1
|
Endothelin-3 is epigenetically silenced in endometrioid endometrial cancer. J Cancer Res Clin Oncol 2022:10.1007/s00432-022-04525-w. [PMID: 36542159 PMCID: PMC10356642 DOI: 10.1007/s00432-022-04525-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022]
Abstract
Abstract
Purpose
Changes in the activity of endothelins and their receptors may promote neoplastic processes. They can be caused by epigenetic modifications and modulators, but little is known about endothelin-3 (EDN3), particularly in endometrial cancer. The aim of the study was to determine the expression profile of endothelin family and their interactions with miRNAs, and to assess the degree of EDN3 methylation.
Methods
The study enrolled 45 patients with endometrioid endometrial cancer and 30 patients without neoplastic changes. The expression profile of endothelins and their receptors was determined with mRNA microarrays and RT-qPCR. The miRNA prediction was based on the miRNA microarray experiment and the mirDB tool. The degree of EDN3 methylation was assessed by MSP.
Results
EDN1 and EDNRA were overexpressed regardless of endometrial cancer grade, which may be due to the lack of regulatory effect of miR-130a-3p and miR-485-3p, respectively. In addition, EDN3 and EDNRB were significantly downregulated.
Conclusion
The endothelial axis is disturbed in endometrioid endometrial cancer. The observed silencing of EDN3 activity may be mainly due to DNA methylation.
Collapse
|
2
|
Endothelin and the Cardiovascular System: The Long Journey and Where We Are Going. BIOLOGY 2022; 11:biology11050759. [PMID: 35625487 PMCID: PMC9138590 DOI: 10.3390/biology11050759] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 12/12/2022]
Abstract
Simple Summary In this review, we describe the basic functions of endothelin and related molecules, including their receptors and enzymes. Furthermore, we discuss the important role of endothelin in several cardiovascular diseases, the relevant clinical evidence for targeting the endothelin pathway, and the scope of endothelin-targeting treatments in the future. We highlight the present uses of endothelin receptor antagonists and the advancements in the development of future treatment options, thereby providing an overview of endothelin research over the years and its future scope. Abstract Endothelin was first discovered more than 30 years ago as a potent vasoconstrictor. In subsequent years, three isoforms, two canonical receptors, and two converting enzymes were identified, and their basic functions were elucidated by numerous preclinical and clinical studies. Over the years, the endothelin system has been found to be critical in the pathogenesis of several cardiovascular diseases, including hypertension, pulmonary arterial hypertension, heart failure, and coronary artery disease. In this review, we summarize the current knowledge on endothelin and its role in cardiovascular diseases. Furthermore, we discuss how endothelin-targeting therapies, such as endothelin receptor antagonists, have been employed to treat cardiovascular diseases with varying degrees of success. Lastly, we provide a glimpse of what could be in store for endothelin-targeting treatment options for cardiovascular diseases in the future.
Collapse
|
3
|
A human antibody against human endothelin receptor type A that exhibits antitumor potency. Exp Mol Med 2021; 53:1437-1448. [PMID: 34588605 PMCID: PMC8492878 DOI: 10.1038/s12276-021-00678-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/11/2021] [Accepted: 07/19/2021] [Indexed: 12/22/2022] Open
Abstract
Endothelin receptor A (ETA), a class A G-protein-coupled receptor (GPCR), is involved in the progression and metastasis of colorectal, breast, lung, ovarian, and prostate cancer. We overexpressed and purified human endothelin receptor type A in Escherichia coli and reconstituted it with lipid and membrane scaffold proteins to prepare an ETA nanodisc as a functional antigen with a structure similar to that of native GPCR. By screening a human naive immune single-chain variable fragment phage library constructed in-house, we successfully isolated a human anti-ETA antibody (AG8) exhibiting high specificity for ETA in the β-arrestin Tango assay and effective inhibitory activity against the ET-1-induced signaling cascade via ETA using either a CHO-K1 cell line stably expressing human ETA or HT-29 colorectal cancer cells, in which AG8 exhibited IC50 values of 56 and 51 nM, respectively. In addition, AG8 treatment repressed the transcription of inhibin βA and reduced the ETA-induced phosphorylation of protein kinase B and extracellular regulated kinase. Furthermore, tumor growth was effectively inhibited by AG8 in a colorectal cancer mouse xenograft model. The human anti-ETA antibody isolated in this study could be used as a potential therapeutic for cancers, including colorectal cancer. A therapeutic antibody that targets a receptor involved in cancer progression shows significant anti-cancer effects in trials in mice. Endothelin receptor A (ETA) promotes the progression and metastasis of several cancers, and patients with high ETA expression often have poor survival rates. Several small molecule drugs that target ETA are currently undergoing trials. Now, Sang Taek Jung at the Korea University in Seoul, together with scientists across South Korea, have identified and isolated a human antibody that specifically binds to ETA. The team developed an antigen that mimics ETA, and identified and isolated the antibody it bound to. The antibody exhibited potent anti-tumor effects in cell cultures and trials in mice. Such therapeutic antibodies show higher affinity for their targets than other drugs, resulting in fewer side effects and higher efficacy.
Collapse
|
4
|
ERN1 knockdown modifies the impact of glucose and glutamine deprivations on the expression of EDN1 and its receptors in glioma cells. Endocr Regul 2021; 55:72-82. [PMID: 34020533 DOI: 10.2478/enr-2021-0009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Objective. The aim of the present investigation was to study the impact of glucose and gluta-mine deprivations on the expression of genes encoding EDN1 (endothelin-1), its cognate receptors (EDNRA and EDNRB), and ECE1 (endothelin converting enzyme 1) in U87 glioma cells in response to knockdown of ERN1 (endoplasmic reticulum to nucleus signaling 1), a major signaling pathway of endoplasmic reticulum stress, for evaluation of their possible implication in the control of glioma growth through ERN1 and nutrient limitations. Methods. The expression level of EDN1, its receptors and converting enzyme 1 in control U87 glioma cells and cells with knockdown of ERN1 treated by glucose or glutamine deprivation by quantitative polymerase chain reaction was studied. Results. We showed that the expression level of EDN1 and ECE1 genes was significantly up-regulated in control U87 glioma cells exposure under glucose deprivation condition in comparison with the glioma cells, growing in regular glucose containing medium. We also observed up-regulation of ECE1 gene expression in U87 glioma cells exposure under glutamine deprivation as well as down-regulation of the expression of EDN1 and EDNRA mRNA, being more significant for EDN1. Furthermore, the knockdown of ERN1 signaling enzyme function significantly modified the response of most studied gene expressions to glucose and glutamine deprivation conditions. Thus, the ERN1 knockdown led to a strong suppression of EDN1 gene expression under glucose deprivation, but did not change the effect of glutamine deprivation on its expression. At the same time, the knockdown of ERN1 signaling introduced the sensitivity of EDNRB gene to both glucose and glutamine deprivations as well as completely removed the impact of glucose deprivation on the expression of ECE1 gene. Conclusions. The results of this study demonstrated that the expression of endothelin-1, its receptors, and ECE1 genes is preferentially sensitive to glucose and glutamine deprivations in gene specific manner and that knockdown of ERN1 significantly modified the expression of EDN1, EDNRB, and ECE1 genes in U87 glioma cells. It is possible that the observed changes in the expression of studied genes under nutrient deprivation may contribute to the suppressive effect of ERN1 knockdown on glioma cell proliferation and invasiveness.
