1
|
Wang Y, Chen Y, Li M, Wang J, Jiang Y, Xie R, Zhang Y, Li Z, Yan Z, Wu C. Phase separation of SPIN1 through its IDR facilitates histone methylation readout and tumorigenesis. J Mol Cell Biol 2024; 16:mjae024. [PMID: 38777743 PMCID: PMC11630302 DOI: 10.1093/jmcb/mjae024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 03/20/2024] [Accepted: 05/21/2024] [Indexed: 05/25/2024] Open
Abstract
Spindlin1 (SPIN1) is a unique multivalent histone modification reader that plays a role in ribosomal RNA transcription, chromosome segregation, and tumorigenesis. However, the function of the extended N-terminal region of SPIN1 remains unclear. Here, we demonstrated that SPIN1 can form phase-separated and liquid-like condensates both in vitro and in vivo through its N-terminal intrinsically disordered region (IDR). The phase separation of SPIN1 recruits the histone methyltransferase MLL1 to the same condensates and enriches the H3K4 methylation marks. This process also facilitates the binding of SPIN1 to H3K4me3 and activates tumorigenesis-related genes. Moreover, SPIN1-IDR enhances the genome-wide chromatin binding of SPIN1 and facilitates its localization to genes associated with the MAPK signaling pathway. These findings provide new insights into the biological function of the IDR in regulating SPIN1 activity and reveal a previously unrecognized role of SPIN1-IDR in histone methylation readout. Our study uncovers the crucial role of appropriate biophysical properties of SPIN1 in facilitating gene expression and links phase separation to tumorigenesis, which provides a new perspective for understanding the function of SPIN1.
Collapse
Affiliation(s)
- Yukun Wang
- College of Life Sciences, Hebei University, Baoding 071002, China
| | - Yuhan Chen
- College of Life Sciences, Hebei University, Baoding 071002, China
| | - Mengyao Li
- College of Life Sciences, Hebei University, Baoding 071002, China
| | - Jiayue Wang
- College of Life Sciences, Hebei University, Baoding 071002, China
| | - Yuhan Jiang
- College of Life Sciences, Hebei University, Baoding 071002, China
| | - Rong Xie
- College of Life Sciences, Hebei University, Baoding 071002, China
| | - Yifeng Zhang
- College of Life Sciences, Hebei University, Baoding 071002, China
| | - Zhihua Li
- College of Life Sciences, Hebei University, Baoding 071002, China
| | - Zhenzhen Yan
- College of Life Sciences, Hebei University, Baoding 071002, China
| | - Chen Wu
- College of Life Sciences, Hebei University, Baoding 071002, China
| |
Collapse
|
2
|
Di Grazia G, Conti C, Nucera S, Motta G, Martorana F, Stella S, Massimino M, Giuliano M, Vigneri P. REThinking the role of the RET oncogene in breast cancer. Front Oncol 2024; 14:1427228. [PMID: 39211557 PMCID: PMC11358597 DOI: 10.3389/fonc.2024.1427228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/19/2024] [Indexed: 09/04/2024] Open
Abstract
The REarranged during Transfection (RET) receptor tyrosine kinase plays a crucial role in the development of various anatomical structures during embryogenesis and it is involved in many physiological cellular processes. This protein is also associated with the initiation of various cancer types, such as thyroid cancer, non-small cell lung cancer, and multiple endocrine neoplasms. In breast cancer, and especially in the estrogen receptor-positive (ER+) subtype, the activity of RET is of notable importance. Indeed, RET seems to be involved in tumor progression, resistance to therapies, and cellular proliferation. Nevertheless, the ways RET alterations could impact the prognosis of breast cancer and its response to treatment remain only partially elucidated. Several inhibitors of RET kinase have been developed thus far, with various degrees of selectivity toward RET inhibition. These molecules showed notable efficacy in the treatment of RET-driven tumors, including some breast cancer cases. Despite these encouraging results, further investigation is needed to fully understand the potential role RET inhibition in breast cancer. This review aims to recapitulate the existing evidence about the role of RET oncogene in breast cancer, from its pathogenic and potentially prognostic role, to the clinical applications of RET inhibitors.
Collapse
Affiliation(s)
- Giuseppe Di Grazia
- Department of Human Pathology “G. Barresi”, University of Messina, Messina, Italy
| | - Chiara Conti
- Department of Human Pathology “G. Barresi”, University of Messina, Messina, Italy
| | - Sabrina Nucera
- Department of Human Pathology “G. Barresi”, University of Messina, Messina, Italy
| | - Gianmarco Motta
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- University Oncology Department, Humanitas Istituto Clinico Catanese, Catania, Italy
| | - Federica Martorana
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- University Oncology Department, Humanitas Istituto Clinico Catanese, Catania, Italy
| | - Stefania Stella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- Center of Experimental Oncology and Hematology, Azienda Ospedaliera Universitaria (A.O.U.) Policlinico “G. Rodolico - S. Marco”, Catania, Italy
| | - Michele Massimino
- Center of Experimental Oncology and Hematology, Azienda Ospedaliera Universitaria (A.O.U.) Policlinico “G. Rodolico - S. Marco”, Catania, Italy
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy
| | - Mario Giuliano
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Paolo Vigneri
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- University Oncology Department, Humanitas Istituto Clinico Catanese, Catania, Italy
| |
Collapse
|
3
|
Marcoux P, Hwang JW, Desterke C, Imeri J, Bennaceur-Griscelli A, Turhan AG. Modeling RET-Rearranged Non-Small Cell Lung Cancer (NSCLC): Generation of Lung Progenitor Cells (LPCs) from Patient-Derived Induced Pluripotent Stem Cells (iPSCs). Cells 2023; 12:2847. [PMID: 38132167 PMCID: PMC10742233 DOI: 10.3390/cells12242847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/03/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
REarranged during Transfection (RET) oncogenic rearrangements can occur in 1-2% of lung adenocarcinomas. While RET-driven NSCLC models have been developed using various approaches, no model based on patient-derived induced pluripotent stem cells (iPSCs) has yet been described. Patient-derived iPSCs hold great promise for disease modeling and drug screening. However, generating iPSCs with specific oncogenic drivers, like RET rearrangements, presents challenges due to reprogramming efficiency and genotypic variability within tumors. To address this issue, we aimed to generate lung progenitor cells (LPCs) from patient-derived iPSCs carrying the mutation RETC634Y, commonly associated with medullary thyroid carcinoma. Additionally, we established a RETC634Y knock-in iPSC model to validate the effect of this oncogenic mutation during LPC differentiation. We successfully generated LPCs from RETC634Y iPSCs using a 16-day protocol and detected an overexpression of cancer-associated markers as compared to control iPSCs. Transcriptomic analysis revealed a distinct signature of NSCLC tumor repression, suggesting a lung multilineage lung dedifferentiation, along with an upregulated signature associated with RETC634Y mutation, potentially linked to poor NSCLC prognosis. These findings were validated using the RETC634Y knock-in iPSC model, highlighting key cancerous targets such as PROM2 and C1QTNF6, known to be associated with poor prognostic outcomes. Furthermore, the LPCs derived from RETC634Y iPSCs exhibited a positive response to the RET inhibitor pralsetinib, evidenced by the downregulation of the cancer markers. This study provides a novel patient-derived off-the-shelf iPSC model of RET-driven NSCLC, paving the way for exploring the molecular mechanisms involved in RET-driven NSCLC to study disease progression and to uncover potential therapeutic targets.
Collapse
Affiliation(s)
- Paul Marcoux
- INSERM UMR-S-1310, Université Paris Saclay, 94800 Villejuif, France; (P.M.); (J.W.H.); (C.D.); (J.I.); (A.B.-G.)
- Faculty of Medicine, Paris-Saclay University, 94270 Le Kremlin Bicetre, France
| | - Jin Wook Hwang
- INSERM UMR-S-1310, Université Paris Saclay, 94800 Villejuif, France; (P.M.); (J.W.H.); (C.D.); (J.I.); (A.B.-G.)
- Faculty of Medicine, Paris-Saclay University, 94270 Le Kremlin Bicetre, France
| | - Christophe Desterke
- INSERM UMR-S-1310, Université Paris Saclay, 94800 Villejuif, France; (P.M.); (J.W.H.); (C.D.); (J.I.); (A.B.-G.)
- Faculty of Medicine, Paris-Saclay University, 94270 Le Kremlin Bicetre, France
| | - Jusuf Imeri
- INSERM UMR-S-1310, Université Paris Saclay, 94800 Villejuif, France; (P.M.); (J.W.H.); (C.D.); (J.I.); (A.B.-G.)
- Faculty of Medicine, Paris-Saclay University, 94270 Le Kremlin Bicetre, France
| | - Annelise Bennaceur-Griscelli
- INSERM UMR-S-1310, Université Paris Saclay, 94800 Villejuif, France; (P.M.); (J.W.H.); (C.D.); (J.I.); (A.B.-G.)
- Faculty of Medicine, Paris-Saclay University, 94270 Le Kremlin Bicetre, France
- APHP Paris Saclay, Department of Hematology, Hôpital Bicêtre, 94270 Le Kremlin Bicetre, France
- Center for IPSC Therapies, CITHERA, INSERM UMS-45, Genopole Campus, 91100 Evry, France
- APHP Paris Saclay, Department of Hematology, Hôpital Paul Brousse, 94800 Villejuif, France
| | - Ali G. Turhan
- INSERM UMR-S-1310, Université Paris Saclay, 94800 Villejuif, France; (P.M.); (J.W.H.); (C.D.); (J.I.); (A.B.-G.)
- Faculty of Medicine, Paris-Saclay University, 94270 Le Kremlin Bicetre, France
- APHP Paris Saclay, Department of Hematology, Hôpital Bicêtre, 94270 Le Kremlin Bicetre, France
- Center for IPSC Therapies, CITHERA, INSERM UMS-45, Genopole Campus, 91100 Evry, France
- APHP Paris Saclay, Department of Hematology, Hôpital Paul Brousse, 94800 Villejuif, France
| |
Collapse
|
4
|
Mol P, Balaya RDA, Dagamajalu S, Babu S, Chandrasekaran P, Raghavan R, Suresh S, Ravishankara N, Raju AH, Nair B, Modi PK, Mahadevan A, Prasad TSK, Raju R. A network map of GDNF/RET signaling pathway in physiological and pathological conditions. J Cell Commun Signal 2023; 17:1089-1095. [PMID: 36715855 PMCID: PMC10409931 DOI: 10.1007/s12079-023-00726-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/18/2023] [Indexed: 01/31/2023] Open
Abstract
Glial cell line-derived neurotrophic factor (GDNF) signals through a multi-component receptor system predominantly consisting of glycosyl-phosphatidylinositol-anchored GDNF family receptor alpha-1 (GFRα1) and the Rearranged during transfection (RET) receptor tyrosine kinase. GDNF/RET signaling is vital to the central and peripheral nervous system, kidney morphogenesis, and spermatogenesis. In addition, the dysregulation of the GDNF/RET signaling has been implicated in the pathogenesis of cancers. Despite the extensive research on GDNF/RET signaling, a molecular network of reactions induced by GDNF reported across the published literature. However, a comprehensive GDNF/RET pathway resource is currently unavailable. We describe an integrated signaling pathway reaction map of GDNF/RET consisting of 1151 molecular reactions. These include information pertaining to 52 molecular association events, 70 enzyme catalysis events, 36 activation/inhibition events, 22 translocation events, 856 gene regulation events, and 115 protein-level expression events induced by GDNF in diverse cell types. We developed a comprehensive GDNF/RET signaling network map based on these molecular reactions. The pathway map was made accessible through WikiPathways database ( https://www.wikipathways.org/index.php/Pathway:WP5143 ). Biocuration and development of gene regulatory network map of GDNF/RET signaling pathway.
Collapse
Affiliation(s)
- Praseeda Mol
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore, 560066 India
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, 690525 India
| | | | - Shobha Dagamajalu
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575018 India
| | - Sreeranjini Babu
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575018 India
| | - Pavithra Chandrasekaran
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore, 560066 India
| | - Reshma Raghavan
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore, 560066 India
| | - Sneha Suresh
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore, 560066 India
| | - Namitha Ravishankara
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore, 560066 India
| | - Anu Hemalatha Raju
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore, 560066 India
| | - Bipin Nair
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, 690525 India
| | - Prashant Kumar Modi
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575018 India
| | - Anita Mahadevan
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bangalore, 560029 India
- Human Brain Tissue Repository, National Institute of Mental Health and Neurosciences, Bangalore, 560029 India
| | | | - Rajesh Raju
- Centre for Integrative Omics Data Science, Yenepoya (Deemed to Be University), Mangalore, 575018 India
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575018 India
| |
Collapse
|
5
|
Miyazaki I, Odintsov I, Ishida K, Lui AJW, Kato M, Suzuki T, Zhang T, Wakayama K, Kurth RI, Cheng R, Fujita H, Delasos L, Vojnic M, Khodos I, Yamada Y, Ishizawa K, Mattar MS, Funabashi K, Chang Q, Ohkubo S, Yano W, Terada R, Giuliano C, Lu YC, Bonifacio A, Kunte S, Davare MA, Cheng EH, de Stanchina E, Lovati E, Iwasawa Y, Ladanyi M, Somwar R. Vepafestinib is a pharmacologically advanced RET-selective inhibitor with high CNS penetration and inhibitory activity against RET solvent front mutations. NATURE CANCER 2023; 4:1345-1361. [PMID: 37743366 PMCID: PMC10518257 DOI: 10.1038/s43018-023-00630-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/08/2023] [Indexed: 09/26/2023]
Abstract
RET receptor tyrosine kinase is activated in various cancers (lung, thyroid, colon and pancreatic, among others) through oncogenic fusions or gain-of-function single-nucleotide variants. Small-molecule RET kinase inhibitors became standard-of-care therapy for advanced malignancies driven by RET. The therapeutic benefit of RET inhibitors is limited, however, by acquired mutations in the drug target as well as brain metastasis, presumably due to inadequate brain penetration. Here, we perform preclinical characterization of vepafestinib (TAS0953/HM06), a next-generation RET inhibitor with a unique binding mode. We demonstrate that vepafestinib has best-in-class selectivity against RET, while exerting activity against commonly reported on-target resistance mutations (variants in RETL730, RETV804 and RETG810), and shows superior pharmacokinetic properties in the brain when compared to currently approved RET drugs. We further show that these properties translate into improved tumor control in an intracranial model of RET-driven cancer. Our results underscore the clinical potential of vepafestinib in treating RET-driven cancers.
