1
|
Kim GY, Kim S, Park K, Lim HJ, Kim WH. Gasoline exhaust particles induce MMP1 expression via Nox4-derived ROS-ATF3-linked pathway in human umbilical vein endothelial cells. Toxicology 2025; 511:154051. [PMID: 39793954 DOI: 10.1016/j.tox.2025.154051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/29/2024] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
Gasoline exhaust particles (GEP) are risk factors for cardiovascular disease. Activating transcription factor 3 (ATF3) is a transcription factor known to form a heterodimer with AP-1 transcription factors for its target gene expression. However, the involvement of ATF3 in GEP-induced gene expression in human umbilical vein endothelial cells (HUVECs) has not been investigated. In this study, we found that GEP, at IC50 value of 59 μg/ml, induced the expression of ATF3, which led to the expression of matrix metalloproteinase 1 (MMP1) in HUVECs. GEP induce an interaction between c-Jun and ATF3, and c-Jun depletion attenuates GEP-induced MMP1 expression. Depletion of NADPH oxidase 4 (Nox4) suppressed GEP-induced reactive oxygen species (ROS) generation and the subsequent upregulation of ATF3 and MMP1, suggesting that Nox4-derived ROS play a role as upstream regulators of GEP-induced ATF3 expression and MMP1 upregulation. Furthermore, Nox4 depletion attenuated the interaction between ATF3 and c-Jun and their binding to the AP-1 binding site of the MMP1 promoter. Taken together, these findings demonstrate that GEP induce the expression of MMP1 by generating Nox4-dependent ROS, which subsequently increase ATF3 expression and its interaction with c-Jun. This leads to their binding to the promoter region of MMP1 and its transcription. These findings suggest that Nox4-derived ROS and ATF3 are critical for GEP-induced MMP1 expression.
Collapse
Affiliation(s)
- Geun-Young Kim
- Division of Cardiovascular Disease Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, Cheongju, Republic of Korea.
| | - Suji Kim
- Division of Cardiovascular Disease Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, Cheongju, Republic of Korea
| | - Kihong Park
- School of Earth Science and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Hyun-Joung Lim
- Division of Cardiovascular Disease Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, Cheongju, Republic of Korea
| | - Won-Ho Kim
- Division of Cardiovascular Disease Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, Cheongju, Republic of Korea
| |
Collapse
|
2
|
Werner AC, Weckbach LT, Salvermoser M, Pitter B, Cao J, Maier-Begandt D, Forné I, Schnittler HJ, Walzog B, Montanez E. Coronin 1B Controls Endothelial Actin Dynamics at Cell-Cell Junctions and Is Required for Endothelial Network Assembly. Front Cell Dev Biol 2020; 8:708. [PMID: 32850828 PMCID: PMC7411154 DOI: 10.3389/fcell.2020.00708] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/13/2020] [Indexed: 12/28/2022] Open
Abstract
Development and homeostasis of blood vessels critically depend on the regulation of endothelial cell–cell junctions. VE-cadherin (VEcad)-based cell–cell junctions are connected to the actin cytoskeleton and regulated by actin-binding proteins. Coronin 1B (Coro1B) is an actin binding protein that controls actin networks at classical lamellipodia. The role of Coro1B in endothelial cells (ECs) is not fully understood and investigated in this study. Here, we demonstrate that Coro1B is a novel component and regulator of cell–cell junctions in ECs. Immunofluorescence studies show that Coro1B colocalizes with VEcad at cell–cell junctions in monolayers of ECs. Live-cell imaging reveals that Coro1B is recruited to, and operated at actin-driven membrane protrusions at cell–cell junctions. Coro1B is recruited to cell–cell junctions via a mechanism that requires the relaxation of the actomyosin cytoskeleton. By analyzing the Coro1B interactome, we identify integrin-linked kinase (ILK) as new Coro1B-associated protein. Coro1B colocalizes with α-parvin, an interactor of ILK, at the leading edge of lamellipodia protrusions. Functional experiments reveal that depletion of Coro1B causes defects in the actin cytoskeleton and cell–cell junctions. Finally, in matrigel tube network assays, depletion of Coro1B results in reduced network complexity, tube number and tube length. Together, our findings point toward a critical role for Coro1B in the dynamic remodeling of endothelial cell–cell junctions and the assembly of endothelial networks.
