1
|
Sin YY, Giblin A, Judina A, Rujirachaivej P, Corral LG, Glennon E, Tai ZX, Feng T, Torres E, Zorn A, Gorelik J, Kyurkchieva E, Yenchitsomanus PT, Swindlehurst C, Chan K, Stirling D, Baillie GS. Targeted protein degradation of PDE4 shortforms by a novel proteolysis targeting chimera. FEBS J 2024. [PMID: 39673076 DOI: 10.1111/febs.17359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/17/2024] [Accepted: 10/07/2024] [Indexed: 12/15/2024]
Abstract
Cyclic AMP (cAMP) has a crucial role in many vital cellular processes and there has been much effort expended in the discovery of inhibitors against the enzyme superfamily that degrades this second messenger, namely phosphodiesterases (PDEs). The journey of competitive PDE inhibitors to the clinic has been hampered by side effects profiles that have resulted from a lack of selectivity for subfamilies and individual isoforms because of high conservation of catalytic site sequences and structures. Here we introduce a proteolysis targeting chimera (PROTAC) that can specifically target a small subset of isoforms from the PDE4 family to send the enzyme for degradation at the proteasome by recruiting a ubiquitin E3 ligase into proximity with the PDE. We constructed our PDE4 PROTAC (KTX207) using a previously characterized PDE4 inhibitor, and we show that evolution of the compound into a PROTAC improves selectivity, potency and enables a long-lasting effect even after the compound is removed from cells after a short treatment duration. Functionally, KTX207 is more effective at increasing cAMP, is 100 times more anti-inflammatory, and is significantly better at reducing the growth in cancer cell models than the PDE4 inhibitor alone. Our study highlights the advantages of targeted degradation versus active-site occupancy for PDE4 inhibition and discusses the potential of this novel pharmacological approach to improve the safety profile of PDE4 inhibition in the future.
Collapse
Affiliation(s)
- Yuan Yan Sin
- School of Cardiovascular and Metabolic Health, University of Glasgow, UK
| | - Aoife Giblin
- School of Cardiovascular and Metabolic Health, University of Glasgow, UK
| | - Aleksandra Judina
- Faculty of Medicine, National Heart and Lung Institute, Imperial College London, UK
| | - Punchita Rujirachaivej
- Graduate Program in Clinical Pathology, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | | | - Eliza Glennon
- School of Cardiovascular and Metabolic Health, University of Glasgow, UK
| | - Zhi Xian Tai
- School of Cardiovascular and Metabolic Health, University of Glasgow, UK
| | - Tian Feng
- School of Cardiovascular and Metabolic Health, University of Glasgow, UK
| | | | - Alina Zorn
- School of Cardiovascular and Metabolic Health, University of Glasgow, UK
| | - Julia Gorelik
- Faculty of Medicine, National Heart and Lung Institute, Imperial College London, UK
| | - Elka Kyurkchieva
- School of Cardiovascular and Metabolic Health, University of Glasgow, UK
| | - Pa Thai Yenchitsomanus
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT) and Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | - Kyle Chan
- Katalytic Therapeutics, San Diego, CA, USA
| | | | - George S Baillie
- School of Cardiovascular and Metabolic Health, University of Glasgow, UK
| |
Collapse
|
2
|
Lipina TV, Li S, Petrova ES, Amstislavskaya TG, Cameron RT, Elliott C, Gondo Y, McGirr A, Mullins JGL, Baillie GS, Woodgett JR, Clapcote SJ. PDE4B Missense Variant Increases Susceptibility to Post-traumatic Stress Disorder-Relevant Phenotypes in Mice. J Neurosci 2024; 44:e0137242024. [PMID: 39256048 PMCID: PMC11502227 DOI: 10.1523/jneurosci.0137-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 08/20/2024] [Accepted: 08/26/2024] [Indexed: 09/12/2024] Open
Abstract
Large-scale genome-wide association studies (GWASs) have associated intronic variants in PDE4B, encoding cAMP-specific phosphodiesterase-4B (PDE4B), with increased risk for post-traumatic stress disorder (PTSD), as well as schizophrenia and substance use disorders that are often comorbid with it. However, the pathophysiological mechanisms of genetic risk involving PDE4B are poorly understood. To examine the effects of PDE4B variation on phenotypes with translational relevance to psychiatric disorders, we focused on PDE4B missense variant M220T, which is present in the human genome as rare coding variant rs775201287. When expressed in HEK-293 cells, PDE4B1-M220T exhibited an attenuated response to a forskolin-elicited increase in the intracellular cAMP concentration. In behavioral tests, homozygous Pde4b M220T male mice with a C57BL/6JJcl background exhibited increased reactivity to novel environments, startle hyperreactivity, prepulse inhibition deficits, altered cued fear conditioning, and enhanced spatial memory, accompanied by an increase in cAMP signaling pathway-regulated expression of BDNF in the hippocampus. In response to a traumatic event (10 tone-shock pairings), neuronal activity was decreased in the cortex but enhanced in the amygdala and hippocampus of Pde4b M220T mice. At 24 h post-trauma, Pde4b M220T mice exhibited increased startle hyperreactivity and decreased plasma corticosterone levels, similar to phenotypes exhibited by PTSD patients. Trauma-exposed Pde4b M220T mice also exhibited a slower decay in freezing at 15 and 30 d post-trauma, demonstrating enhanced persistence of traumatic memories, similar to that exhibited by PTSD patients. These findings provide substantive mouse model evidence linking PDE4B variation to PTSD-relevant phenotypes and thus highlight how genetic variation of PDE4B may contribute to PTSD risk.