Collapse
Affiliation(s)
| | - Igor Odintsov
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Allan J W Lui
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | | | | | - Tom Zhang
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Renate I Kurth
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ryan Cheng
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Lukas Delasos
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Hematology and Medical Oncology, Cleveland Clinic Taussig Cancer Institute, Cleveland, OH, USA
| | - Morana Vojnic
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Northwell Health Cancer Institute, Lenox Hill Hospital, New York, NY, USA
| | - Inna Khodos
- Antitumor Assessment Core Facility, Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Kota Ishizawa
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Education and Support for Regional Medicine, Tohoku University Hospital, Sendai, Japan
| | - Marissa S Mattar
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Qing Chang
- Antitumor Assessment Core Facility, Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Wakako Yano
- Taiho Pharmaceutical Co. Ltd., Tsukuba, Japan
| | | | | | - Yue Christine Lu
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Siddharth Kunte
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Dana Cancer Center, Toledo, OH, USA
| | - Monika A Davare
- Department of Pediatrics, Oregon Health Sciences University, Portland, OR, USA
| | - Emily H Cheng
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elisa de Stanchina
- Antitumor Assessment Core Facility, Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | | | - Marc Ladanyi
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Romel Somwar
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
6
|
Desilets A, Repetto M, Yang SR, Sherman EJ, Drilon A. RET-Altered Cancers-A Tumor-Agnostic Review of Biology, Diagnosis and Targeted Therapy Activity. Cancers (Basel) 2023; 15:4146. [PMID: 37627175 PMCID: PMC10452615 DOI: 10.3390/cancers15164146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/11/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
RET alterations, such as fusions or mutations, drive the growth of multiple tumor types. These alterations are found in canonical (lung and thyroid) and non-canonical (e.g., gastrointestinal, breast, gynecological, genitourinary, histiocytic) cancers. RET alterations are best identified via comprehensive next-generation sequencing, preferably with DNA and RNA interrogation for fusions. Targeted therapies for RET-dependent cancers have evolved from older multikinase inhibitors to selective inhibitors of RET such as selpercatinib and pralsetinib. Prospective basket trials and retrospective reports have demonstrated the activity of these drugs in a wide variety of RET-altered cancers, notably those with RET fusions. This paved the way for the first tumor-agnostic selective RET inhibitor US FDA approval in 2022. Acquired resistance to RET kinase inhibitors can take the form of acquired resistance mutations (e.g., RET G810X) or bypass alterations.
Collapse
Affiliation(s)
- Antoine Desilets
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (A.D.); (M.R.); (S.-R.Y.); (E.J.S.)
| | - Matteo Repetto
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (A.D.); (M.R.); (S.-R.Y.); (E.J.S.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20133 Milan, Italy
| | - Soo-Ryum Yang
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (A.D.); (M.R.); (S.-R.Y.); (E.J.S.)
| | - Eric J. Sherman
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (A.D.); (M.R.); (S.-R.Y.); (E.J.S.)
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Alexander Drilon
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (A.D.); (M.R.); (S.-R.Y.); (E.J.S.)
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| |
Collapse
|
7
|
Addeo A, Miranda-Morales E, den Hollander P, Friedlaender A, O Sintim H, Wu J, Mani SA, Subbiah V. RET aberrant cancers and RET inhibitor therapies: Current state-of-the-art and future perspectives. Pharmacol Ther 2023; 242:108344. [PMID: 36632846 PMCID: PMC10141525 DOI: 10.1016/j.pharmthera.2023.108344] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 12/26/2022] [Accepted: 01/05/2023] [Indexed: 01/10/2023]
Abstract
Precision oncology informed by genomic information has evolved in leaps and bounds over the last decade. Although non-small cell lung cancer (NSCLC) has moved to center-stage as the poster child of precision oncology, multiple targetable genomic alterations have been identified in various cancer types. RET alterations occur in roughly 2% of all human cancers. The role of RET as oncogenic driver was initially identified in 1985 after the discovery that transfection with human lymphoma DNA transforms NIH-3T3 fibroblasts. Germline RET mutations are causative of multiple endocrine neoplasia type 2 syndrome, and RET fusions are found in 10-20% of papillary thyroid cases and are detected in most patients with advanced sporadic medullary thyroid cancer. RET fusions are oncogenic drivers in 2% of Non-small cell lung cancer. Rapid translation and regulatory approval of selective RET inhibitors, selpercatinib and pralsetinib, have opened up the field of RET precision oncology. This review provides an update on RET precision oncology from bench to bedside and back. We explore the impact of selective RET inhibitor in patients with advanced NSCLC, thyroid cancer, and other cancers in a tissue-agnostic fashion, resistance mechanisms, and future directions.
Collapse
Affiliation(s)
- Alfredo Addeo
- Oncology Department, University Hospital Geneva (HUG), Geneva, Switzerland
| | - Ernesto Miranda-Morales
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Petra den Hollander
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02903, USA; Legorreta Cancer Center, Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Alex Friedlaender
- Oncology Department, University Hospital Geneva (HUG), Geneva, Switzerland
| | - Herman O Sintim
- Purdue Institute for Cancer Research, Institute for Drug Discovery and Department of Chemistry, West Lafayette, IN, USA
| | - Jie Wu
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Sendurai A Mani
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02903, USA; Legorreta Cancer Center, Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Vivek Subbiah
- Department of Investigational Cancer Therapeutics(,) Division of Cancer Medicine, Unit 455, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA; Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; MD Anderson Cancer Network, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
8
|
Abstract
Thyroid cancer is the most common malignancy of the endocrine system, and its incidence has been steadily increasing. Advances in sequencing have allowed analysis of the entire cancer genome, and has provided new information on the genetic lesions and modifications responsible for the onset, progression, dedifferentiation and metastasis of thyroid carcinomas. Moreover, integrated genomics has advanced our understanding of the development of cancer and its behavior, and has facilitated the identification of new genetic mutations and molecular pathways. The functional analysis of epigenetic modifications, such as DNA methylation, histone acetylation and non-coding RNAs, have contributed to define new regulatory mechanisms that control cell malignancy in thyroid cancer, especially aggressive forms. Here we review the most recent advances in genomics and epigenomics of thyroid cancer, which have resulted in a new classification and interpretation of the initiation and progression of thyroid tumors, providing new tools and opportunities for further investigation and for the clinical development of new treatment strategies.
Collapse
Affiliation(s)
- Adrián Acuña-Ruiz
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Madrid, Spain.
| | - Carlos Carrasco-López
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Madrid, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| | - Pilar Santisteban
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Madrid, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| |
Collapse
|
9
|
Choudhari JK, Eberhardt M, Chatterjee T, Hohberger B, Vera J. Glaucoma-TrEl: A web-based interactive database to build evidence-based hypotheses on the role of trace elements in glaucoma. BMC Res Notes 2022; 15:348. [PMID: 36401306 PMCID: PMC9673420 DOI: 10.1186/s13104-022-06210-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 09/12/2022] [Accepted: 09/19/2022] [Indexed: 11/19/2022] Open
Abstract
Objective Glaucoma is a chronic neurological disease that is associated with high intraocular pressure (IOP), causes gradual damage to retinal ganglion cells, and often culminates in vision loss. Recent research suggests that glaucoma is a complex multifactorial disease in which multiple interlinked genes and pathways play a role during onset and development. Also, differential availability of trace elements seems to play a role in glaucoma pathophysiology, although their mechanism of action is unknown. The aim of this work is to disseminate a web-based repository on interactions between trace elements and protein-coding genes linked to glaucoma pathophysiology. Results In this study, we present Glaucoma-TrEl, a web database containing information about interactions between trace elements and protein-coding genes that are linked to glaucoma. In the database, we include interactions between 437 unique genes and eight trace elements. Our analysis found a large number of interactions between trace elements and protein-coding genes mutated or linked to the pathophysiology of glaucoma. We associated genes interacting with multiple trace elements to pathways known to play a role in glaucoma. The web-based platform provides an easy-to-use and interactive tool, which serves as an information hub facilitating future research work on trace elements in glaucoma.
Collapse
|
10
|
RET rearrangements in non-small cell lung cancer: Evolving treatment landscape and future challenges. Biochim Biophys Acta Rev Cancer 2022; 1877:188810. [DOI: 10.1016/j.bbcan.2022.188810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/27/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022]
|
11
|
Abstract
Atropisomerism is a conformational chirality that occurs when there is hindered rotation about a σ-bond. While atropisomerism is exemplified by biaryls, it is observed in many other pharmaceutically relevant scaffolds including heterobiaryls, benzamides, diarylamines, and anilides. As bond rotation leads to racemization, atropisomers span the gamut of stereochemical stability. LaPlante has classified atropisomers based on their half-life of racemization at 37 °C: class 1 (t1/2 < 60 s), class 2 (60 s < t1/2 < 4.5 years), and class 3 (t1/2 > 4.5 years). In general, class-3 atropisomers are considered to be suitable for drug development. There are currently four FDA-approved drugs that exist as stable atropisomers, and many others are in clinical trials or have recently appeared in the drug discovery literature. Class-1 atropisomers are more prevalent, with ∼30% of recent FDA-approved small molecules possessing at least one class-1 axis. While class-1 atropisomers do not possess the requisite stereochemical stability to meet the classical definition of atropisomerism, they often bind a given target in a specific set of chiral conformations.Over the past decade, our laboratory has embarked on a research program aimed at leveraging atropisomerism as a design feature to improve the target selectivity of promiscuous lead compounds. Our studies initially focused on introducing class-3 atropisomerism into promiscuous kinase inhibitors, resulting in a proof of principle in which the different atropisomers of a compound can have different selectivity profiles with potentially improved target selectivity. This inspired a careful analysis of the binding conformations of diverse ligands bound to different target proteins, resulting in the realization that the sampled dihedral conformations about a prospective atropisomeric axis played a key role in target binding and that preorganizing the prospective atropisomeric axis into a desired target's preferred conformational range can lead to large gains in target selectivity.As atropisomerism is becoming more prevalent in modern drug discovery, there is an increasing need for strategies for atropisomerically pure samples of pharmaceutical compounds. This has led us and other groups to develop catalytic atroposelective methodologies toward pharmaceutically privileged scaffolds. Our laboratory has contributed examples of atroposelective methodologies toward heterobiaryl systems while also exploring the chirality of less-studied atropisomers such as diarylamines and related scaffolds.This Account will detail recent encounters with atropisomerism in medicinal chemistry and how atropisomerism has transitioned from a "lurking menace" into a leverageable design strategy in order to modulate various properties of biologically active small molecules. This Account will also discuss recent advances in atroposelective synthesis, with a focus on methodologies toward pharmaceutically privileged scaffolds. We predict that a better understanding of the effects of conformational restriction about a prospective atropisomeric axis on target binding will empower chemists to rapidly "program" the selectivity of a lead molecule toward a desired target.
Collapse
|
12
|
Kong Y, Allison DB, Zhang Q, He D, Li Y, Mao F, Li C, Li Z, Zhang Y, Wang J, Wang C, Brainson CF, Liu X. The kinase PLK1 promotes the development of <i>Kras</i>/<i>Tp53</i>-mutant lung adenocarcinoma through transcriptional activation of the receptor RET. Sci Signal 2022; 15:eabj4009. [PMID: 36194647 PMCID: PMC9737055 DOI: 10.1126/scisignal.abj4009] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Increased abundance of polo-like kinase 1 (PLK1) is observed in various tumor types, particularly in lung adenocarcinoma (LUAD). Here, we found that PLK1 accelerated the progression of LUAD through a mechanism that was independent of its role in mediating mitotic cell division. Analysis of human tumor databases revealed that increased PLK1 abundance in LUAD correlated with mutations in KRAS and p53, with tumor stage, and with reduced survival in patients. In a mouse model of KRAS<sup>G12D</sup>-driven, p53-deficient LUAD, PLK1 overexpression increased tumor burden, decreased tumor cell differentiation, and reduced animal survival. PLK1 overexpression in cultured cells and mice indirectly increased the expression of the gene encoding the receptor tyrosine kinase RET by phosphorylating the transcription factor TTF-1. Signaling by RET and mutant KRAS in these tumors converged to activate the mitogen-activated protein kinase (MAPK) pathway. Pharmacological inhibition of the MAPK pathway kinase MEK combined with inhibition of either RET or PLK1 markedly suppressed tumor growth. Our findings show that PLK1 can amplify MAPK signaling and reveal a potential target for stemming progression in lung cancers with high PLK1 abundance.
Collapse
Affiliation(s)
- Yifan Kong
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, 40536, USA,Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Derek B. Allison
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40536, USA,Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Qiongsi Zhang
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, 40536, USA,Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Daheng He
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Yuntong Li
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Fengyi Mao
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, 40536, USA,Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Chaohao Li
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, 40536, USA,Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Zhiguo Li
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, 40536, USA,Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Yanquan Zhang
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, 40536, USA,Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Jianlin Wang
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, 40536, USA,Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Chi Wang
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Christine F. Brainson
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, 40536, USA,Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Xiaoqi Liu
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, 40536, USA,Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40536, USA,Corresponding author.
| |
Collapse
|
13
|
Wirth LJ, Brose MS, Elisei R, Capdevila J, Hoff AO, Hu MI, Tahara M, Robinson B, Gao M, Xia M, Maeda P, Sherman E. LIBRETTO-531: a phase III study of selpercatinib in multikinase inhibitor-naïve RET-mutant medullary thyroid cancer. Future Oncol 2022; 18:3143-3150. [PMID: 35969032 PMCID: PMC10652291 DOI: 10.2217/fon-2022-0657] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 07/27/2022] [Indexed: 11/21/2022] Open
Abstract
Selpercatinib is a first-in-class, highly selective and potent, central nervous system-active RET kinase inhibitor. In the phase I/II trial, selpercatinib demonstrated clinically meaningful antitumor activity with manageable toxicity in heavily pre-treated and treatment-naive patients with RET-mutant medullary thyroid cancer (MTC). LIBRETTO-531 (NCT04211337) is a multicenter, open-label, randomized, controlled, phase III trial comparing selpercatinib to cabozantinib or vandetanib in patients with advanced/metastatic RET-mutant MTC. The primary objective is to compare progression-free survival (per RECIST 1.1) by blinded independent central review of patients with progressive, advanced, multikinase inhibitor-naive, RET-mutant MTC treated with selpercatinib versus cabozantinib or vandetanib. Key secondary objectives are to compare other efficacy outcomes (per RECIST 1.1) and tolerability of selpercatinib versus cabozantinib or vandetanib.
