1
|
El Daibani A, Madasu MK, Al-Hasani R, Che T. Limitations and potential of κOR biased agonists for pain and itch management. Neuropharmacology 2024; 258:110061. [PMID: 38960136 DOI: 10.1016/j.neuropharm.2024.110061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/20/2024] [Accepted: 07/01/2024] [Indexed: 07/05/2024]
Abstract
The concept of ligand bias is based on the premise that different agonists can elicit distinct responses by selectively activating the same receptor. These responses often determine whether an agonist has therapeutic or undesirable effects. Therefore, it would be highly advantageous to have agonists that specifically trigger the therapeutic response. The last two decades have seen a growing trend towards the consideration of ligand bias in the development of ligands to target the κ-opioid receptor (κOR). Most of these ligands selectively favor G-protein signaling over β-arrestin signaling to potentially provide effective pain and itch relief without adverse side effects associated with κOR activation. Importantly, the specific role of β-arrestin 2 in mediating κOR agonist-induced side effects remains unknown, and similarly the therapeutic and side-effect profiles of G-protein-biased κOR agonists have not been established. Furthermore, some drugs previously labeled as G-protein-biased may not exhibit true bias but may instead be either low-intrinsic-efficacy or partial agonists. In this review, we discuss the established methods to test ligand bias, their limitations in measuring bias factors for κOR agonists, as well as recommend the consideration of other systematic factors to correlate the degree of bias signaling and pharmacological effects. This article is part of the Special Issue on "Ligand Bias".
Collapse
Affiliation(s)
- Amal El Daibani
- Center for Clinical Pharmacology, Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Manish K Madasu
- Center for Clinical Pharmacology, Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Ream Al-Hasani
- Center for Clinical Pharmacology, Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA.
| | - Tao Che
- Center for Clinical Pharmacology, Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
2
|
Trojniak AE, Dang VQ, Czekner KM, Russo RJ, Mather LM, Stahl EL, Cameron MD, Bohn LM, Aubé J. Synthesis and evaluation of 3,4,5-trisubstituted triazoles as G protein-biased kappa opioid receptor agonists. Eur J Med Chem 2024; 276:116627. [PMID: 38971050 PMCID: PMC11316643 DOI: 10.1016/j.ejmech.2024.116627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/14/2024] [Accepted: 06/24/2024] [Indexed: 07/08/2024]
Abstract
Kappa opioid receptor (KOR) agonists represent promising therapeutics for pain relief due to their analgesic properties along with lower abuse potential than opioids that act at the mu opioid receptor. However, typical KOR agonists produce sedation and dysphoria. Previous studies have shown that G protein signaling-biased KOR agonists may present a means to untangle the desired analgesic properties from undesired side effects. In this paper, we report a new series of G protein signaling-biased KOR agonists entailing -S- → -CH2- replacement in a previously reported KOR agonist, triazole 1.1. With an optimized carbon linker in hand, further development of the scaffold was undertaken to investigate the appendages of the triazole core. The structure-activity relationship study of this series is described, including several analogues that display enhanced potency while maintaining G protein-signaling bias compared to triazole 1.1.
Collapse
Affiliation(s)
- Ashley E Trojniak
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7363, USA
| | - Vuong Q Dang
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, 130 Scripps Way, Jupiter, FL, 33458, USA
| | - Kerri M Czekner
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, 130 Scripps Way, Jupiter, FL, 33458, USA; The Skaggs Graduate School of Chemical and Biological Sciences at Scripps Research, Jupiter, FL, 33458, USA
| | - Robin J Russo
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, 130 Scripps Way, Jupiter, FL, 33458, USA; The Skaggs Graduate School of Chemical and Biological Sciences at Scripps Research, Jupiter, FL, 33458, USA
| | - Lilyan M Mather
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7363, USA
| | - Edward L Stahl
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, 130 Scripps Way, Jupiter, FL, 33458, USA
| | - Michael D Cameron
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, 130 Scripps Way, Jupiter, FL, 33458, USA
| | - Laura M Bohn
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, 130 Scripps Way, Jupiter, FL, 33458, USA; The Skaggs Graduate School of Chemical and Biological Sciences at Scripps Research, Jupiter, FL, 33458, USA
| | - Jeffrey Aubé
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7363, USA.
| |
Collapse
|
3
|
van de Wetering R, Bibi R, Biggerstaff A, Hong S, Pengelly B, Prisinzano TE, La Flamme AC, Kivell BM. Nalfurafine promotes myelination in vitro and facilitates recovery from cuprizone + rapamycin-induced demyelination in mice. Glia 2024; 72:1801-1820. [PMID: 38899723 DOI: 10.1002/glia.24583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/21/2024]
Abstract
The kappa opioid receptor has been identified as a promising therapeutic target for promoting remyelination. In the current study, we evaluated the ability of nalfurafine to promote oligodendrocyte progenitor cell (OPC) differentiation and myelination in vitro, and its efficacy in an extended, cuprizone-induced demyelination model. Primary mouse (C57BL/6J) OPC-containing cultures were treated with nalfurafine (0.6-200 nM), clemastine (0.01-100 μM), T3 (30 ng/mL), or vehicle for 5 days. Using immunocytochemistry and confocal microscopy, we found that nalfurafine treatment increased OPC differentiation, oligodendrocyte (OL) morphological complexity, and myelination of nanofibers in vitro. Adult male mice (C57BL/6J) were given a diet containing 0.2% cuprizone and administered rapamycin (10 mg/kg) once daily for 12 weeks followed by 6 weeks of treatment with nalfurafine (0.01 or 0.1 mg/kg), clemastine (10 mg/kg), or vehicle. We quantified the number of OLs using immunofluorescence, gross myelination using black gold staining, and myelin thickness using electron microscopy. Cuprizone + rapamycin treatment produced extensive demyelination and was accompanied by a loss of mature OLs, which was partially reversed by therapeutic administration of nalfurafine. We also assessed these mice for functional behavioral changes in open-field, horizontal bar, and mouse motor skill sequence tests (complex wheel running). Cuprizone + rapamycin treatment resulted in hyperlocomotion, poorer horizontal bar scores, and less distance traveled on the running wheels. Partial recovery was observed on both the horizontal bar and complex running wheel tests over time, which was facilitated by nalfurafine treatment. Taken together, these data highlight the potential of nalfurafine as a remyelination-promoting therapeutic.
Collapse
Affiliation(s)
- Ross van de Wetering
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - Rabia Bibi
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - Andy Biggerstaff
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - Sheein Hong
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - Bria Pengelly
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - Thomas E Prisinzano
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Anne C La Flamme
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Bronwyn M Kivell
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
4
|
Guo X, Akanda N, Fiorino G, Nimbalkar S, Long CJ, Colón A, Patel A, Tighe PJ, Hickman JJ. Human IPSC-Derived PreBötC-Like Neurons and Development of an Opiate Overdose and Recovery Model. Adv Biol (Weinh) 2024; 8:e2300276. [PMID: 37675827 PMCID: PMC10921423 DOI: 10.1002/adbi.202300276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Indexed: 09/08/2023]
Abstract
Opioid overdose is the leading cause of drug overdose lethality, posing an urgent need for investigation. The key brain region for inspiratory rhythm regulation and opioid-induced respiratory depression (OIRD) is the preBötzinger Complex (preBötC) and current knowledge has mainly been obtained from animal systems. This study aims to establish a protocol to generate human preBötC neurons from induced pluripotent cells (iPSCs) and develop an opioid overdose and recovery model utilizing these iPSC-preBötC neurons. A de novo protocol to differentiate preBötC-like neurons from human iPSCs is established. These neurons express essential preBötC markers analyzed by immunocytochemistry and demonstrate expected electrophysiological responses to preBötC modulators analyzed by patch clamp electrophysiology. The correlation of the specific biomarkers and function analysis strongly suggests a preBötC-like phenotype. Moreover, the dose-dependent inhibition of these neurons' activity is demonstrated for four different opioids with identified IC50's comparable to the literature. Inhibition is rescued by naloxone in a concentration-dependent manner. This iPSC-preBötC mimic is crucial for investigating OIRD and combating the overdose crisis and a first step for the integration of a functional overdose model into microphysiological systems.