Collapse
Affiliation(s)
- Tatiana V Lipina
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Shupeng Li
- School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen 518071, China
| | - Ekaterina S Petrova
- Federal State Budgetary Scientific Institution, Scientific Research Institute of Physiology & Basic Medicine, Novosibirsk 630117, Russia
| | - Tamara G Amstislavskaya
- Federal State Budgetary Scientific Institution, Scientific Research Institute of Physiology & Basic Medicine, Novosibirsk 630117, Russia
| | - Ryan T Cameron
- School of Cardiovascular & Metabolic Health, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Christina Elliott
- School of Cardiovascular & Metabolic Health, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Yoichi Gondo
- Mutagenesis and Genomics Team, RIKEN BioResource Center, Tsukuba, Ibaraki 305-0074, Japan
| | - Alexander McGirr
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | | | - George S Baillie
- School of Cardiovascular & Metabolic Health, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - James R Woodgett
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Steven J Clapcote
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
3
|
Gardner OFW, Bai T, Baillie GS, Ferretti P. Phosphodiesterase 4D activity in acrodysostosis-associated neural pathology: too much or too little? Brain Commun 2024; 6:fcae225. [PMID: 38983619 PMCID: PMC11232698 DOI: 10.1093/braincomms/fcae225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/09/2024] [Accepted: 06/27/2024] [Indexed: 07/11/2024] Open
Abstract
Members of the phosphodiesterase 4 (PDE4) enzyme family regulate the availability of the secondary messenger cyclic adenosine monophosphate (cAMP) and, by doing so, control cellular processes in health and disease. In particular, PDE4D has been associated with Alzheimer's disease and the intellectual disability seen in fragile X syndrome. Furthermore, single point mutations in critical PDE4D regions cause acrodysostosis type 2(ACRDYS2, also referred to as inactivating PTH/PTHrP signalling disorder 5 or iPPSD5), where intellectual disability is seen in ∼90% of patients alongside the skeletal dysmorphologies that are characteristic of acrodysostosis type 1 (ACRDYS1/iPPSD4) and ACRDYS2. Two contrasting mechanisms have been proposed to explain how mutations in PDE4D cause iPPSD5. The first mechanism, the 'over-activation hypothesis', suggests that cAMP/PKA (cyclic adenosine monophosphate/protein kinase A) signalling is reduced by the overactivity of mutant PDE4D, whilst the second, the 'over-compensation hypothesis' suggests that mutations reduce PDE4D activity. That reduction in activity is proposed to cause an increase in cellular cAMP, triggering the overexpression of other PDE isoforms. The resulting over-compensation then reduces cellular cAMP and the levels of cAMP/PKA signalling. However, neither of these proposed mechanisms accounts for the fine control of PDE activation and localization, which are likely to play a role in the development of iPPSD5. This review will draw together our understanding of the role of PDE4D in iPPSD5 and present a novel perspective on possible mechanisms of disease.
Collapse
Affiliation(s)
- Oliver F W Gardner
- Developmental Biology and Cancer Department, University College London Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| | - Tianshu Bai
- Developmental Biology and Cancer Department, University College London Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| | - George S Baillie
- School of Cardiovascular & Metabolic Health, University of Glasgow, Glasgow G12 8QQ, UK
| | - Patrizia Ferretti
- Developmental Biology and Cancer Department, University College London Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| |
Collapse
|
4
|
Puertas-Umbert L, Alonso J, Hove-Madsen L, Martínez-González J, Rodríguez C. PDE4 Phosphodiesterases in Cardiovascular Diseases: Key Pathophysiological Players and Potential Therapeutic Targets. Int J Mol Sci 2023; 24:17017. [PMID: 38069339 PMCID: PMC10707411 DOI: 10.3390/ijms242317017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
3',5'-cyclic adenosine monophosphate (cAMP) is a second messenger critically involved in the control of a myriad of processes with significant implications for vascular and cardiac cell function. The temporal and spatial compartmentalization of cAMP is governed by the activity of phosphodiesterases (PDEs), a superfamily of enzymes responsible for the hydrolysis of cyclic nucleotides. Through the fine-tuning of cAMP signaling, PDE4 enzymes could play an important role in cardiac hypertrophy and arrhythmogenesis, while it decisively influences vascular homeostasis through the control of vascular smooth muscle cell proliferation, migration, differentiation and contraction, as well as regulating endothelial permeability, angiogenesis, monocyte/macrophage activation and cardiomyocyte function. This review summarizes the current knowledge and recent advances in understanding the contribution of the PDE4 subfamily to cardiovascular function and underscores the intricate challenges associated with targeting PDE4 enzymes as a therapeutic strategy for the management of cardiovascular diseases.
Collapse
Affiliation(s)
- Lídia Puertas-Umbert
- Institut de Recerca Sant Pau (IR SANT PAU), 08041 Barcelona, Spain; (L.P.-U.); (J.A.); (L.H.-M.)
- CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Judith Alonso
- Institut de Recerca Sant Pau (IR SANT PAU), 08041 Barcelona, Spain; (L.P.-U.); (J.A.); (L.H.-M.)
- CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), 08036 Barcelona, Spain
| | - Leif Hove-Madsen
- Institut de Recerca Sant Pau (IR SANT PAU), 08041 Barcelona, Spain; (L.P.-U.); (J.A.); (L.H.-M.)
- CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), 08036 Barcelona, Spain
| | - José Martínez-González
- Institut de Recerca Sant Pau (IR SANT PAU), 08041 Barcelona, Spain; (L.P.-U.); (J.A.); (L.H.-M.)
- CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), 08036 Barcelona, Spain
| | - Cristina Rodríguez
- Institut de Recerca Sant Pau (IR SANT PAU), 08041 Barcelona, Spain; (L.P.-U.); (J.A.); (L.H.-M.)
- CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), 08036 Barcelona, Spain
| |
Collapse
|
5
|
Wright TA, Gemmell AO, Tejeda GS, Blair CM, Baillie GS. Cancer: Phosphodiesterase type 4C (PDE4C), the forgotten subfamily as a therapeutic target. Int J Biochem Cell Biol 2023; 162:106453. [PMID: 37499270 DOI: 10.1016/j.biocel.2023.106453] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/13/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023]
Abstract
Phosphodiesterase type 4 (PDE4) enzymes specifically hydrolyse cAMP in many cell signalling systems that are transduced by hormones and other primary messengers. The physiological function of the four PDE4 subfamilies (A, B, C and D) are numerous and varied due to the differentially localised plethora of isoforms that can be detected in cardiovascular, CNS and immune systems. Of the four subfamilies, least is known about PDE4C probably due to its restricted distribution pattern, scarcity of selective inhibitors and the lack of developed research tools. Here, for the first time, we chart the discovery of PDE4C, describe its regulation and highlight cancers where future development of PDE4C selective small molecules may have potential.
Collapse
Affiliation(s)
- Thomas A Wright
- School of Cardiovascular and Metabolic Health, College of Veterinary Medical and Life Science, University of Glasgow, Glasgow, UK
| | - Alistair O Gemmell
- School of Cardiovascular and Metabolic Health, College of Veterinary Medical and Life Science, University of Glasgow, Glasgow, UK
| | - Gonzalo S Tejeda
- School of Cardiovascular and Metabolic Health, College of Veterinary Medical and Life Science, University of Glasgow, Glasgow, UK
| | - Connor M Blair
- School of Cardiovascular and Metabolic Health, College of Veterinary Medical and Life Science, University of Glasgow, Glasgow, UK
| | - George S Baillie
- School of Cardiovascular and Metabolic Health, College of Veterinary Medical and Life Science, University of Glasgow, Glasgow, UK.
