charles O. Strickler Transplant Center, University of Virginia Medical Center, Charlottesville, VA 22903, USA
| | - Kathrin Maedler
- Centre for Biomolecular Interactions Bremen, University of Bremen, 28359 Bremen, Germany.
| | - Amin Ardestani
- Centre for Biomolecular Interactions Bremen, University of Bremen, 28359 Bremen, Germany; Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 1449614535, Iran.
| |
Collapse
|
7
|
Park SJ, Lee D, Kim D, Lee M, In G, Han ST, Kim SW, Lee MH, Kim OK, Lee J. The non-saponin fraction of Korean Red Ginseng (KGC05P0) decreases glucose uptake and transport in vitro and modulates glucose production via down-regulation of the PI3K/AKT pathway in vivo. J Ginseng Res 2019; 44:362-372. [PMID: 32148419 PMCID: PMC7031776 DOI: 10.1016/j.jgr.2019.12.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 11/08/2019] [Accepted: 12/10/2019] [Indexed: 01/26/2023] Open
Abstract
Background The non-saponin fraction of Korean Red Ginseng has been reported to have many biological activities. However, the effect of this fraction on anti-diabetic activity has not been elucidated in detail. In this study, we investigated the effects of KGC05P0, a non-saponin fraction of Korean Red Ginseng, on anti-diabetic activity in vitro and in vivo. Methods We measured the inhibition of commercially obtained α-glucosidase and α-amylase activities in vitro and measured the glucose uptake and transport rate in Caco-2 cells. C57BL/6J mice and C57BLKS/Jdb/db (diabetic) mice were fed diets with or without KGC05P0 for eight weeks. To perform the experiments, the groups were divided as follows: normal control (C57BL/6J mice), db/db control (C57BLKS/Jdb/db mice), positive control (inulin 400 mg/kg b.w.), low (KGC05P0 100 mg/kg b.w.), medium (KGC05P0 200 mg/kg b.w.), and high (KGC05P0 400 mg/kg b.w.). Results KGC05P0 inhibited α-glucosidase and α-amylase activities in vitro, and decreased glucose uptake and transport rate in Caco-2 cells. In addition, KGC05P0 regulated fasting glucose level, glucose tolerance, insulin, HbA1c, carbonyl contents, and proinflammatory cytokines in blood from diabetic mice and significantly reduced urinary glucose excretion levels. Moreover, we found that KGC05P0 regulated glucose production by down-regulation of the PI3K/AKT pathway, which inhibited gluconeogenesis. Conclusion Our study thereby demonstrated that KGC05P0 exerted anti-diabetic effects through inhibition of glucose absorption and the PI3K/AKT pathway in in vitro and in vivo models of diabetes. Our results suggest that KGC05P0 could be developed as a complementary food to help prevent T2DM and its complications.
Collapse
Affiliation(s)
- Soo-Jeung Park
- Department of Medical Nutrition, Kyung Hee University, Yongin, Gwangju, Republic of Korea
| | - Dasom Lee
- Department of Medical Nutrition, Kyung Hee University, Yongin, Gwangju, Republic of Korea
| | - Dakyung Kim
- Department of Medical Nutrition, Kyung Hee University, Yongin, Gwangju, Republic of Korea
| | - Minhee Lee
- Department of Medical Nutrition, Kyung Hee University, Yongin, Gwangju, Republic of Korea
| | - Gyo In
- Korea Ginseng Corporation Research Institute, Korea Ginseng Corporation, Daejeon, Gwangju, Republic of Korea
| | - Sung-Tai Han
- Korea Ginseng Corporation Research Institute, Korea Ginseng Corporation, Daejeon, Gwangju, Republic of Korea
| | - Sung Won Kim
- Korea Ginseng Corporation Research Institute, Korea Ginseng Corporation, Daejeon, Gwangju, Republic of Korea
| | - Mi-Hyang Lee
- Korea Ginseng Corporation Research Institute, Korea Ginseng Corporation, Daejeon, Gwangju, Republic of Korea
| | - Ok-Kyung Kim
- Division of Food and Nutrition and Research Institute for Human Ecology, Chonnam National University, Gwangju, Republic of Korea
| | - Jeongmin Lee
- Department of Medical Nutrition, Kyung Hee University, Yongin, Gwangju, Republic of Korea
| |
Collapse
|
8
|
Yuan T, Yang T, Chen H, Fu D, Hu Y, Wang J, Yuan Q, Yu H, Xu W, Xie X. New insights into oxidative stress and inflammation during diabetes mellitus-accelerated atherosclerosis. Redox Biol 2019; 20:247-260. [PMID: 30384259 PMCID: PMC6205410 DOI: 10.1016/j.redox.2018.09.025] [Citation(s) in RCA: 409] [Impact Index Per Article: 68.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/12/2018] [Accepted: 09/29/2018] [Indexed: 02/06/2023] Open
Abstract
Oxidative stress and inflammation interact in the development of diabetic atherosclerosis. Intracellular hyperglycemia promotes production of mitochondrial reactive oxygen species (ROS), increased formation of intracellular advanced glycation end-products, activation of protein kinase C, and increased polyol pathway flux. ROS directly increase the expression of inflammatory and adhesion factors, formation of oxidized-low density lipoprotein, and insulin resistance. They activate the ubiquitin pathway, inhibit the activation of AMP-protein kinase and adiponectin, decrease endothelial nitric oxide synthase activity, all of which accelerate atherosclerosis. Changes in the composition of the gut microbiota and changes in microRNA expression that influence the regulation of target genes that occur in diabetes interact with increased ROS and inflammation to promote atherosclerosis. This review highlights the consequences of the sustained increase of ROS production and inflammation that influence the acceleration of atherosclerosis by diabetes. The potential contributions of changes in the gut microbiota and microRNA expression are discussed.