Collapse
Affiliation(s)
- Xiufang Guo
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL, 32826, USA
| | - Nesar Akanda
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL, 32826, USA
| | - Gabriella Fiorino
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL, 32826, USA
| | - Siddharth Nimbalkar
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL, 32826, USA
| | - Christopher J Long
- Hesperos Inc, 12501 Research Parkway, Suite 100, Orlando, FL, 32826, USA
| | - Alisha Colón
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL, 32826, USA
| | - Aakash Patel
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL, 32826, USA
| | - Patrick J Tighe
- College of Medicine, Department of Anesthesiology, University of Florida, 1600 SW Archer Road, Gainesville, FL, 32610, USA
| | - James J Hickman
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL, 32826, USA
- Hesperos Inc, 12501 Research Parkway, Suite 100, Orlando, FL, 32826, USA
| |
Collapse
|
5
|
St. Onge C, Pagare PP, Zheng Y, Arriaga M, Stevens DL, Mendez RE, Poklis JL, Halquist MS, Selley DE, Dewey WL, Banks ML, Zhang Y. Systematic Structure-Activity Relationship Study of Nalfurafine Analogues toward Development of Potentially Nonaddictive Pain Management Treatments. J Med Chem 2024; 67:9552-9574. [PMID: 38814086 PMCID: PMC11181328 DOI: 10.1021/acs.jmedchem.4c00646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/08/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024]
Abstract
Despite the availability of numerous pain medications, the current array of Food and Drug Administration-approved options falls short in adequately addressing pain states for numerous patients and consequently worsens the opioid crisis. Thus, it is imperative for basic research to develop novel and nonaddictive pain medications. Toward addressing this clinical goal, nalfurafine (NLF) was chosen as a lead and its structure-activity relationship (SAR) systematically studied through design, syntheses, and in vivo characterization of 24 analogues. Two analogues, 21 and 23, showed longer durations of action than NLF in a warm-water tail immersion assay, produced in vivo effects primarily mediated by KOR and DOR, penetrated the blood-brain barrier, and did not function as reinforcers. Additionally, 21 produced fewer sedative effects than NLF. Taken together, these results aid the understanding of NLF SAR and provide insights for future endeavors in developing novel nonaddictive therapeutics to treat pain.
Collapse
Affiliation(s)
- Celsey
M. St. Onge
- Department
of Medicinal Chemistry, Virginia Commonwealth
University, 800 E. Leigh
Street, Richmond, Virginia 23219, United States
| | - Piyusha P. Pagare
- Department
of Medicinal Chemistry, Virginia Commonwealth
University, 800 E. Leigh
Street, Richmond, Virginia 23219, United States
| | - Yi Zheng
- Department
of Medicinal Chemistry, Virginia Commonwealth
University, 800 E. Leigh
Street, Richmond, Virginia 23219, United States
| | - Michelle Arriaga
- Department
of Pharmacology and Toxicology, Virginia
Commonwealth University, 410 North 12th Street, Richmond, Virginia 23298, United States
| | - David L. Stevens
- Department
of Pharmacology and Toxicology, Virginia
Commonwealth University, 410 North 12th Street, Richmond, Virginia 23298, United States
| | - Rolando E. Mendez
- Department
of Pharmacology and Toxicology, Virginia
Commonwealth University, 410 North 12th Street, Richmond, Virginia 23298, United States
| | - Justin L. Poklis
- Department
of Pharmaceutics, Virginia Commonwealth
University, 410 North
12th Street, Richmond, Virginia 23298, United States
| | - Matthew S. Halquist
- Department
of Pharmaceutics, Virginia Commonwealth
University, 410 North
12th Street, Richmond, Virginia 23298, United States
| | - Dana E. Selley
- Department
of Pharmacology and Toxicology, Virginia
Commonwealth University, 410 North 12th Street, Richmond, Virginia 23298, United States
| | - William L. Dewey
- Department
of Pharmacology and Toxicology, Virginia
Commonwealth University, 410 North 12th Street, Richmond, Virginia 23298, United States
| | - Matthew L. Banks
- Department
of Pharmacology and Toxicology, Virginia
Commonwealth University, 410 North 12th Street, Richmond, Virginia 23298, United States
| | - Yan Zhang
- Department
of Medicinal Chemistry, Virginia Commonwealth
University, 800 E. Leigh
Street, Richmond, Virginia 23219, United States
- Department
of Pharmacology and Toxicology, Virginia
Commonwealth University, 410 North 12th Street, Richmond, Virginia 23298, United States
- Institute
for Drug and Alcohol Studies, 203 East Cary Street, Richmond, Virginia 23298, United States
| |
Collapse
|
6
|
Conibear A, Bailey CP, Kelly E. Biased signalling in analgesic research and development. Curr Opin Pharmacol 2024; 76:102465. [PMID: 38830321 DOI: 10.1016/j.coph.2024.102465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/01/2024] [Accepted: 05/08/2024] [Indexed: 06/05/2024]
Abstract
Ligand bias offers a novel means to improve the therapeutic profile of drugs. With regard to G protein-coupled receptors involved in analgesia, it could be advantageous to develop such drugs if the analgesic effect is mediated by a different cellular signalling pathway than the adverse effects associated with the drug. Whilst this has been explored over a number of years for the μ receptor, it remains unclear whether this approach offers significant benefit for the treatment of pain. Nevertheless, the development of biased ligands at other G protein-coupled receptors in the CNS does offer some promise for the development of novel analgesic drugs in the future. Here we summarise and discuss the recent evidence to support this.
Collapse
Affiliation(s)
- Alexandra Conibear
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Chris P Bailey
- Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Eamonn Kelly
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK.
| |
Collapse
|
7
|
Berndt A, Lee J, Won W, Kimball K, Neiswanger C, Schattauer S, Wang Y, Yeboah F, Ruiz M, Evitts K, Rappleye M, Bremner S, Chun C, Smith N, Mack D, Young J, Lee CJ, Chavkin C. Ultra-fast genetically encoded sensor for precise real-time monitoring of physiological and pathophysiological peroxide dynamics. RESEARCH SQUARE 2024:rs.3.rs-4048855. [PMID: 38585715 PMCID: PMC10996778 DOI: 10.21203/rs.3.rs-4048855/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Hydrogen Peroxide (H2O2) is a central oxidant in redox biology due to its pleiotropic role in physiology and pathology. However, real-time monitoring of H2O2 in living cells and tissues remains a challenge. We address this gap with the development of an optogenetic hydRogen perOxide Sensor (oROS), leveraging the bacterial peroxide binding domain OxyR. Previously engineered OxyR-based fluorescent peroxide sensors lack the necessary sensitivity and response speed for effective real-time monitoring. By structurally redesigning the fusion of Escherichia coli (E. coli) ecOxyR with a circularly permutated green fluorescent protein (cpGFP), we created a novel, green-fluorescent peroxide sensor oROS-G. oROS-G exhibits high sensitivity and fast on-and-off kinetics, ideal for monitoring intracellular H2O2 dynamics. We successfully tracked real-time transient and steady-state H2O2 levels in diverse biological systems, including human stem cell-derived neurons and cardiomyocytes, primary neurons and astrocytes, and mouse brain ex vivo and in vivo. These applications demonstrate oROS's capabilities to monitor H2O2 as a secondary response to pharmacologically induced oxidative stress and when adapting to varying metabolic stress. We showcased the increased oxidative stress in astrocytes via Aβ-putriscine-MAOB axis, highlighting the sensor's relevance in validating neurodegenerative disease models. Lastly, we demonstrated acute opioid-induced generation of H2O2 signal in vivo which highlights redox-based mechanisms of GPCR regulation. oROS is a versatile tool, offering a window into the dynamic landscape of H2O2 signaling. This advancement paves the way for a deeper understanding of redox physiology, with significant implications for understanding diseases associated with oxidative stress, such as cancer, neurodegenerative, and cardiovascular diseases.