| |
Collapse
|
6
|
Shetty MS, Ris L, Schindler RFR, Mizuno K, Fedele L, Giese KP, Brand T, Abel T. Mice Lacking the cAMP Effector Protein POPDC1 Show Enhanced Hippocampal Synaptic Plasticity. Cereb Cortex 2022; 32:3457-3471. [PMID: 34937090 PMCID: PMC9376866 DOI: 10.1093/cercor/bhab426] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 11/13/2022] Open
Abstract
Extensive research has uncovered diverse forms of synaptic plasticity and an array of molecular signaling mechanisms that act as positive or negative regulators. Specifically, cyclic 3',5'-cyclic adenosine monophosphate (cAMP)-dependent signaling pathways are crucially implicated in long-lasting synaptic plasticity. In this study, we examine the role of Popeye domain-containing protein 1 (POPDC1) (or blood vessel epicardial substance (BVES)), a cAMP effector protein, in modulating hippocampal synaptic plasticity. Unlike other cAMP effectors, such as protein kinase A (PKA) and exchange factor directly activated by cAMP, POPDC1 is membrane-bound and the sequence of the cAMP-binding cassette differs from canonical cAMP-binding domains, suggesting that POPDC1 may have an unique role in cAMP-mediated signaling. Our results show that Popdc1 is widely expressed in various brain regions including the hippocampus. Acute hippocampal slices from Popdc1 knockout (KO) mice exhibit PKA-dependent enhancement in CA1 long-term potentiation (LTP) in response to weaker stimulation paradigms, which in slices from wild-type mice induce only transient LTP. Loss of POPDC1, while not affecting basal transmission or input-specificity of LTP, results in altered response during high-frequency stimulation. Popdc1 KO mice also show enhanced forskolin-induced potentiation. Overall, these findings reveal POPDC1 as a novel negative regulator of hippocampal synaptic plasticity and, together with recent evidence for its interaction with phosphodiesterases (PDEs), suggest that POPDC1 is involved in modulating activity-dependent local cAMP-PKA-PDE signaling.
Collapse
Affiliation(s)
- Mahesh Shivarama Shetty
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Laurence Ris
- Department of Neuroscience, University of Mons, Research Institute for Health Sciences and Technology, 7000 Mons, Belgium
| | | | - Keiko Mizuno
- Department of Neuroscience, King’s College, London SE5 9NU, UK
| | - Laura Fedele
- National Heart and Lung Institute, Imperial College London, London W12 ONN, UK
| | | | - Thomas Brand
- National Heart and Lung Institute, Imperial College London, London W12 ONN, UK
| | - Ted Abel
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
7
|
Paes D, Schepers M, Rombaut B, van den Hove D, Vanmierlo T, Prickaerts J. The Molecular Biology of Phosphodiesterase 4 Enzymes as Pharmacological Targets: An Interplay of Isoforms, Conformational States, and Inhibitors. Pharmacol Rev 2021; 73:1016-1049. [PMID: 34233947 DOI: 10.1124/pharmrev.120.000273] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The phosphodiesterase 4 (PDE4) enzyme family plays a pivotal role in regulating levels of the second messenger cAMP. Consequently, PDE4 inhibitors have been investigated as a therapeutic strategy to enhance cAMP signaling in a broad range of diseases, including several types of cancers, as well as in various neurologic, dermatological, and inflammatory diseases. Despite their widespread therapeutic potential, the progression of PDE4 inhibitors into the clinic has been hampered because of their related relatively small therapeutic window, which increases the chance of producing adverse side effects. Interestingly, the PDE4 enzyme family consists of several subtypes and isoforms that can be modified post-translationally or can engage in specific protein-protein interactions to yield a variety of conformational states. Inhibition of specific PDE4 subtypes, isoforms, or conformational states may lead to more precise effects and hence improve the safety profile of PDE4 inhibition. In this review, we provide an overview of the variety of PDE4 isoforms and how their activity and inhibition is influenced by post-translational modifications and interactions with partner proteins. Furthermore, we describe the importance of screening potential PDE4 inhibitors in view of different PDE4 subtypes, isoforms, and conformational states rather than testing compounds directed toward a specific PDE4 catalytic domain. Lastly, potential mechanisms underlying PDE4-mediated adverse effects are outlined. In this review, we illustrate that PDE4 inhibitors retain their therapeutic potential in myriad diseases, but target identification should be more precise to establish selective inhibition of disease-affected PDE4 isoforms while avoiding isoforms involved in adverse effects. SIGNIFICANCE STATEMENT: Although the PDE4 enzyme family is a therapeutic target in an extensive range of disorders, clinical use of PDE4 inhibitors has been hindered because of the adverse side effects. This review elaborately shows that safer and more effective PDE4 targeting is possible by characterizing 1) which PDE4 subtypes and isoforms exist, 2) how PDE4 isoforms can adopt specific conformations upon post-translational modifications and protein-protein interactions, and 3) which PDE4 inhibitors can selectively bind specific PDE4 subtypes, isoforms, and/or conformations.
Collapse
Affiliation(s)
- Dean Paes
- Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience, EURON, Maastricht University, Maastricht, The Netherlands (D.P, M.S., B.R., D.v.d.H., T.V., J.P.); Department of Neuroscience, Neuro-Immune Connect and Repair laboratory, Biomedical Research Institute, Hasselt University, Hasselt, Belgium (D.P., M.S., B.R., T.V.); and Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany (D.v.d.H.)
| | - Melissa Schepers
- Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience, EURON, Maastricht University, Maastricht, The Netherlands (D.P, M.S., B.R., D.v.d.H., T.V., J.P.); Department of Neuroscience, Neuro-Immune Connect and Repair laboratory, Biomedical Research Institute, Hasselt University, Hasselt, Belgium (D.P., M.S., B.R., T.V.); and Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany (D.v.d.H.)
| | - Ben Rombaut
- Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience, EURON, Maastricht University, Maastricht, The Netherlands (D.P, M.S., B.R., D.v.d.H., T.V., J.P.); Department of Neuroscience, Neuro-Immune Connect and Repair laboratory, Biomedical Research Institute, Hasselt University, Hasselt, Belgium (D.P., M.S., B.R., T.V.); and Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany (D.v.d.H.)
| | - Daniel van den Hove
- Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience, EURON, Maastricht University, Maastricht, The Netherlands (D.P, M.S., B.R., D.v.d.H., T.V., J.P.); Department of Neuroscience, Neuro-Immune Connect and Repair laboratory, Biomedical Research Institute, Hasselt University, Hasselt, Belgium (D.P., M.S., B.R., T.V.); and Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany (D.v.d.H.)
| | - Tim Vanmierlo
- Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience, EURON, Maastricht University, Maastricht, The Netherlands (D.P, M.S., B.R., D.v.d.H., T.V., J.P.); Department of Neuroscience, Neuro-Immune Connect and Repair laboratory, Biomedical Research Institute, Hasselt University, Hasselt, Belgium (D.P., M.S., B.R., T.V.); and Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany (D.v.d.H.)