Collapse
Affiliation(s)
- Ting Yuan
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Ting Yang
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Huan Chen
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan Province 646000, China.
| | - Danli Fu
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Yangyang Hu
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Jing Wang
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Qing Yuan
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Hong Yu
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Wenfeng Xu
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Xiang Xie
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan Province 646000, China.
| |
Collapse
|
9
|
Qin H, Li W, Sun Y, Bao Y, Sun L, Song Z, Zheng L, Zhao Y, Li Y. 20(S)-25-methoxyl-dammarane-3β,12β,20-triol attenuates endoplasmic reticulum stress via ERK/MAPK signaling pathway. Eur J Pharmacol 2018; 836:75-82. [DOI: 10.1016/j.ejphar.2018.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 07/31/2018] [Accepted: 08/03/2018] [Indexed: 11/27/2022]
|
10
|
Kim SW, Suh HW, Yoo BK, Kwon K, Yu K, Choi JY, Kwon OY. Larval hemolymph of rhinoceros beetle, Allomyrina dichotoma, enhances insulin secretion through ATF3 gene expression in INS-1 pancreatic β-cells. Z NATURFORSCH C 2018; 73:391-396. [PMID: 29787378 DOI: 10.1515/znc-2018-0019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/16/2018] [Indexed: 01/01/2023]
Abstract
Abstract
In this study, we show that INS-1 pancreatic β-cells treated for 2 h with hemolymph of larvae of rhinoceros beetle, Allomyrina dichotoma, secreted about twice as much insulin compared to control cells without such treatment. Activating transcription factor 3 (ATF3) was the highest upregulated gene in DNA chip analysis. The A. dichotoma hemolymph dose-dependently induced increased expression levels of genes encoding ATF3 and insulin. Conversely, treatment with ATF3 siRNA inhibited expression levels of both genes and curbed insulin secretion. These results suggest that the A. dichotoma hemolymph has potential for treating and preventing diabetes or diabetes-related complications.
Collapse
Affiliation(s)
- Seung-Whan Kim
- Department of Emergency Medicine, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Hyun-Woo Suh
- Departments of Medical Science and Anatomy and Cell Biology, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Bo-Kyung Yoo
- Departments of Medical Science and Anatomy and Cell Biology, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Kisang Kwon
- Department of Biomedical Laboratory Science, College of Health and Welfare, Kyungwoon University, Gumi 39160, Korea
| | - Kweon Yu
- Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Ji-Young Choi
- Applied Entomology Division, National Academy of Agricultural Science, RDA, Wanju 55365, Korea
| | - O-Yu Kwon
- Departments of Medical Science and Anatomy and Cell Biology, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| |
Collapse
|
11
|
Tan BL, Norhaizan ME, Liew WPP. Nutrients and Oxidative Stress: Friend or Foe? OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:9719584. [PMID: 29643982 PMCID: PMC5831951 DOI: 10.1155/2018/9719584] [Citation(s) in RCA: 194] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 11/24/2017] [Accepted: 12/04/2017] [Indexed: 02/07/2023]
Abstract
There are different types of nutritionally mediated oxidative stress sources that trigger inflammation. Much information indicates that high intakes of macronutrients can promote oxidative stress and subsequently contribute to inflammation via nuclear factor-kappa B- (NF-κB-) mediated cell signaling pathways. Dietary carbohydrates, animal-based proteins, and fats are important to highlight here because they may contribute to the long-term consequences of nutritionally mediated inflammation. Oxidative stress is a central player of metabolic ailments associated with high-carbohydrate and animal-based protein diets and excessive fat consumption. Obesity has become an epidemic and represents the major risk factor for several chronic diseases, including diabetes, cardiovascular disease (CVD), and cancer. However, the molecular mechanisms of nutritionally mediated oxidative stress are complex and poorly understood. Therefore, this review aimed to explore how dietary choices exacerbate or dampen the oxidative stress and inflammation. We also discussed the implications of oxidative stress in the adipocyte and glucose metabolism and obesity-associated noncommunicable diseases (NCDs). Taken together, a better understanding of the role of oxidative stress in obesity and the development of obesity-related NCDs would provide a useful approach. This is because oxidative stress can be mediated by both extrinsic and intrinsic factors, hence providing a plausible means for the prevention of metabolic disorders.