Collapse
Affiliation(s)
- Ann-Cathrin Werner
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, LMU Munich, Munich, Germany.,Walter Brendel Center of Experimental Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Ludwig T Weckbach
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, LMU Munich, Munich, Germany.,Walter Brendel Center of Experimental Medicine, University Hospital, LMU Munich, Munich, Germany.,Medizinische Klinik I, Klinikum Großhadern, Munich, Germany
| | - Melanie Salvermoser
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, LMU Munich, Munich, Germany.,Walter Brendel Center of Experimental Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Bettina Pitter
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, LMU Munich, Munich, Germany.,Walter Brendel Center of Experimental Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Jiahui Cao
- Institute of Anatomy and Vascular Biology, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Daniela Maier-Begandt
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, LMU Munich, Munich, Germany.,Walter Brendel Center of Experimental Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Ignasi Forné
- Protein Analysis Unit, Biomedical Center, LMU Munich, Munich, Germany
| | - Hans-Joachim Schnittler
- Institute of Anatomy and Vascular Biology, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Barbara Walzog
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, LMU Munich, Munich, Germany.,Walter Brendel Center of Experimental Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Eloi Montanez
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, LMU Munich, Munich, Germany.,Walter Brendel Center of Experimental Medicine, University Hospital, LMU Munich, Munich, Germany.,Department of Physiological Sciences, Faculty of Medicine and Health Sciences, University of Barcelona and IDIBELL, Barcelona, Spain
| |
Collapse
|
3
|
Kim GY, Lim HJ, Kim WH, Park HY. Coronin 1B regulates the TNFα-induced apoptosis of HUVECs by mediating the interaction between TRADD and FADD. Biochem Biophys Res Commun 2020; 526:999-1004. [DOI: 10.1016/j.bbrc.2020.03.096] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 03/18/2020] [Indexed: 01/11/2023]
|
4
|
Podstawski P, Witarski W, Szmatoła T, Bugno-Poniewierska M, Ropka-Molik K. Mobility and Invasion Related Gene Expression Patterns in Equine Sarcoid. Animals (Basel) 2020; 10:ani10050880. [PMID: 32438542 PMCID: PMC7278424 DOI: 10.3390/ani10050880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/27/2020] [Accepted: 05/14/2020] [Indexed: 01/04/2023] Open
Abstract
Simple Summary The current studies profiled the expression of five equine sarcoid cell genes related to cell mobility and invasion (cell cycle control binding protein alpha, coronin 1b, metalloproteinase 2, tissue inhibitor of metalloproteinases 3 and vimentin) and compared the expression of these genes in healthy skin fibroblasts. Cells were collected from healthy and sarcoid-affected skin biopsies obtained by a qualified veterinarian. Gene expression patterns were investigated under two different conditions of cell culture, with high and low availability of nutritional components in the culture medium. The results showed significant differences in the expression of the two analyzed genes (coronin 1b and vimentin) depending on culture conditions. The obtained results emphasize the complexity of the genomic background of sarcoids and indicate the importance of further research on genes related to the physiological changes that occur in sarcoids. Abstract Sarcoids are the most common skin neoplasm in the Equidae family. Sarcoids are benign, but may cause severe damage in affected animals. Due to the high risk of post-treatment recurrence and the lack of an effective method of treatment, it is reasonable to perform studies on the molecular aspects of this neoplasm. Therefore, the present studies analyzed five genes (cell cycle control binding protein alpha, coronin 1b, metalloproteinase 2, tissue inhibitor of metalloproteinases 3 and vimentin) related to cell mobility and invasion traits. Primary healthy fibroblasts and sarcoid cells were obtained from skin biopsies. Cell lines were cultured in two different medium types with different concentrations of foetal bovine serum (10% and 0.5% FBS) to study its influence on the analyzed genes. Gene expression was measured using the real-time PCR method. The results showed significant differences in two genes (coronin and vimentin) depending on culture conditions. In conclusion, the results enabled finding two new genes, related to cell motility and invasion traits, in which gene expression is deregulated. Results of the study may put new knowledge into the complexity of the genetic background of this disease and show the importance of further analysis on this subject.