Collapse
|
8
|
Kajino K, Tokuda A, Saitoh T. Morphinan Evolution: The Impact of Advances in Biochemistry and Molecular Biology. J Biochem 2024; 175:337-355. [PMID: 38382631 DOI: 10.1093/jb/mvae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/01/2024] [Accepted: 02/09/2024] [Indexed: 02/23/2024] Open
Abstract
Morphinan-based opioids, derived from natural alkaloids like morphine, codeine and thebaine, have long been pivotal in managing severe pain. However, their clinical utility is marred by significant side effects and high addiction potential. This review traces the evolution of the morphinan scaffold in light of advancements in biochemistry and molecular biology, which have expanded our understanding of opioid receptor pharmacology. We explore the development of semi-synthetic and synthetic morphinans, their receptor selectivity and the emergence of biased agonism as a strategy to dissociate analgesic properties from undesirable effects. By examining the molecular intricacies of opioid receptors and their signaling pathways, we highlight how receptor-type selectivity and signaling bias have informed the design of novel analgesics. This synthesis of historical and contemporary perspectives provides an overview of the morphinan landscape, underscoring the ongoing efforts to mitigate the problems facing opioids through smarter drug design. We also highlight that most morphinan derivatives show a preference for the G protein pathway, although detailed experimental comparisons are still necessary. This fact underscores the utility of the morphinan skeleton in future opioid drug discovery.
Collapse
Affiliation(s)
- Keita Kajino
- International Institute for Integrative Sleep Medicine (IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
- Degree Programs in Pure and Applied Sciences, Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| | - Akihisa Tokuda
- International Institute for Integrative Sleep Medicine (IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
- Doctoral Program in Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Tsuyoshi Saitoh
- International Institute for Integrative Sleep Medicine (IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
- Doctoral Program in Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
- Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
9
|
Farahbakhsh ZZ, Holleran KM, Sens JP, Fordahl SC, Mauterer MI, López AJ, Cuzon Carlson VC, Kiraly DD, Grant KA, Jones SR, Siciliano CA. Synchrony between midbrain gene transcription and dopamine terminal regulation is modulated by chronic alcohol drinking. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.15.584711. [PMID: 38559169 PMCID: PMC10979957 DOI: 10.1101/2024.03.15.584711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Alcohol use disorder is marked by disrupted behavioral and emotional states which persist into abstinence. The enduring synaptic alterations that remain despite the absence of alcohol are of interest for interventions to prevent relapse. Here, 28 male rhesus macaques underwent over 20 months of alcohol drinking interspersed with three 30-day forced abstinence periods. After the last abstinence period, we paired direct sub-second dopamine monitoring via ex vivo voltammetry in nucleus accumbens slices with RNA-sequencing of the ventral tegmental area. We found persistent augmentation of dopamine transporter function, kappa opioid receptor sensitivity, and dynorphin release - all inhibitory regulators which act to decrease extracellular dopamine. Surprisingly, though transcript expression was not altered, the relationship between gene expression and functional readouts of these encoded proteins was highly dynamic and altered by drinking history. These results outline the long-lasting synaptic impact of alcohol use and suggest that assessment of transcript-function relationships is critical for the rational design of precision therapeutics.
Collapse
|
10
|
Schrader TO, Lorrain KI, Bagnol D, Edu GC, Broadhead A, Baccei C, Poon MM, Stebbins KJ, Xiong Y, Lorenzana AO, Chan JR, Green AJ, Lorrain DS, Chen A. Identification and In Vivo Evaluation of Myelination Agent PIPE-3297, a Selective Kappa Opioid Receptor Agonist Devoid of β-Arrestin-2 Recruitment Efficacy. ACS Chem Neurosci 2024; 15:685-698. [PMID: 38265210 DOI: 10.1021/acschemneuro.3c00807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024] Open
Abstract
Structure-activity relationship studies led to the discovery of PIPE-3297, a fully efficacious and selective kappa opioid receptor (KOR) agonist. PIPE-3297, a potent activator of G-protein signaling (GTPγS EC50 = 1.1 nM, 91% Emax), did not elicit a β-arrestin-2 recruitment functional response (Emax < 10%). Receptor occupancy experiments performed with the novel KOR radiotracer [3H]-PIPE-3113 revealed that subcutaneous (s.c.) administration of PIPE-3297 at 30 mg/kg in mice achieved 90% occupancy of the KOR in the CNS 1 h post dose. A single subcutaneous dose of PIPE-3297 in healthy mice produced a statistically significant increase of mature oligodendrocytes (P < 0.0001) in the KOR-enriched striatum, an effect that was not observed in animals predosed with the selective KOR antagonist norbinaltorphimine. An equivalent dose given to mice in an open-field activity-monitoring system revealed a small KOR-independent decrease in total locomotor activity versus vehicle measured between 60 and 75 min post dose. Daily doses of PIPE-3297 at both 3 and 30 mg/kg s.c. reduced the disease score in the mouse experimental autoimmune encephalomyelitis (EAE) model. Visually evoked potential (VEP) N1 latencies were also significantly improved versus vehicle in both dose groups, and latencies matched those of untreated animals. Taken together, these findings highlight the potential therapeutic value of functionally selective G-protein KOR agonists in demyelinating disease, which may avoid the sedating side effects typically associated with classical nonbiased KOR agonists.
Collapse
Affiliation(s)
- Thomas O Schrader
- Contineum Therapeutics, Suite 200, 10578 Science Center Drive, San Diego, California 92121, United States
| | - Kym I Lorrain
- Contineum Therapeutics, Suite 200, 10578 Science Center Drive, San Diego, California 92121, United States
| | - Didier Bagnol
- Contineum Therapeutics, Suite 200, 10578 Science Center Drive, San Diego, California 92121, United States
| | - Geraldine C Edu
- Contineum Therapeutics, Suite 200, 10578 Science Center Drive, San Diego, California 92121, United States
| | - Alexander Broadhead
- Contineum Therapeutics, Suite 200, 10578 Science Center Drive, San Diego, California 92121, United States
| | - Christopher Baccei
- Contineum Therapeutics, Suite 200, 10578 Science Center Drive, San Diego, California 92121, United States
| | - Michael M Poon
- Contineum Therapeutics, Suite 200, 10578 Science Center Drive, San Diego, California 92121, United States
| | - Karin J Stebbins
- Contineum Therapeutics, Suite 200, 10578 Science Center Drive, San Diego, California 92121, United States
| | - Yifeng Xiong
- Contineum Therapeutics, Suite 200, 10578 Science Center Drive, San Diego, California 92121, United States
| | - Ariana O Lorenzana
- Contineum Therapeutics, Suite 200, 10578 Science Center Drive, San Diego, California 92121, United States
| | - Jonah R Chan
- Department of Neurology, University of California, San Francisco, San Francisco, California 94143, United States
| | - Ari J Green
- Department of Neurology, University of California, San Francisco, San Francisco, California 94143, United States
| | - Daniel S Lorrain
- Contineum Therapeutics, Suite 200, 10578 Science Center Drive, San Diego, California 92121, United States
| | - Austin Chen
- Contineum Therapeutics, Suite 200, 10578 Science Center Drive, San Diego, California 92121, United States
| |
Collapse
|
11
|
Zamarripa CA, Huskinson SL, Townsend EA, Prisinzano TE, Blough BE, Rowlett JK, Freeman KB. Contingent administration of typical and biased kappa opioid agonists reduces cocaine and oxycodone choice in a drug vs. food choice procedure in male rhesus monkeys. Psychopharmacology (Berl) 2024; 241:305-314. [PMID: 37870564 DOI: 10.1007/s00213-023-06486-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 10/10/2023] [Indexed: 10/24/2023]
Abstract
RATIONALE Combinations of mu and kappa-opioid receptor (KOR) agonists have been proposed as analgesic formulations with reduced abuse potential. The feasibility of this approach has been increased by the development of KOR agonists with biased signaling profiles that produce KOR-typical antinociception with fewer KOR-typical side effects. OBJECTIVE The present study determined if the biased KOR agonists, nalfurafine and triazole 1.1, could reduce choice for oxycodone in rhesus monkeys as effectively as the typical KOR agonist, salvinorin A. METHODS Adult male rhesus monkeys (N = 5) responded under a concurrent schedule of food delivery and intravenous cocaine injections (0.018 mg/kg/injection). Once trained, cocaine (0.018 mg/kg/injection) or oxycodone (0.0056 mg/kg/injection) was tested alone or in combination with contingent injections of salvinorin A (0.1-3.2 µg/kg/injection), nalfurafine (0.0032-0.1 µg/kg/injection), triazole 1.1 (3.2-100.0 µg/kg/injection), or vehicle. In each condition, the cocaine or oxycodone dose, as well as the food amount, was held constant across choice components, while the dose of the KOR agonist was increased across choice components. RESULTS Cocaine and oxycodone were chosen over food on more than 80% of trials when administered alone or contingently with vehicle. When KOR agonists were administered contingently with either cocaine or oxycodone, drug choice decreased in a dose-dependent manner. Salvinorin A and triazole 1.1 decreased drug-reinforcer choice without altering total trials completed (i.e., choice allocation shifted to food), while nalfurafine dose dependently decreased total trials completed. CONCLUSIONS These results demonstrate that salvinorin A and triazole 1.1, but not nalfurafine, selectively reduce cocaine and oxycodone self-administration independent of nonspecific effects on behavior, suggesting that G-protein bias does not appear to be a moderating factor in this outcome. Triazole 1.1 represents an important prototypical compound for developing novel KOR agonists as deterrents for prescription opioid abuse.