Collapse
Affiliation(s)
- Bee Ling Tan
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Mohd Esa Norhaizan
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
- Research Centre of Excellent, Nutrition and Non-Communicable Diseases (NNCD), Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Winnie-Pui-Pui Liew
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| |
Collapse
|
12
|
Jadhav K, Zhang Y. Activating transcription factor 3 in immune response and metabolic regulation. LIVER RESEARCH 2017; 1:96-102. [PMID: 29242753 PMCID: PMC5724780 DOI: 10.1016/j.livres.2017.08.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Activating transcription factor 3 (ATF3) is a member of the ATF/cAMP-response element binding protein (CREB) family of transcription factors. In response to stress stimuli, ATF3 forms dimers to activate or repress gene expression. Further, ATF3 modulates the immune response, atherogenesis, cell cycle, apoptosis, and glucose homeostasis. Recent studies have shown that ATF3 may also be involved in pathogenesis of other diseases. However, more studies are needed to determine the role of ATF3 in metabolic regulation.
Collapse
|
13
|
Use antibiotics in cell culture with caution: genome-wide identification of antibiotic-induced changes in gene expression and regulation. Sci Rep 2017; 7:7533. [PMID: 28790348 PMCID: PMC5548911 DOI: 10.1038/s41598-017-07757-w] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 06/29/2017] [Indexed: 01/29/2023] Open
Abstract
Standard cell culture guidelines often use media supplemented with antibiotics to prevent cell contamination. However, relatively little is known about the effect of antibiotic use in cell culture on gene expression and the extent to which this treatment could confound results. To comprehensively characterize the effect of antibiotic treatment on gene expression, we performed RNA-seq and ChIP-seq for H3K27ac on HepG2 cells, a human liver cell line commonly used for pharmacokinetic, metabolism and genomic studies, cultured in media supplemented with penicillin-streptomycin (PenStrep) or vehicle control. We identified 209 PenStrep-responsive genes, including transcription factors such as ATF3 that are likely to alter the regulation of other genes. Pathway analyses found a significant enrichment for "xenobiotic metabolism signaling" and "PXR/RXR activation" pathways. Our H3K27ac ChIP-seq identified 9,514 peaks that are PenStrep responsive. These peaks were enriched near genes that function in cell differentiation, tRNA modification, nuclease activity and protein dephosphorylation. Our results suggest that PenStrep treatment can significantly alter gene expression and regulation in a common liver cell type such as HepG2, advocating that antibiotic treatment should be taken into account when carrying out genetic, genomic or other biological assays in cultured cells.
Collapse
|
14
|
Kim JY, Park KJ, Hwang JY, Kim GH, Lee D, Lee YJ, Song EH, Yoo MG, Kim BJ, Suh YH, Roh GS, Gao B, Kim W, Kim WH. Activating transcription factor 3 is a target molecule linking hepatic steatosis to impaired glucose homeostasis. J Hepatol 2017; 67:349-359. [PMID: 28365312 DOI: 10.1016/j.jhep.2017.03.023] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 03/09/2017] [Accepted: 03/20/2017] [Indexed: 01/05/2023]
Abstract
BACKGROUND & AIMS Non-alcoholic fatty liver disease (NAFLD) contributes to impaired glucose tolerance, leading to type 2 diabetes (T2D); however, the precise mechanisms and target molecules that are involved remain unclear. Activating transcription factor 3 (ATF3) is associated with β-cell dysfunction that is induced by severe stress signals in T2D. We aimed to explore the exact functional role of ATF3 as a mechanistic link between hepatic steatosis and T2D development. METHODS Zucker diabetic fatty (ZDF) rats were utilized for animal experiments. An in vivo-jetPEI siRNA delivery system against ATF3 was used for loss-of-function experiments. We analyzed the baseline cross-sectional data derived from the biopsy-proven NAFLD registry (n=322). Human sera and liver tissues were obtained from 43 patients with biopsy-proven NAFLD and from seven healthy participants. RESULTS ATF3 was highly expressed in the livers of ZDF rats and in human participants with NAFLD and/or T2D. Insulin resistance and hepatic steatosis were associated with increased ATF3 expression and decreased fatty acid oxidation via mitochondrial dysfunction and were attenuated by in vivo ATF3 silencing. Knockdown of ATF3 also ameliorated glucose intolerance, impaired insulin action, and inflammatory responses in ZDF rats. In patients with NAFLD and/or T2D, a significant positive correlation was observed between hepatic ATF3 expression and surrogate markers of T2D, mitochondrial dysfunction, and macrophage infiltration. CONCLUSIONS Increased hepatic ATF3 expression is closely associated with hepatic steatosis and incident T2D; therefore, ATF3 may serve as a potential therapeutic target for NAFLD and hepatic steatosis-induced T2D. LAY SUMMARY Hepatic activating transcription factor 3 (ATF3) may play an important role in oxidative stress-mediated hepatic steatosis and the development of type 2 diabetes (T2D) in a Zucker diabetic fatty (ZDF) rat model and in human patients with non-alcoholic fatty liver disease (NAFLD). Therefore, ATF3 may be a useful biomarker for predicting the progression of NAFLD and the development of T2D. Furthermore, given the significant association between hepatic ATF3 expression and both hepatic steatosis and impaired glucose homeostasis, in vivo ATF3 silencing may be a potential central strategy for preventing and managing NAFLD and T2D.