Collapse
|
5
|
Kappes L, Amer RL, Sommerlatte S, Bashir G, Plattfaut C, Gieseler F, Gemoll T, Busch H, Altahrawi A, Al-Sbiei A, Haneefa SM, Arafat K, Schimke LF, Khawanky NE, Schulze-Forster K, Heidecke H, Kerstein-Staehle A, Marschner G, Pitann S, Ochs HD, Mueller A, Attoub S, Fernandez-Cabezudo MJ, Riemekasten G, Al-Ramadi BK, Cabral-Marques O. Ambrisentan, an endothelin receptor type A-selective antagonist, inhibits cancer cell migration, invasion, and metastasis. Sci Rep 2020; 10:15931. [PMID: 32985601 PMCID: PMC7522204 DOI: 10.1038/s41598-020-72960-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 09/07/2020] [Indexed: 12/17/2022] Open
Abstract
Several studies reported a central role of the endothelin type A receptor (ETAR) in tumor progression leading to the formation of metastasis. Here, we investigated the in vitro and in vivo anti-tumor effects of the FDA-approved ETAR antagonist, Ambrisentan, which is currently used to treat patients with pulmonary arterial hypertension. In vitro, Ambrisentan inhibited both spontaneous and induced migration/invasion capacity of different tumor cells (COLO-357 metastatic pancreatic adenocarcinoma, OvCar3 ovarian carcinoma, MDA-MB-231 breast adenocarcinoma, and HL-60 promyelocytic leukemia). Whole transcriptome analysis using RNAseq indicated Ambrisentan's inhibitory effects on the whole transcriptome of resting and PAR2-activated COLO-357 cells, which tended to normalize to an unstimulated profile. Finally, in a pre-clinical murine model of metastatic breast cancer, treatment with Ambrisentan was effective in decreasing metastasis into the lungs and liver. Importantly, this was associated with a significant enhancement in animal survival. Taken together, our work suggests a new therapeutic application for Ambrisentan in the treatment of cancer metastasis.
Collapse
Affiliation(s)
- Lucy Kappes
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Ruba L Amer
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Sabine Sommerlatte
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Ghada Bashir
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Corinna Plattfaut
- Section Experimental Oncology, University Hospital and Medical School (UKSH), University of Lübeck, Lübeck, Germany
| | - Frank Gieseler
- Section Experimental Oncology, University Hospital and Medical School (UKSH), University of Lübeck, Lübeck, Germany
| | - Timo Gemoll
- Section for Translational Surgical Oncology and Biobanking, Department of Surgery, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Hauke Busch
- Lübeck Institute for Experimental Dermatology (LIED) and Institute of Cardiogenetics, University of Lübeck, Lübeck, Germany
| | - Abeer Altahrawi
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ashraf Al-Sbiei
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Shoja M Haneefa
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Kholoud Arafat
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Lena F Schimke
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Nadia El Khawanky
- Department of Hematology and Oncology, Faculty of Medicine, The University of Freiburg, Freiburg, Germany
| | - Kai Schulze-Forster
- CellTrend GmbH, Luckenwalde, Brandenburg, Germany
- Department of Urology, Charité University Hospital, Berlin, Germany
| | | | - Anja Kerstein-Staehle
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Gabriele Marschner
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Silke Pitann
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Hans D Ochs
- Department of Pediatrics, University of Washington School of Medicine, and Seattle Children's Research Institute, Seattle, WA, USA
| | - Antje Mueller
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Samir Attoub
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Maria J Fernandez-Cabezudo
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Gabriela Riemekasten
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Basel K Al-Ramadi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.
| | - Otavio Cabral-Marques
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, Lineu Prestes Avenue, 1730, São Paulo, SP, Brazil.
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil.
- Network of Immunity in Infection, Malignancy, and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), São Paulo, Brazil.
| |
Collapse
|
6
|
Qu L, Zhang X, Wang J, Zhou H, Hou T, Wei L, Xu F, Liang X. Phenotypic assessment and ligand screening of ETA/ETB receptors with label-free dynamic mass redistribution assay. Naunyn Schmiedebergs Arch Pharmacol 2019; 393:937-950. [PMID: 31781785 DOI: 10.1007/s00210-019-01756-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 10/23/2019] [Indexed: 01/16/2023]
Abstract
Endothelin receptors, consisting of two subtypes, ETA and ETB, are expressed in various tissues and widely regulate cardiovascular systems. The two receptors show distinct biological characteristics and are involved in different downstream pathways. Hence, to evaluate the ETA and ETB receptors on the same platform is helpful to display their pharmacological features. In this study, we developed a label-free dynamic mass redistribution (DMR) assay to investigate the phenotypic features of the ETA and ETB receptors in native cell lines. Meanwhile, specific agonists and antagonists were investigated for their pharmacological parameters. Results indicated that the DMR response of endothelin 1 (ET-1, an endogenous ETA/ETB agonist) was cell line dependent on ETA receptors and this ligand generated a biphasic dose-response curve in SH-SY5Y as well as PC3 cell lines. ET-1 and IRL 1620 (an ETB agonist) showed different DMR responses in U251 cells. IC50 values of antagonists were consistent with the Ki values previously reported. Furthermore, a list of compounds was screened on the ETA and ETB receptor models established by the high-throughput DMR assays. This study demonstrated that the DMR assay had great potential in the phenotypic-based investigation and ligand screening of GPCRs.