Collapse
Affiliation(s)
- Lori J Wirth
- Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Marcia S Brose
- Sidney Kimmel Cancer Center of Jefferson University Health, Philadelphia, PA 19107, USA
| | - Rossella Elisei
- Endocrine Unit, Department of Clinical & Experimental Medicine, University of Pisa, Pisa, Italy
| | - Jaume Capdevila
- Vall Hebron Institute of Oncology, IOB Quirón-Teknon, Barcelona, Spain
| | - Ana O Hoff
- Department of Endocrinology, Endocrine Oncology Unit, Instituto de Cancer do Estado de Sao Paulo, Sao Paulo, Brazil
| | - Mimi I Hu
- Department of Endocrine Neoplasia & Hormonal Disorders, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Makoto Tahara
- Department of Head and Neck Medical Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | | | - Ming Gao
- Tianjin Medical University Cancer Institute & Hospital, Tianjin Union Medical Center, National Clinical Research Center for Cancer, Tianjin, China
| | - Meng Xia
- Eli Lilly & Company, Indianapolis, IN 46285, USA
| | | | - Eric Sherman
- Department of Medical Oncology, Memorial Sloan Kettering Cancer Center, Manhattan, NY 10065, USA
| |
Collapse
|
14
|
Saltiki K, Simeakis G, Karapanou O, Alevizaki M. MANAGEMENT OF ENDOCRINE DISEASE: Medullary thyroid cancer: from molecular biology and therapeutic pitfalls to future targeted treatment perspectives. Eur J Endocrinol 2022; 187:R53-R63. [PMID: 35895692 DOI: 10.1530/eje-22-0312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/06/2022] [Indexed: 11/08/2022]
Abstract
During the last decades, knowledge of the molecular biology in medullary thyroid carcinoma (MTC) and specifically on the role of rearranged during transfection (RET)-activating mutations in tumorigenesis has led to the evolution of novel targeted therapies, mainly tyrosine kinase inhibitors (TKIs). Vandetanib and cabozantinib have been approved for the management of metastatic progressive MTC. Two novel, highly selective RET inhibitors, selpercatinib and pralsetinib, have recently been approved for the treatment of RET-mutant MTCs and RET-fusion differentiated thyroid cancer. The administration of targeted therapies in MTC patients has changed the therapeutic strategies; however, in the majority of cases, there are no real data showing an improvement of prognosis by TKIs in MTC. Drug resistance remains the main reason for treatment failure. Thus, the understanding of the molecular landscape of tumorigenesis and the mechanisms underlying resistance to targeted therapies is of paramount importance for the further development of more efficient therapies for MTC. The present review focuses on the molecular pathways implicated in MTC tumorigenesis, the approved targeted therapies, the tumoral escape mechanisms, as well as the future perspectives for targeted therapy.
Collapse
Affiliation(s)
- Katerina Saltiki
- Thyroid Neoplasia Unit, Department of Clinical Therapeutics, National Kapodistrian University of Athens, Medical School, Athens, Greece
| | - George Simeakis
- Department of Endocrinology, 401 Military Hospital, Athens, Greece
| | - Olga Karapanou
- Department of Endocrinology, 401 Military Hospital, Athens, Greece
| | - Maria Alevizaki
- Thyroid Neoplasia Unit, Department of Clinical Therapeutics, National Kapodistrian University of Athens, Medical School, Athens, Greece
| |
Collapse
|
15
|
Pavanelli AC, Mangone FR, Yoganathan P, Bessa SA, Nonogaki S, de Toledo Osório CAB, de Andrade VP, Soares IC, de Mello ES, Mulligan LM, Nagai MA. Comprehensive immunohistochemical analysis of RET, BCAR1, and BCAR3 expression in patients with Luminal A and B breast cancer subtypes. Breast Cancer Res Treat 2022; 192:43-52. [PMID: 35031902 DOI: 10.1007/s10549-021-06452-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/14/2021] [Indexed: 12/19/2022]
Abstract
PURPOSE Breast cancer (BC) is considered a heterogeneous disease composed of distinct subtypes with diverse clinical outcomes. Luminal subtype tumors have the best prognosis, and patients benefit from endocrine therapy. However, resistance to endocrine therapies in BC is an obstacle to successful treatment, and novel biomarkers are needed to understand and overcome this mechanism. The RET, BCAR1, and BCAR3 genes may be associated with BC progression and endocrine resistance. METHODS Aiming to evaluate the expression profile and prognostic value of RET, BCAR1, and BCAR3, we performed immunohistochemistry on tissue microarrays (TMAs) containing a cohort of 361 Luminal subtype BC. RESULTS Low expression levels of these three proteins were predominantly observed. BCAR1 expression was correlated with nuclear grade (p = 0.057), and BCAR3 expression was correlated with lymph node status (p = 0.011) and response to hormonal therapy (p = 0.021). Further, low expression of either BCAR1 or BCAR3 was significantly associated with poor prognosis (p = 0.005; p = 0.042). Pairwise analysis showed that patients with tumors with low BCAR1/low BCAR3 expression had a poorer overall survival (p = 0.013), and the low BCAR3 expression had the worst prognosis with RET high expression stratifying these patients into two different groups. Regarding the response to hormonal therapy, non-responder patients presented lower expression of RET in comparison to the responder group (p = 0.035). Additionally, the low BCAR1 expression patients had poorer outcomes than BCAR1 high (p = 0.015). CONCLUSION Our findings suggest RET, BCAR1, and BCAR3 as potential candidate markers for endocrine therapy resistance in Luminal BC.
Collapse
Affiliation(s)
- Ana Carolina Pavanelli
- Discipline of Oncology, Department of Radiology and Oncology, Faculty of Medicine, University of São Paulo, São Paulo, 01246-903, Brazil
- Laboratory of Molecular Genetics, Center for Translational Research in Oncology, Cancer Institute of Sao Paulo, São Paulo, 01246-000, Brazil
| | - Flavia Rotea Mangone
- Discipline of Oncology, Department of Radiology and Oncology, Faculty of Medicine, University of São Paulo, São Paulo, 01246-903, Brazil
- Laboratory of Molecular Genetics, Center for Translational Research in Oncology, Cancer Institute of Sao Paulo, São Paulo, 01246-000, Brazil
| | - Piriya Yoganathan
- Department of Pathology and Molecular Medicine, Cancer Research Institute, Queen's University Kingston, 18 Stuart Street, Kingston, ON, K7L 3N6, Canada
| | - Simone Aparecida Bessa
- Discipline of Oncology, Department of Radiology and Oncology, Faculty of Medicine, University of São Paulo, São Paulo, 01246-903, Brazil
- Laboratory of Molecular Genetics, Center for Translational Research in Oncology, Cancer Institute of Sao Paulo, São Paulo, 01246-000, Brazil
| | - Suely Nonogaki
- Department of Pathological Anatomy, A. C. Camargo Cancer Center, São Paulo, 01509-020, Brazil
| | | | - Victor Piana de Andrade
- Department of Pathological Anatomy, A. C. Camargo Cancer Center, São Paulo, 01509-020, Brazil
| | - Iberê Cauduro Soares
- Department of Pathology, Cancer Institute of Sao Paulo, Hospital das Clinicas, Faculty of Medicine, University of São Paulo, HCFMUSP, São Paulo, 01246-903, Brazil
| | - Evandro Sobrosa de Mello
- Department of Pathology, Cancer Institute of Sao Paulo, Hospital das Clinicas, Faculty of Medicine, University of São Paulo, HCFMUSP, São Paulo, 01246-903, Brazil
| | - Lois M Mulligan
- Department of Pathology and Molecular Medicine, Cancer Research Institute, Queen's University Kingston, 18 Stuart Street, Kingston, ON, K7L 3N6, Canada
| | - Maria Aparecida Nagai
- Discipline of Oncology, Department of Radiology and Oncology, Faculty of Medicine, University of São Paulo, São Paulo, 01246-903, Brazil.
- Laboratory of Molecular Genetics, Center for Translational Research in Oncology, Cancer Institute of Sao Paulo, São Paulo, 01246-000, Brazil.
| |
Collapse
|
16
|
Parate S, Kumar V, Chan Hong J, Lee KW. Investigating natural compounds against oncogenic RET tyrosine kinase using pharmacoinformatic approaches for cancer therapeutics. RSC Adv 2022; 12:1194-1207. [PMID: 35425116 PMCID: PMC8978841 DOI: 10.1039/d1ra07328a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/30/2021] [Indexed: 01/01/2023] Open
Abstract
Rearranged during transfection (RET) tyrosine kinase is a transmembrane receptor tyrosine kinase regulating vital aspects of cellular proliferation, differentiation, and survival. An outstanding challenge in designing protein kinase inhibitors is due to the development of drug resistance. The “gain of function” mutations in the RET gate-keeper residue, Val804, confers resistance to the majority of known RET inhibitors, including vandetanib. To curtail this resistance, researchers developed selpercatinib (LOXO-292) against the RET gate-keeper mutant forms – V804M and V804L. In the present in silico investigation, a receptor–ligand pharmacophore model was generated to identify small molecule inhibitors effective for wild-type (WT) as well as mutant RET kinase variants. The generated model was employed to screen 144 766 natural products (NPs) available in the ZINC database and the retrieved NPs were filtered for their drug-likeness. The resulting 2696 drug-like NPs were subjected to molecular docking with the RET WT kinase domain and a total of 27 molecules displayed better dock scores than the reference inhibitors – vandetanib and selpercatinib. From 27 NPs, an aggregate of 12 compounds demonstrated better binding free energy (BFE) scores than the reference inhibitors, towards RET. Thus, the 12 NPs were also subjected to docking, simulation, and BFE estimation towards the constructed gate-keeper RET mutant structures. The BFE calculations revealed 3 hits with better BFE scores than the reference inhibitors towards WT, V804M, and V804L RET variants. Thus, the scaffolds of hit compounds presented in this study could act as potent RET inhibitors and further provide insights for drug optimization targeting aberrant activation of RET signaling, specifically the mutation of gate-keeper residue – Val804. Identification of natural product inhibitors against rearranged during transfection (RET) tyrosine kinase as cancer therapeutics using combination of in silico techniques.![]()
Collapse
Affiliation(s)
- Shraddha Parate
- Division of Applied Life Science, Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Korea
| | - Vikas Kumar
- Division of Life Sciences, Department of Bio & Medical Big Data (BK21 Program), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Korea
| | - Jong Chan Hong
- Division of Applied Life Science, Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Korea
| | - Keun Woo Lee
- Division of Life Sciences, Department of Bio & Medical Big Data (BK21 Program), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Korea
| |
Collapse
|
17
|
Salmaso S, Mastrotto F, Roverso M, Gandin V, De Martin S, Gabbia D, De Franco M, Vaccarin C, Verona M, Chilin A, Caliceti P, Bogialli S, Marzaro G. Tyrosine kinase inhibitor prodrug-loaded liposomes for controlled release at tumor microenvironment. J Control Release 2021; 340:318-330. [PMID: 34748872 DOI: 10.1016/j.jconrel.2021.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 11/28/2022]
Abstract
Tyrosine kinase inhibitors (TKIs) represent one of the most advanced class of therapeutics for cancer treatment. Most of them are also cytochrome P450 (CYP) inhibitors and/or substrates thereof. Accordingly, their efficacy and/or toxicity can be affected by CYP-mediated metabolism and by metabolism-derived drug-drug interactions. In order to enhance the therapeutic performance of these drugs, we developed a prodrug (Pro962) of our TKI TK962 specifically designed for liposome loading and pH-controlled release in the tumor. A cholesterol moiety was linked to TK962 through pH-sensitive hydrazone bond for anchoring to the liposome phospholipid bilayer to prevent leakage of the prodrug from the nanocarrier. Bioactivity studies performed on isolated target kinases showed that the prodrug maintains only partial activity against them and the release of TK962 is required. Biopharmaceutical studies carried out with prodrug loaded liposomes showed that the prodrug was firmly associated with the vesicles and the drug release was prevented under blood-mimicking conditions. Conversely, conventional liposome loaded with TK962 readily released the drug. Flow cytometric studies showed that liposomes efficiently provided for intracellular prodrug delivery. The use of the hydrazone linker yielded a pH-controlled drug release, which resulted in about 50% drug release at pH 4 and 5 in 2 h. Prodrug, prodrug loaded liposomes and active lead compound have been tested against cancer cell lines in either 2D or 3D models. The liposome formulation showed higher cytotoxicity than the unformulated lead TK962 in both 2D and 3D models. The stability of prodrug, prodrug loaded liposomes and active lead compound in human serum and against human, mouse, and rat microsomes was also assessed, demonstrating that liposome formulations impair the metabolic reactions and protect the loaded compounds from catabolism. The results suggest that the liposomal formulation of pH releasable TKI prodrugs is a promising strategy to improve the metabolic stability, intracellular cancer cell delivery and release, and in turn the efficacy of this class of anticancer drugs.
Collapse
Affiliation(s)
- Stefano Salmaso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, 35131, Italy
| | - Francesca Mastrotto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, 35131, Italy
| | - Marco Roverso
- Department of Chemistry, University of Padova, via Marzolo 1, 35131, Italy
| | - Valentina Gandin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, 35131, Italy
| | - Sara De Martin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, 35131, Italy
| | - Daniela Gabbia
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, 35131, Italy
| | - Michele De Franco
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, 35131, Italy
| | - Christian Vaccarin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, 35131, Italy
| | - Marco Verona
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, 35131, Italy
| | - Adriana Chilin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, 35131, Italy
| | - Paolo Caliceti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, 35131, Italy
| | - Sara Bogialli
- Department of Chemistry, University of Padova, via Marzolo 1, 35131, Italy
| | - Giovanni Marzaro
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, 35131, Italy.
| |
Collapse
|
18
|
Adashek JJ, Desai AP, Andreev-Drakhlin AY, Roszik J, Cote GJ, Subbiah V. Hallmarks of RET and Co-occuring Genomic Alterations in RET-aberrant Cancers. Mol Cancer Ther 2021; 20:1769-1776. [PMID: 34493590 PMCID: PMC8492504 DOI: 10.1158/1535-7163.mct-21-0329] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/21/2021] [Accepted: 07/23/2021] [Indexed: 01/07/2023]
Abstract
Activating receptor-tyrosine kinase rearranged during transfection (RET) mutations and fusions are potent drivers of oncogenesis. The recent FDA approvals of highly potent and selective RET inhibitors, selpercatinib and pralsetinib, has altered the therapeutic management of RET aberrant tumors. There is ample evidence of the role of RET signaling in certain cancers. RET aberrations as fusions or mutations occur in multiple cancers, however, there is considerable phenotypic diversity. There is emerging data on the lack of responsiveness of immunotherapy in RET-altered cancers. Herein, we review the registrational data from the selective RET-inhibitor trials, and comprehensively explore RET alterations in pan-cancer adult malignancies and their co-alterations. These co-occuring alterations may define the future of RET inhibition from specific selective targeting to customized combination therapies as data are rapidly emerging on both on-target and off-target acquired resistance mechanisms. Fascinatingly, oncogenic RET fusions have been reported to mediate resistance to EGFR inhibition and KRASG12C inhibition.