Collapse
Affiliation(s)
- Ji Yeon Kim
- Division of Metabolic Disease, #187 Osong Saengmyeong2-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 363-700, Republic of Korea
| | - Keon Jae Park
- Division of Metabolic Disease, #187 Osong Saengmyeong2-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 363-700, Republic of Korea; Department of Anatomy and Cardiology, Chungbuk University, Chungbuk, Republic of Korea
| | - Joo-Yeon Hwang
- Division of Cardiovascular and Rare Disease, Center for Biomedical Science, #187 Osong Saengmyeong2-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 363-700, Republic of Korea; Division of Structural and Functional Genomics, Center for Genomic Science, National Institute of Health, #187 Osong Saengmyeong2-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 363-700, Republic of Korea
| | - Gyu Hee Kim
- Division of Metabolic Disease, #187 Osong Saengmyeong2-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 363-700, Republic of Korea
| | - DaeYeon Lee
- Division of Metabolic Disease, #187 Osong Saengmyeong2-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 363-700, Republic of Korea; Department of Biotechnology, Korea University, Seoul, Republic of Korea
| | - Yoo Jeong Lee
- Division of Metabolic Disease, #187 Osong Saengmyeong2-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 363-700, Republic of Korea
| | - Eun Hyun Song
- Division of Metabolic Disease, #187 Osong Saengmyeong2-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 363-700, Republic of Korea
| | - Min-Gyu Yoo
- Division of Metabolic Disease, #187 Osong Saengmyeong2-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 363-700, Republic of Korea
| | - Bong-Jo Kim
- Division of Structural and Functional Genomics, Center for Genomic Science, National Institute of Health, #187 Osong Saengmyeong2-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 363-700, Republic of Korea
| | - Young Ho Suh
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Gu Seob Roh
- Department of Anatomy and Neurobiology, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Won Kim
- Department of Internal Medicine, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul, Republic of Korea.
| | - Won-Ho Kim
- Division of Metabolic Disease, #187 Osong Saengmyeong2-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 363-700, Republic of Korea.
| |
Collapse
|
15
|
Ito K, Ookawara S, Ishibashi K, Morishita Y. Transgene and islet cell delivery systems using nano-sized carriers for the treatment of diabetes mellitus. NANO REVIEWS & EXPERIMENTS 2017; 8:1341758. [PMID: 30410709 PMCID: PMC6167029 DOI: 10.1080/20022727.2017.1341758] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 06/05/2017] [Indexed: 11/09/2022]
Abstract
Gene therapy that targets the pancreas and intestines with delivery systems using nano-sized carriers such as viral and non-viral vectors could improve the control of blood glucose levels, resulting in an improved prognosis for patients with diabetes mellitus. Allogenic pancreatic islet cell transplantations using such delivery systems have been developed as therapeutic options for diabetes mellitus. This review focuses on transgenes and islet cell delivery systems using nano-sized carriers for the treatment of diabetes mellitus.
Collapse
Affiliation(s)
- Kiyonori Ito
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Susumu Ookawara
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Kenichi Ishibashi
- Department of Medical Physiology, Meiji Pharmaceutical University, Tokyo, Japan
| | - Yoshiyuki Morishita
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| |
Collapse
|
16
|
Antimisiaris S, Mourtas S, Papadia K. Targeted si-RNA with liposomes and exosomes (extracellular vesicles): How to unlock the potential. Int J Pharm 2017; 525:293-312. [PMID: 28163221 DOI: 10.1016/j.ijpharm.2017.01.056] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 01/25/2017] [Accepted: 01/27/2017] [Indexed: 12/17/2022]
Abstract
The concept of RNA interference therapeutics has been initiated 18 years ago, and the main bottleneck for translation of the technology into therapeutic products remains the delivery of functional RNA molecules into the cell cytoplasm. In the present review article after an introduction about the theoretical basis of RNAi therapy and the main challenges encountered for its realization, an overview of the different types of delivery systems or carriers, used as potential systems to overcome RNAi delivery issues, will be provided. Characteristic examples or results obtained with the most promising systems will be discussed. Focus will be given mostly on the applications of liposomes or other types of lipid carriers, such as exosomes, towards improved delivery of RNAi to therapeutic targets. Finally the approach of integrating the advantages of these two vesicular systems, liposomes and exosomes, as a potential solution to realize RNAi therapy, will be proposed.