Collapse
Affiliation(s)
- C Austin Zamarripa
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Sally L Huskinson
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, 39216, USA
- Division of Neurobiology and Behavior Research, Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
- Center for Innovation and Discovery in Addictions, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - E Andrew Townsend
- Division of Therapeutics and Medical Consequences, National Institute on Drug Abuse, North Bethesda, MD, 20852, USA
| | - Thomas E Prisinzano
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, 40536, USA
| | | | - James K Rowlett
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, 39216, USA
- Division of Neurobiology and Behavior Research, Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
- Center for Innovation and Discovery in Addictions, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Kevin B Freeman
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, 39216, USA.
- Division of Neurobiology and Behavior Research, Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA.
- Center for Innovation and Discovery in Addictions, University of Mississippi Medical Center, Jackson, MS, 39216, USA.
| |
Collapse
|
12
|
Robichon K, Bibi R, Kiernan M, Denny L, Prisinzano TE, Kivell BM, La Flamme AC. Enhanced and complementary benefits of a nalfurafine and fingolimod combination to treat immune-driven demyelination. Clin Transl Immunology 2023; 12:e1480. [PMID: 38090669 PMCID: PMC10714663 DOI: 10.1002/cti2.1480] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 10/19/2023] [Accepted: 11/28/2023] [Indexed: 04/20/2024] Open
Abstract
OBJECTIVES Multiple sclerosis (MS) is a neurodegenerative disease characterised by inflammation and damage to myelin sheaths. While all current disease-modifying treatments (DMTs) are very effective at reducing relapses, they do not slow the progression of the disease, and there is little evidence that these treatments are able to repair or remyelinate damaged axons. Recent evidence suggests that activating kappa opioid receptors (KORs) has a beneficial effect on the progression of MS, and this study investigates the effects of KOR agonists treatment in combination with two current DMTs. METHODS Using the well-established murine model for immune-driven demyelination of MS, experimental autoimmune encephalomyelitis, the effect of KOR agonists in combination with DMTs fingolimod or dimethyl fumarate on disease progression, immune cell infiltration and activation as well as myelination were analysed. RESULTS Fingolimod in combination with the KOR agonist, nalfurafine, significantly increased each individual beneficial effect as measured by increased recovery of mice and reduced relapses. These beneficial effects correlated with a reduction in immune cell infiltration into the CNS as well as peripheral immune cell alterations including a reduction in autoreactive CD4+ T-cell cytokine production as well as increased myelination in the spinal cords of co-treated animals. In contrast, while the use of dimethyl fumarate in combination with nalfurafine did not adversely affect the benefits of nalfurafine, the combination did not significantly enhance those benefits. CONCLUSION This study indicates that KOR agonists can be used in combination with fingolimod and dimethyl fumarate with the nalfurafine-fingolimod combination providing enhanced benefits.
Collapse
Affiliation(s)
- Katharina Robichon
- School of Biological SciencesVictoria University of WellingtonWellingtonNew Zealand
- Centre for Biodiscovery Wellington Victoria University of WellingtonWellingtonNew Zealand
| | - Rabia Bibi
- School of Biological SciencesVictoria University of WellingtonWellingtonNew Zealand
- Centre for Biodiscovery Wellington Victoria University of WellingtonWellingtonNew Zealand
| | - Mackenzie Kiernan
- School of Biological SciencesVictoria University of WellingtonWellingtonNew Zealand
- Centre for Biodiscovery Wellington Victoria University of WellingtonWellingtonNew Zealand
| | - Lisa Denny
- School of Biological SciencesVictoria University of WellingtonWellingtonNew Zealand
- Centre for Biodiscovery Wellington Victoria University of WellingtonWellingtonNew Zealand
| | | | - Bronwyn M Kivell
- School of Biological SciencesVictoria University of WellingtonWellingtonNew Zealand
- Centre for Biodiscovery Wellington Victoria University of WellingtonWellingtonNew Zealand
| | - Anne Camille La Flamme
- School of Biological SciencesVictoria University of WellingtonWellingtonNew Zealand
- Centre for Biodiscovery Wellington Victoria University of WellingtonWellingtonNew Zealand
- Malaghan Institute of Medical ResearchWellingtonNew Zealand
| |
Collapse
|
13
|
Che T, Roth BL. Molecular basis of opioid receptor signaling. Cell 2023; 186:5203-5219. [PMID: 37995655 PMCID: PMC10710086 DOI: 10.1016/j.cell.2023.10.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/13/2023] [Accepted: 10/27/2023] [Indexed: 11/25/2023]
Abstract
Opioids are used for pain management despite the side effects that contribute to the opioid crisis. The pursuit of non-addictive opioid analgesics remains unattained due to the unresolved intricacies of opioid actions, receptor signaling cascades, and neuronal plasticity. Advancements in structural, molecular, and computational tools illuminate the dynamic interplay between opioids and opioid receptors, as well as the molecular determinants of signaling pathways, which are potentially interlinked with pharmacological responses. Here, we review the molecular basis of opioid receptor signaling with a focus on the structures of opioid receptors bound to endogenous peptides or pharmacological agents. These insights unveil specific interactions that dictate ligand selectivity and likely their distinctive pharmacological profiles. Biochemical analysis further unveils molecular features governing opioid receptor signaling. Simultaneously, the synergy between computational biology and medicinal chemistry continues to expedite the discovery of novel chemotypes with the promise of yielding more efficacious and safer opioid compounds.