Collapse
Affiliation(s)
- Jacob J. Adashek
- Department of Internal Medicine, University of South Florida, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA.,H. Lee Moffitt Cancer Center & Research Institute, Digestive Diseases and Nutrition, University of South Florida, Tampa, Florida
| | - Aakash P. Desai
- Division of Medical Oncology, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | | | - Jason Roszik
- Department of Investigational Cancer Therapeutics, Division of Cancer Medicine, Houston, Texas
| | - Gilbert J. Cote
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Vivek Subbiah
- Department of Investigational Cancer Therapeutics, Division of Cancer Medicine, Houston, Texas.,Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas.,MD Anderson Cancer Network, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Corresponding Author: Vivek Subbiah, Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Boulevard, Unit 455, Faculty Center 8th floor, Houston, TX 77030. Phone: 713-563-1930; Fax: 713-792-0334; E-mail:
| |
Collapse
|
19
|
Hou Y, Liang HL, Yu X, Liu Z, Cao X, Rao E, Huang X, Wang L, Li L, Bugno J, Fu Y, Chmura SJ, Wu W, Luo SZ, Zheng W, Arina A, Jutzy J, McCall AR, Vokes EE, Pitroda SP, Fu YX, Weichselbaum RR. Radiotherapy and immunotherapy converge on elimination of tumor-promoting erythroid progenitor cells through adaptive immunity. Sci Transl Med 2021; 13:13/582/eabb0130. [PMID: 33627484 DOI: 10.1126/scitranslmed.abb0130] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/20/2020] [Accepted: 01/25/2021] [Indexed: 12/12/2022]
Abstract
Tumor-induced CD45-Ter119+CD71+ erythroid progenitor cells, termed "Ter cells," promote tumor progression by secreting artemin (ARTN), a neurotrophic peptide that activates REarranged during Transfection (RET) signaling. We demonstrate that both local tumor ionizing radiation (IR) and anti-programmed death ligand 1 (PD-L1) treatment decreased tumor-induced Ter cell abundance in the mouse spleen and ARTN secretion outside the irradiation field in an interferon- and CD8+ T cell-dependent manner. Recombinant erythropoietin promoted resistance to radiotherapy or anti-PD-L1 therapies by restoring Ter cell numbers and serum ARTN concentration. Blockade of ARTN or potential ARTN signaling partners, or depletion of Ter cells augmented the antitumor effects of both IR and anti-PD-L1 therapies in mice. Analysis of samples from patients who received radioimmunotherapy demonstrated that IR-mediated reduction of Ter cells, ARTN, and GFRα3, an ARTN signaling partner, were each associated with tumor regression. Patients with melanoma who received immunotherapy exhibited favorable outcomes associated with decreased expression of GFRα3. These findings demonstrate an out-of-field, or "abscopal," effect mediated by adaptive immunity, which is induced during local tumor irradiation. This effect, in turn, governs the therapeutic effects of radiation and immunotherapy. Therefore, our results identify multiple targets to potentially improve outcomes after radiotherapy and immunotherapy.
Collapse
Affiliation(s)
- Yuzhu Hou
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, ShaanXi 710061, China. .,Ludwig Center for Metastasis Research, Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL 60637 USA
| | - Hua L Liang
- Ludwig Center for Metastasis Research, Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL 60637 USA
| | - Xinshuang Yu
- Department of Oncology, First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China
| | - Zhida Liu
- Department of Pathology, University of Texas Southwest Medical Center, Dallas, TX 75235, USA
| | - Xuezhi Cao
- Department of Pathology, University of Texas Southwest Medical Center, Dallas, TX 75235, USA
| | - Enyu Rao
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Xiaona Huang
- Ludwig Center for Metastasis Research, Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL 60637 USA
| | - Liangliang Wang
- Ludwig Center for Metastasis Research, Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL 60637 USA
| | - Lei Li
- Ludwig Center for Metastasis Research, Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL 60637 USA
| | - Jason Bugno
- Committee on Clinical Pharmacology and Pharmacogenomics, University of Chicago, Chicago, IL 60637, USA
| | - Yanbin Fu
- Ludwig Center for Metastasis Research, Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL 60637 USA
| | - Steven J Chmura
- Ludwig Center for Metastasis Research, Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL 60637 USA
| | - Wenjun Wu
- Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Sean Z Luo
- Whitney Young High School, Chicago, IL 60607, USA
| | - Wenxin Zheng
- Ludwig Center for Metastasis Research, Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL 60637 USA
| | - Ainhoa Arina
- Ludwig Center for Metastasis Research, Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL 60637 USA
| | - Jessica Jutzy
- Ludwig Center for Metastasis Research, Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL 60637 USA
| | - Anne R McCall
- Radiation and Cellular Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Everett E Vokes
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Sean P Pitroda
- Ludwig Center for Metastasis Research, Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL 60637 USA
| | - Yang-Xin Fu
- Department of Pathology, University of Texas Southwest Medical Center, Dallas, TX 75235, USA.
| | - Ralph R Weichselbaum
- Ludwig Center for Metastasis Research, Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL 60637 USA.
| |
Collapse
|
20
|
Li Y, Tan YQ, Tang ZX, Liao QH, Guo ZQ, Lai KB, Wang R, Chen YH. Multiple endocrine neoplasia 2A with RET mutation p.Cys611Tyr: A case report. Medicine (Baltimore) 2021; 100:e26230. [PMID: 34087905 PMCID: PMC8183697 DOI: 10.1097/md.0000000000026230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 05/19/2021] [Indexed: 01/04/2023] Open
Abstract
RATIONALE Multiple endocrine neoplasia 2A (MEN2A) is a rare autosomal-dominant genetic syndrome, frequently misdiagnosed or neglected clinically, resulting in delayed therapy to patients. PATIENT CONCERNS A 47-year-old Chinese male patient underwent laparoscopic right adrenal tumorectomy, and postoperative pathology confirmed the tumor as pheochromocytoma (PHEO). He was readmitted to the department of endocrinology and metabolism due to constant increase in carcinoembryonic antigen (CEA) at 5 months after the operation. DIAGNOSIS The patient was confirmed with medullary thyroid carcinoma (MTC), multiple neck lymph node metastasis, and pituitary microadenoma. The p.Cys611Tyr (c.1832G>A, C611Y) mutation was detected. Therefore, he was diagnosed with MEN2A. INTERVENTIONS He underwent total thyroidectomy. The gene-sequencing analysis of his family was conducted, and the C611Y mutation was detected in his daughter. OUTCOMES The level of carcinoembryonic antigen decreased significantly after thyroidectomy in this patient. Long-term follow-up management was conducted. Elevated serum calcitonin and bilateral thyroid nodules were found in his 13-year-old daughter. Thus, MEN2A was highly suspected and she was suggested to undergo total thyroidectomy. CONCLUSION Patients with MEN2A should be screened regularly and managed by a multidisciplinary team.
Collapse
|
21
|
Ultrasonic Characteristics of Medullary Thyroid Carcinoma: Differential From Papillary Thyroid Carcinoma and Benign Thyroid Nodule. Ultrasound Q 2021; 37:329-335. [PMID: 33843826 DOI: 10.1097/ruq.0000000000000508] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT The aim of this study was to evaluate the differences in ultrasonic features of patients with medullary thyroid carcinoma (MTC), papillary thyroid carcinoma (PTC), and benign thyroid nodules. This study included 53 cases of MTC, 151 cases of PTC, and 200 cases of benign thyroid nodule which were pathologically confirmed. There were no significant differences in sex and thyroid gland involvement among the MTC, PTC, and benign thyroid nodule groups. The age among the 3 groups was statistically different (P = 0.002). The TNM stage of MTC was significantly higher than that of PTC (P < 0.001). Compared with PTC, the lesion size, shape, margin, echogenicity, internal nodule component, and blood flow were significantly different in MTC (P < 0.001, P < 0.001, P < 0.001, P < 0.001, P = 0.045, P < 0.001). However, there were no differences in the form of calcification and cervical lymph node involvement between the 2 groups (P = 0.671, P = 0.128). Except for the lesion size and shape (P = 0.068, P = 0.444), MTC group have significant differences in the grade of Thyroid Imaging Reporting and Data System, lesion margin, echogenicity, internal nodule component, calcification, cervical lymph node, and blood flow compared with benign thyroid nodule group (P < 0.001, P = 0.014, P = 0.032, P < 0.001, P < 0.001, P < 0.001). Our data indicate that ultrasound have important value in preoperative diagnosis of MTC. The ultrasonic features of MTC include relatively large nodules, aspect ratio less than 1, smooth edge, solid hypoechoic, microcalcification, and rich blood flow. It is necessary to combine multiple ultrasonic features for the differential diagnosis of MTC, PTC, and benign thyroid nodules.
Collapse
|
22
|
Ding S, Wang R, Peng S, Luo X, Zhong L, Yang H, Ma Y, Chen S, Wang W. Targeted therapies for RET-fusion cancer: Dilemmas and breakthrough. Biomed Pharmacother 2020; 132:110901. [PMID: 33125973 DOI: 10.1016/j.biopha.2020.110901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 10/04/2020] [Accepted: 10/14/2020] [Indexed: 11/29/2022] Open
Abstract
Genomic profiling has revolutionized treatment options for patients with oncogene-driven cancers, such as epidermal growth factor receptor (EGFR) mutant carcinoma. Rearranged during transfection (RET) rearrangement, as one of the main activated oncogenes, has been well studied and found to be involved in the malignant behavior of carcinogenesis, resulting in acquired resistance to EGFR tyrosine kinase inhibitors and inducing an intrinsic resistance to immunotherapy. Thus, targeted therapies have been investigated against RET arrangement cancers, including several multi-kinase inhibitors and selective RET inhibitors. However, modest efficacy, a relatively high rate of toxicity, and poor effectiveness against brain metastasis are common limitations of multi-targeted novel molecular inhibitors. A promising prospect was shown recently in selective RET inhibitors in several ongoing clinical trials. In this review, we reviewed the concurrent dilemmas of targeted therapies against RET arrangement cancer from preclinical and clinical studies and proposed several clinical considerations for clinical practice prospectively.
Collapse
Affiliation(s)
- SiJie Ding
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| | - Rong Wang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| | - ShunLi Peng
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| | - Xiaoqing Luo
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| | - LongHui Zhong
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| | - Hong Yang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, PR China; Department of Oncology, Hunan Provincial People's Hospital and The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, PR China
| | - YueYun Ma
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| | - ShiYu Chen
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| | - Wei Wang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, PR China.
| |
Collapse
|
23
|
Small Molecules and Peptides Targeting Glial Cell Line-Derived Neurotrophic Factor Receptors for the Treatment of Neurodegeneration. Int J Mol Sci 2020; 21:ijms21186575. [PMID: 32911810 PMCID: PMC7554781 DOI: 10.3390/ijms21186575] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/31/2020] [Accepted: 09/06/2020] [Indexed: 12/14/2022] Open
Abstract
Glial cell line-derived neurotrophic factor (GDNF) family ligands (GFLs) are able to promote the survival of multiple neuronal populations in the body and, therefore, hold considerable promise for disease-modifying treatments of diseases and conditions caused by neurodegeneration. Available data reveal the potential of GFLs for the therapy of Parkinson's disease, neuropathic pain and diseases caused by retinal degeneration but, also, amyotrophic lateral sclerosis and, possibly, Alzheimer's disease. Despite promising data collected in preclinical models, clinical translation of GFLs is yet to be conducted. The main reasons for the limited success of GFLs clinical development are the poor pharmacological characteristics of GFL proteins, such as the inability of GFLs to cross tissue barriers, poor diffusion in tissues, biphasic dose-response and activation of several receptors in the organism in different cell types, along with ethical limitations on patients' selection in clinical trials. The development of small molecules selectively targeting particular GFL receptors with improved pharmacokinetic properties can overcome many of the difficulties and limitations associated with the clinical use of GFL proteins. The current review lists several strategies to target the GFL receptor complex with drug-like molecules, discusses their advantages, provides an overview of available chemical scaffolds and peptides able to activate GFL receptors and describes the effects of these molecules in cultured cells and animal models.
Collapse
|
24
|
Abbas SZ, Qadir MI, Muhammad SA. Systems-level differential gene expression analysis reveals new genetic variants of oral cancer. Sci Rep 2020; 10:14667. [PMID: 32887903 PMCID: PMC7473858 DOI: 10.1038/s41598-020-71346-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 07/20/2020] [Indexed: 01/28/2023] Open
Abstract
Oral cancer (OC) ranked as eleventh malignancy worldwide, with the increasing incidence among young patients. Limited understanding of complications in cancer progression, its development system, and their interactions are major restrictions towards the progress of optimal and effective treatment strategies. The system-level approach has been designed to explore genetic complexity of the disease and to identify novel oral cancer related genes to detect genomic alterations at molecular level, through cDNA differential analysis. We analyzed 21 oral cancer-related cDNA datasets and listed 30 differentially expressed genes (DEGs). Among 30, we found 6 significant DEGs including CYP1A1, CYP1B1, ADCY2, C7, SERPINB5, and ANAPC13 and studied their functional role in OC. Our genomic and interactive analysis showed significant enrichment of xenobiotics metabolism, p53 signaling pathway and microRNA pathways, towards OC progression and development. We used human proteomic data for post-translational modifications to interpret disease mutations and inter-individual genetic variations. The mutational analysis revealed the sequence predicted disordered region of 14%, 12.5%, 10.5% for ADCY2, CYP1B1, and C7 respectively. The MiRNA target prediction showed functional molecular annotation including specific miRNA-targets hsa-miR-4282, hsa-miR-2052, hsa-miR-216a-3p, for CYP1B1, C7, and ADCY2 respectively associated with oral cancer. We constructed the system level network and found important gene signatures. The drug-gene interaction of OC source genes with seven FDA approved OC drugs help to design or identify new drug target or establishing novel biomedical linkages regarding disease pathophysiology. This investigation demonstrates the importance of system genetics for identifying 6 OC genes (CYP1A1, CYP1B1, ADCY2, C7, SERPINB5, and ANAPC13) as potential drugs targets. Our integrative network-based system-level approach would help to find the genetic variants of OC that can accelerate drug discovery outcomes to develop a better understanding regarding treatment strategies for many cancer types.