Collapse
Affiliation(s)
- Przemysław Podstawski
- Department of Animal Molecular Biology, Laboratory of Genomics, National Research Institute of Animal Production, Krakowska 1, 32-083 Balice, Poland; (W.W.); (T.S.); (K.R.-M.)
- Department of Animal Reproduction, Anatomy and Genomics, University of Agriculture in Kraków, Mickiewicza24/28, 30-059 Kraków, Poland;
- Correspondence:
| | - Wojciech Witarski
- Department of Animal Molecular Biology, Laboratory of Genomics, National Research Institute of Animal Production, Krakowska 1, 32-083 Balice, Poland; (W.W.); (T.S.); (K.R.-M.)
| | - Tomasz Szmatoła
- Department of Animal Molecular Biology, Laboratory of Genomics, National Research Institute of Animal Production, Krakowska 1, 32-083 Balice, Poland; (W.W.); (T.S.); (K.R.-M.)
- University Centre of Veterinary Medicine, University of Agriculture in Kraków, Mickiewicza 24/28, 30-059 Kraków, Poland
| | - Monika Bugno-Poniewierska
- Department of Animal Reproduction, Anatomy and Genomics, University of Agriculture in Kraków, Mickiewicza24/28, 30-059 Kraków, Poland;
| | - Katarzyna Ropka-Molik
- Department of Animal Molecular Biology, Laboratory of Genomics, National Research Institute of Animal Production, Krakowska 1, 32-083 Balice, Poland; (W.W.); (T.S.); (K.R.-M.)
| |
Collapse
|
5
|
Chánez-Paredes S, Montoya-García A, Schnoor M. Cellular and pathophysiological consequences of Arp2/3 complex inhibition: role of inhibitory proteins and pharmacological compounds. Cell Mol Life Sci 2019; 76:3349-3361. [PMID: 31073744 PMCID: PMC11105272 DOI: 10.1007/s00018-019-03128-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 02/06/2023]
Abstract
The actin-related protein complex 2/3 (Arp2/3) generates branched actin networks important for many cellular processes such as motility, vesicular trafficking, cytokinesis, and intercellular junction formation and stabilization. Activation of Arp2/3 requires interaction with actin nucleation-promoting factors (NPFs). Regulation of Arp2/3 activity is achieved by endogenous inhibitory proteins through direct binding to Arp2/3 and competition with NPFs or by binding to Arp2/3-induced actin filaments and disassembly of branched actin networks. Arp2/3 inhibition has recently garnered more attention as it has been associated with attenuation of cancer progression, neurotoxic effects during drug abuse, and pathogen invasion of host cells. In this review, we summarize current knowledge on expression, inhibitory mechanisms and function of endogenous proteins able to inhibit Arp2/3 such as coronins, GMFs, PICK1, gadkin, and arpin. Moreover, we discuss cellular consequences of pharmacological Arp2/3 inhibition.
Collapse
Affiliation(s)
- Sandra Chánez-Paredes
- Department for Molecular Biomedicine, CINVESTAV-IPN, Av. IPN 2508, San Pedro Zacatenco, GAM, 07360, Mexico City, Mexico
| | - Armando Montoya-García
- Department for Molecular Biomedicine, CINVESTAV-IPN, Av. IPN 2508, San Pedro Zacatenco, GAM, 07360, Mexico City, Mexico
| | - Michael Schnoor
- Department for Molecular Biomedicine, CINVESTAV-IPN, Av. IPN 2508, San Pedro Zacatenco, GAM, 07360, Mexico City, Mexico.