Collapse
Affiliation(s)
- Lala Qu
- Key Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiuli Zhang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215006, China.
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China.
| | - Jixia Wang
- Key Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Han Zhou
- Key Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Tao Hou
- Key Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Lai Wei
- Key Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Fangfang Xu
- Key Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xinmiao Liang
- Key Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226019, China.
| |
Collapse
|
7
|
Hypoxic regulation of EDN1, EDNRA, EDNRB, and ECE1 gene expressions in ERN1 knockdown U87 glioma cells. Endocr Regul 2019; 53:250-262. [DOI: 10.2478/enr-2019-0025] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Abstract
Objective. The aim of the present investigation was to study the effect of hypoxia on the expression of genes encoding endothelin-1 (EDN1) and its cognate receptors (EDNRA and EDNRB) as well as endothelin converting enzyme 1 (ECE1) in U87 glioma cells in response to inhibition of endoplasmic reticulum stress signaling mediated by ERN1/IRE1 (endoplasmic reticulum to nucleus signaling 1) for evaluation of their possible significance in the control of glioma growth through ERN1 and hypoxia.
Methods. The expression level of EDN1, EDNRA, EDNRB, and ECE1 genes as well as micro-RNA miR-19, miR-96, and miR-206 was studied in control and ERN1 knockdown U87 glioma cells under hypoxia by quantitative polymerase chain reaction.
Results. It was shown that the expression level of EDN1, EDNRA, EDNRB, and ECE1 genes was up-regulated in ERN1 knockdown glioma cells in comparison with the control glioma cells, being more significant for endothelin-1. We also observed down-regulation of microRNA miR-206, miR-96, and miR-19a, which have specific binding sites in mRNA EDN1, EDNRA, and EDNRB, correspondingly, and can participate in posttranscriptional regulation of these mRNA expressions. Furthermore, inhibition of ERN1 endoribonuclease lead to up-regulation of EDNRA and ECE1 gene expressions and down-regulation of the expression level of EDN1 and EDNRB genes in glioma cells. Thus, the expression of EDNRA and ECE1 genes is regulated by ERN1 endoribonuclease, but EDN1 and EDNRB genes preferentially by ERN1 protein kinase. We have also shown that hypoxia enhanced the expression of EDN1, EDNRA, and ECE1 genes and that knockdown of ERN1 signaling enzyme function significantly modified the response of all studied gene expressions to hypoxia. Thus, effect of hypoxia on the expression level of EDN1 and ECE1 genes was significantly or completely reduced in ERN1 knockdown glioma cells since the expression of EDNRA gene was down-regulated under hypoxia. Moreover, hypoxia is induced the expression of EDNRB gene in ERN1 knockdown glioma cells.
Conclusions. Results of this investigation demonstrate that ERN1 knockdown significantly increased the expression of endothelin-1 and its receptors as well as ECE1 genes by different mechanisms and that all studied gene expressions were sensitive to hypoxia. It is possible that hypoxic regulation of the expression of these genes is a result of complex interaction of variable ERN1 related transcription and regulatory factors with HIF1A and possibly contributed to the control of glioma growth.
Collapse
|
8
|
Endothelin-1 Activates the Notch Signaling Pathway and Promotes Tumorigenesis in Giant Cell Tumor of the Spine. Spine (Phila Pa 1976) 2019; 44:E1000-E1009. [PMID: 30921293 DOI: 10.1097/brs.0000000000003044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Experimental study. OBJECTIVE To examine the role of endothelin-1 (ET-1) and the Notch signaling pathway in giant cell tumor (GCT) of the spine. SUMMARY OF BACKGROUND DATA Previously published studies have shown that the Notch signaling pathway has a role in tumor invasion and that ET-1 is involved in tumor invasion and angiogenesis. However, the roles of both Notch signaling and ET-1 in GCT of the spine remain unknown. METHODS Expression of ET-1 in tissue samples from patients with spinal GCT, and adjacent normal tissue, were analyzed by immunohistochemistry and western blot. GCT stromal cells (GCTSCs) were isolated and ET-1 expression was demonstrated by immunofluorescence. Cell viability and cell migration of GCTSCs and human vascular endothelial cells following ET-1 treatment were assessed using the cell counting kit-8 assay and a transwell assay. Receptor activator of nuclear factor kappa-B ligand (RANKL) and osteoprotegerin (OPG) mRNA expression was determined following ET-1 treatment of GCTSCs using quantitative real-time polymerase chain reaction. In GCTSCs treated with ET-1 and the ET-1 signaling antagonist, BQ-123, levels of cyclin D1, vascular endothelial growth factor, matrix metalloproteinase-2 and -9 (MMP-2 and MMP-9), Jagged1, Hes1, Hey2, and Notch intracellular domain were examined by western blot. RESULTS Compared with normal adjacent tissue, ET-1 was highly expressed in GCT tissue. In GCTSCs studied in vitro, treatment with ET-1 significantly increased GCTSC and human vascular endothelial cells growth and migration and increased the expression of RANKL and OPG, meanwhile the ratio of RANKL/OPG was increased, in GCTSCs, it upregulated the production of cyclin D1, vascular endothelial growth factor, MMP-2, MMP-9, Jagged1, Hes1, Hey2, and Notch intracellular domain expression in a dose-dependent manner. Treatment with BQ-123 reversed these effects. CONCLUSION In GCT of the spine, ET-1 showed increased expression. In cultured GCTSCs, ET-1 treatment activated the Notch signaling pathway. LEVEL OF EVIDENCE 2.
Collapse
|
9
|
Abstract
Angiogenesis plays a fundamental role in tumor growth and progression. It is regulated by several growth factors, including vascular endothelial growth factor protein family (VEGF) and its receptors, which are probably the most important factors responsible for the development of new vessels. The VEGF family includes several members: VEGF-A, VEGF-B, VEGF-C, VEGF-D, VEGF-E, placental growth factor (PlGF), and their receptors VEGFR-1, VEGFR-2 and VEGFR-3. Other relevant factors are represented by angiopoietins, thrombospondin-1, and endothelins. However, since the therapeutic benefit associated with VEGF-targeted therapy is really complex, a better understanding of these pathways will lead to future advances in the use of these agents for clinic management of tumors. Here we present a review regarding the role of angiogenic factors in cholangiocarcinoma, which arise from cholangiocytes, the epithelial cells of bile ducts. They are rare and aggressive neoplasms with a poor prognosis and limited treatment options, classified as intrahepatic, perihilar, and distal cholangiocarcinoma based on their anatomical location. Therefore, the identification of specific signaling pathways or new tumor biomarkers is crucial in order to develop more effective anti-angiogenic therapies.