Collapse
Affiliation(s)
- Tao Che
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Center for Clinical Pharmacology, University of Health Sciences & Pharmacy and Washington University School of Medicine, Saint Louis, MO 63110, USA.
| | - Bryan L Roth
- Department of Pharmacology, University of North Carolina Chapel Hill School of Medicine, Chapel Hill 27599, NC, USA.
| |
Collapse
|
14
|
Liu W, Luo Y, Song W, Dan H, Li L, Zhou D, You P. Angelica Yinzi Alleviates Pruritus-Related Atopic Dermatitis through Skin Repair, Antioxidation, and Balancing Peripheral μ- and κ-opioid Receptors. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:6058951. [PMID: 37790739 PMCID: PMC10545464 DOI: 10.1155/2023/6058951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/10/2022] [Indexed: 10/05/2023]
Abstract
Background Angelica Yinzi (AYZ) is a Chinese traditional herbal formula reported to attenuate itches and inflammation caused by atopic dermatitis (AD). However, the underlying mechanism of AYZ in the attenuation of itchiness and inflammation remains unknown. Objective This study investigated the mechanism of AYZ in reducing itchiness in mice with 1-chloro-2,4-dinitrobenzene- (DNCB-)-induced atopic dermatitis. Methods Hematoxylin and eosin (H&E) and toluidine blue staining were used to evaluate pathological changes in skin tissue, while an enzyme-linked immunosorbent assay (ELISA) was used to assess the cytokine levels in the skin. After that, qRT-PCR was performed to determine the mRNA levels of cytokines in the skin. Immunofluorescence and western blotting analysis were further used to assess µ-opioid receptor (MOR) expression and immunohistochemistry to assess the p-ERK, p-AKT, and κ-opioid receptor (KOR). Results The AYZ treatment alleviated the AD clinical symptoms, including decreasing the scratching frequency, the ear thickness, and the infiltration of mast cells, lymphocytes, inflammatory cells, and mononuclear cells. In addition, AYZ inhibited the expression of interleukin (IL)-13, thymic stromal lymphopoietin (TSLP), and reduced neuraminidase (NA), corticotropin-releasing factor (CRF), and reactive oxygen species (ROS) expression. Markers involved in itches, such as p-ERK and p-AKT, were significantly downregulated following AYZ treatment. Besides, AYZ significantly increased MOR expression and downregulated KOR in the epidermis and spinal cord. Conclusion Our findings imply that AYZ ameliorates pruritus-related AD through skin repair, antioxidation, and balancing peripheral MOR and KOR. The findings in this study lay a theoretical foundation for the control mechanism of peripheral itch.
Collapse
Affiliation(s)
- Wei Liu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Research Center, Mayinglong Pharmaceutical Group Co. Ltd., Wuhan 430060, Hubei, China
| | - Yang Luo
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, China
| | - Wanci Song
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, China
| | - Hanxiong Dan
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, China
| | - Li Li
- Department of Pharmacy, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, Hubei 430014, China
| | - Daonian Zhou
- Research Center, Mayinglong Pharmaceutical Group Co. Ltd., Wuhan 430060, Hubei, China
| | - Pengtao You
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, China
| |
Collapse
|
15
|
Terenius L, Oasa S, Sezgin E, Ma Y, Horne D, Radmiković M, Jovanović-Talisman T, Martin-Fardon R, Vukojevic V. Naltrexone blocks alcohol-induced effects on kappa-opioid receptors in the plasma membrane. RESEARCH SQUARE 2023:rs.3.rs-3091960. [PMID: 37503185 PMCID: PMC10371157 DOI: 10.21203/rs.3.rs-3091960/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Naltrexone (NTX), a homologue of the opiate antidote naloxone, is an orally active long-acting mu-opioid receptor (MOP) antagonist used in the treatment of opiate dependence. NTX is also found to relieve craving for alcohol and is one of the few FDA-approved drugs for alcohol use disorder (AUD). Reports that NTX blocks the actions of endogenous opioids released by alcohol are not convincing, suggesting that NTX interferes with alcohol actions by affecting opioid receptors. MOP and kappa-opioid receptor (KOP) are structurally related but functionally different. MOP is mainly located in interneurons activated by enkephalins while KOP is located in longer projections activated by dynorphins. While the actions of NTX on MOP are well established, the interaction with KOP and addiction is not well understood. We used sensitive fluorescence-based methods to study the influence of alcohol on KOP and the interaction between KOP and NTX. Here we report that alcohol interacts with KOP and its environment in the plasma membrane. These interactions are affected by NTX and are exerted both on KOP directly and on the plasma membrane (lipid) structures ("off-target"). The actions of NTX are stereospecific. Selective KOP antagonists, recently in early clinical trials for major depressive disorder, block the receptor but do not show the full action profile of NTX. The therapeutic effect of NTX treatment in AUD may be due to direct actions on KOP and the receptor environment.
Collapse
|
16
|
Kopruszinski CM, Watanabe M, Martinez AL, Moreira de Souza LH, Dodick DW, Moutal A, Neugebauer V, Porreca F, Navratilova E. Kappa opioid receptor agonists produce sexually dimorphic and prolactin-dependent hyperalgesic priming. Pain 2023; 164:e263-e273. [PMID: 36625833 PMCID: PMC10285741 DOI: 10.1097/j.pain.0000000000002835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 11/21/2022] [Indexed: 01/11/2023]
Abstract
ABSTRACT Repeated stress produces hyperalgesic priming in preclinical models, but underlying mechanisms remain uncertain. As stress engages kappa opioid receptors (KORs), we hypothesized that repeated administration of KOR agonists might mimic, in part, stress-induced hyperalgesic priming. The potential contribution of circulating prolactin (PRL) and dysregulation of the expression of PRL receptor (PRLR) isoforms in sensory neurons after KOR agonist administration was also investigated. Mice received 3 daily doses of U-69593 or nalfurafine as a "first-hit" stimulus followed by assessment of periorbital tactile allodynia. Sixteen days after the first KOR agonist administration, animals received a subthreshold dose of inhalational umbellulone, a TRPA1 agonist, as the second-hit stimulus and periorbital allodynia was assessed. Cabergoline, a dopamine D2 receptor agonist, was used to inhibit circulating PRL in additional cohorts. Prolactin receptor isoforms were quantified in the V1 region of the trigeminal ganglion after repeated doses of U-69593. In both sexes, KOR agonists increased circulating PRL and produced allodynia that resolved within 14 days. Hyperalgesic priming, revealed by umbellulone-induced allodynia in animals previously treated with the KOR agonists, also occurred in both sexes. However, repeated U-69593 downregulated the PRLR long isoform in trigeminal neurons only in female mice. Umbellulone-induced allodynia was prevented by cabergoline co-treatment during priming with KOR agonists in female, but not male, mice. Hyperalgesic priming therefore occurs in both sexes after either biased or nonbiased KOR agonists. However, a PRL/PRLR-dependence is observed only in female nociceptors possibly contributing to pain in stress-related pain disorders in females.