Collapse
Affiliation(s)
- Sophia Antimisiaris
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, University of Patras, Rio 26504, Greece; Institute of Chemical Engineering, FORTH/ICE-HT, Rio 26504, Greece.
| | - Spyridon Mourtas
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, University of Patras, Rio 26504, Greece
| | - Konstantina Papadia
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, University of Patras, Rio 26504, Greece
| |
Collapse
|
17
|
Choi MR, Kwak SM, Bang SH, Jeong JE, Kim DJ. Chronic saponin treatment attenuates damage to the pancreas in chronic alcohol-treated diabetic rats. J Ginseng Res 2016; 41:503-512. [PMID: 29021697 PMCID: PMC5628330 DOI: 10.1016/j.jgr.2016.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 08/22/2016] [Accepted: 09/27/2016] [Indexed: 12/30/2022] Open
Abstract
Background Chronic heavy alcohol consumption may raise the risk of developing type 2 diabetes mellitus. Saponins inhibit apoptosis of pancreatic islet cells and reduce lipid parameters. The present study was designed to investigate the effect of saponin on chronic ethanol-treated diabetic rats. Methods Long–Evans Tokushima Fatty (LETO) and Otsuka Long–Evans Tokushima Fatty (OLETF) rats were pair-fed a Lieber–DeCarli diet with and without 5% ethanol for 12 wks. Two weeks after starting the pair-feeding with the Lieber–DeCarli diet, intraperitoneal injection of saponin was performed for 10 wks. To perform the experiments, rats were divided as follows: LETO-Control (LC), LETO-Ethanol (LE), LETO-Ethanol-Saponin (LES), OLETF-Control (OC), OLETF-Ethanol (OE), and OLETF-Ethanol-Saponin (OES). Results The weights of epididymal and mesenteric fat tissue in LES and OES rats were the lightest from among the LETO and OLETF groups, respectively. The secretion of alanine aminotransferase and cholesterol in OES rats decreased significantly compared to their secretion in OC and OE rats, respectively. The islets of the pancreas in LE and OE rats showed clean, unclear, and smaller morphology compared to those of LC, LES, OC, and OES rats. In addition, the expression of insulin in the islets of the pancreas in LC, LES, OC, and OES rats was higher than in LE and OE rats. Conclusion Saponin may not only be helpful in alleviating the rapid progress of diabetes due to chronic alcohol consumption in diabetic patients, but may also show potential as an antidiabetic drug candidate for diabetic patients who chronically consume alcohol.
Collapse
Affiliation(s)
- Mi Ran Choi
- Department of Psychiatry, Seoul St. Mary's Hospital, The Catholic University of Korea College of Medicine, Seoul, Republic of Korea
| | - Su Min Kwak
- Department of Psychiatry, Seoul St. Mary's Hospital, The Catholic University of Korea College of Medicine, Seoul, Republic of Korea
| | - Sol Hee Bang
- Department of Psychiatry, Seoul St. Mary's Hospital, The Catholic University of Korea College of Medicine, Seoul, Republic of Korea
| | - Jo-Eun Jeong
- Department of Psychiatry, Seoul St. Mary's Hospital, The Catholic University of Korea College of Medicine, Seoul, Republic of Korea
| | - Dai-Jin Kim
- Department of Psychiatry, Seoul St. Mary's Hospital, The Catholic University of Korea College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
18
|
Guillen C. Azoramide: a new drug for the treatment of type 2 diabetes? ANNALS OF TRANSLATIONAL MEDICINE 2016; 4:S45. [PMID: 27868013 DOI: 10.21037/atm.2016.10.18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Carlos Guillen
- Faculty of Pharmacy, Department of Biochemistry and Molecular Biology II, Complutense University of Madrid, Madrid 28040, Spain; ; Spanish Biomedical Research Center in Diabetes and associated metabolic disorders (CIBERDEM), Instituto de Salud Carlos III, Spain
| |
Collapse
|
19
|
Parlea L, Puri A, Kasprzak W, Bindewald E, Zakrevsky P, Satterwhite E, Joseph K, Afonin KA, Shapiro BA. Cellular Delivery of RNA Nanoparticles. ACS COMBINATORIAL SCIENCE 2016; 18:527-47. [PMID: 27509068 PMCID: PMC6345529 DOI: 10.1021/acscombsci.6b00073] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
RNA nanostructures can be programmed to exhibit defined sizes, shapes and stoichiometries from naturally occurring or de novo designed RNA motifs. These constructs can be used as scaffolds to attach functional moieties, such as ligand binding motifs or gene expression regulators, for nanobiology applications. This review is focused on four areas of importance to RNA nanotechnology: the types of RNAs of particular interest for nanobiology, the assembly of RNA nanoconstructs, the challenges of cellular delivery of RNAs in vivo, and the delivery carriers that aid in the matter. The available strategies for the design of nucleic acid nanostructures, as well as for formulation of their carriers, make RNA nanotechnology an important tool in both basic research and applied biomedical science.