| | - Jos Prickaerts
- Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience, EURON, Maastricht University, Maastricht, The Netherlands (D.P, M.S., B.R., D.v.d.H., T.V., J.P.); Department of Neuroscience, Neuro-Immune Connect and Repair laboratory, Biomedical Research Institute, Hasselt University, Hasselt, Belgium (D.P., M.S., B.R., T.V.); and Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany (D.v.d.H.)
| |
Collapse
|
8
|
Al-Nema M, Gaurav A, Lee VS. Docking based screening and molecular dynamics simulations to identify potential selective PDE4B inhibitor. Heliyon 2020; 6:e04856. [PMID: 32984588 PMCID: PMC7498760 DOI: 10.1016/j.heliyon.2020.e04856] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/20/2020] [Accepted: 09/02/2020] [Indexed: 11/25/2022] Open
Abstract
Inhibition of phosphodiesterase 4 (PDE4) is a promising therapeutic approach for the treatment of inflammatory pulmonary disorders, i.e. asthma and chronic obstructive pulmonary disease. However, the treatment with non-selective PDE4 inhibitors is associated with side effects such as nausea and vomiting. Among the subtypes of PDE4 inhibited by these inhibitors, PDE4B is expressed in immune, inflammatory and airway smooth muscle cells, whereas, PDE4D is expressed in the area postrema and nucleus of the solitary tract. Thus, PDE4D inhibition is responsible for the emetic response. In this regard, a selective PDE4B inhibitor is expected to be a potential drug candidate for the treatment of inflammatory pulmonary disorders. Therefore, a shared feature pharmacophore model was developed and used as a query for the virtual screening of Maybridge and SPECS databases. A number of filters were applied to ensure only compounds with drug-like properties were selected. Accordingly, nine compounds have been identified as final hits, where HTS04529 showed the highest affinity and selectivity for PDE4B over PDE4D in molecular docking. The docked complexes of HTS04529 with PDE4B and PDE4D were subjected to molecular dynamics simulations for 100ns to assess their binding stability. The results showed that HTS04529 was bound tightly to PDE4B and formed a more stable complex with it than with PDE4D.
Collapse
Affiliation(s)
- Mayasah Al-Nema
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Anand Gaurav
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Vannajan Sanghiran Lee
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumber, 50603, Malaysia
| |
Collapse
|
9
|
Dominant-Negative Attenuation of cAMP-Selective Phosphodiesterase PDE4D Action Affects Learning and Behavior. Int J Mol Sci 2020; 21:ijms21165704. [PMID: 32784895 PMCID: PMC7460819 DOI: 10.3390/ijms21165704] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 07/26/2020] [Accepted: 08/06/2020] [Indexed: 12/22/2022] Open
Abstract
PDE4 cyclic nucleotide phosphodiesterases reduce 3′, 5′ cAMP levels in the CNS and thereby regulate PKA activity and the phosphorylation of CREB, fundamental to depression, cognition, and learning and memory. The PDE4 isoform PDE4D5 interacts with the signaling proteins β-arrestin2 and RACK1, regulators of β2-adrenergic and other signal transduction pathways. Mutations in PDE4D in humans predispose to acrodysostosis, associated with cognitive and behavioral deficits. To target PDE4D5, we developed mice that express a PDE4D5-D556A dominant-negative transgene in the brain. Male transgenic mice demonstrated significant deficits in hippocampus-dependent spatial learning, as assayed in the Morris water maze. In contrast, associative learning, as assayed in a fear conditioning assay, appeared to be unaffected. Male transgenic mice showed augmented activity in prolonged (2 h) open field testing, while female transgenic mice showed reduced activity in the same assay. Transgenic mice showed no demonstrable abnormalities in prepulse inhibition. There was also no detectable difference in anxiety-like behavior, as measured in the elevated plus-maze. These data support the use of a dominant-negative approach to the study of PDE4D5 function in the CNS and specifically in learning and memory.
Collapse
|
10
|
Blokland A, Heckman P, Vanmierlo T, Schreiber R, Paes D, Prickaerts J. Phosphodiesterase Type 4 Inhibition in CNS Diseases. Trends Pharmacol Sci 2019; 40:971-985. [DOI: 10.1016/j.tips.2019.10.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/15/2019] [Accepted: 10/17/2019] [Indexed: 12/17/2022]
|
11
|
Small-molecule allosteric activators of PDE4 long form cyclic AMP phosphodiesterases. Proc Natl Acad Sci U S A 2019; 116:13320-13329. [PMID: 31209056 PMCID: PMC6613170 DOI: 10.1073/pnas.1822113116] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cyclic AMP (cAMP) phosphodiesterase-4 (PDE4) enzymes degrade cAMP and underpin the compartmentalization of cAMP signaling through their targeting to particular protein complexes and intracellular locales. We describe the discovery and characterization of a small-molecule compound that allosterically activates PDE4 long isoforms. This PDE4-specific activator displays reversible, noncompetitive kinetics of activation (increased V max with unchanged K m), phenocopies the ability of protein kinase A (PKA) to activate PDE4 long isoforms endogenously, and requires a dimeric enzyme assembly, as adopted by long, but not by short (monomeric), PDE4 isoforms. Abnormally elevated levels of cAMP provide a critical driver of the underpinning molecular pathology of autosomal dominant polycystic kidney disease (ADPKD) by promoting cyst formation that, ultimately, culminates in renal failure. Using both animal and human cell models of ADPKD, including ADPKD patient-derived primary cell cultures, we demonstrate that treatment with the prototypical PDE4 activator compound lowers intracellular cAMP levels, restrains cAMP-mediated signaling events, and profoundly inhibits cyst formation. PDE4 activator compounds thus have potential as therapeutics for treating disease driven by elevated cAMP signaling as well as providing a tool for evaluating the action of long PDE4 isoforms in regulating cAMP-mediated cellular processes.
Collapse
|
12
|
Creating a potential diagnostic for prostate cancer risk stratification (InformMDx™) by translating novel scientific discoveries concerning cAMP degrading phosphodiesterase-4D7 (PDE4D7). Clin Sci (Lond) 2019; 133:269-286. [DOI: 10.1042/cs20180519] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/19/2018] [Accepted: 01/01/2019] [Indexed: 12/14/2022]
Abstract
Abstract
Increased PSA-based screening for prostate cancer has resulted in a growing number of diagnosed cases. However, around half of these are ‘indolent’, neither metastasizing nor leading to disease specific death. Treating non-progressing tumours with invasive therapies is currently regarded as unnecessary over-treatment with patients being considered for conservative regimens, such as active surveillance (AS). However, this raises both compliance and protocol issues. Great clinical benefit could accrue from a biomarker able to predict long-term patient outcome accurately at the time of biopsy and initial diagnosis. Here we delineate the translation of a laboratory discovery through to the precision development of a clinically validated, novel prognostic biomarker assay (InformMDx™). This centres on determining transcript levels for phosphodiesterase-4D7 (PDE4D7), an enzyme that breaks down cyclic AMP, a signalling molecule intimately connected with proliferation and androgen receptor function. Quantifiable detection of PDE4D7 mRNA transcripts informs on the longitudinal outcome of post-surgical disease progression. The risk of post-surgical progression increases steeply for patients with very low ‘PDE4D7 scores’, while risk decreases markedly for those patients with very high ‘PDE4D7 scores’. Combining clinical risk variables, such as the Gleason or CAPRA (Cancer of the Prostate Risk Assessment) score, with the ‘PDE4D7 score’ further enhances the prognostic power of this personalized, precision assessment. Thus the ‘PDE4D7 score’ has the potential to define, more effectively, appropriate medical intervention/AS strategies for individual prostate cancer patients.