Collapse
Affiliation(s)
- Caroline M. Kopruszinski
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States. Moutal is now with the Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - Moe Watanabe
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States. Moutal is now with the Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - Ashley L. Martinez
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States. Moutal is now with the Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - Luiz Henrique Moreira de Souza
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States. Moutal is now with the Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - David W. Dodick
- Department of Neurology, Mayo Clinic, Phoenix, AZ, United States
| | - Aubin Moutal
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States. Moutal is now with the Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience and Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Frank Porreca
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States. Moutal is now with the Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO, United States
- Department of Neurology, Mayo Clinic, Phoenix, AZ, United States
| | - Edita Navratilova
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States. Moutal is now with the Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
17
|
Tang Y, Li N, Ye L, Yang F, Huang S, Peng Z, Xie J, Wan L. Nalbuphine attenuates morphine‐induced scratching by inhibiting
PKCβ
‐dependent microglial activation and p38 phosphorylation in male mice. J Neurosci Res 2023. [DOI: 10.1002/jnr.25189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 03/02/2023] [Accepted: 03/08/2023] [Indexed: 03/28/2023]
|
18
|
El Daibani A, Paggi JM, Kim K, Laloudakis YD, Popov P, Bernhard SM, Krumm BE, Olsen RHJ, Diberto J, Carroll FI, Katritch V, Wünsch B, Dror RO, Che T. Molecular mechanism of biased signaling at the kappa opioid receptor. Nat Commun 2023; 14:1338. [PMID: 36906681 PMCID: PMC10008561 DOI: 10.1038/s41467-023-37041-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 02/28/2023] [Indexed: 03/13/2023] Open
Abstract
The κ-opioid receptor (KOR) has emerged as an attractive drug target for pain management without addiction, and biased signaling through particular pathways of KOR may be key to maintaining this benefit while minimizing side-effect liabilities. As for most G protein-coupled receptors (GPCRs), however, the molecular mechanisms of ligand-specific signaling at KOR have remained unclear. To better understand the molecular determinants of KOR signaling bias, we apply structure determination, atomic-level molecular dynamics (MD) simulations, and functional assays. We determine a crystal structure of KOR bound to the G protein-biased agonist nalfurafine, the first approved KOR-targeting drug. We also identify an arrestin-biased KOR agonist, WMS-X600. Using MD simulations of KOR bound to nalfurafine, WMS-X600, and a balanced agonist U50,488, we identify three active-state receptor conformations, including one that appears to favor arrestin signaling over G protein signaling and another that appears to favor G protein signaling over arrestin signaling. These results, combined with mutagenesis validation, provide a molecular explanation of how agonists achieve biased signaling at KOR.
Collapse
Affiliation(s)
- Amal El Daibani
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA
- Center for Clinical Pharmacology, University of Health Sciences & Pharmacy and Washington University School of Medicine, Saint Louis, MO, USA
| | - Joseph M Paggi
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Kuglae Kim
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
- Department of Pharmacy, Yonsei University, Incheon, 21983, Republic of Korea
| | | | - Petr Popov
- iMolecule, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Sarah M Bernhard
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA
- Center for Clinical Pharmacology, University of Health Sciences & Pharmacy and Washington University School of Medicine, Saint Louis, MO, USA
| | - Brian E Krumm
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Reid H J Olsen
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Jeffrey Diberto
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - F Ivy Carroll
- Research Triangle Institute, P.O. Box 12194, Research Triangle Park, NC, 27709, USA
| | - Vsevolod Katritch
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Bernhard Wünsch
- Institut für Pharmazeutische und Medizinische Chemie, Universität Münster, Corrensstraße 48, 48149, Münster, Germany
| | - Ron O Dror
- Department of Computer Science, Stanford University, Stanford, CA, USA.
- Departments of Molecular and Cellular Physiology and of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA.
| | - Tao Che
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA.
- Center for Clinical Pharmacology, University of Health Sciences & Pharmacy and Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
19
|
Santino F, Gentilucci L. Design of κ-Opioid Receptor Agonists for the Development of Potential Treatments of Pain with Reduced Side Effects. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28010346. [PMID: 36615540 PMCID: PMC9822356 DOI: 10.3390/molecules28010346] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/13/2022] [Accepted: 12/25/2022] [Indexed: 01/04/2023]
Abstract
The κ-opioid receptor (KOR) has recently emerged as an alternative therapeutic target for the development of pain medications, without deleterious side effects associated with the μ-opioid receptor (MOR). However, modulation of KOR is currently under investigation for the treatment of depression, mood disorders, psychiatric comorbidity, and specific drug addictions. However, KOR agonists also trigger adverse effects including sedation, dysphoria, and hallucinations. In this respect, there is currently much debate on alternative paradigms. Recent effort has been devoted in search of biased ligands capable of selectively activating favorable signaling over signaling associated with unwanted side effects. On the other hand, the use of partial agonists is expected to allow the analgesia to be produced at dosages lower than those required to produce the adverse effects. More empirically, the unwanted central effects can be also avoided by using peripherally restricted agonists. In this review, we discuss the more recent trends in the design of KOR-selective, biased or partial, and finally, peripherally acting agonists. Special emphasis is given on the discussion of the most recent approaches for controlling functional selectivity of KOR-specific ligands.
Collapse
|
20
|
Liu-Chen LY, Huang P. Signaling underlying kappa opioid receptor-mediated behaviors in rodents. Front Neurosci 2022; 16:964724. [PMID: 36408401 PMCID: PMC9670127 DOI: 10.3389/fnins.2022.964724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/08/2022] [Indexed: 11/06/2022] Open
Abstract
Kappa opioid receptor (KOR) agonists are potentially useful as analgesic and anti-pruritic agents, for prevention and treatment of substance use disorders, and for treatment of demyelinating diseases. However, side effects of KOR agonists, including psychotomimesis, dysphoria, and sedation, have caused early termination of clinical trials. Understanding the signaling mechanisms underlying the beneficial therapeutic effects and the adverse side effects may help in the development of KOR agonist compounds. In this review, we summarize the current knowledge in this regard in five sections. First, studies conducted on mutant mouse lines (GRK3-/-, p38alpha MAPK-/-, β-arrestin2-/-, phosphorylation-deficient KOR) are summarized. In addition, the abilities of four distinct KOR agonists, which have analgesic and anti-pruritic effects with different side effect profiles, to cause KOR phosphorylation are discussed. Second, investigations on the KOR agonist nalfurafine, both in vitro and in vivo are reviewed. Nalfurafine was the first KOR full agonist approved for clinical use and in the therapeutic dose range it did not produce significant side effects associated with typical KOR agonists. Third, large-scale high-throughput phosphoproteomic studies without a priori hypotheses are described. These studies have revealed that KOR-mediated side effects are associated with many signaling pathways. Fourth, several novel G protein-biased KOR agonists that have been characterized for in vitro biochemical properties and agonist biases and in vivo behavior effects are described. Lastly, possible mechanisms underlying KOR-mediated CPA, hypolocomotion and motor incoordination are discussed. Overall, it is agreed upon that the analgesic and anti-pruritic effects of KOR agonists are mediated via G protein signaling. However, there is no consensus on the mechanisms underlying their side effects. GRK3, p38 MAPK, β-arrestin2, mTOR pathway, CB1 cannabinoid receptor and protein kinase C have been implicated in one side effect or another. For drug discovery, after initial in vitro characterization, in vivo pharmacological characterizations in various behavior tests are still the most crucial steps and dose separation between beneficial therapeutic effects and adverse side effects are the critical determinant for the compounds to be moved forward for clinical development.
Collapse
Affiliation(s)
- Lee-Yuan Liu-Chen
- Center for Substance Abuse Research, Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | | |
Collapse
|
21
|
Difelikefalin, a peripherally restricted KOR (kappa opioid receptor) agonist, produces diuresis through a central KOR pathway. Pharmacol Res 2022; 185:106470. [PMID: 36202183 DOI: 10.1016/j.phrs.2022.106470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 09/08/2022] [Accepted: 09/23/2022] [Indexed: 11/21/2022]
Abstract
Difelikefalin is a peripherally restricted kappa opioid receptor (KOR) agonist that was recently approved by the FDA to treat pruritis in dialysis patients. Here, we investigated the cardiovascular and renal responses to difelikefalin, and using the KOR antagonist norbinaltorphimine (norBNI), examined whether any difelikefalin-induced changes in the renal excretion of water and/or electrolytes were mediated through a central or peripheral KOR pathway. The effects of norBNI pretreatment on nalfurafine, a KOR agonist that crosses the blood-brain barrier, were also examined. We hypothesized that difelikefalin would alter urine output differently than nalfurafine, given that KOR agonists produce diuresis via activating central KORs to inhibit vasopressin release. Following catheterization, conscious Sprague-Dawley rats were infused i.v. with isotonic saline and pretreated with norBNI centrally via an intracerebroventricular (ICV) cannula or peripherally via an intravenous catheter. After stabilization, difelikefalin or nalfurafine was administered i.v. and urine output, heart rate and mean arterial pressure (MAP) were recorded for 90 min. Difelikefalin produced a significant increase in urine output, and significant decrease in urinary sodium and potassium excretion, urine osmolality, and MAP. ICV norBNI pretreatment markedly attenuated the increase in urine output caused by difelikefalin and nalfurafine but did not inhibit the electrolyte effects. However, IV norBNI pretreatment prevented all responses to difelikefalin and nalfurafine. Together, these findings demonstrate that difelikefalin and nalfurafine utilize central KOR pathways to elicit diuresis and a decrease in MAP but enhance renal tubular electrolyte reabsorption through a peripheral KOR pathway, providing important insight into two clinically useful KOR agonists.