Collapse
Affiliation(s)
- Lorena Parlea
- Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Anu Puri
- Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Wojciech Kasprzak
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Eckart Bindewald
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Paul Zakrevsky
- Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Emily Satterwhite
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Kenya Joseph
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Kirill A. Afonin
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
- Nanoscale Science Program, University of North Carolina at Charlotte, Charlotte North Carolina 28223, United States
- The Center for Biomedical Engineering and Science, University of North Carolina at Charlotte, Charlotte North Carolina 28223, United States
| | - Bruce A. Shapiro
- Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| |
Collapse
|
20
|
Fu S, Yalcin A, Lee GY, Li P, Fan J, Arruda AP, Pers BM, Yilmaz M, Eguchi K, Hotamisligil GS. Phenotypic assays identify azoramide as a small-molecule modulator of the unfolded protein response with antidiabetic activity. Sci Transl Med 2016; 7:292ra98. [PMID: 26084805 DOI: 10.1126/scitranslmed.aaa9134] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The endoplasmic reticulum (ER) plays a critical role in protein, lipid, and glucose metabolism as well as cellular calcium signaling and homeostasis. Perturbation of ER function and chronic ER stress are associated with many pathologies ranging from diabetes and neurodegenerative diseases to cancer and inflammation. Although ER targeting shows therapeutic promise in preclinical models of obesity and other pathologies, the available chemical entities generally lack the specificity and other pharmacological properties required for effective clinical translation. To overcome these challenges and identify new potential therapeutic candidates, we first designed and chemically and genetically validated two high-throughput functional screening systems that independently measure the free chaperone content and protein-folding capacity of the ER. With these quantitative platforms, we characterized a small-molecule compound, azoramide, that improves ER protein-folding ability and activates ER chaperone capacity to protect cells against ER stress in multiple systems. This compound also exhibited potent antidiabetic efficacy in two independent mouse models of obesity by improving insulin sensitivity and pancreatic β cell function. Together, these results demonstrate the utility of this functional, phenotypic assay platform for ER-targeted drug discovery and provide proof of principle for the notion that specific ER modulators can be potential drug candidates for type 2 diabetes.
Collapse
Affiliation(s)
- Suneng Fu
- Department of Genetics and Complex Diseases and Sabri Ülker Center, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA. School of Life Sciences, Tsinghua University, Peking-Tsinghua Center for Life Sciences, Beijing 100084, China
| | - Abdullah Yalcin
- Department of Genetics and Complex Diseases and Sabri Ülker Center, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Grace Y Lee
- Department of Genetics and Complex Diseases and Sabri Ülker Center, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Ping Li
- Department of Genetics and Complex Diseases and Sabri Ülker Center, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Jason Fan
- Department of Genetics and Complex Diseases and Sabri Ülker Center, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Ana Paula Arruda
- Department of Genetics and Complex Diseases and Sabri Ülker Center, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Benedicte M Pers
- Department of Genetics and Complex Diseases and Sabri Ülker Center, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Mustafa Yilmaz
- Department of Genetics and Complex Diseases and Sabri Ülker Center, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Kosei Eguchi
- Department of Genetics and Complex Diseases and Sabri Ülker Center, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Gökhan S Hotamisligil
- Department of Genetics and Complex Diseases and Sabri Ülker Center, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA. Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
21
|
Targeting ERK1/2-calpain 1-NF-κB signal transduction in secondary tissue damage and astrogliosis after spinal cord injury. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s11515-015-1373-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
22
|
Kim JY, Lee DY, Lee YJ, Park KJ, Kim KH, Kim JW, Kim WH. Chronic alcohol consumption potentiates the development of diabetes through pancreatic β-cell dysfunction. World J Biol Chem 2015; 6:1-15. [PMID: 25717351 PMCID: PMC4317634 DOI: 10.4331/wjbc.v6.i1.1] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Revised: 10/29/2014] [Accepted: 12/10/2014] [Indexed: 02/05/2023] Open
Abstract
Chronic ethanol consumption is well established as a major risk factor for type-2 diabetes (T2D), which is evidenced by impaired glucose metabolism and insulin resistance. However, the relationships between alcohol consumption and the development of T2D remain controversial. In particular, the direct effects of ethanol consumption on proliferation of pancreatic β-cell and the exact mechanisms associated with ethanol-mediated β-cell dysfunction and apoptosis remain elusive. Although alcoholism and alcohol consumption are prevalent and represent crucial public health problems worldwide, many people believe that low-to-moderate ethanol consumption may protect against T2D and cardiovascular diseases. However, the J- or U-shaped curves obtained from cross-sectional and large prospective studies have not fully explained the relationship between alcohol consumption and T2D. This review provides evidence for the harmful effects of chronic ethanol consumption on the progressive development of T2D, particularly with respect to pancreatic β-cell mass and function in association with insulin synthesis and secretion. This review also discusses a conceptual framework for how ethanol-produced peroxynitrite contributes to pancreatic β-cell dysfunction and metabolic syndrome.