| |
Collapse
|
6
|
Kim GY, Lim HJ, Park HY. Binding of coronin 1B to TβRI negatively regulates the TGFβ1 signaling pathway. Biochem Biophys Res Commun 2017. [PMID: 28625921 DOI: 10.1016/j.bbrc.2017.06.080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Coronin 1B is an actin-binding protein that regulates several actin-dependent cellular processes including migration and endocytosis. However, the role of coronin 1B in the tumor growth factor (TGF)β signaling pathway is largely unknown. Here, we investigated whether coronin 1B affects the TGFβ signaling cascade and found that coronin 1B negatively regulates the TGFβ signaling pathway. Immunoprecipitation and glutathione-S-transferase-pulldown assays revealed that coronin 1B directly associated with TGFβ receptor I (TβRI). Overexpression of coronin 1B inhibited the TGFβ1-induced interaction between TβRI and Smad2/3 in plasmid-transfected HEK293T cells. Coronin 1B was basally bound to TβRI in vascular smooth muscle cells (VSMCs), but TGFβ1 stimulation did not affect their association, suggesting constitutive binding between coronin 1B and TβRI. Overexpression of coronin 1B suppressed TGFβ1-induced activation of a Smad-binding element-luciferase reporter construct and a plasminogen activator inhibitor (PAI)-1 promoter-luciferase reporter construct in HEK293T cells. By contrast, depletion of coronin 1B by siRNA transfection increased TGFβ1-induced Smad2/3 phosphorylation and PAI-1 expression in VSMCs. These results suggest that coronin 1B regulates the TGFβ1 signaling cascade by constitutively interacting with TβRI and inhibiting the binding of Smad2/3 to TβRI in response to TGFβ1 stimulation.
Collapse
Affiliation(s)
- Geun-Young Kim
- Division of Cardiovascular and Rare Disease, Center for Biomedical Sciences, Korea National Research Institute of Health, Cheongju, Republic of Korea; Jeju National Quarantine Station, Centers for Disease Control & Prevention, Jeju, Republic of Korea
| | - Hyun-Joung Lim
- Division of Cardiovascular and Rare Disease, Center for Biomedical Sciences, Korea National Research Institute of Health, Cheongju, Republic of Korea
| | - Hyun-Young Park
- Division of Cardiovascular and Rare Disease, Center for Biomedical Sciences, Korea National Research Institute of Health, Cheongju, Republic of Korea.
| |
Collapse
|
7
|
Wang N, Chen C, Yang D, Liao Q, Luo H, Wang X, Zhou F, Yang X, Yang J, Zeng C, Wang WE. Mesenchymal stem cells-derived extracellular vesicles, via miR-210, improve infarcted cardiac function by promotion of angiogenesis. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2085-2092. [PMID: 28249798 DOI: 10.1016/j.bbadis.2017.02.023] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 01/18/2017] [Accepted: 02/21/2017] [Indexed: 01/11/2023]
Abstract
Mesenchymal stem cells (MSCs) exert therapeutic effect on treating acute myocardial infarction. Recent evidence showed that paracrine function rather than direct differentiation predominately contributes to the beneficial effects of MSCs, but how the paracrine factors function are not fully elucidated. In the present study, we tested if extracellular vesicles (EVs) secreted by MSC promotes angiogenesis in infracted heart via microRNAs. Immunostaining of CD31 and matrigel plug assay were performed to detect angiogenesis in a mouse myocardial infarction (MI) model. The cardiac function and structure was examined with echocardiographic analysis. Capillary-like tube formation, migration and proliferation of human umbilical vein endothelial cells (HUVECs) were determined. As a result, MSC-EVs significantly improved angiogenesis and cardiac function in post-MI heart. MSC-EVs increased the proliferation, migration and tube formation capacity of HUVECs. MicroRNA (miR)-210 was found to be enriched in MSC-EVs. The EVs collected from MSCs with miR-210 silence largely lost the pro-angiogenic effect both in-vitro and in-vivo. The miR-210 target gene Efna3, which plays a role in angiogenesis, was down-regulated by MSC-EVs treatment in HUVECs. In conclusion, MSC-EVs are sufficient to improve angiogenesis and exert therapeutic effect on MI, its pro- angiogenesis effect might be associated with a miR-210-Efna3 dependent mechanism. This article is part of a Special Issue entitled: Genetic and epigenetic control of heart failure - edited by Jun Ren & Megan Yingmei Zhang.