Collapse
|
10
|
|
11
|
Wallace K, Chatman K, Johnson V, Brookins A, Rushing J, LaMarca B. Novel treatment avenues for uterine leiomyoma: a new implication for endothelin? Clin Sci (Lond) 2018; 132:2261-2267. [PMID: 30301761 PMCID: PMC6614866 DOI: 10.1042/cs20180474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 10/04/2018] [Accepted: 10/08/2018] [Indexed: 12/18/2022]
Abstract
Cysteine-rich angiogenic inducer 61 (CYR61), an angiogenic factor whose expression is decreased in fibroids. The aim of the present study was to determine if CYR61 secretion in smooth muscle cells (SMCs) is regulated by hypoxia and through the endothelin A (ETA) receptor. SMCs from fibroids (fSMC) and the adjacent myometrium smooth muscle cells (mSMCs) were extracted from ten women undergoing hysterectomy for uterine fibroids and cultured with or without 1.0 µM of an ETA receptor antagonist for 24 h under either normal or hypoxic oxygen conditions. Cellular secretion of endothelin-1 (ET-1) and CYR61 were measured via enzyme linked immunosorbent assay in the cell culture media. SMCs were collected to determine cell proliferation and CYR61 protein expression via Western blot. ET-1 secretion was significantly increased in fSMC and was decreased with blockade of the ETA receptor under both normoxia (P=0.0004) and hypoxia (P=0.008). CYR61 expression was decreased in fSMCs and significantly increased with blockade of the ETA receptor under hypoxia (P=0.04). Cell proliferation decreased with ETA blockade under normoxia (P=0.0001) and hypoxia (P=0.001). These results suggest that suppression of CYR61 secretion in fSMC is regulated by the ET-1 and that blockade with ETA could be considered for a future treatment option.
Collapse
Affiliation(s)
- Kedra Wallace
- Department of Obstetrics & Gynecology, University of Mississippi Medical Center, 2500 N. State St., Jackson, MS 39216, U.S.A.
| | - Krystal Chatman
- Department of Obstetrics & Gynecology, University of Mississippi Medical Center, 2500 N. State St., Jackson, MS 39216, U.S.A
| | - Venessia Johnson
- Department of Obstetrics & Gynecology, University of Mississippi Medical Center, 2500 N. State St., Jackson, MS 39216, U.S.A
| | - Alexis Brookins
- Department of Obstetrics & Gynecology, University of Mississippi Medical Center, 2500 N. State St., Jackson, MS 39216, U.S.A
| | - John Rushing
- Department of Obstetrics & Gynecology, University of Mississippi Medical Center, 2500 N. State St., Jackson, MS 39216, U.S.A
| | - Babbette LaMarca
- Department of Obstetrics & Gynecology, University of Mississippi Medical Center, 2500 N. State St., Jackson, MS 39216, U.S.A
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, 2500 N. State St., Jackson, MS 39216, U.S.A
| |
Collapse
|
12
|
Teoh JP, Bayoumi AS, Aonuma T, Xu Y, Johnson JA, Su H, Weintraub NL, Tang Y, Kim IM. β-arrestin-biased agonism of β-adrenergic receptor regulates Dicer-mediated microRNA maturation to promote cardioprotective signaling. J Mol Cell Cardiol 2018; 118:225-236. [PMID: 29627294 DOI: 10.1016/j.yjmcc.2018.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 03/28/2018] [Accepted: 04/02/2018] [Indexed: 12/20/2022]
Abstract
RATIONALE MicroRNAs (miRs) are small, non-coding RNAs that function to post-transcriptionally regulate target genes. First transcribed as primary miR transcripts (pri-miRs), they are enzymatically processed by Drosha into premature miRs (pre-miRs) and further cleaved by Dicer into mature miRs. Initially discovered to desensitize β-adrenergic receptor (βAR) signaling, β-arrestins are now well-appreciated to modulate multiple pathways independent of G protein signaling, a concept known as biased signaling. Using the β-arrestin-biased βAR ligand carvedilol, we previously showed that β-arrestin1 (not β-arrestin2)-biased β1AR (not β2AR) cardioprotective signaling stimulates Drosha-mediated processing of six miRs by forming a multi-protein nuclear complex, which includes β-arrestin1, the Drosha microprocessor complex and a single-stranded RNA binding protein hnRNPA1. OBJECTIVE Here, we investigate whether β-arrestin-mediated βAR signaling induced by carvedilol could regulate Dicer-mediated miR maturation in the cytoplasm and whether this novel mechanism promotes cardioprotective signaling. METHODS AND RESULTS In mouse hearts, carvedilol indeed upregulates three mature miRs, but not their pre-miRs and pri-miRs, in a β-arrestin 1- or 2-dependent manner. Interestingly, carvedilol-mediated activation of miR-466g or miR-532-5p, and miR-674 is dependent on β2ARs and β1ARs, respectively. Mechanistically, β-arrestin 1 or 2 regulates maturation of three newly identified βAR/β-arrestin-responsive miRs (β-miRs) by associating with the Dicer maturation RNase III enzyme on three pre-miRs of β-miRs. Myocardial cell approaches uncover that despite their distinct roles in different cell types, β-miRs act as gatekeepers of cardiac cell functions by repressing deleterious targets. CONCLUSIONS Our findings indicate a novel role for βAR-mediated β-arrestin signaling activated by carvedilol in Dicer-mediated miR maturation, which may be linked to its protective mechanisms.