Collapse
|
22
|
Evaluation of the Intracellular Signaling Activities of κ-Opioid Receptor Agonists, Nalfurafine Analogs; Focusing on the Selectivity of G-Protein- and β-Arrestin-Mediated Pathways. Molecules 2022; 27:molecules27207065. [PMID: 36296658 PMCID: PMC9611050 DOI: 10.3390/molecules27207065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/15/2022] [Accepted: 10/18/2022] [Indexed: 12/30/2022] Open
Abstract
Opioid receptors (ORs) are classified into three types (μ, δ, and κ), and opioid analgesics are mainly mediated by μOR activation; however, their use is sometimes restricted by unfavorable effects. The selective κOR agonist nalfurafine was initially developed as an analgesic, but its indication was changed because of the narrow safety margin. The activation of ORs mainly induces two intracellular signaling pathways: a G-protein-mediated pathway and a β-arrestin-mediated pathway. Recently, the expectations for κOR analgesics that selectively activate these pathways have increased; however, the structural properties required for the selectivity of nalfurafine are still unknown. Therefore, we evaluated the partial structures of nalfurafine that are necessary for the selectivity of these two pathways. We assayed the properties of nalfurafine and six nalfurafine analogs (SYKs) using cells stably expressing κORs. The SYKs activated κORs in a concentration-dependent manner with higher EC50 values than nalfurafine. Upon bias factor assessment, only SYK-309 (possessing the 3S-hydroxy group) showed higher selectivity of G-protein-mediated signaling activities than nalfurafine, suggesting the direction of the 3S-hydroxy group may affect the β-arrestin-mediated pathway. In conclusion, nalfurafine analogs having a 3S-hydroxy group, such as SYK-309, could be considered G-protein-biased κOR agonists.
Collapse
|
23
|
Wedemeyer MJ, Jennings EM, Smith HR, Chavera TS, Jamshidi RJ, Berg KA, Clarke WP. 14-3-3γ mediates the long-term inhibition of peripheral kappa opioid receptor antinociceptive signaling by norbinaltorphimine. Neuropharmacology 2022; 220:109251. [PMID: 36126728 DOI: 10.1016/j.neuropharm.2022.109251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/16/2022] [Accepted: 09/06/2022] [Indexed: 11/29/2022]
Abstract
Long-term inhibition of kappa opioid receptor (KOR) signaling in peripheral pain-sensing neurons is a potential obstacle for development of peripherally-restricted KOR agonists that produce analgesia. Such a long-term inhibitory mechanism is invoked from activation of c-Jun N-terminal kinase (JNK) that follows a single injection of the KOR antagonist norbinaltorphimine (norBNI). This effect requires protein synthesis of an unknown mediator in peripheral pain-sensing neurons. Using 2D difference gel electrophoresis with tandem mass spectrometry, we have identified that the scaffolding protein 14-3-3γ is upregulated in peripheral sensory neurons following activation of JNK with norBNI. Knockdown of 14-3-3γ by siRNA eliminates the long-term reduction in KOR-mediated cAMP signaling by norBNI in peripheral sensory neurons in culture. Similarly, knockdown of 14-3-3γ in the rat hind paw abolished the norBNI-mediated long-term reduction in peripheral KOR-mediated antinociception. Further, overexpression of 14-3-3γ in KOR expressing CHO cells prevented KOR-mediated inhibition of cAMP signaling. These long-term effects are selective for KOR as heterologous regulation of other receptor systems was not observed. These data suggest that 14-3-3γ is both necessary and sufficient for the long-term inhibition of KOR by norBNI in peripheral sensory neurons.
Collapse
Affiliation(s)
- Michael J Wedemeyer
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Elaine M Jennings
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Hudson R Smith
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Teresa S Chavera
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Raehannah J Jamshidi
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Kelly A Berg
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - William P Clarke
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
24
|
Paul B, Sribhashyam S, Majumdar S. Opioid signaling and design of analgesics. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 195:153-176. [PMID: 36707153 PMCID: PMC10325139 DOI: 10.1016/bs.pmbts.2022.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Clinical treatment of acute to severe pain relies on the use of opioids. While their potency is significant, there are considerable side effects that can negatively affect patients. Their rise in usage has correlated with the current opioid epidemic in the United States, which has led to more than 70,000 deaths per year (Volkow and Blanco, 2021). Opioid-related drug development aims to make target compounds that show strong potency but with diminished side effects. Research into pharmaceuticals that could act as potential alternatives to current pains medications has relied on mechanistic insights of opioid receptors, a class of G-protein coupled receptors (GPCRs), and biased agonism, a common phenomenon among pharmaceutical compounds where downstream effects can be altered at the same receptor via different agonists. Opioids function typically by binding to an active site on the extracellular portion of opioid receptors. Once activated, the opioid receptor initiates a G-protein signaling pathway and/or the β-arrestin2 pathway. The proposed concept for the development of safe analgesics around mu and kappa opioid receptor subtypes has focused on not recruiting β-arrestin2 (biased agonism) and/or having low efficacy at the receptor (partial agonism). By altering chemical motifs on a common scaffold, chemists can take advantage of biased agonism as well as create compounds with low intrinsic efficacy for the desired treatments. This review will focus on ligands with bias profile, signaling aspects of the receptor and probe into the structural basis of receptor that leads to bias and/or partial agonism.
Collapse
Affiliation(s)
- Barnali Paul
- Center for Clinical Pharmacology, University of Health Sciences & Pharmacy at St Louis and Washington University School of Medicine, St Louis, MO, United States
| | - Sashrik Sribhashyam
- Center for Clinical Pharmacology, University of Health Sciences & Pharmacy at St Louis and Washington University School of Medicine, St Louis, MO, United States
| | - Susruta Majumdar
- Center for Clinical Pharmacology, University of Health Sciences & Pharmacy at St Louis and Washington University School of Medicine, St Louis, MO, United States.
| |
Collapse
|
25
|
Chen C, Huang P, Bland K, Li M, Zhang Y, Liu-Chen LY. Agonist-Promoted Phosphorylation and Internalization of the Kappa Opioid Receptor in Mouse Brains: Lack of Connection With Conditioned Place Aversion. Front Pharmacol 2022; 13:835809. [PMID: 35652052 PMCID: PMC9149264 DOI: 10.3389/fphar.2022.835809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/31/2022] [Indexed: 12/30/2022] Open
Abstract
Selective kappa opioid receptor (KOR) agonists are promising antipruritic agents and analgesics. However, clinical development of KOR agonists has been limited by side effects, including psychotomimetic effects, dysphoria, and sedation, except for nalfurafine, and recently. CR845 (difelikefalin). Activation of KOR elicits G protein- and β-arrestin-mediated signaling. KOR-induced analgesic and antipruritic effects are mediated by G protein signaling. However, different results have been reported as to whether conditioned place aversion (CPA) induced by KOR agonists is mediated by β-arrestin signaling. In this study, we examined in male mice if there was a connection between agonist-promoted CPA and KOR phosphorylation and internalization, proxies for β-arrestin recruitment in vivo using four KOR agonists. Herein, we demonstrated that at doses producing maximal effective analgesic and antiscratch effects, U50,488H, MOM-SalB, and 42B, but not nalfurafine, promoted KOR phosphorylation at T363 and S369 in mouse brains, as detected by immunoblotting with phospho-KOR-specific antibodies. In addition, at doses producing maximal effective analgesic and antiscratch effects, U50,488H, MOM-SalB, and 42B, but not nalfurafine, caused KOR internalization in the ventral tegmental area of a mutant mouse line expressing a fusion protein of KOR conjugated at the C-terminus with tdTomato (KtdT). We have reported previously that the KOR agonists U50,488H and methoxymethyl salvinorin B (MOM-SalB) cause CPA, whereas nalfurafine and 42B do not, at doses effective for analgesic and antiscratch effects. Taken together, these data reveal a lack of connection between agonist-promoted KOR-mediated CPA with agonist-induced KOR phosphorylation and internalization in male mice.