Collapse
|
13
|
Hansen RT, Zhang HT. The Past, Present, and Future of Phosphodiesterase-4 Modulation for Age-Induced Memory Loss. ADVANCES IN NEUROBIOLOGY 2018; 17:169-199. [PMID: 28956333 DOI: 10.1007/978-3-319-58811-7_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The purpose of this chapter is to highlight the state of progress for phosphodiesterase-4 (PDE4) modulation as a potential therapeutic for psychiatric illness, and to draw attention to particular hurdles and obstacles that must be overcome in future studies to develop PDE4-mediated therapeutics. Pathological and non-pathological related memory loss will be the focus of the chapter; however, we will at times also touch upon other psychiatric illnesses like anxiety and depression. First, we will provide a brief background of PDE4, and the rationale for its extensive study in cognition. Second, we will explore fundamental differences in individual PDE4 subtypes, and then begin to address differences between pathological and non-pathological aging. Alterations of cAMP/PDE4 signaling that occur within normal vs. pathological aging, and the potential for PDE4 modulation to combat these alterations within each context will be described. Finally, we will finish the chapter with obstacles that have hindered the field, and future studies and alternative viewpoints that need to be addressed. Overall, we hope this chapter will demonstrate the incredible complexity of PDE4 signaling in the brain, and will be useful in forming a strategy to develop future PDE4-mediated therapeutics for psychiatric illnesses.
Collapse
Affiliation(s)
- Rolf T Hansen
- Departments of Behavioral Medicine & Psychiatry and Physiology & Pharmacology, West Virginia University Health Sciences Center, 1 Medical Center Drive, Morgantown, WV, 26506-9137, USA
| | - Han-Ting Zhang
- Department of Behavioral Medicine and Psychiatry, West Virginia University Health Sciences Center, 1 Medical Center Drive, Morgantown, WV, 26506, USA. .,Department of Physiology and Pharmacology, West Virginia University Health Sciences Center, 1 Medical Center Drive, Morgantown, WV, 26506, USA. .,Institute of Pharmacology, Taishan Medical University, Taian, 271016, China.
| |
Collapse
|
14
|
Campbell SL, van Groen T, Kadish I, Smoot LHM, Bolger GB. Altered phosphorylation, electrophysiology, and behavior on attenuation of PDE4B action in hippocampus. BMC Neurosci 2017; 18:77. [PMID: 29197324 PMCID: PMC5712142 DOI: 10.1186/s12868-017-0396-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 11/28/2017] [Indexed: 01/19/2023] Open
Abstract
Background PDE4 cyclic nucleotide phosphodiesterases regulate 3′, 5′ cAMP abundance in the CNS and thereby regulate PKA activity and phosphorylation of CREB, which has been implicated in learning and memory, depression and other functions. The PDE4 isoform PDE4B1 also interacts with the DISC1 protein, implicated in neural development and behavioral disorders. The cellular functions of PDE4B1 have been investigated extensively, but its function(s) in the intact organism remained unexplored. Results To specifically disrupt PDE4B1, we developed mice that express a PDE4B1-D564A transgene in the hippocampus and forebrain. The transgenic mice showed enhanced phosphorylation of CREB and ERK1/2 in hippocampus. Hippocampal neurogenesis was increased in the transgenic mice. Hippocampal electrophysiological studies showed increased baseline synaptic transmission and enhanced LTP in male transgenic mice. Behaviorally, male transgenic mice showed increased activity in prolonged open field testing, but neither male nor female transgenic mice showed detectable anxiety-like behavior or antidepressant effects in the elevated plus-maze, tail-suspension or forced-swim tests. Neither sex showed any significant differences in associative fear conditioning or showed any demonstrable abnormalities in pre-pulse inhibition. Conclusions These data support the use of an isoform-selective approach to the study of PDE4B1 function in the CNS and suggest a probable role of PDE4B1 in synaptic plasticity and behavior. They also provide additional rationale and a refined approach to the development of small-molecule PDE4B1-selective inhibitors, which have potential functions in disorders of cognition, memory, mood and affect.
Collapse
Affiliation(s)
- Susan L Campbell
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.,Center for Glial Biology in Health, Disease, and Cancer, Virginia Tech Carilion Research Institute, 2 Riverside Circle, Roanoke, VA, 24016, USA
| | - Thomas van Groen
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Inga Kadish
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Lisa High Mitchell Smoot
- Department of Medicine, University of Alabama at Birmingham, NP 2501, 1720 2nd Ave S, Birmingham, AL, 35294-3300, USA
| | - Graeme B Bolger
- Department of Pharmacology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA. .,Department of Medicine, University of Alabama at Birmingham, NP 2501, 1720 2nd Ave S, Birmingham, AL, 35294-3300, USA. .,Center for Glial Biology in Health, Disease, and Cancer, Virginia Tech Carilion Research Institute, 2 Riverside Circle, Roanoke, VA, 24016, USA.