Collapse
Affiliation(s)
- Jian-Peng Teoh
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA
| | - Ahmed S Bayoumi
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA
| | - Tatsuya Aonuma
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA
| | - Yanyan Xu
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA
| | - John A Johnson
- Department of Pharmacology and Toxicology, Augusta University, Augusta, GA 30912, USA
| | - Huabo Su
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA; Department of Pharmacology and Toxicology, Augusta University, Augusta, GA 30912, USA
| | - Neal L Weintraub
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA; Department of Medicine, Augusta University, Augusta, GA 30912, USA
| | - Yaoliang Tang
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA; Department of Medicine, Augusta University, Augusta, GA 30912, USA
| | - Il-Man Kim
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA; Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
| |
Collapse
|
13
|
Rosanò L, Cianfrocca R, Sestito R, Tocci P, Di Castro V, Bagnato A. Targeting endothelin-1 receptor/β-arrestin1 network for the treatment of ovarian cancer. Expert Opin Ther Targets 2017; 21:925-932. [DOI: 10.1080/14728222.2017.1361930] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Laura Rosanò
- Preclinical Models and New Therapeutic Agents Unit, Translational Research Functional Departmental Area, Regina Elena National Cancer Institute, Rome, Italy
| | - Roberta Cianfrocca
- Preclinical Models and New Therapeutic Agents Unit, Translational Research Functional Departmental Area, Regina Elena National Cancer Institute, Rome, Italy
| | - Rosanna Sestito
- Preclinical Models and New Therapeutic Agents Unit, Translational Research Functional Departmental Area, Regina Elena National Cancer Institute, Rome, Italy
| | - Piera Tocci
- Preclinical Models and New Therapeutic Agents Unit, Translational Research Functional Departmental Area, Regina Elena National Cancer Institute, Rome, Italy
| | - Valeriana Di Castro
- Preclinical Models and New Therapeutic Agents Unit, Translational Research Functional Departmental Area, Regina Elena National Cancer Institute, Rome, Italy
| | - Anna Bagnato
- Preclinical Models and New Therapeutic Agents Unit, Translational Research Functional Departmental Area, Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
14
|
Wang Z, Liu P, Zhou X, Wang T, Feng X, Sun YP, Xiong Y, Yuan HX, Guan KL. Endothelin Promotes Colorectal Tumorigenesis by Activating YAP/TAZ. Cancer Res 2017; 77:2413-2423. [PMID: 28249901 DOI: 10.1158/0008-5472.can-16-3229] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 12/28/2016] [Accepted: 02/27/2017] [Indexed: 12/21/2022]
Abstract
Endothelin receptor A (ETAR) promotes tumorigenesis by stimulating cell proliferation, migration, and survival. However, the mechanism of ETAR in promoting tumor growth is largely unknown. In this study, we demonstrate that ETAR stimulates colon cell proliferation, migration, and tumorigenesis through the activation of YAP/TAZ, two transcription coactivators of the Hippo tumor suppressor pathway. Endothelin-1 treatment induced YAP/TAZ dephosphorylation, nuclear accumulation, and transcriptional activation in multiple colon cancer cells. ETAR stimulation acted via downstream G-protein Gαq/11 and Rho GTPase to suppress the Hippo pathway, thus leading to YAP/TAZ activation, which was required for ETAR-induced tumorigenesis. Overall, these results indicate a critical role of the YAP/TAZ axis in ETAR signaling. Cancer Res; 77(9); 2413-23. ©2017 AACR.
Collapse
Affiliation(s)
- Zhen Wang
- Key Laboratory of Molecular Medicine of Ministry of Education and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- School of Life Sciences, Fudan University, Shanghai, China
| | - Peng Liu
- Key Laboratory of Molecular Medicine of Ministry of Education and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- School of Life Sciences, Fudan University, Shanghai, China
| | - Xin Zhou
- Key Laboratory of Molecular Medicine of Ministry of Education and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- School of Life Sciences, Fudan University, Shanghai, China
| | - Tianxiang Wang
- Key Laboratory of Molecular Medicine of Ministry of Education and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xu Feng
- Key Laboratory of Molecular Medicine of Ministry of Education and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- School of Life Sciences, Fudan University, Shanghai, China
| | - Yi-Ping Sun
- Key Laboratory of Molecular Medicine of Ministry of Education and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yue Xiong
- Key Laboratory of Molecular Medicine of Ministry of Education and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.
- Department of Biochemistry and Biophysics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Hai-Xin Yuan
- Key Laboratory of Molecular Medicine of Ministry of Education and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Kun-Liang Guan
- Key Laboratory of Molecular Medicine of Ministry of Education and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, California
| |
Collapse
|
15
|
Bologna Z, Teoh JP, Bayoumi AS, Tang Y, Kim IM. Biased G Protein-Coupled Receptor Signaling: New Player in Modulating Physiology and Pathology. Biomol Ther (Seoul) 2017; 25:12-25. [PMID: 28035079 PMCID: PMC5207460 DOI: 10.4062/biomolther.2016.165] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 08/19/2016] [Accepted: 08/23/2016] [Indexed: 01/03/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are a family of cell-surface proteins that play critical roles in regulating a variety of pathophysiological processes and thus are targeted by almost a third of currently available therapeutics. It was originally thought that GPCRs convert extracellular stimuli into intracellular signals through activating G proteins, whereas β-arrestins have important roles in internalization and desensitization of the receptor. Over the past decade, several novel functional aspects of β-arrestins in regulating GPCR signaling have been discovered. These previously unanticipated roles of β-arrestins to act as signal transducers and mediators of G protein-independent signaling have led to the concept of biased agonism. Biased GPCR ligands are able to engage with their target receptors in a manner that preferentially activates only G protein- or β-arrestin-mediated downstream signaling. This offers the potential for next generation drugs with high selectivity to therapeutically relevant GPCR signaling pathways. In this review, we provide a summary of the recent studies highlighting G protein- or β-arrestin-biased GPCR signaling and the effects of biased ligands on disease pathogenesis and regulation.