Collapse
|
23
|
Kim JY, Hwang JY, Lee DY, Song EH, Park KJ, Kim GH, Jeong EA, Lee YJ, Go MJ, Kim DJ, Lee SS, Kim BJ, Song J, Roh GS, Gao B, Kim WH. Chronic ethanol consumption inhibits glucokinase transcriptional activity by Atf3 and triggers metabolic syndrome in vivo. J Biol Chem 2014; 289:27065-27079. [PMID: 25074928 PMCID: PMC4175344 DOI: 10.1074/jbc.m114.585653] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Chronic ethanol consumption induces pancreatic β-cell dysfunction through glucokinase (Gck) nitration and down-regulation, leading to impaired glucose tolerance and insulin resistance, but the underlying mechanism remains largely unknown. Here, we demonstrate that Gck gene expression and promoter activity in pancreatic β-cells were suppressed by chronic ethanol exposure in vivo and in vitro, whereas expression of activating transcription factor 3 (Atf3) and its binding to the putative Atf/Creb site (from −287 to −158 bp) on the Gck promoter were up-regulated. Furthermore, in vitro ethanol-induced Atf3 inhibited the positive effect of Pdx-1 on Gck transcriptional regulation, enhanced recruitment of Hdac1/2 and histone H3 deacetylation, and subsequently augmented the interaction of Hdac1/Pdx-1 on the Gck promoter, which were diminished by Atf3 siRNA. In vivo Atf3-silencing reversed ethanol-mediated Gck down-regulation and β-cell dysfunction, followed by the amelioration of impaired glucose tolerance and insulin resistance. Together, we identified that ethanol-induced Atf3 fosters β-cell dysfunction via Gck down-regulation and that its loss ameliorates metabolic syndrome and could be a potential therapeutic target in treating type 2 diabetes. The Atf3 gene is associated with the induction of type 2 diabetes and alcohol consumption-induced metabolic impairment and thus may be the major negative regulator for glucose homeostasis.
Collapse
Affiliation(s)
- Ji Yeon Kim
- Division of Metabolic Disease, Center for Biomedical Science, National Institutes of Health, Osong-eup, Cheongwon-gun, Chungbuk 363-951, Korea
| | - Joo-Yeon Hwang
- Division of Structural and Functional Genomics, Center for Genomic Science, National Institutes of Health, Osong-eup, Cheongwon-gun, Chungbuk 363-951, Korea
| | - Dae Yeon Lee
- Division of Metabolic Disease, Center for Biomedical Science, National Institutes of Health, Osong-eup, Cheongwon-gun, Chungbuk 363-951, Korea; Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea
| | - Eun Hyun Song
- Division of Metabolic Disease, Center for Biomedical Science, National Institutes of Health, Osong-eup, Cheongwon-gun, Chungbuk 363-951, Korea
| | - Keon Jae Park
- Division of Metabolic Disease, Center for Biomedical Science, National Institutes of Health, Osong-eup, Cheongwon-gun, Chungbuk 363-951, Korea; Division of Cardiology, Department of Internal Medicine, Chungbuk National University School of Medicine, Cheongju 361-763, Korea, and
| | - Gyu Hee Kim
- Division of Metabolic Disease, Center for Biomedical Science, National Institutes of Health, Osong-eup, Cheongwon-gun, Chungbuk 363-951, Korea
| | - Eun Ae Jeong
- Division of Metabolic Disease, Center for Biomedical Science, National Institutes of Health, Osong-eup, Cheongwon-gun, Chungbuk 363-951, Korea
| | - Yoo Jeong Lee
- Division of Metabolic Disease, Center for Biomedical Science, National Institutes of Health, Osong-eup, Cheongwon-gun, Chungbuk 363-951, Korea
| | - Min Jin Go
- Division of Structural and Functional Genomics, Center for Genomic Science, National Institutes of Health, Osong-eup, Cheongwon-gun, Chungbuk 363-951, Korea
| | - Dae Jin Kim
- Departments of Psychiatry and College of Medicine, Catholic University, Bucheon 420-743, Korea
| | - Seong Su Lee
- Departments of Endocrinology, College of Medicine, Catholic University, Bucheon 420-743, Korea
| | - Bong-Jo Kim
- Division of Structural and Functional Genomics, Center for Genomic Science, National Institutes of Health, Osong-eup, Cheongwon-gun, Chungbuk 363-951, Korea
| | - Jihyun Song
- Division of Metabolic Disease, Center for Biomedical Science, National Institutes of Health, Osong-eup, Cheongwon-gun, Chungbuk 363-951, Korea
| | - Gu Seob Roh
- Department of Anatomy and Neurobiology, Institute of Health Sciences, Gyeongsang National University, Jinju, Gyeongnam 660-751, Korea
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland 20892
| | - Won-Ho Kim
- Division of Metabolic Disease, Center for Biomedical Science, National Institutes of Health, Osong-eup, Cheongwon-gun, Chungbuk 363-951, Korea.