| |
Collapse
|
15
|
Long T, Rojo-Arreola L, Shi D, El-Sakkary N, Jarnagin K, Rock F, Meewan M, Rascón AA, Lin L, Cunningham KA, Lemieux GA, Podust L, Abagyan R, Ashrafi K, McKerrow JH, Caffrey CR. Phenotypic, chemical and functional characterization of cyclic nucleotide phosphodiesterase 4 (PDE4) as a potential anthelmintic drug target. PLoS Negl Trop Dis 2017; 11:e0005680. [PMID: 28704396 PMCID: PMC5526615 DOI: 10.1371/journal.pntd.0005680] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 07/25/2017] [Accepted: 06/04/2017] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Reliance on just one drug to treat the prevalent tropical disease, schistosomiasis, spurs the search for new drugs and drug targets. Inhibitors of human cyclic nucleotide phosphodiesterases (huPDEs), including PDE4, are under development as novel drugs to treat a range of chronic indications including asthma, chronic obstructive pulmonary disease and Alzheimer's disease. One class of huPDE4 inhibitors that has yielded marketed drugs is the benzoxaboroles (Anacor Pharmaceuticals). METHODOLOGY/PRINCIPAL FINDINGS A phenotypic screen involving Schistosoma mansoni and 1,085 benzoxaboroles identified a subset of huPDE4 inhibitors that induced parasite hypermotility and degeneration. To uncover the putative schistosome PDE4 target, we characterized four PDE4 sequences (SmPDE4A-D) in the parasite's genome and transcriptome, and cloned and recombinantly expressed the catalytic domain of SmPDE4A. Among a set of benzoxaboroles and catechol inhibitors that differentially inhibit huPDE4, a relationship between the inhibition of SmPDE4A, and parasite hypermotility and degeneration, was measured. To validate SmPDE4A as the benzoxaborole molecular target, we first generated Caenorhabditis elegans lines that express a cDNA for smpde4a on a pde4(ce268) mutant (hypermotile) background: the smpde4a transgene restored mutant worm motility to that of the wild type. We then showed that benzoxaborole inhibitors of SmPDE4A that induce hypermotility in the schistosome also elicit a hypermotile response in the C. elegans lines that express the smpde4a transgene, thereby confirming SmPDE4A as the relevant target. CONCLUSIONS/SIGNIFICANCE The orthogonal chemical, biological and genetic strategies employed identify SmPDE4A's contribution to parasite motility and degeneration, and its potential as a drug target. Transgenic C. elegans is highlighted as a potential screening tool to optimize small molecule chemistries to flatworm molecular drug targets.
Collapse
Affiliation(s)
- Thavy Long
- Center for Discovery and Innovation in Parasitic Diseases, University of California San Francisco, San Francisco, California, United States of America
- Department of Pathology, University of California San Francisco, San Francisco, California, United States of America
| | - Liliana Rojo-Arreola
- Center for Discovery and Innovation in Parasitic Diseases, University of California San Francisco, San Francisco, California, United States of America
- Department of Pathology, University of California San Francisco, San Francisco, California, United States of America
| | - Da Shi
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Nelly El-Sakkary
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Kurt Jarnagin
- Anacor Pharmaceuticals, Inc., Palo Alto, California, United States of America
| | - Fernando Rock
- Anacor Pharmaceuticals, Inc., Palo Alto, California, United States of America
| | - Maliwan Meewan
- Anacor Pharmaceuticals, Inc., Palo Alto, California, United States of America
| | - Alberto A. Rascón
- Center for Discovery and Innovation in Parasitic Diseases, University of California San Francisco, San Francisco, California, United States of America
- Department of Pathology, University of California San Francisco, San Francisco, California, United States of America
| | - Lin Lin
- Department of Physiology, University of California San Francisco, San Francisco, California, United States of America
| | - Katherine A. Cunningham
- Department of Physiology, University of California San Francisco, San Francisco, California, United States of America
| | - George A. Lemieux
- Department of Physiology, University of California San Francisco, San Francisco, California, United States of America
| | - Larissa Podust
- Center for Discovery and Innovation in Parasitic Diseases, University of California San Francisco, San Francisco, California, United States of America
- Department of Pathology, University of California San Francisco, San Francisco, California, United States of America
| | - Ruben Abagyan
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Kaveh Ashrafi
- Department of Physiology, University of California San Francisco, San Francisco, California, United States of America
| | - James H. McKerrow
- Center for Discovery and Innovation in Parasitic Diseases, University of California San Francisco, San Francisco, California, United States of America
- Department of Pathology, University of California San Francisco, San Francisco, California, United States of America
| | - Conor R. Caffrey
- Center for Discovery and Innovation in Parasitic Diseases, University of California San Francisco, San Francisco, California, United States of America
- Department of Pathology, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
16
|
Bolger GB. The RNA-binding protein SERBP1 interacts selectively with the signaling protein RACK1. Cell Signal 2017; 35:256-263. [PMID: 28267599 DOI: 10.1016/j.cellsig.2017.03.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 02/23/2017] [Accepted: 03/02/2017] [Indexed: 12/19/2022]
Abstract
The RACK1 protein interacts with numerous proteins involved in signal transduction, the cytoskeleton, and mRNA splicing and translation. We used the 2-hybrid system to identify additional proteins interacting with RACK1 and isolated the RNA-binding protein SERBP1. SERPB1 shares amino acid sequence homology with HABP4 (also known as Ki-1/57), a component of the RNA spicing machinery that has been shown previously to interact with RACK1. Several different isoforms of SERBP1, generated by alternative mRNA splicing, interacted with RACK1 with indistinguishable interaction strength, as determined by a 2-hybrid beta-galactosidase assay. Analysis of deletion constructs of SERBP1 showed that the C-terminal third of the SERBP1 protein, which contains one of its two substrate sites for protein arginine N-methyltransferase 1 (PRMT1), is necessary and sufficient for it to interact with RACK1. Analysis of single amino acid substitutions in RACK1, identified in a reverse 2-hybrid screen, showed very substantial overlap with those implicated in the interaction of RACK1 with the cAMP-selective phosphodiesterase PDE4D5. These data are consistent with SERBP1 interacting selectively with RACK1, mediated by an extensive interaction surface on both proteins.
Collapse
Affiliation(s)
- Graeme B Bolger
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294-3300, USA; Department of Pharmacology, University of Alabama at Birmingham, Birmingham, AL 35294-3300, USA.
| |
Collapse
|
17
|
The cyclic AMP phosphodiesterase 4D5 (PDE4D5)/receptor for activated C-kinase 1 (RACK1) signalling complex as a sensor of the extracellular nano-environment. Cell Signal 2017; 35:282-289. [PMID: 28069443 DOI: 10.1016/j.cellsig.2017.01.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 01/04/2017] [Indexed: 01/15/2023]
Abstract
The cyclic AMP and protein kinase C (PKC) signalling pathways regulate a wide range of cellular processes that require tight control, including cell proliferation and differentiation, metabolism and inflammation. The identification of a protein complex formed by receptor for activated C kinase 1 (RACK1), a scaffold protein for protein kinase C (PKC), and the cyclic AMP-specific phosphodiesterase, PDE4D5, demonstrates a potential mechanism for crosstalk between these two signalling routes. Indeed, RACK1-bound PDE4D5 is activated by PKCα, providing a route through which the PKC pathway can control cellular cyclic AMP levels. Although RACK1 does not appear to affect the intracellular localisation of PDE4D5, it does afford structural stability, providing protection against denaturation, and increases the susceptibility of PDE4D5 to inhibition by cyclic AMP-elevating pharmaceuticals, such as rolipram. In addition, RACK1 can recruit PDE4D5 and PKC to intracellular protein complexes that control diverse cellular functions, including activated G protein-coupled receptors (GPCRs) and integrins clustered at focal adhesions. Through its ability to regulate local cyclic AMP levels in the vicinity of these multimeric receptor complexes, the RACK1/PDE4D5 signalling unit therefore has the potential to modify the quality of incoming signals from diverse extracellular cues, ranging from neurotransmitters and hormones to nanometric topology. Indeed, PDE4D5 and RACK1 have been found to form a tertiary complex with integrin-activated focal adhesion kinase (FAK), which localises to cellular focal adhesion sites. This supports PDE4D5 and RACK1 as potential regulators of cell adhesion, spreading and migration through the non-classical exchange protein activated by cyclic AMP (EPAC1)/Rap1 signalling route.