Collapse
Affiliation(s)
- Zuzana Bologna
- Vascular Biology Center, Medical College of Georgia, Augusta University, GA 30912, USA
| | - Jian-Peng Teoh
- Vascular Biology Center, Medical College of Georgia, Augusta University, GA 30912, USA
| | - Ahmed S Bayoumi
- Vascular Biology Center, Medical College of Georgia, Augusta University, GA 30912, USA
| | - Yaoliang Tang
- Vascular Biology Center, Medical College of Georgia, Augusta University, GA 30912, USA
| | - Il-Man Kim
- Vascular Biology Center, Medical College of Georgia, Augusta University, GA 30912, USA.,Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, GA 30912, USA
| |
Collapse
|
16
|
Tocci P, Caprara V, Cianfrocca R, Sestito R, Di Castro V, Bagnato A, Rosanò L. Endothelin-1/endothelin A receptor axis activates RhoA GTPase in epithelial ovarian cancer. Life Sci 2016; 159:49-54. [DOI: 10.1016/j.lfs.2016.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 11/25/2015] [Accepted: 01/07/2016] [Indexed: 01/16/2023]
|
17
|
Rosanò L, Bagnato A. β-arrestin1 at the cross-road of endothelin-1 signaling in cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:121. [PMID: 27473335 PMCID: PMC4966762 DOI: 10.1186/s13046-016-0401-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 07/24/2016] [Indexed: 12/15/2022]
Abstract
The advent of targeted therapeutics in human cancer has begun to find novel druggable targets and, in this context, the endothelin-1 receptor (ET-1R), namely ETA receptor (ETAR) and ETB receptor, among the GPCR family represents a class of highly druggable molecules in cancer. ET-1R are aberrantly expressed in human malignancies, potentially representing prognostic factors. Their activation by ligand stimulation initiate signaling cascades activating different downstream effectors, allowing precise control over multiple signaling pathways. ET-1R regulates cell proliferation, survival, motility, cytoskeletal changes, angiogenesis, metastasis as well as drug resistance. The molecular events underlying these responses are the activation of transcriptional factors and coactivators, and downstream genes, acting as key players in tumor growth and progression. ET-1R represent crucial cancer targets that have been exploited for ET-1R therapeutics. Importantly, efforts to explore new information of ETAR in cancer have uncovered that their functions are crucially regulated by multifunctional scaffold protein β-arrestins (β-arrs) which orchestrate the multidimensionality of ETAR signaling into highly regulated and distinct signaling complexes, a property that is highly advantageous for tumor signaling. Moreover, the role of β-arr1 in ET-1 signaling in cancer highlights why the pleiotropic effects of ET-1 and its dynamic signaling are more complex than previously recognized. In order to improve therapeutic strategies that interfere with the widespread effects of ET-1R, it is important to consider antagonists able to turn the receptors “off” selectively controlling β-arr1-dependent signaling, highlighting the possibility that targeting ETAR/β-arr1 may display a large therapeutic window in cancer.
Collapse
Affiliation(s)
- Laura Rosanò
- Preclinical Models and New Therapeutic Agents Unit, Translational Research Functional Departmental Area, Regina Elena National Cancer Institute, Via Elio Chianesi, 53, 00144, Rome, Italy.
| | - Anna Bagnato
- Preclinical Models and New Therapeutic Agents Unit, Translational Research Functional Departmental Area, Regina Elena National Cancer Institute, Via Elio Chianesi, 53, 00144, Rome, Italy.
| |
Collapse
|
18
|
Cianfrocca R, Tocci P, Rosanò L, Caprara V, Sestito R, Di Castro V, Bagnato A. Nuclear β-arrestin1 is a critical cofactor of hypoxia-inducible factor-1α signaling in endothelin-1-induced ovarian tumor progression. Oncotarget 2016; 7:17790-804. [PMID: 26909598 PMCID: PMC4951250 DOI: 10.18632/oncotarget.7461] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 02/07/2016] [Indexed: 02/07/2023] Open
Abstract
Hypoxia-inducible factor-1α (HIF-1α) mediates the response to hypoxia or other stimuli, such as growth factors, including endothelin-1 (ET-1), to promote malignant progression in numerous tumors. The importance of cofactors that regulate HIF-1α signalling within tumor is not well understood. Here we elucidate that ET-1/ET(A) receptor (ET(A)R)-induced pathway physically and functionally couples the scaffold protein β-arrestin1 (β-arr1) to HIF-1α signalling. In epithelial ovarian cancer (EOC) cells, ET-1/ET(A)R axis induced vascular-endothelial growth factor (VEGF) expression through HIF-1α nuclear accumulation. In these cells, activation of ET(A)R by ET-1, by mimicking hypoxia, promoted the nuclear interaction between β-arr1 and HIF-1α and the recruitment of p300 acetyltransferase to hypoxia response elements on the target gene promoters, resulting in enhanced histone acetylation, and HIF-1α target gene transcription. Indeed, β-arr1-HIF-1α interaction regulated the enhanced expression and release of downstream targets, such as ET-1 and VEGF, required for tumor cell invasion and pro-angiogenic effects in endothelial cells. These effects were abrogated by β-arr1 or HIF-1α silencing or by pharmacological treatment with the dual ET-1 receptor antagonist macitentan. Interestingly, ET(A)R/β-arr1 promoted the self-amplifying HIF-1α-mediated transcription of ET-1 that sustained a regulatory circuit involved in invasive and angiogenic behaviors. In a murine orthotopic model of metastatic human EOC, treatment with macitentan, or silencing of β-arr1, inhibits intravasation and metastasis formation. Collectively, these findings reveal the interplay of β-arr1 with HIF-1α in the complexity of ET-1/ET(A)R signalling, mediating epigenetic modifications directly involved in the metastatic process, and suggest that targeting ET-1-dependent β-arr1/HIF-1α pathway by using macitentan may impair EOC progression.
Collapse
Affiliation(s)
- Roberta Cianfrocca
- Translational Research Functional Departmental Area, Regina Elena National Cancer Institute, Rome, Italy
| | - Piera Tocci
- Translational Research Functional Departmental Area, Regina Elena National Cancer Institute, Rome, Italy
| | - Laura Rosanò
- Translational Research Functional Departmental Area, Regina Elena National Cancer Institute, Rome, Italy
| | - Valentina Caprara
- Translational Research Functional Departmental Area, Regina Elena National Cancer Institute, Rome, Italy
| | - Rosanna Sestito
- Translational Research Functional Departmental Area, Regina Elena National Cancer Institute, Rome, Italy
| | - Valeriana Di Castro
- Translational Research Functional Departmental Area, Regina Elena National Cancer Institute, Rome, Italy
| | - Anna Bagnato
- Translational Research Functional Departmental Area, Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
19
|
Davenport AP, Hyndman KA, Dhaun N, Southan C, Kohan DE, Pollock JS, Pollock DM, Webb DJ, Maguire JJ. Endothelin. Pharmacol Rev 2016; 68:357-418. [PMID: 26956245 PMCID: PMC4815360 DOI: 10.1124/pr.115.011833] [Citation(s) in RCA: 523] [Impact Index Per Article: 58.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The endothelins comprise three structurally similar 21-amino acid peptides. Endothelin-1 and -2 activate two G-protein coupled receptors, ETA and ETB, with equal affinity, whereas endothelin-3 has a lower affinity for the ETA subtype. Genes encoding the peptides are present only among vertebrates. The ligand-receptor signaling pathway is a vertebrate innovation and may reflect the evolution of endothelin-1 as the most potent vasoconstrictor in the human cardiovascular system with remarkably long lasting action. Highly selective peptide ETA and ETB antagonists and ETB agonists together with radiolabeled analogs have accurately delineated endothelin pharmacology in humans and animal models, although surprisingly no ETA agonist has been discovered. ET antagonists (bosentan, ambrisentan) have revolutionized the treatment of pulmonary arterial hypertension, with the next generation of antagonists exhibiting improved efficacy (macitentan). Clinical trials continue to explore new applications, particularly in renal failure and for reducing proteinuria in diabetic nephropathy. Translational studies suggest a potential benefit of ETB agonists in chemotherapy and neuroprotection. However, demonstrating clinical efficacy of combined inhibitors of the endothelin converting enzyme and neutral endopeptidase has proved elusive. Over 28 genetic modifications have been made to the ET system in mice through global or cell-specific knockouts, knock ins, or alterations in gene expression of endothelin ligands or their target receptors. These studies have identified key roles for the endothelin isoforms and new therapeutic targets in development, fluid-electrolyte homeostasis, and cardiovascular and neuronal function. For the future, novel pharmacological strategies are emerging via small molecule epigenetic modulators, biologicals such as ETB monoclonal antibodies and the potential of signaling pathway biased agonists and antagonists.