Collapse
Affiliation(s)
- Syeda Zahra Abbas
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Imran Qadir
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Syed Aun Muhammad
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan.
| |
Collapse
|
25
|
Tian Z, Niu X, Yao W. Receptor Tyrosine Kinases in Osteosarcoma Treatment: Which Is the Key Target? Front Oncol 2020; 10:1642. [PMID: 32984034 PMCID: PMC7485562 DOI: 10.3389/fonc.2020.01642] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022] Open
Abstract
Recent clinical trials have shown several multi-target tyrosine kinase inhibitors (TKIs) to be effective in the treatment of osteosarcoma. However, these TKIs have a number of targets, and it is yet unclear which of these targets has a key role in osteosarcoma treatment. In this review, we first summarize the TKIs that were studied in clinical trials registered on ClinicalTrials.gov. Further, we compare and discuss the targets of these TKIs. We found that TKIs with promising therapeutic effect for osteosarcoma include apatinib, cabozantinib, lenvatinib, regorafenib, and sorafenib. The key targets for osteosarcoma treatment may include VEGFRs and RET. The receptor tyrosine kinases (RTKs) MET, IGF-1R, AXL, PDGFRs, KIT, and FGFRs might be relevant but unimportant targets for osteosarcoma treatment. Inhibition of one type of RTK for the treatment of osteosarcoma is not effective. It is necessary to inhibit several relevant RTKs simultaneously to achieve a breakthrough in osteosarcoma treatment. This review provides comprehensive information on TKI targets relevant in osteosarcoma treatment, and it will be useful for further research in this field.
Collapse
Affiliation(s)
- Zhichao Tian
- Department of Orthopedics, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Xiaohui Niu
- Department of Orthopedic Oncology, Beijing Jishuitan Hospital, Beijing, China
| | - Weitao Yao
- Department of Orthopedics, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
26
|
Kawai K, Takahashi M. Intracellular RET signaling pathways activated by GDNF. Cell Tissue Res 2020; 382:113-123. [PMID: 32816064 DOI: 10.1007/s00441-020-03262-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 07/20/2020] [Indexed: 01/16/2023]
Abstract
Activation of REarranged during Transfection (RET) proto-oncogene is responsible for various human cancers such as papillary and medullary thyroid carcinomas and non-small cell lung carcinomas. RET activation in these tumors is caused by point mutations or gene rearrangements, resulting in constitutive activation of RET tyrosine kinase. Physiologically, RET is activated by glial cell line-derived neurotrophic factor (GDNF) ligands that bind to coreceptor GDNF family receptor alphas (GFRαs), leading to RET dimerization. GDNF-GFRα1-RET signaling plays crucial roles in the development of the enteric nervous system, kidney and lower urinary tract as well as in spermatogenesis. Intracellular tyrosine phosphorylation in RET and recruitment of adaptor proteins to phosphotyrosines are essential for various biological functions. Significance of intracellular RET signaling pathways activated by GDNF is discussed and summarized in this review.
Collapse
Affiliation(s)
- Kumi Kawai
- Department of Pathology, Fujita Health University, 1-98 Kutsukake-cho, Dengakugakubo, Toyoake, 470-1192, Japan
| | - Masahide Takahashi
- International Center for Cell and Gene Therapy, Fujita Health University, 1-98 Kutsukake-cho, Dengakugakubo, Toyoake, 470-1192, Japan. .,Department of Pathology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan.
| |
Collapse
|
27
|
Plasma membrane localization of the GFL receptor components: a nexus for receptor crosstalk. Cell Tissue Res 2020; 382:57-64. [PMID: 32767110 PMCID: PMC7529631 DOI: 10.1007/s00441-020-03235-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/04/2020] [Indexed: 12/26/2022]
Abstract
The glial cell line-derived neurotrophic factor (GDNF) family ligands (GFLs) comprise a group of four homologous and potent growth factors that includes GDNF, neurturin (NRTN), artemin (ARTN), and persephin (PSPN). The survival, growth, and mitotic activities of the GFLs are conveyed by a single receptor tyrosine kinase, Ret. The GFLs do not bind directly to Ret in order to activate it, and instead bind with high affinity to glycerophosphatidylinositol (GPI)-anchored coreceptors called the GDNF family receptor-αs (GFRαs). Several mechanisms have recently been identified that influence the trafficking of Ret and GFRαs in and out of the plasma membrane, thereby affecting their availability for ligand binding, as well as their levels by targeting to degradative pathways. This review describes these mechanisms and their powerful effects on GFL signaling and function. We also describe the recent discovery that p75 and Ret form a signaling complex, also regulated by plasma membrane shuttling, that either enhances GFL survival signals or p75 pro-apoptotic signals, dependent on the cellular context.
Collapse
|
28
|
Takahashi M, Kawai K, Asai N. Roles of the RET Proto-oncogene in Cancer and Development. JMA J 2020; 3:175-181. [PMID: 33150251 PMCID: PMC7590400 DOI: 10.31662/jmaj.2020-0021] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 04/23/2020] [Indexed: 01/15/2023] Open
Abstract
RET (REarranged during Transfection)is activated by DNA rearrangement of the 3' fragment of the receptor tyrosine kinase gene, namely, RET proto-oncogene, with the 5' fragment of various genes with putative dimerization domains, such as a coiled coil domain, that are necessary for constitutive activation. RET rearrangements have been detected in a variety of human cancers, including thyroid, lung, colorectal, breast, and salivary gland cancers. Moreover, point mutations in RET are responsible for multiple endocrine neoplasia types 2A and 2B, which can develop into medullary thyroid cancer and pheochromocytoma. Substantial effort is currently being exerted in developing RET kinase inhibitors. RET is also responsible for Hirschsprung's disease, a developmental abnormality in the enteric nervous system. Gene knockout studies have demonstrated that RET plays essential roles in the development of the enteric nervous system and kidney as well as in spermatogenesis. Studies regarding RET continue to provide fascinating challenges in the fields of cancer research, neuroscience, and developmental biology.
Collapse
Affiliation(s)
- Masahide Takahashi
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,International Center for Cell and Gene Therapy, Fujita Health University, Toyoake, Japan
| | - Kumi Kawai
- Department of Pathology, Fujita Health University, Toyoake, Japan
| | - Naoya Asai
- Department of Pathology, Fujita Health University, Toyoake, Japan
| |
Collapse
|
29
|
RET Gene Fusions in Malignancies of the Thyroid and Other Tissues. Genes (Basel) 2020; 11:genes11040424. [PMID: 32326537 PMCID: PMC7230609 DOI: 10.3390/genes11040424] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/05/2020] [Accepted: 04/12/2020] [Indexed: 02/07/2023] Open
Abstract
Following the identification of the BCR-ABL1 (Breakpoint Cluster Region-ABelson murine Leukemia) fusion in chronic myelogenous leukemia, gene fusions generating chimeric oncoproteins have been recognized as common genomic structural variations in human malignancies. This is, in particular, a frequent mechanism in the oncogenic conversion of protein kinases. Gene fusion was the first mechanism identified for the oncogenic activation of the receptor tyrosine kinase RET (REarranged during Transfection), initially discovered in papillary thyroid carcinoma (PTC). More recently, the advent of highly sensitive massive parallel (next generation sequencing, NGS) sequencing of tumor DNA or cell-free (cfDNA) circulating tumor DNA, allowed for the detection of RET fusions in many other solid and hematopoietic malignancies. This review summarizes the role of RET fusions in the pathogenesis of human cancer.
Collapse
|
30
|
Gattelli A, Hynes NE, Schor IE, Vallone SA. Ret Receptor Has Distinct Alterations and Functions in Breast Cancer. J Mammary Gland Biol Neoplasia 2020; 25:13-26. [PMID: 32080788 DOI: 10.1007/s10911-020-09445-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 02/06/2020] [Indexed: 12/15/2022] Open
Abstract
Ret receptor tyrosine kinase is a proto-oncogene that participates in development of various cancers. Several independent studies have recently identified Ret as a key player in breast cancer. Although Ret overexpression and function have been under investigation, mainly in estrogen receptor positive breast cancer, a more comprehensive analysis of the impact of recurring Ret alterations in breast cancer is needed. This review consolidates the current knowledge of Ret alterations and their potential effects in breast cancer. We discuss and integrate data on Ret changes in different breast cancer subtypes and potential function in progression, as well as the participation of distinct Ret network signaling partners in these processes. We propose that it will be essential to define a shared molecular feature of tumors with alteration in Ret receptor, be this at the genetic level or via overexpression in order to design effective therapies to target the Ret pathway. Here we review experimental evidence from basic research and pre-clinical studies concentrating on Ret alterations as potential biomarkers for recurrence, and we discuss the possibility that targeting the Ret pathway might in the future become a treatment for breast cancer.
Collapse
Affiliation(s)
- Albana Gattelli
- CONICET-UBA, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Ciudad Universitaria, C1428EGA CABA, Buenos Aires, Argentina.
- Universidad de Buenos Aires (UBA), Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria C1428EGA CABA, Buenos Aires, Argentina.
| | - Nancy E Hynes
- Friedrich Miescher Institute for Biomedical Research (FMI), Maulbeerstrasse 66, CH-4058, Basel, Switzerland
- University of Basel, CH-4002, Basel, Switzerland
| | - Ignacio E Schor
- CONICET-UBA, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Ciudad Universitaria, C1428EGA CABA, Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales (FCEN), Universidad de Buenos Aires (UBA), Ciudad Universitaria, C1428EGA, CABA, Argentina
| | - Sabrina A Vallone
- CONICET-UBA, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Ciudad Universitaria, C1428EGA CABA, Buenos Aires, Argentina
- Universidad de Buenos Aires (UBA), Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria C1428EGA CABA, Buenos Aires, Argentina
| |
Collapse
|
31
|
Ackermann CJ, Stock G, Tay R, Dawod M, Gomes F, Califano R. Targeted Therapy For RET-Rearranged Non-Small Cell Lung Cancer: Clinical Development And Future Directions. Onco Targets Ther 2019; 12:7857-7864. [PMID: 31576143 PMCID: PMC6767757 DOI: 10.2147/ott.s171665] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 09/09/2019] [Indexed: 12/11/2022] Open
Abstract
Approximately 1-2% of unselected patients with Non-small Cell Lung Cancer (NSCLC) harbor RET rearrangements resulting in enhanced cell survival and proliferation. The initial treatment strategy for RET rearranged NSCLC has been multi-target tyrosine kinase inhibition. With overall response rates (ORR) of 16-53% and a median progression-free survival (PFS) of 4.5-7.3 months these outcomes are clearly inferior to the efficacy outcomes of selective tyrosine kinase inhibitors (TKI) in other oncogene-addicted NSCLC. Additionally, multi-kinase inhibition in RET-driven NSCLC patients showed concerning rates of high-grade toxicity, mainly induced by anti-VEGFR-kinase activity. Novel selective RET inhibitors like BLU-667, LOXO-292 and RXDX-105 have been recently investigated in early phase clinical trials showing promising efficacy with a manageable toxicity profile.
Collapse
Affiliation(s)
| | - Gustavo Stock
- Department of Medical Oncology, Instituto do Câncer do Estado de São Paulo, São Paulo, Brazil
| | - Rebecca Tay
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, UK
| | - Mohammed Dawod
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, UK
| | - Fabio Gomes
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, UK
| | - Raffaele Califano
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, UK
- Department of Medical Oncology, Manchester University NHS Foundation Trust, Manchester, UK
- Division of Cancer Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
32
|
Bronte G, Ulivi P, Verlicchi A, Cravero P, Delmonte A, Crinò L. Targeting RET-rearranged non-small-cell lung cancer: future prospects. LUNG CANCER-TARGETS AND THERAPY 2019; 10:27-36. [PMID: 30962732 PMCID: PMC6433115 DOI: 10.2147/lctt.s192830] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Non-small-cell lung cancer (NSCLC) patients with mutated or rearranged oncogene drivers can be treated with upfront selective inhibitors achieving higher response rates and longer survival than chemotherapy. The RET gene can undergo chromosomal rearrangements in 1%–2% of all NSCLC patients, involving various upstream fusion partners such as KIF5B, CCDC6, NCOA4, and TRIM33. Many multikinase inhibitors are active against rearranged RET. Cabozantinib, vandetanib, sunitinib, lenvatinib, and nintedanib achieved tumor responses in about 30% of these patients in retrospective studies. Prospective phase II trials investigated the activity and toxicity of cabozantinib, vandetanib, sorafenib, and lenvatinib, and did not reach significantly higher response rates. VEGFR and EGFR inhibition represented the main ways of developing off-target toxicity. An intrinsic resistance emerged according to the type of RET fusion partners, as KIF5B-RET fusion is the most resistant. Also acquired mutations in rearranged RET oncogene developed as resistance to these multikinase inhibitors. Interestingly, RET fusions have been found as a resistance mechanism to EGFR-TKIs in EGFR-mutant NSCLC patients. The combination of EGFR and RET inhibition can overcome this resistance. The limitations in terms of activity and tolerability of the various multikinase inhibitors prompted the investigation of new highly selective RET inhibitors, such as RXDX-105, BLU-667, and LOXO-292. Some data emerged about intracranial antitumor activity of BLU-667 and LOXO-292. If these novel drugs will achieve high activity in RET rearranged NSCLC, also these oncogene-addicted tumors can undergo a significant survival improvement.