Collapse
|
18
|
Bolger GB. The PDE4 cAMP-Specific Phosphodiesterases: Targets for Drugs with Antidepressant and Memory-Enhancing Action. ADVANCES IN NEUROBIOLOGY 2017; 17:63-102. [PMID: 28956330 DOI: 10.1007/978-3-319-58811-7_4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The PDE4 cyclic nucleotide phosphodiesterases are essential regulators of cAMP abundance in the CNS through their ability to regulate PKA activity, the phosphorylation of CREB, and other important elements of signal transduction. In pre-clinical models and in early-stage clinical trials, PDE4 inhibitors have been shown to have antidepressant and memory-enhancing activity. However, the development of clinically-useful PDE4 inhibitors for CNS disorders has been limited by variable efficacy and significant side effects. Recent structural studies have greatly enhanced our understanding of the molecular configuration of PDE4 enzymes, especially the "long" PDE4 isoforms that are abundant in the CNS. The new structural data provide a rationale for the development of a new generation of PDE4 inhibitors that specifically act on long PDE4 isoforms. These next generation PDE4 inhibitors may also be capable of targeting the interactions of select long forms with their "partner" proteins, such as RACK1, β-arrestin, and DISC1. They would therefore have the ability to affect cAMP levels in specific cellular compartments and target localized cellular functions, such as synaptic plasticity. These new agents might also be able to target PDE4 populations in select regions of the CNS that are implicated in learning and memory, affect, and cognition. Potential therapeutic uses of these agents could include affective disorders, memory enhancement, and neurogenesis.
Collapse
Affiliation(s)
- Graeme B Bolger
- Departments of Medicine and Pharmacology, University of Alabama at Birmingham, 1720 2nd Avenue South, NP 2501, Birmingham, AL, 35294-3300, USA.
| |
Collapse
|
19
|
Guo CH, Bai L, Wu HH, Yang J, Cai GH, Wang X, Wu SX, Ma W. The analgesic effect of rolipram is associated with the inhibition of the activation of the spinal astrocytic JNK/CCL2 pathway in bone cancer pain. Int J Mol Med 2016; 38:1433-1442. [PMID: 28025994 PMCID: PMC5065302 DOI: 10.3892/ijmm.2016.2763] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 09/19/2016] [Indexed: 12/13/2022] Open
Abstract
Bone cancer pain (BCP) is one of the most difficult and intractable tasks for pain management, which is associated with spinal 'neuron-astrocytic' activation. The activation of the c-Jun N-terminal kinase (JNK)/chemokine (C-C motif) ligand (CCL2) signaling pathway has been reported to be critical for neuropathic pain. Rolipram (ROL), a selective phosphodiesterase 4 inhibitor, possesses potent anti-inflammatory and anti-nociceptive activities. The present study aimed to investigate whether the intrathecal administration of ROL has an analgesic effect on BCP in rats, and to assess whether the inhibition of spinal JNK/CCL2 pathway and astrocytic activation are involved in the analgesic effects of ROL. The analgesic effects of ROL were evaluated using the Von Frey and Hargreaves tests. Immunofluorescence staining was used to determine the number of c-Fos immunoreactive neurons, and the expression of spinal astrocytes and microglial activation on day 14 after tumor cell inoculation. Enzyme-linked immunosorbent assay (ELISA) was used to detect the expression of pro-inflammatory cytokines [interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α] and chemokines (CCL2), and western blot analysis was then used to examine the spinal phosphodiesterase 4 (PDE4), ionized calcium binding adapter molecule-1 (IBA-1) and JNK levels on day 14 after tumor cell inoculation. The results revealed that ROL exerted a short-term analgesic effect in a dose-dependent manner, and consecutive daily injections of ROL exerted continuous analgesic effects. In addition, spinal 'neuron-astrocytic' activation was suppressed and was associated with the downregulation of spinal IL-1β, IL-6 and TNF-α expression, and the inhibition of PDE4B and JNK levels in the spine was also observed. In addition, the level of CCL2 was decreased in the rats with BCP. The JNK inhibitor, SP600125, decreased CCL2 expression and attenuated pain behavior. Following co-treatment with ROL and SP600125, no significant increases in thermal hyperalgesia and CCL2 expression were observed compared with the ROL group. Thus, our findings suggest that the analgesic effects of ROL in BCP are mainly mediated through the inhibition of 'neuron-astrocytic' activation, which occurs via the suppression of spinal JNK/CCL2 signaling.
Collapse
Affiliation(s)
- Chi-Hua Guo
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Lu Bai
- Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Huang-Hui Wu
- Department of Anesthesiology, Fuzhou General Hospital of Nanjing Military Region, Fuzhou, Fujian 350025, P.R. China
| | - Jing Yang
- Institute of Neuroscience, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310027, P.R. China
| | - Guo-Hong Cai
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Xin Wang
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Sheng-Xi Wu
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Wei Ma
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
20
|
Bolger GB. RACK1 and β-arrestin2 attenuate dimerization of PDE4 cAMP phosphodiesterase PDE4D5. Cell Signal 2016; 28:706-12. [PMID: 26257302 PMCID: PMC4744576 DOI: 10.1016/j.cellsig.2015.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 08/05/2015] [Indexed: 01/14/2023]
Abstract
PDE4 family cAMP-selective cyclic nucleotide phosphodiesterases are important in the regulation of cAMP abundance in numerous systems, and thereby play an important role in the regulation of PKA and EPAC activity and the phosphorylation of CREB. We have used the yeast 2-hybrid system to demonstrate recently that long PDE4 isoforms form homodimers, consistent with data obtained recently by structural studies. The long PDE4 isoform PDE4D5 interacts selectively with β-arrestin2, implicated in the regulation of G-protein-coupled receptors and other cell signaling components, and also with the β-propeller protein RACK1. In the present study, we use 2-hybrid approaches to demonstrate that RACK1 and β-arrestin2 inhibit the dimerization of PDE4D5. We also show that serine-to-alanine mutations at PKA and ERK1/2 phosphorylation sites on PDE4D5 detectably ablate dimerization. Conversely, phospho-mimic serine-to-aspartate mutations at the MK2 and oxidative stress kinase sites ablate dimerization. Analysis of PDE4D5 that is locked into the dimeric configuration by the formation of a trans disulfide bond between Ser261 and Ser602 shows that RACK1 interacts strongly with both the monomeric and dimeric forms, but that β-arrestin2 interacts exclusively with the monomeric form. This is consistent with the concept that β-arrestin2 can preferentially recruit the monomeric, or "open," form of PDE4D5 to β2-adrenergic receptors, where it can regulate cAMP signaling.