Collapse
Affiliation(s)
- Anthony P Davenport
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - Kelly A Hyndman
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - Neeraj Dhaun
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - Christopher Southan
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - Donald E Kohan
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - Jennifer S Pollock
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - David M Pollock
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - David J Webb
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - Janet J Maguire
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| |
Collapse
|
20
|
Discovery of Dual ETA/ETB Receptor Antagonists from Traditional Chinese Herbs through in Silico and in Vitro Screening. Int J Mol Sci 2016; 17:389. [PMID: 26999111 PMCID: PMC4813245 DOI: 10.3390/ijms17030389] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 02/25/2016] [Accepted: 03/04/2016] [Indexed: 11/30/2022] Open
Abstract
Endothelin-1 receptors (ETAR and ETBR) act as a pivotal regulator in the biological effects of ET-1 and represent a potential drug target for the treatment of multiple cardiovascular diseases. The purpose of the study is to discover dual ETA/ETB receptor antagonists from traditional Chinese herbs. Ligand- and structure-based virtual screening was performed to screen an in-house database of traditional Chinese herbs, followed by a series of in vitro bioassay evaluation. Aristolochic acid A (AAA) was first confirmed to be a dual ETA/ETB receptor antagonist based intracellular calcium influx assay and impedance-based assay. Dose-response curves showed that AAA can block both ETAR and ETBR with IC50 of 7.91 and 7.40 μM, respectively. Target specificity and cytotoxicity bioassay proved that AAA is a selective dual ETA/ETB receptor antagonist and has no significant cytotoxicity on HEK293/ETAR and HEK293/ETBR cells within 24 h. It is a feasible and effective approach to discover bioactive compounds from traditional Chinese herbs using in silico screening combined with in vitro bioassay evaluation. The structural characteristic of AAA for its activity was especially interpreted, which could provide valuable reference for the further structural modification of AAA.
Collapse
|
21
|
Maguire JJ. Evidence for biased agonists and antagonists at the endothelin receptors. Life Sci 2016; 159:30-33. [PMID: 26898124 PMCID: PMC5000545 DOI: 10.1016/j.lfs.2016.02.069] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 01/22/2016] [Accepted: 02/16/2016] [Indexed: 01/08/2023]
Abstract
Biased ligands represent a new strategy for the development of more effective and better tolerated drugs. To date there has been a paucity of research exploring the potential of ligands that exhibit either G protein or β-arrestin pathway selectivity at the endothelin receptors. Re-analysis of data may allow researchers to determine whether there is existing evidence that the endogenous ET peptides or currently available agonists and antagonists exhibit pathway bias in a particular physiological or disease setting and this is explored in the review. An alternative to molecules that bind at the orthosteric site of the ET receptors are cell penetrating peptides that interact with a segment of an intracellular loop of the receptor to modify signalling behaviour. One such peptide IC2B has been shown to have efficacy in a model of pulmonary arterial hypertension. Finally, understanding the molecular pathways that contribute to disease is critical to determining whether biased ligands will provide clinical benefit. The role of ETA signalling in ovarian cancer has been delineated in some detail and this has led to the suggestion that the development of ETA G protein biased agonists or β-arrestin biased antagonists should be explored.
Collapse
Affiliation(s)
- Janet J Maguire
- Experimental Medicine and Immunotherapeutics, Level 6 ACCI, Box 110 Addenbrooke's Hospital, Cambridge CB2 0QQ, UK.
| |
Collapse
|
22
|
Rosanò L, Bagnato A. Endothelin therapeutics in cancer: Where are we? Am J Physiol Regul Integr Comp Physiol 2016; 310:R469-75. [PMID: 26818060 DOI: 10.1152/ajpregu.00532.2015] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 01/25/2016] [Indexed: 02/01/2023]
Abstract
In human cancers, the autocrine and paracrine loop mediated by the aberrantly activation of endothelin-1 (ET-1) receptor (ET-1R) elicits pleiotropic effects, preferentially mediated by the scaffold protein β-arrestin 1 (β-arr1), on tumor cells and on the host microenvironment, providing a strong rationale for targeting ET-1 receptors. This review describes the most up-to-date preclinical and clinical results obtained by using ET-1 therapeutics. The previous negative clinical results of ET-1 therapeutics should not prevent us from setting the standard of this class of drugs for future well-designed clinical trials. The preclinical data obtained with the dual ETAR and ETBR antagonist macitentan indicate that this molecule, which targets cancer cells and tumor-associated microenvironmental elements, could be a cancer therapeutic option. The field of ET-1 therapeutics will be improved in the next decade, facilitated by the new knowledge on the genomic landscape of the human stroma and tumor, and by the low invasive approaches based on liquid biopsies for the discovery of predictive biomarkers. The information obtained from preclinical studies in patient-derived models and from the Cancer Genome Atlas will set the scene of precision medicine for cancer. Results from these studies are expected to open the possibility that ET-1R antagonists might be more efficacious as molecular cancer therapeutics, able to hamper the functional β-arr1-dependent signaling complexes, either alone or coupled with new targeted approaches.