Collapse
Affiliation(s)
- Giuseppe Bronte
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, FC, Italy,
| | - Paola Ulivi
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, FC, Italy,
| | - Alberto Verlicchi
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, FC, Italy,
| | - Paola Cravero
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, FC, Italy,
| | - Angelo Delmonte
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, FC, Italy,
| | - Lucio Crinò
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, FC, Italy,
| |
Collapse
|
33
|
Bhujbal SP, Balasubramanian PK, Keretsu S, Cho SJ. Receptor‐guided 3D‐QSAR Study of Anilinoquinazolines as RET Receptor Tyrosine Kinase Antagonists. B KOREAN CHEM SOC 2019. [DOI: 10.1002/bkcs.11547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Swapnil Pandurang Bhujbal
- Department of Biomedical Sciences, College of MedicineChosun University Gwangju 501‐759 Republic of Korea
| | | | - Seketoulie Keretsu
- Department of Biomedical Sciences, College of MedicineChosun University Gwangju 501‐759 Republic of Korea
| | - Seung Joo Cho
- Department of Biomedical Sciences, College of MedicineChosun University Gwangju 501‐759 Republic of Korea
- Department of Cellular·Molecular Medicine, College of MedicineChosun University Gwangju 501‐759 Republic of Korea
| |
Collapse
|
34
|
An C, Li H, Zhang X, Wang J, Qiang Y, Ye X, Li Q, Guan Q, Zhou Y. Silencing of COPB2 inhibits the proliferation of gastric cancer cells and induces apoptosis via suppression of the RTK signaling pathway. Int J Oncol 2019; 54:1195-1208. [PMID: 30968146 PMCID: PMC6411345 DOI: 10.3892/ijo.2019.4717] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 01/07/2019] [Indexed: 12/26/2022] Open
Abstract
Emerging studies have reported that coatomer protein complex subunit β2 (COPB2) is overexpressed in several types of malignant tumor; however, to the best of our knowledge, no studies regarding COPB2 in gastric cancer have been published thus far. Therefore, the present study aimed to determine the significance and function of COPB2 in gastric cancer. COPB2 expression in gastric cancer cell lines was measured using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis. In addition, lentivirus-short hairpin RNA (shRNA) COPB2 (Lv-shCOPB2) was generated and used to infect BGC-823 cells to analyze the effects of COPB2 on the cancerous phenotype. The effects of shRNA-mediated COPB2 knockdown on cell proliferation were detected using MTT, 5-bromo-2-deoxyuridine and colony formation assays. In addition, the effects of COPB2 knockdown on apoptosis were analyzed by flow cytometry. Nude mice and fluorescence imaging were used to characterize the regulation of tumor growth in vivo, and qPCR and immunohistochemistry were subsequently conducted to analyze COPB2 expression in xenograft tumor tissues. Furthermore, a receptor tyrosine kinase (RTK) signaling pathway antibody array was used to explore the relevant molecular mechanisms underlying the effects of COPB2 knockdown. The results revealed that COPB2 mRNA was abundantly overexpressed in gastric cancer cell lines, whereas knockdown of COPB2 significantly inhibited cell growth and colony formation ability, and led to increased cell apoptosis in vitro. The tumorigenicity assay revealed that knockdown of COPB2 reduced tumor growth in nude mice, and fluorescence imaging indicated that the total radiant efficiency of mice in the Lv-shCOPB2-infected group was markedly reduced compared with the mice in the Lv-shRNA control-infected group in vivo. The antibody array assay revealed that the levels of phosphorylation in 23 target RTKs were significantly reduced: In conclusion, COPB2 was highly expressed in gastric cancer cell lines, and knockdown suppressed colony formation and promoted cell apoptosis via inhibiting the RTK signaling and its downstream signaling cascade molecules. Therefore, COPB2 may present a valuable target for gene silencing strategy in gastric cancer.
Collapse
Affiliation(s)
- Caixia An
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Hailong Li
- Department of Clinical Laboratory Diagnosis, School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu 730000, P.R. China
| | - Xueyan Zhang
- Department of Clinical Laboratory Diagnosis, School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu 730000, P.R. China
| | - Jing Wang
- Department of Clinical Laboratory Diagnosis, School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu 730000, P.R. China
| | - Yi Qiang
- Division of Cardiac Surgery, Gansu Provincial Maternal and Child Health Hospital, Lanzhou, Gansu 730050, P.R. China
| | - Xinhua Ye
- Department of Pediatrics, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Qiang Li
- Division of Neurosurgery, Second Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Quanlin Guan
- Department of Surgical Oncology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Yongning Zhou
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
35
|
Russell JP, Mohammadi E, Ligon CO, Johnson AC, Gershon MD, Rao M, Shen Y, Chan CC, Eidam HS, DeMartino MP, Cheung M, Oliff AI, Kumar S, Greenwood-Van Meerveld B. Exploring the Potential of RET Kinase Inhibition for Irritable Bowel Syndrome: A Preclinical Investigation in Rodent Models of Colonic Hypersensitivity. J Pharmacol Exp Ther 2018; 368:299-307. [PMID: 30413627 DOI: 10.1124/jpet.118.252973] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/07/2018] [Indexed: 12/18/2022] Open
Abstract
Abdominal pain represents a significant complaint in patients with irritable bowel syndrome (IBS). While the etiology of IBS is incompletely understood, prior exposure to gastrointestinal inflammation or psychologic stress is frequently associated with the development of symptoms. Inflammation or stress-induced expression of growth factors or cytokines may contribute to the pathophysiology of IBS. Here, we aimed to investigate the therapeutic potential of inhibiting the receptor of glial cell line-derived neurotrophic factor, rearranged during transfection (RET), in experimental models of inflammation and stress-induced visceral hypersensitivity resembling IBS sequelae. In RET-cyan fluorescent protein [(CFP) RetCFP/+] mice, thoracic and lumbosacral dorsal root ganglia were shown to express RET, which colocalized with calcitonin gene-related peptide. To understand the role of RET in visceral nociception, we employed GSK3179106 as a potent, selective, and gut-restricted RET kinase inhibitor. Colonic hyperalgesia, quantified as exaggerated visceromotor response to graded pressures (0-60 mm Hg) of isobaric colorectal distension (CRD), was produced in multiple rat models induced 1) by colonic irritation, 2) following acute colonic inflammation, 3) by adulthood stress, and 4) by early life stress. In all the rat models, RET inhibition with GSK3179106 attenuated the number of abdominal contractions induced by CRD. Our findings identify a role for RET in visceral nociception. Inhibition of RET kinase with a potent, selective, and gut-restricted small molecule may represent a novel therapeutic strategy for the treatment of IBS through the attenuation of post-inflammatory and stress-induced visceral hypersensitivity.
Collapse
Affiliation(s)
- John P Russell
- Virtual Proof of Concept Discovery Performance Unit, GlaxoSmithKline, King of Prussia, Pennsylvania (J.P.R., H.S.E., M.P.D., M.C., A.I.O., S.K.); Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (E.M., C.O.L., A.C.J., B.G.-V.M.); Department of Pathology and Cell Biology, College of Physicians and Surgeons (M.D.G.) and Department of Pediatrics (M.R.), Columbia University, New York, New York; and WuXi AppTec Co., Ltd., Waigaoqiao Free Trade Zone, Shanghai, China (Y.S., C.-C.C.)
| | - Ehsan Mohammadi
- Virtual Proof of Concept Discovery Performance Unit, GlaxoSmithKline, King of Prussia, Pennsylvania (J.P.R., H.S.E., M.P.D., M.C., A.I.O., S.K.); Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (E.M., C.O.L., A.C.J., B.G.-V.M.); Department of Pathology and Cell Biology, College of Physicians and Surgeons (M.D.G.) and Department of Pediatrics (M.R.), Columbia University, New York, New York; and WuXi AppTec Co., Ltd., Waigaoqiao Free Trade Zone, Shanghai, China (Y.S., C.-C.C.)
| | - Casey O Ligon
- Virtual Proof of Concept Discovery Performance Unit, GlaxoSmithKline, King of Prussia, Pennsylvania (J.P.R., H.S.E., M.P.D., M.C., A.I.O., S.K.); Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (E.M., C.O.L., A.C.J., B.G.-V.M.); Department of Pathology and Cell Biology, College of Physicians and Surgeons (M.D.G.) and Department of Pediatrics (M.R.), Columbia University, New York, New York; and WuXi AppTec Co., Ltd., Waigaoqiao Free Trade Zone, Shanghai, China (Y.S., C.-C.C.)
| | - Anthony C Johnson
- Virtual Proof of Concept Discovery Performance Unit, GlaxoSmithKline, King of Prussia, Pennsylvania (J.P.R., H.S.E., M.P.D., M.C., A.I.O., S.K.); Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (E.M., C.O.L., A.C.J., B.G.-V.M.); Department of Pathology and Cell Biology, College of Physicians and Surgeons (M.D.G.) and Department of Pediatrics (M.R.), Columbia University, New York, New York; and WuXi AppTec Co., Ltd., Waigaoqiao Free Trade Zone, Shanghai, China (Y.S., C.-C.C.)
| | - Michael D Gershon
- Virtual Proof of Concept Discovery Performance Unit, GlaxoSmithKline, King of Prussia, Pennsylvania (J.P.R., H.S.E., M.P.D., M.C., A.I.O., S.K.); Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (E.M., C.O.L., A.C.J., B.G.-V.M.); Department of Pathology and Cell Biology, College of Physicians and Surgeons (M.D.G.) and Department of Pediatrics (M.R.), Columbia University, New York, New York; and WuXi AppTec Co., Ltd., Waigaoqiao Free Trade Zone, Shanghai, China (Y.S., C.-C.C.)
| | - Meenakshi Rao
- Virtual Proof of Concept Discovery Performance Unit, GlaxoSmithKline, King of Prussia, Pennsylvania (J.P.R., H.S.E., M.P.D., M.C., A.I.O., S.K.); Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (E.M., C.O.L., A.C.J., B.G.-V.M.); Department of Pathology and Cell Biology, College of Physicians and Surgeons (M.D.G.) and Department of Pediatrics (M.R.), Columbia University, New York, New York; and WuXi AppTec Co., Ltd., Waigaoqiao Free Trade Zone, Shanghai, China (Y.S., C.-C.C.)
| | - Yuhong Shen
- Virtual Proof of Concept Discovery Performance Unit, GlaxoSmithKline, King of Prussia, Pennsylvania (J.P.R., H.S.E., M.P.D., M.C., A.I.O., S.K.); Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (E.M., C.O.L., A.C.J., B.G.-V.M.); Department of Pathology and Cell Biology, College of Physicians and Surgeons (M.D.G.) and Department of Pediatrics (M.R.), Columbia University, New York, New York; and WuXi AppTec Co., Ltd., Waigaoqiao Free Trade Zone, Shanghai, China (Y.S., C.-C.C.)
| | - Chi-Chung Chan
- Virtual Proof of Concept Discovery Performance Unit, GlaxoSmithKline, King of Prussia, Pennsylvania (J.P.R., H.S.E., M.P.D., M.C., A.I.O., S.K.); Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (E.M., C.O.L., A.C.J., B.G.-V.M.); Department of Pathology and Cell Biology, College of Physicians and Surgeons (M.D.G.) and Department of Pediatrics (M.R.), Columbia University, New York, New York; and WuXi AppTec Co., Ltd., Waigaoqiao Free Trade Zone, Shanghai, China (Y.S., C.-C.C.)
| | - Hilary S Eidam
- Virtual Proof of Concept Discovery Performance Unit, GlaxoSmithKline, King of Prussia, Pennsylvania (J.P.R., H.S.E., M.P.D., M.C., A.I.O., S.K.); Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (E.M., C.O.L., A.C.J., B.G.-V.M.); Department of Pathology and Cell Biology, College of Physicians and Surgeons (M.D.G.) and Department of Pediatrics (M.R.), Columbia University, New York, New York; and WuXi AppTec Co., Ltd., Waigaoqiao Free Trade Zone, Shanghai, China (Y.S., C.-C.C.)
| | - Michael P DeMartino
- Virtual Proof of Concept Discovery Performance Unit, GlaxoSmithKline, King of Prussia, Pennsylvania (J.P.R., H.S.E., M.P.D., M.C., A.I.O., S.K.); Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (E.M., C.O.L., A.C.J., B.G.-V.M.); Department of Pathology and Cell Biology, College of Physicians and Surgeons (M.D.G.) and Department of Pediatrics (M.R.), Columbia University, New York, New York; and WuXi AppTec Co., Ltd., Waigaoqiao Free Trade Zone, Shanghai, China (Y.S., C.-C.C.)
| | - Mui Cheung
- Virtual Proof of Concept Discovery Performance Unit, GlaxoSmithKline, King of Prussia, Pennsylvania (J.P.R., H.S.E., M.P.D., M.C., A.I.O., S.K.); Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (E.M., C.O.L., A.C.J., B.G.-V.M.); Department of Pathology and Cell Biology, College of Physicians and Surgeons (M.D.G.) and Department of Pediatrics (M.R.), Columbia University, New York, New York; and WuXi AppTec Co., Ltd., Waigaoqiao Free Trade Zone, Shanghai, China (Y.S., C.-C.C.)
| | - Allen I Oliff
- Virtual Proof of Concept Discovery Performance Unit, GlaxoSmithKline, King of Prussia, Pennsylvania (J.P.R., H.S.E., M.P.D., M.C., A.I.O., S.K.); Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (E.M., C.O.L., A.C.J., B.G.-V.M.); Department of Pathology and Cell Biology, College of Physicians and Surgeons (M.D.G.) and Department of Pediatrics (M.R.), Columbia University, New York, New York; and WuXi AppTec Co., Ltd., Waigaoqiao Free Trade Zone, Shanghai, China (Y.S., C.-C.C.)
| | - Sanjay Kumar
- Virtual Proof of Concept Discovery Performance Unit, GlaxoSmithKline, King of Prussia, Pennsylvania (J.P.R., H.S.E., M.P.D., M.C., A.I.O., S.K.); Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (E.M., C.O.L., A.C.J., B.G.-V.M.); Department of Pathology and Cell Biology, College of Physicians and Surgeons (M.D.G.) and Department of Pediatrics (M.R.), Columbia University, New York, New York; and WuXi AppTec Co., Ltd., Waigaoqiao Free Trade Zone, Shanghai, China (Y.S., C.-C.C.)
| | - Beverley Greenwood-Van Meerveld
- Virtual Proof of Concept Discovery Performance Unit, GlaxoSmithKline, King of Prussia, Pennsylvania (J.P.R., H.S.E., M.P.D., M.C., A.I.O., S.K.); Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (E.M., C.O.L., A.C.J., B.G.-V.M.); Department of Pathology and Cell Biology, College of Physicians and Surgeons (M.D.G.) and Department of Pediatrics (M.R.), Columbia University, New York, New York; and WuXi AppTec Co., Ltd., Waigaoqiao Free Trade Zone, Shanghai, China (Y.S., C.-C.C.)
| |
Collapse
|
36
|
Identification of fused pyrimidines as interleukin 17 secretion inhibitors. Eur J Med Chem 2018; 155:562-578. [DOI: 10.1016/j.ejmech.2018.06.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/04/2018] [Accepted: 06/06/2018] [Indexed: 02/06/2023]
|
37
|
Evolution of oncogenic signatures of mutation hotspots in tyrosine kinases supports the atavistic hypothesis of cancer. Sci Rep 2018; 8:8256. [PMID: 29844492 PMCID: PMC5974376 DOI: 10.1038/s41598-018-26653-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 05/03/2018] [Indexed: 12/14/2022] Open
Abstract
Cancer has been shown as an evolutionary process emerging hallmarks that are reminiscent of unicellular organisms. Since cancer is mostly driven by somatic mutations, especially by oncogenic hotspot mutations, we proposed a molecular atavism of cancer caused by gain-of-function mutations in oncogenes. As tyrosine kinase (TK) family contains the largest subgroup of oncogenes with hotspot mutations, we traced the most predominant mutation hotspots of TK oncogenes across phylogeny with the domain information and adjacent sequences integrated as onco-signatures. We detected 9 out of 17 TK oncogenes with onco-homologs possessing an onco-signature, which could be divided into two classes by whether their onco-homologs existed in mammals or not. In Class I we identified mammalian onco-homologs assuming oncogenic functions with onco-signatures always intact in cancer, such as HCK and LYN. In Class II with no bona fide mammalian onco-homologs, Pyk2, a protist onco-homolog with an onco-signature of BRAF was found assuming oncogenic-like functions. Onco-signatures in both classes root deep in the primitive system. Together, these evidences supported our proposal that cancer can be driven by reverse evolution of oncogenes through gain-of-function mutations. And also for the first time, we provided the specific targets for experimental verification of the atavistic hypothesis of cancer.