| |
Collapse
|
24
|
Xu X, Wang G, Zhou T, Chen L, Chen J, Shen X. Novel approaches to drug discovery for the treatment of type 2 diabetes. Expert Opin Drug Discov 2014; 9:1047-58. [PMID: 25054271 DOI: 10.1517/17460441.2014.941352] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Type 2 diabetes mellitus (T2DM) is a chronic, complex and multifactorial metabolic disorder, which has become a serious global health problem. The side effects of known drugs and the deficiency of long-term safety data, in addition to the already determined adverse effects for the current preclinical drugs against T2DM, have largely called upon the urgent exploration of novel therapeutic and preventative strategies against this disease. AREAS COVERED The authors highlight the potential approaches for anti-T2DM drug discovery by focusing on: the restoration of pancreatic β-cell mass, the promotion of insulin secretion, the regulation of oxidative stress and endoplasmic reticulum (ER) stress and the modulation of autophagy. EXPERT OPINION T2DM is based on the gradual development of insulin resistance and β-cell dysfunction. Thus, the restoration of β-cell function is considered as one of the promising therapeutic strategies against T2DM. The stress factors, such as oxidative stress, ER stress and autophagy, play potent roles in the regulation of β-cell apoptosis, insulin secretion and sensitivity in the development of T2DM involving complicated cross-talks. Based on multiplex stress-involved regulatory networks, more and more novel potential targets have been discovered and the multi-targeted drug leads are expected to help develop more effective clinical agents for the treatment of T2DM.
Collapse
Affiliation(s)
- Xing Xu
- Shanghai Institute of Materia Medica, Key Laboratory of Receptor Research, Chinese Academy of Sciences , 555 Zuchongzhi Road, Shanghai 201203 , China ; ;
| | | | | | | | | | | |
Collapse
|
25
|
Tang N, Matsuzaka T, Suzuki M, Nakano Y, Zao H, Yokoo T, Suzuki-Kemuriyama N, Kuba M, Okajima Y, Takeuchi Y, Kobayashi K, Iwasaki H, Yatoh S, Takahashi A, Suzuki H, Sone H, Shimada M, Nakagawa Y, Yahagi N, Yamada N, Shimano H. Ablation of Elovl6 protects pancreatic islets from high-fat diet-induced impairment of insulin secretion. Biochem Biophys Res Commun 2014; 450:318-23. [PMID: 24938128 DOI: 10.1016/j.bbrc.2014.05.113] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 05/24/2014] [Indexed: 10/25/2022]
Abstract
ELOVL family member 6, elongation of very long-chain fatty acids (Elovl6) is a microsomal enzyme that regulates the elongation of C12-16 saturated and monounsaturated fatty acids and is related to the development of obesity-induced insulin resistance via the modification of the fatty acid composition. In this study, we investigated the role of systemic Elovl6 in the pancreatic islet and β-cell function. Elovl6 is expressed in both islets and β-cell lines. In mice fed with chow, islets of the Elovl6(-/-) mice displayed normal architecture and β-cell mass compared with those of the wild-type mice. However, when fed a high-fat, high-sucrose (HFHS) diet, the islet hypertrophy in response to insulin resistance observed in normal mice was attenuated and glucose-stimulated insulin secretion (GSIS) increased in the islets of Elovl6(-/-) mice compared with those of the wild-type mice. Enhanced GSIS in the HFHS Elovl6(-/-) islets was associated with an increased ATP/ADP ratio and the suppression of ATF-3 expression. Our findings suggest that Elovl6 could be involved in insulin secretory capacity per β-cell and diabetes.
Collapse
Affiliation(s)
- Nie Tang
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Takashi Matsuzaka
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.
| | - Marii Suzuki
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Yuta Nakano
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Hui Zao
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Tomotaka Yokoo
- Experimental Animal Laboratory, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka City, Saitama 350-1241, Japan
| | - Noriko Suzuki-Kemuriyama
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Motoko Kuba
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Yuka Okajima
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Yoshinori Takeuchi
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Kazuto Kobayashi
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Hitoshi Iwasaki
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Shigeru Yatoh
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Akimitsu Takahashi
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Hiroaki Suzuki
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Hirohito Sone
- Department of Internal Medicine, Faculty of Medicine, Niigata University, 1-754 Asahimachi, Niigata, Niigata 951-8510, Japan
| | - Masako Shimada
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Yoshimi Nakagawa
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Naoya Yahagi
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Nobuhiro Yamada
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Hitoshi Shimano
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
26
|
Abstract
Cells use an exquisite network of mechanisms to maintain the integrity and functionality of their protein components. In the endoplasmic reticulum (ER), these networks of protein homeostasis--referred to as proteostasis--regulate protein synthesis, folding and degradation via the unfolded protein response (UPR) pathway. The UPR pathway has two components: the adaptive UPR pathway, which predominantly maintains the ER function or ER proteostasis, and the apoptotic UPR pathway, which eliminates dysfunctional cells that have been subject to long-term or severe ER stress. Dysregulation of the UPR pathway often occurs in glomerular or tubulointerstitial cells under a pathogenic microenvironment, such as oxidative stress, glycative stress or hypoxia. A defective UPR is highly deleterious to renal cell function and viability and is thereby implicated in the pathophysiology of various kidney diseases. Accumulating evidence provides a link between the UPR pathway and mitochondrial structure and function, indicating the important role of ER proteostasis in the maintenance of mitochondrial homeostasis. Restoration of normal proteostasis, therefore, holds promise in protecting the kidney from pathogenic stresses as well as ageing. This Review is focused on the role of the ER stress and UPR pathway in the maintenance of ER proteostasis, and highlights the involvement of the derangement of ER proteostasis and ER stress in various pathogenic stress signals in the kidney.
Collapse
|