Collapse
Affiliation(s)
- Laura Rosanò
- Translational Research Functional Departmental Area, Regina Elena National Cancer Institute, Rome, Italy
| | - Anna Bagnato
- Translational Research Functional Departmental Area, Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
23
|
Cong N, Li Z, Shao W, Li J, Yu S. Activation of ETA Receptor by Endothelin-1 Induces Hepatocellular Carcinoma Cell Migration and Invasion via ERK1/2 and AKT Signaling Pathways. J Membr Biol 2015; 249:119-28. [PMID: 26501871 DOI: 10.1007/s00232-015-9854-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 08/20/2015] [Indexed: 11/28/2022]
Abstract
Endothelin-1 (ET-1), a member of endothelins family, binds to ETA receptor (ETAR) and ETB receptor to exert its role in multiple cellular processes. Although ET-1 and its receptors has been reported to be overexpressed in many cancers, and overexpression of ET-1 is able to trigger hepatocarcinogenesis in zebrafish, the functions of ET-1 and its receptors in hepatocellular carcinoma (HCC) cell migration and invasion remain unclear. In the present study, we found that ETAR was greatly expressed in HCC cells and HCC tissues. ETAR expression as well as ET-1 expression was associated with vascular invasion and tumor stage in HCC. Activation of ETAR by ET-1 dose-dependently promoted cell migration and invasion of HCC cells, while silencing of ETAR by siRNA or blocking of ETAR by specific inhibitor resulted in significant reduction in ET-1-mediated migration and invasion. Furthermore, ET-1 induced activation of ERK1/2 and AKT and increased MMP-3 production via ETAR. In addition, using inhibitors of ERK1/2 and AKT, we found that ERK1/2 and AKT pathways were both involved in ETAR-mediated migration, invasion, and MMP-3 production. Taken together, our findings suggest that activation of ETAR by ET-1 promotes HCC cell migration and invasion via activating ERK1/2 and AKT signaling pathways and upregulating MMP-3 expression. Thus, ETAR may play an important role in the progress of HCC.
Collapse
Affiliation(s)
- Ning Cong
- Department of Surgical Oncology, Shandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Zhongmin Li
- Department of Interventional Therapy, Shouguang City Hospital of Traditional Chinese Medicine, Weifang, 262700, Shandong, China
| | - Wenbo Shao
- Department of Surgical Oncology, Shandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Jinpeng Li
- Department of Surgical Oncology, Shandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Shui Yu
- Department of Tumor Radiotherapy, Shandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, 250117, Shandong, China.
| |
Collapse
|
24
|
Teoh JP, Park KM, Broskova Z, Jimenez FR, Bayoumi AS, Archer K, Su H, Johnson J, Weintraub NL, Tang Y, Kim IM. Identification of gene signatures regulated by carvedilol in mouse heart. Physiol Genomics 2015; 47:376-85. [PMID: 26152686 DOI: 10.1152/physiolgenomics.00028.2015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 07/06/2015] [Indexed: 01/14/2023] Open
Abstract
Chronic treatment with the β-blocker carvedilol has been shown to reduce established maladaptive left ventricle (LV) hypertrophy and to improve LV function in experimental heart failure. However, the detailed mechanisms by which carvedilol improves LV failure are incompletely understood. We previously showed that carvedilol is a β-arrestin-biased β1-adrenergic receptor ligand, which activates cellular pathways in the heart independent of G protein-mediated second messenger signaling. More recently, we have demonstrated by microRNA (miR) microarray analysis that carvedilol upregulates a subset of mature and pre-mature miRs, but not their primary miR transcripts in mouse hearts. Here, we next sought to identify the effects of carvedilol on LV gene expression on a genome-wide basis. Adult mice were treated with carvedilol or vehicle for 1 wk. RNA was isolated from LV tissue and hybridized for microarray analysis. Gene expression profiling analysis revealed a small group of genes differentially expressed after carvedilol treatment. Further analysis categorized these genes into pathways involved in tight junction, malaria, viral myocarditis, glycosaminoglycan biosynthesis, and arrhythmogenic right ventricular cardiomyopathy. Genes encoding proteins in the tight junction, malaria, and viral myocarditis pathways were upregulated in the LV by carvedilol, while genes encoding proteins in the glycosaminoglycan biosynthesis and arrhythmogenic right ventricular cardiomyopathy pathways were downregulated by carvedilol. These gene expression changes may reflect the molecular mechanisms that underlie the functional benefits of carvedilol therapy.
Collapse
Affiliation(s)
- Jian-Peng Teoh
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, Georgia
| | - Kyoung-Mi Park
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, Georgia
| | - Zuzana Broskova
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, Georgia
| | - Felix R Jimenez
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, Georgia
| | - Ahmed S Bayoumi
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, Georgia
| | - Krystal Archer
- Department of Medicine, Medical College of Georgia, Georgia Regents University, Augusta, Georgia; and
| | - Huabo Su
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, Georgia; Department of Pharmacology and Toxicology, Medical College of Georgia, Georgia Regents University, Augusta, Georgia
| | - John Johnson
- Department of Pharmacology and Toxicology, Medical College of Georgia, Georgia Regents University, Augusta, Georgia
| | - Neal L Weintraub
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, Georgia; Department of Medicine, Medical College of Georgia, Georgia Regents University, Augusta, Georgia; and
| | - Yaoliang Tang
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, Georgia; Department of Medicine, Medical College of Georgia, Georgia Regents University, Augusta, Georgia; and
| | - Il-Man Kim
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, Georgia; Department of Biochemistry and Molecular Biology, Medical College of Georgia, Georgia Regents University, Augusta, Georgia
| |
Collapse
|
25
|
Rosanò L, Bagnato A. Disrupting the endothelin and Wnt relationship to overcome chemoresistance. Mol Cell Oncol 2015; 2:e995025. [PMID: 27308478 PMCID: PMC4905315 DOI: 10.4161/23723556.2014.995025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 11/27/2014] [Accepted: 11/29/2014] [Indexed: 11/19/2022]
Abstract
Knowledge of the mechanisms underlying chemoresistance is important in the development of novel targeted treatments for ovarian cancer. We recently reported that targeting endothelin A receptor/β-arrestin-1, a binding partner of Wnt/β-catenin, is sufficient to sensitize ovarian cancer to chemotherapy. This result highlights endothelin-1 receptor antagonists as potential anticancer therapeutics.
Collapse
Affiliation(s)
- Laura Rosanò
- Molecular Pathology Laboratory; Regina Elena National Cancer Institute ; Rome, Italy
| | - Anna Bagnato
- Molecular Pathology Laboratory; Regina Elena National Cancer Institute ; Rome, Italy
| |
Collapse
|