Collapse
|
38
|
Bosco EE, Christie RJ, Carrasco R, Sabol D, Zha J, DaCosta K, Brown L, Kennedy M, Meekin J, Phipps S, Ayriss J, Du Q, Bezabeh B, Chowdhury P, Breen S, Chen C, Reed M, Hinrichs M, Zhong H, Xiao Z, Dixit R, Herbst R, Tice DA. Preclinical evaluation of a GFRA1 targeted antibody-drug conjugate in breast cancer. Oncotarget 2018; 9:22960-22975. [PMID: 29796165 PMCID: PMC5955426 DOI: 10.18632/oncotarget.25160] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 04/05/2018] [Indexed: 02/07/2023] Open
Abstract
Despite recent advances in treatment, breast cancer remains the second-most common cause of cancer death among American women. A greater understanding of the molecular characteristics of breast tumors could ultimately lead to improved tumor-targeted treatment options, particularly for subsets of breast cancer patients with unmet needs. Using an unbiased genomics approach to uncover membrane-localized tumor-associated antigens (TAAs), we have identified glial cell line derived neurotrophic factor (GDNF) family receptor α 1 (GFRA1) as a breast cancer TAA. Immunohistochemistry (IHC) revealed that GFRA1 displays a limited normal tissue expression profile coupled with overexpression in specific breast cancer subsets. The cell surface localization as determined by fluorescence-activated cell sorting (FACS) and the rapid internalization kinetics of GFRA1 makes it an ideal target for therapeutic exploitation as an antibody-drug conjugate (ADC). Here, we describe the development of a pyrrolobenzodiazepine (PBD)-armed, GFRA1-targeted ADC that demonstrates cytotoxicity in GFRA1-positive cell lines and patient-derived xenograft (PDX) models. The safety profile of the rat cross-reactive GFRA1-PBD was assessed in a rat toxicology study to find transient cellularity reductions in the bone marrow and peripheral blood, consistent with known off-target effects of PBD ADC's. These studies reveal no evidence of on-target toxicity and support further evaluation of GFRA1-PBD in GFRA1-positive tumors.
Collapse
Affiliation(s)
- Emily E. Bosco
- Oncology Research, MedImmune, LLC, Gaithersburg, Maryland, United States of America
| | - R. James Christie
- Antibody Discovery and Protein Engineering, MedImmune, LLC, Gaithersburg, Maryland, United States of America
| | - Rosa Carrasco
- Oncology Research, MedImmune, LLC, Gaithersburg, Maryland, United States of America
| | - Darrin Sabol
- Oncology Research, MedImmune, LLC, Gaithersburg, Maryland, United States of America
| | - Jiping Zha
- Pathology, MedImmune, LLC, Gaithersburg, Maryland, United States of America
- Translational Sciences, NGM Biopharmaceuticals, South San Francisco, California, United States of America
| | - Karma DaCosta
- Pathology, MedImmune, LLC, Gaithersburg, Maryland, United States of America
| | - Lee Brown
- Pathology, MedImmune, Ltd, Cambridge, United Kingdom
| | - Maureen Kennedy
- Oncology Research, MedImmune, LLC, Gaithersburg, Maryland, United States of America
| | - John Meekin
- Oncology Research, MedImmune, LLC, Gaithersburg, Maryland, United States of America
| | - Sandrina Phipps
- Antibody Discovery and Protein Engineering, MedImmune, LLC, Gaithersburg, Maryland, United States of America
| | - Joanne Ayriss
- Antibody Discovery and Protein Engineering, MedImmune, LLC, Gaithersburg, Maryland, United States of America
- Department of Global Biotherapeutics, Pfizer, Cambridge, Massachusetts, United States of America
| | - Qun Du
- Antibody Discovery and Protein Engineering, MedImmune, LLC, Gaithersburg, Maryland, United States of America
| | - Binyam Bezabeh
- Antibody Discovery and Protein Engineering, MedImmune, LLC, Gaithersburg, Maryland, United States of America
- Research, Salubris Biotherapeutics, Gaithersburg, Maryland, United States of America
| | - Partha Chowdhury
- Antibody Discovery and Protein Engineering, MedImmune, LLC, Gaithersburg, Maryland, United States of America
- Biologics Discovery, Sanofi Genzyme, Cambridge, MA, United States of America
| | - Shannon Breen
- Oncology Research, MedImmune, LLC, Gaithersburg, Maryland, United States of America
| | - Cui Chen
- Oncology Research, MedImmune, LLC, Gaithersburg, Maryland, United States of America
| | - Molly Reed
- Biologics Safety Assessment, MedImmune, LLC, Gaithersburg, Maryland, United States of America
| | - MaryJane Hinrichs
- Biologics Safety Assessment, MedImmune, LLC, Gaithersburg, Maryland, United States of America
| | - Haihong Zhong
- Oncology Research, MedImmune, LLC, Gaithersburg, Maryland, United States of America
| | - Zhan Xiao
- Oncology Research, MedImmune, LLC, Gaithersburg, Maryland, United States of America
| | - Rakesh Dixit
- Biologics Safety Assessment, MedImmune, LLC, Gaithersburg, Maryland, United States of America
| | - Ronald Herbst
- Oncology Research, MedImmune, LLC, Gaithersburg, Maryland, United States of America
| | - David A. Tice
- Oncology Research, MedImmune, LLC, Gaithersburg, Maryland, United States of America
| |
Collapse
|
39
|
Song Z, Yang F, Du H, Li X, Liu J, Dong M, Xu X. Role of artemin in non-small cell lung cancer. Thorac Cancer 2018; 9:555-562. [PMID: 29575549 PMCID: PMC5928368 DOI: 10.1111/1759-7714.12615] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 02/01/2018] [Accepted: 02/02/2018] [Indexed: 02/06/2023] Open
Abstract
Background In this study, we investigated the role of artemin, a member of the glial cell‐derived neurotrophic factor of ligands, in the malignant phenotype of lung cancer. Methods Artemin expression was examined in various types of lung cancer and normal lung tissues, as well as in lung cancer cell lines by immunohistochemistry and semi‐quantitative PCR. Functional studies were performed using artemin overexpression or knockdown vectors in lung cancer cell lines. Methyl thiazolyl tetrazolium, flow cytometry, wound healing, and transwell assays were conducted to evaluate the contribution of artemin on tumor cell proliferation, migration, and invasion. Results Artemin is broadly expressed in lung cancer tissues, and is associated with tumor staging. Overexpression of artemin in NL9980 large cell lung cancer cells increased proliferating cells and enhanced migrating capability in wound healing and transwell assays, as well as demonstrating enhanced invasion capability. Silencing artemin in LTEP‐α‐2 adenocarcinoma cell lines decreased cellular proliferation, migration, and invasion capabilities. Conclusion Artemin could promote the proliferation and invasiveness of lung cancer cells in vitro and therefore could be a new potential target to combat lung cancer.
Collapse
Affiliation(s)
- Zuoqing Song
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Fan Yang
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Hui Du
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Xin Li
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Jinghao Liu
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Ming Dong
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaohong Xu
- College of Nursing, Tianjin Medical University, Tianjin, China.,Institute of Acupuncture, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
40
|
Bhinge K, Yang L, Terra S, Nasir A, Muppa P, Aubry MC, Yi J, Janaki N, Kovtun IV, Murphy SJ, Halling G, Rahi H, Mansfield A, de Andrade M, Yang P, Vasmatzis G, Peikert T, Kosari F. EGFR mediates activation of RET in lung adenocarcinoma with neuroendocrine differentiation characterized by ASCL1 expression. Oncotarget 2018; 8:27155-27165. [PMID: 28460442 PMCID: PMC5432325 DOI: 10.18632/oncotarget.15676] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 02/06/2017] [Indexed: 01/24/2023] Open
Abstract
Achaete-scute homolog 1 (ASCL1) is a neuroendocrine transcription factor specifically expressed in 10-20% of lung adenocarcinomas (AD) with neuroendocrine (NE) differentiation (NED). ASCL1 functions as an upstream regulator of the RET oncogene in AD with high ASCL1 expression (A+AD). RET is a receptor tyrosine kinase with two main human isoforms; RET9 (short) and RET51 (long). We found that elevated expression of RET51 associated mRNA was highly predictive of poor survival in stage-1 A+AD (p=0.0057). Functional studies highlighted the role of RET in promoting invasive properties of A+AD cells. Further, A+AD cells demonstrated close to 10 fold more sensitivity to epidermal growth factor receptor (EGFR) inhibitors, including gefitinib, than AD cells with low ASCL1 expression. Treatment with EGF robustly induced phosphorylation of RET at Tyr-905 in A+AD cells with wild type EGFR. This phosphorylation was blocked by gefitinib and by siRNA-EGFR. Immunoprecipitation experiments found EGFR in a complex with RET in the presence of EGF and suggested that RET51 was the predominant RET isoform in the complex. In the microarray datasets of stage-1 and all stages of A+AD, high levels of EGFR and RET RNA were significantly associated with poor overall survival (p < 0.01 in both analyses). These results implicate EGFR as a key regulator of RET activation in A+AD and suggest that EGFR inhibitors may be therapeutic in patients with A+AD tumors even in the absence of an EGFR or RET mutation.
Collapse
Affiliation(s)
- Kaustubh Bhinge
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Lin Yang
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Simone Terra
- Department of Anatomic Pathology, Mayo Clinic, Rochester, MN, USA
| | - Aqsa Nasir
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Prasuna Muppa
- Department of Anatomic Pathology, Mayo Clinic, Rochester, MN, USA
| | | | - Joanne Yi
- Department of Anatomic Pathology, Mayo Clinic, Rochester, MN, USA
| | - Nafiseh Janaki
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Irina V Kovtun
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Stephen J Murphy
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Geoffrey Halling
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Hamed Rahi
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Aaron Mansfield
- Department of Medical Oncology, Mayo Clinic, Rochester, MN, USA
| | - Mariza de Andrade
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Ping Yang
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - George Vasmatzis
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Tobias Peikert
- Department of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN, USA
| | - Farhad Kosari
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
41
|
|
42
|
Plaza-Menacho I. Structure and function of RET in multiple endocrine neoplasia type 2. Endocr Relat Cancer 2018; 25:T79-T90. [PMID: 29175871 DOI: 10.1530/erc-17-0354] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 11/23/2017] [Indexed: 12/31/2022]
Abstract
It has been twenty-five years since the discovery of oncogenic germline RET mutations as the cause of multiple endocrine neoplasia type 2 (MEN2). Intensive work over the last two and a half decades on RET genetics, signaling and cell biology has provided the current bases for the genotype-phenotype and functional correlations within this cancer syndrome. On the contrary, the structural and molecular basis for RET tyrosine kinase domain activation and oncogenic deregulation has remained largely elusive. Recent studies with a strong crystallographic and biochemical focus have started to elucidate key insights into such molecular and atomic details revealing unexpected and private mechanisms of actions and molecular determinants not previously envisioned. This review focuses on the structure and function of the RET receptor, and in particular, on what a more detailed view of the protein itself and what the current structural and molecular information tell us about the genotype and phenotype relationships in the cancer syndrome MEN2.
Collapse
Affiliation(s)
- Iván Plaza-Menacho
- KinasesProtein Phosphorylation and Cancer, Structural Biology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| |
Collapse
|
43
|
Castellone MD, Melillo RM. RET-mediated modulation of tumor microenvironment and immune response in multiple endocrine neoplasia type 2 (MEN2). Endocr Relat Cancer 2018; 25:T105-T119. [PMID: 28931560 DOI: 10.1530/erc-17-0303] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 09/20/2017] [Indexed: 12/27/2022]
Abstract
Medullary thyroid carcinomas (MTC) arise from thyroid parafollicular, calcitonin-producing C-cells and can occur either as sporadic or as hereditary diseases in the context of familial syndromes, including multiple endocrine neoplasia 2A (MEN2A), multiple endocrine neoplasia 2B (MEN2B) and familial MTC (FMTC). In a large fraction of sporadic cases, and virtually in all inherited cases of MTC, activating point mutations of the RET proto-oncogene are found. RET encodes for a receptor tyrosine kinase protein endowed with transforming potential on thyroid parafollicular cells. As in other cancer types, microenvironmental factors play a critical role in MTC. Tumor-associated extracellular matrix, stromal cells and immune cells interact and influence the behavior of cancer cells both in a tumor-promoting and in a tumor-suppressing manner. Several studies have shown that, besides the neoplastic transformation of thyroid C-cells, a profound modification of tumor microenvironment has been associated to the RET FMTC/MEN2-associated oncoproteins. They influence the surrounding stroma, activating cancer-associated fibroblasts (CAFs), promoting cancer-associated inflammation and suppressing anti-cancer immune response. These mechanisms might be exploited to develop innovative anti-cancer therapies and novel prognostic tools in the context of familial, RET-associated MTC.