Collapse
Affiliation(s)
- Na Wang
- Department of Cardiology, Chongqing Institute of Cardiology, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Caiyu Chen
- Department of Cardiology, Chongqing Institute of Cardiology, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Dezhong Yang
- Department of Cardiology, Chongqing Institute of Cardiology, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Qiao Liao
- Department of Cardiology, Chongqing Institute of Cardiology, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Hao Luo
- Department of Cardiology, Chongqing Institute of Cardiology, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Xinquan Wang
- Department of Cardiology, Chongqing Institute of Cardiology, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Faying Zhou
- Department of Cardiology, Chongqing Institute of Cardiology, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Xiaoli Yang
- Department of Cardiology, Chongqing Institute of Cardiology, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Jian Yang
- Department of Cardiology, Chongqing Institute of Cardiology, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Chunyu Zeng
- Department of Cardiology, Chongqing Institute of Cardiology, Daping Hospital, Third Military Medical University, Chongqing 400042, China.
| | - Wei Eric Wang
- Department of Cardiology, Chongqing Institute of Cardiology, Daping Hospital, Third Military Medical University, Chongqing 400042, China.
| |
Collapse
|
8
|
Norrie JL, Li Q, Co S, Huang BL, Ding D, Uy JC, Ji Z, Mackem S, Bedford MT, Galli A, Ji H, Vokes SA. PRMT5 is essential for the maintenance of chondrogenic progenitor cells in the limb bud. Development 2016; 143:4608-4619. [PMID: 27827819 DOI: 10.1242/dev.140715] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 10/24/2016] [Indexed: 12/13/2022]
Abstract
During embryonic development, undifferentiated progenitor cells balance the generation of additional progenitor cells with differentiation. Within the developing limb, cartilage cells differentiate from mesodermal progenitors in an ordered process that results in the specification of the correct number of appropriately sized skeletal elements. The internal pathways by which these cells maintain an undifferentiated state while preserving their capacity to differentiate is unknown. Here, we report that the arginine methyltransferase PRMT5 has a crucial role in maintaining progenitor cells. Mouse embryonic buds lacking PRMT5 have severely truncated bones with wispy digits lacking joints. This novel phenotype is caused by widespread cell death that includes mesodermal progenitor cells that have begun to precociously differentiate into cartilage cells. We propose that PRMT5 maintains progenitor cells through its regulation of Bmp4 Intriguingly, adult and embryonic stem cells also require PRMT5 for maintaining pluripotency, suggesting that similar mechanisms might regulate lineage-restricted progenitor cells during organogenesis.
Collapse
Affiliation(s)
- Jacqueline L Norrie
- Department of Molecular Biosciences, University of Texas at Austin, 2500 Speedway Stop A4800, Austin, TX 78712, USA
| | - Qiang Li
- Department of Molecular Biosciences, University of Texas at Austin, 2500 Speedway Stop A4800, Austin, TX 78712, USA
| | - Swanie Co
- Department of Molecular Biosciences, University of Texas at Austin, 2500 Speedway Stop A4800, Austin, TX 78712, USA
| | - Bau-Lin Huang
- Cancer and Developmental Biology Laboratory, CCR, NCI, Frederick, MD 21702, USA
| | - Ding Ding
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Room E3638, Baltimore, MD 21205, USA
| | - Jann C Uy
- Department of Molecular Biosciences, University of Texas at Austin, 2500 Speedway Stop A4800, Austin, TX 78712, USA
| | - Zhicheng Ji
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Room E3638, Baltimore, MD 21205, USA
| | - Susan Mackem
- Cancer and Developmental Biology Laboratory, CCR, NCI, Frederick, MD 21702, USA
| | - Mark T Bedford
- Department of Epigenetics & Molecular Carcinogenesis, M.D. Anderson Cancer Center, 1808 Park Road 1C (P.O. Box 389), Smithville, TX 78957, USA
| | - Antonella Galli
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Hongkai Ji
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Room E3638, Baltimore, MD 21205, USA
| | - Steven A Vokes
- Department of Molecular Biosciences, University of Texas at Austin, 2500 Speedway Stop A4800, Austin, TX 78712, USA
| |
Collapse
|