Collapse
Affiliation(s)
- Graeme B Bolger
- Departments of Medicine and Pharmacology, University of Alabama at Birmingham, Birmingham AL 35294, USA.
| |
Collapse
|
21
|
Wu C, Rajagopalan S. Phosphodiesterase-4 inhibition as a therapeutic strategy for metabolic disorders. Obes Rev 2016; 17:429-41. [PMID: 26997580 DOI: 10.1111/obr.12385] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 12/03/2015] [Accepted: 12/21/2015] [Indexed: 12/31/2022]
Abstract
Phosphodiesterase-4 (PDE4) hydrolyses cyclic adenosine monophosphate (cAMP), a crucial secondary messenger for cellular adaptation to diverse external stimuli. The activity of PDE4 is tightly controlled by post-translational regulation, structure-based auto-regulation and locus specific 'compartmentalization' of PDE4 with its interactive proteins (signalsomes). Through these mechanisms, PDE4 regulates cAMP levels and shapes the cAMP signalling, directing signals from the diverse external stimuli to distinct microenvironments exquisitely. Derangement of the PDE4-cAMP signalling represents a pathophysiologically relevant pathway in metabolic disorders as demonstrated through a critical role in the processes including inflammation, disordered glucose and lipid metabolism, hepatic steatosis, abnormal lipolysis, suppressed thermogenic function and deranged neuroendocrine functions. A limited number of PDE4 inhibitors are currently undergoing clinical evaluation for treating disorders such as type 2 diabetes and non-alcoholic steatohepatitis. The discovery of novel PDE4 allosteric inhibitors and signalsome-based strategies targeting individual PDE4 variants may allow PDE4 isoform selective inhibition, which may offer safer strategies for chronic treatment of metabolic disorders.
Collapse
Affiliation(s)
- C Wu
- Division of Cardiovascular Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - S Rajagopalan
- Division of Cardiovascular Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
22
|
Eskandari N, Mirmosayyeb O, Bordbari G, Bastan R, Yousefi Z, Andalib A. A short review on structure and role of cyclic-3',5'-adenosine monophosphate-specific phosphodiesterase 4 as a treatment tool. J Res Pharm Pract 2015; 4:175-81. [PMID: 26645022 PMCID: PMC4645128 DOI: 10.4103/2279-042x.167043] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Cyclic nucleotide phosphodiesterases (PDEs) are known as a super-family of enzymes which catalyze the metabolism of the intracellular cyclic nucleotides, cyclic-3',5'-adenosine monophosphate (cAMP), and cyclic-3',5'-guanosine monophosphate that are expressed in a variety of cell types that can exert various functions based on their cells distribution. The PDE4 family has been the focus of vast research efforts over recent years because this family is considered as a prime target for therapeutic intervention in a number of inflammatory diseases such as asthma, chronic obstructive pulmonary disease, and rheumatoid arthritis, and it should be used and researched by pharmacists. This is because the major isoform of PDE that regulates inflammatory cell activity is the cAMP-specific PDE, PDE4. This review discusses the relationship between PDE4 and its inhibitor drugs based on structures, cells distribution, and pharmacological properties of PDE4 which can be informative for all pharmacy specialists.
Collapse
Affiliation(s)
- Nahid Eskandari
- Department of Immunology, Isfahan University of Medical Sciences, Isfahan, Iran ; Applied Physiology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Omid Mirmosayyeb
- Department of Immunology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Gazaleh Bordbari
- Department of Immunology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Reza Bastan
- Department of Human Vaccines, Razi Serum and Vaccine Research Institute, Karaj, Alborz, Iran
| | - Zahra Yousefi
- Department of Immunology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Alireza Andalib
- Department of Immunology, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
23
|
Protein-protein interactions of PDE4 family members - Functions, interactions and therapeutic value. Cell Signal 2015; 28:713-8. [PMID: 26498857 DOI: 10.1016/j.cellsig.2015.10.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 10/18/2015] [Indexed: 12/16/2022]
Abstract
The second messenger cyclic adenosine monophosphate (cAMP) is ubiquitous and directs a plethora of functions in all cells. Although theoretically freely diffusible through the cell from the site of its synthesis it is not evenly distributed. It rather is shaped into gradients and these gradients are established by phospodiesterases (PDEs), the only enzymes that hydrolyse cAMP and thereby terminate cAMP signalling upstream of cAMP's effector systems. Miles D. Houslay has devoted most of his scientific life highly successfully to a particular family of PDEs, the PDE4 family. The family is encoded by four genes and gives rise to around 20 enzymes, all with different functions. M. Houslay has discovered many of these functions and realised early on that PDE4 family enzymes are attractive drug targets in a variety of human diseases, but not their catalytic activity as that is encoded in conserved domains in all family members. He postulated that targeting the intracellular location would provide the specificity that modern innovative drugs require to improve disease conditions with fewer side effects than conventional drugs. Due to the wealth of M. Houslay's work, this article can only summarize some of his discoveries and, therefore, focuses on protein-protein interactions of PDE4. The aim is to discuss functions of selected protein-protein interactions and peptide spot technology, which M. Houslay introduced into the PDE4 field for identifying interacting domains. The therapeutic potential of PDE4 interactions will also be discussed.
Collapse
|
24
|
|
25
|
Neurochondrin is an atypical RIIα-specific A-kinase anchoring protein. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:1667-75. [PMID: 25916936 DOI: 10.1016/j.bbapap.2015.04.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 04/13/2015] [Accepted: 04/15/2015] [Indexed: 12/25/2022]
Abstract
Protein kinase activity is regulated not only by direct strategies affecting activity but also by spatial and temporal regulatory mechanisms. Kinase signaling pathways are coordinated by scaffolding proteins that orchestrate the assembly of multi-protein complexes. One family of such scaffolding proteins are the A-kinase anchoring proteins (AKAPs). AKAPs share the commonality of binding cAMP-dependent protein kinase (PKA). In addition, they bind further signaling proteins and kinase substrates and tether such multi-protein complexes to subcellular locations. The A-kinase binding (AKB) domain of AKAPs typically contains a conserved helical motif that interacts directly with the dimerization/docking (D/D) domain of the regulatory subunits of PKA. Based on a pull-down proteomics approach, we identified neurochondrin (neurite-outgrowth promoting protein) as a previously unidentified AKAP. Here, we show that neurochondrin interacts directly with PKA through a novel mechanism that involves two distinct binding regions. In addition, we demonstrate that neurochondrin has strong isoform selectivity towards the RIIα subunit of PKA with nanomolar affinity. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases.
Collapse
|