Collapse
Affiliation(s)
| | - Rosa Marina Melillo
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR 'G. Salvatore'Naples, Italy
- Dipartimento di Medicina Molecolare e Biotecnologie MedicheUniversity of Naples 'Federico II', Naples, Italy
| |
Collapse
|
44
|
Roskoski R, Sadeghi-Nejad A. Role of RET protein-tyrosine kinase inhibitors in the treatment RET-driven thyroid and lung cancers. Pharmacol Res 2017; 128:1-17. [PMID: 29284153 DOI: 10.1016/j.phrs.2017.12.021] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 12/21/2017] [Indexed: 01/10/2023]
Abstract
RET is a transmembrane receptor protein-tyrosine kinase that is required for the development of the nervous system and several other tissues. The mechanism of activation of RET by its glial-cell derived neurotrophic factor (GDNF) ligands differs from that of all other receptor protein-tyrosine kinases owing to the requirement for additional GDNF family receptor-α (GFRα) co-receptors (GFRα1/2/3/4). RET point mutations have been reported in multiple endocrine neoplasia (MEN2A, MEN2B) and medullary thyroid carcinoma. In contrast, RET fusion proteins have been reported in papillary thyroid and non-small cell lung adenocarcinomas. More than a dozen fusion partners of RET have been described in papillary thyroid carcinomas, most frequently CCDC6-RET and NCOA4-RET. RET-fusion proteins, commonly KIF5B-RET, have also been found in non-small cell lung cancer (NSCLC). Several drugs targeting RET have been approved by the FDA for the treatment of cancer: (i) cabozantinib and vandetanib for medullary thyroid carcinomas and (ii) lenvatinib and sorafenib for differentiated thyroid cancers. In addition, alectinib and sunitinib are approved for the treatment of other neoplasms. Each of these drugs is a multikinase inhibitor that has activity against RET. Previous X-ray studies indicated that vandetanib binds within the ATP-binding pocket and forms a hydrogen bond with A807 within the RET hinge and it makes hydrophobic contact with L881 of the catalytic spine which occurs in the floor of the adenine-binding pocket. Our molecular modeling studies indicate that the other antagonists bind in a similar fashion. All of these antagonists bind to the active conformation of RET and are therefore classified as type I inhibitors. The drugs also make variable contacts with other residues of the regulatory and catalytic spines. None of these drugs was designed to bind preferentially to RET and it is hypothesized that RET-specific antagonists might produce even better clinical outcomes. Currently the number of new cases of neoplasms bearing RET mutations or RET-fusion proteins is estimated to be about 10,000 per year in the United States. This is about the same as the incidence of chronic myelogenous leukemia for which imatinib and second and third generation BCR-Abl non-receptor protein-tyrosine kinase antagonists have proven clinically efficacious and which are commercially successful. These findings warrant the continued development of specific antagonists targeting RET-driven neoplasms.
Collapse
Affiliation(s)
- Robert Roskoski
- Blue Ridge Institute for Medical Research, 3754 Brevard Road, Suite 116, Box 19, Horse Shoe, NC 28742-8814, United States.
| | - Abdollah Sadeghi-Nejad
- Department of Pediatrics, Tufts Medical Center, Tufts University School of Medicine, 800 Washington Street, Boston, MA 02111-1552, United States.
| |
Collapse
|
45
|
Cardoso L, Stevenson M, Thakker RV. Molecular genetics of syndromic and non-syndromic forms of parathyroid carcinoma. Hum Mutat 2017; 38:1621-1648. [PMID: 28881068 PMCID: PMC5698716 DOI: 10.1002/humu.23337] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 08/21/2017] [Accepted: 09/04/2017] [Indexed: 12/23/2022]
Abstract
Parathyroid carcinoma (PC) may occur as part of a complex hereditary syndrome or an isolated (i.e., non-syndromic) non-hereditary (i.e., sporadic) endocrinopathy. Studies of hereditary and syndromic forms of PC, which include the hyperparathyroidism-jaw tumor syndrome (HPT-JT), multiple endocrine neoplasia types 1 and 2 (MEN1 and MEN2), and familial isolated primary hyperparathyroidism (FIHP), have revealed some genetic mechanisms underlying PC. Thus, cell division cycle 73 (CDC73) germline mutations cause HPT-JT, and CDC73 mutations occur in 70% of sporadic PC, but in only ∼2% of parathyroid adenomas. Moreover, CDC73 germline mutations occur in 20%-40% of patients with sporadic PC and may reveal unrecognized HPT-JT. This indicates that CDC73 mutations are major driver mutations in the etiology of PCs. However, there is no genotype-phenotype correlation and some CDC73 mutations (e.g., c.679_680insAG) have been reported in patients with sporadic PC, HPT-JT, or FIHP. Other genes involved in sporadic PC include germline MEN1 and rearranged during transfection (RET) mutations and somatic alterations of the retinoblastoma 1 (RB1) and tumor protein P53 (TP53) genes, as well as epigenetic modifications including DNA methylation and histone modifications, and microRNA misregulation. This review summarizes the genetics and epigenetics of the familial syndromic and non-syndromic (sporadic) forms of PC.
Collapse
Affiliation(s)
- Luís Cardoso
- Department of EndocrinologyDiabetes and MetabolismCentro Hospitalar e Universitário de CoimbraPraceta Prof Mota PintoCoimbraPortugal
- Radcliffe Department of MedicineAcademic Endocrine UnitOxford Centre for DiabetesEndocrinology and MetabolismUniversity of OxfordOxfordUnited Kingdom
| | - Mark Stevenson
- Radcliffe Department of MedicineAcademic Endocrine UnitOxford Centre for DiabetesEndocrinology and MetabolismUniversity of OxfordOxfordUnited Kingdom
| | - Rajesh V. Thakker
- Radcliffe Department of MedicineAcademic Endocrine UnitOxford Centre for DiabetesEndocrinology and MetabolismUniversity of OxfordOxfordUnited Kingdom
| |
Collapse
|
46
|
Yang L, Lin PC. Mechanisms that drive inflammatory tumor microenvironment, tumor heterogeneity, and metastatic progression. Semin Cancer Biol 2017; 47:185-195. [PMID: 28782608 PMCID: PMC5698110 DOI: 10.1016/j.semcancer.2017.08.001] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 07/26/2017] [Accepted: 08/01/2017] [Indexed: 12/12/2022]
Abstract
Treatment of cancer metastasis has been largely ineffective. It is paramount to understand the mechanisms underlying the metastatic process, of which the tumor microenvironment is an indispensable participant. What are the critical cellular and molecular players at the primary tumor site where metastatic cascade initiates? How is tumor-associated inflammation regulated? How do altered vasculatures contribute to metastasis? What is the dynamic nature or heterogeneity of primary tumors and what are the challenges to catch a moving target? This review summarizes recent progress, mechanistic understanding, and options for metastasis-targeted therapy.
Collapse
Affiliation(s)
- Li Yang
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, NIH, 37 Convent Drive, Bethesda, MD, 20892, USA.
| | - P Charles Lin
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, NIH, Frederick, MD, 21702, USA.
| |
Collapse
|
47
|
Targeting RET-driven cancers: lessons from evolving preclinical and clinical landscapes. Nat Rev Clin Oncol 2017; 15:151-167. [PMID: 29134959 DOI: 10.1038/nrclinonc.2017.175] [Citation(s) in RCA: 230] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The gene encoding the receptor-tyrosine kinase RET was first discovered more than three decades ago, and activating RET rearrangements and mutations have since been identified as actionable drivers of oncogenesis. Several multikinase inhibitors with activity against RET have been explored in the clinic, and confirmed responses to targeted therapy with these agents have been observed in patients with RET-rearranged lung cancers or RET-mutant thyroid cancers. Nevertheless, response rates to RET-directed therapy are modest compared with those achieved using targeted therapies matched to other oncogenic drivers of solid tumours, such as sensitizing EGFR or BRAFV600E mutations, or ALK or ROS1 rearrangements. To date, no RET-directed targeted therapeutic has received regulatory approval for the treatment of molecularly defined populations of patients with RET-mutant or RET-rearranged solid tumours. In this Review, we discuss how emerging data have informed the debate over whether the limited success of multikinase inhibitors with activity against RET can be attributed to the tractability of RET as a drug target or to the lack, until 2017, of highly specific inhibitors of this oncoprotein in the clinic. We emphasize that novel approaches to targeting RET-dependent tumours are necessary to improve the clinical efficacy of single-agent multikinase inhibition and, thus, hasten approvals of RET-directed targeted therapies.
Collapse
|
48
|
Mologni L, Dalla Via M, Chilin A, Palumbo M, Marzaro G. Discovery of wt RET and V804M RET Inhibitors: From Hit to Lead. ChemMedChem 2017. [PMID: 28639308 DOI: 10.1002/cmdc.201700243] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Oncogenic activation of RET kinase has been found in several neoplastic diseases, like medullary thyroid carcinoma, multiple endocrine neoplasia, papillary thyroid carcinoma, and non-small-cell lung cancer. Currently approved RET inhibitors were not originally designed to be RET inhibitors, and their potency against RET kinase has not been optimized. Hence, novel compounds able to inhibit both wild-type RET (wt RET) and its mutants (e.g., V804M RET) are needed. Herein we present the development and the preliminary evaluation of a new sub-micromolar wt RET/V804M RET inhibitor, N-(2-fluoro-5-trifluoromethylphenyl)-N'-{4'-[(2''-benzamido)pyridin-4''-ylamino]phenyl}urea (69), endowed with a 4-anilinopyridine structure, starting from our previously identified 4-anilinopyrimidine hit compound. Profiling against a panel of kinases indicated 69 as a multi cKIT/wt RET/V804M RET inhibitor.
Collapse
Affiliation(s)
- Luca Mologni
- School of Medicine and Surgery, University of Milano-Bicocca, via Cadore 48, 20900, Monza, Italy
| | - Martina Dalla Via
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, 35131, Padova, Italy
| | - Adriana Chilin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, 35131, Padova, Italy
| | - Manlio Palumbo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, 35131, Padova, Italy
| | - Giovanni Marzaro
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, 35131, Padova, Italy
| |
Collapse
|
49
|
De Falco V, Carlomagno F, Li HY, Santoro M. The molecular basis for RET tyrosine-kinase inhibitors in thyroid cancer. Best Pract Res Clin Endocrinol Metab 2017; 31:307-318. [PMID: 28911727 PMCID: PMC5624797 DOI: 10.1016/j.beem.2017.04.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
RET receptor tyrosine kinase acts as a mutated oncogenic driver in several human malignancies and it is over-expressed in other cancers. Small molecule compounds with RET tyrosine kinase inhibitory activity are being investigated for the targeted treatment of these malignancies. Multi-targeted compounds with RET inhibitory concentration in the nanomolar range have entered clinical practice. This review summarizes mechanisms of RET oncogenic activity and properties of new compounds that, at the preclinical stage, have demonstrated promising anti-RET activity.
Collapse
Affiliation(s)
- Valentina De Falco
- Istituto di Endocrinologia e Oncologia Sperimentale, CNR, Via S Pansini 5, 80131 Naples, Italy.
| | - Francesca Carlomagno
- Istituto di Endocrinologia e Oncologia Sperimentale, CNR, Via S Pansini 5, 80131 Naples, Italy; Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Federico II, Via S Pansini 5, 80131 Naples, Italy.
| | - Hong-Yu Li
- University of Arkansas for Medical Sciences, College of Pharmacy, Division of Pharmaceutical Science, 200 South Cedar, Little Rock AR 72202, USA.
| | - Massimo Santoro
- Istituto di Endocrinologia e Oncologia Sperimentale, CNR, Via S Pansini 5, 80131 Naples, Italy; Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Federico II, Via S Pansini 5, 80131 Naples, Italy.
| |
Collapse
|
50
|
Grey W, Hulse R, Yakovleva A, Genkova D, Whitelaw B, Solomon E, Diaz-Cano SJ, Izatt L. The RET E616Q Variant is a Gain of Function Mutation Present in a Family with Features of Multiple Endocrine Neoplasia 2A. Endocr Pathol 2017; 28:41-48. [PMID: 27704398 DOI: 10.1007/s12022-016-9451-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The REarranged during Transfection (RET) proto-oncogene is a receptor tyrosine kinase involved in growth and differentiation during embryogenesis and maintenance of the urogenital and nervous systems in mammals. Distinct mutations across hotspot RET exons can cause Multiple Endocrine Neoplasia Type 2A (MEN2A) characterised by development of medullary thyroid cancer (MTC), phaeochromocytoma (PCC) and primary hyperparathyroidism (PHPT), with a strong correlation between genotype and phenotype. Here, we report a 42-year-old man presented in the clinic with a unilateral PCC, with subsequent investigations revealing a nodular and cystic thyroid gland. He proceeded to thyroidectomy, which showed bilateral C-cell hyperplasia (CCH) without evidence of MTC. His brother had neonatal Hirschsprung disease (HSCR). Genetic testing revealed the presence of a heterozygous variant of unknown significance (VUS) in the cysteine-rich region of exon 10 in the RET gene (c.1846G>C, p.E616Q), in both affected siblings and their unaffected mother. Exon 10 RET mutations are known to be associated with HSCR and MEN2. Variants in the cysteine-rich region of the RET gene, outside of the key cysteine residues, may contribute to the development of MEN2 in a less aggressive manner, with a lower penetrance of MTC. Currently, a VUS in RET cannot be used to inform clinical management and direct future care. Analysis of RETE616Q reveals a gain of function mutant phenotype for this variant, which has not previously been reported, indicating that this VUS should be considered at risk for future clinical management.
Collapse
Affiliation(s)
- William Grey
- Cancer Genetics, Department of Medical and Molecular Genetics, Division of Genetics and Molecular Medicine, King's College London, London, UK
| | - Rosaline Hulse
- Cancer Genetics, Department of Medical and Molecular Genetics, Division of Genetics and Molecular Medicine, King's College London, London, UK
| | - Anna Yakovleva
- Cancer Genetics, Department of Medical and Molecular Genetics, Division of Genetics and Molecular Medicine, King's College London, London, UK
| | - Dilyana Genkova
- Cancer Genetics, Department of Medical and Molecular Genetics, Division of Genetics and Molecular Medicine, King's College London, London, UK
| | | | - Ellen Solomon
- Cancer Genetics, Department of Medical and Molecular Genetics, Division of Genetics and Molecular Medicine, King's College London, London, UK
| | | | - Louise Izatt
- Cancer Genetics, Department of Medical and Molecular Genetics, Division of Genetics and Molecular Medicine, King's College London, London, UK.
- Clinical Genetics, Guy's and St Thomas' NHS Foundation Trust London, Great Maze Pond, London, SE1 9RT, UK.
| |
Collapse
|