Collapse
Affiliation(s)
- Chongguang Chen
- Center for Substance Abuse Research and Department of Neural Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Peng Huang
- Center for Substance Abuse Research and Department of Neural Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Kathryn Bland
- Center for Substance Abuse Research and Department of Neural Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Mengchu Li
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, United States
| | - Yan Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, United States
| | - Lee-Yuan Liu-Chen
- Center for Substance Abuse Research and Department of Neural Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| |
Collapse
|
26
|
Sturaro C, Malfacini D, Argentieri M, Djeujo FM, Marzola E, Albanese V, Ruzza C, Guerrini R, Calo’ G, Molinari P. Pharmacology of Kappa Opioid Receptors: Novel Assays and Ligands. Front Pharmacol 2022; 13:873082. [PMID: 35529436 PMCID: PMC9068900 DOI: 10.3389/fphar.2022.873082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/24/2022] [Indexed: 11/13/2022] Open
Abstract
The present study investigated the in vitro pharmacology of the human kappa opioid receptor using multiple assays, including calcium mobilization in cells expressing chimeric G proteins, the dynamic mass redistribution (DMR) label-free assay, and a bioluminescence resonance energy transfer (BRET) assay that allows measurement of receptor interaction with G protein and β-arrestin 2. In all assays, dynorphin A, U-69,593, and [D-Pro10]dyn(1-11)-NH2 behaved as full agonists with the following rank order of potency [D-Pro10]dyn(1-11)-NH2 > dynorphin A ≥ U-69,593. [Dmt1,Tic2]dyn(1-11)-NH2 behaved as a moderate potency pure antagonist in the kappa-β-arrestin 2 interaction assay and as low efficacy partial agonist in the other assays. Norbinaltorphimine acted as a highly potent and pure antagonist in all assays except kappa-G protein interaction, where it displayed efficacy as an inverse agonist. The pharmacological actions of novel kappa ligands, namely the dynorphin A tetrameric derivative PWT2-Dyn A and the palmitoylated derivative Dyn A-palmitic, were also investigated. PWT2-Dyn A and Dyn A-palmitic mimicked dynorphin A effects in all assays showing similar maximal effects but 3–10 fold lower potency. In conclusion, in the present study, multiple in vitro assays for the kappa receptor have been set up and pharmacologically validated. In addition, PWT2-Dyn A and Dyn A-palmitic were characterized as potent full agonists; these compounds are worthy of further investigation in vivo for those conditions in which the activation of the kappa opioid receptor elicits beneficial effects e.g. pain and pruritus.
Collapse
Affiliation(s)
- Chiara Sturaro
- Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, Ferrara, Italy
| | - Davide Malfacini
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
- *Correspondence: Davide Malfacini,
| | - Michela Argentieri
- Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, Ferrara, Italy
| | - Francine M. Djeujo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Erika Marzola
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Valentina Albanese
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Chiara Ruzza
- Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, Ferrara, Italy
- Technopole of Ferrara, LTTA Laboratory for Advanced Therapies, Ferrara, Italy
| | - Remo Guerrini
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
- Technopole of Ferrara, LTTA Laboratory for Advanced Therapies, Ferrara, Italy
| | - Girolamo Calo’
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Paola Molinari
- National Center for Drug Research and Evaluation, National Institute of Health, Rome, Italy
| |
Collapse
|
27
|
French AR, van Rijn RM. An updated assessment of the translational promise of G-protein-biased kappa opioid receptor agonists to treat pain and other indications without debilitating adverse effects. Pharmacol Res 2022; 177:106091. [PMID: 35101565 PMCID: PMC8923989 DOI: 10.1016/j.phrs.2022.106091] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 01/22/2023]
Abstract
Kappa opioid receptor (κOR) agonists lack the abuse liability and respiratory depression effects of clinically used mu opioid receptor (μOR) analgesics and are hypothesized to be safer alternatives. However, κOR agonists have limiting adverse effects of their own, including aversion, sedation, and mood effects, that have hampered their clinical translation. Studies performed over the last 15 years have suggested that these adverse effects could result from activation of distinct intracellular signaling pathways that are dependent on β-arrestin, whereas signaling downstream of G protein activation produces antinociception. This led to the hypothesis that agonists biased away from β-arrestin signaling would have improved therapeutic windows over traditional unbiased agonists and allow for clinical development of analgesic G-protein-biased κOR agonists. Given a recent controversy regarding the benefits of G-protein-biased μOR agonists, it is timely to reassess the therapeutic promise of G-protein-biased κOR agonists. Here we review recent discoveries from preclinical κOR studies and critically evaluate the therapeutic windows of G-protein-biased κOR agonists in each of the adverse effects above. Overall, we find that G-protein-biased κOR agonists generally have improved therapeutic window relative to unbiased agonists, although frequently study design limits strong conclusions in this regard. However, a steady flow of newly developed biased κOR agonists paired with recently engineered behavioral and molecular tools puts the κOR field in a prime position to make major advances in our understanding of κOR function and fulfill the promise of translating a new generation of biased κOR agonists to the clinic.
Collapse
Affiliation(s)
- Alexander R French
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
| | - Richard M van Rijn
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA; Purdue Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
28
|
Meariman JK, Sutphen JC, Gao J, Kapusta DR. Nalfurafine, a G-Protein-Biased KOR (Kappa Opioid Receptor) Agonist, Enhances the Diuretic Response and Limits Electrolyte Losses to Standard-of-Care Diuretics. Hypertension 2022; 79:379-390. [PMID: 34852633 PMCID: PMC8755620 DOI: 10.1161/hypertensionaha.121.18503] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Nalfurafine is a G-protein-biased KOR (kappa opioid receptor) agonist that produces analgesia and lacks central nervous system adverse effects. Here, we examined the cardiovascular and renal responses to intravenous and oral nalfurafine alone and in combination with furosemide, hydrochlorothiazide, or amiloride. We hypothesized that nalfurafine, given its distinct mechanism of vasopressin inhibition, would increase urine output to these diuretics and limit electrolyte loss. Following catheterization, conscious Sprague-Dawley rats received an isotonic saline infusion and were then administered an intravenous bolus of nalfurafine, a diuretic, or a combination. Mean arterial pressure, heart rate, and urine output were recorded for 90 minutes. In another study, rats were placed in metabolic cages and administered drug in an oral volume load. Hourly urine samples were then collected for 5 hours. Intravenous and oral nalfurafine produced a marked diuresis, antinatriuresis, antikaliuresis, and a decrease in mean arterial pressure. Compared with diuretic treatment alone, intravenous coadministration with nalfurafine significantly increased urine output to furosemide and hydrochlorothiazide and decreased sodium and potassium excretion. Notably, mean arterial pressure was reduced with nalfurafine/diuretic combination therapy compared to diuretics alone. Similarly, oral coadministration of nalfurafine significantly increased urine output to hydrochlorothiazide and decreased sodium and potassium excretion, whereas combination with furosemide only limited the amount of sodium excreted. Further, both intravenous and oral coadministration of nalfurafine enhanced the diuresis to amiloride and decreased sodium excretion. Together, these findings demonstrate that nalfurafine enhances the diuresis to standard-of-care diuretics without causing an excessive loss of electrolytes, offering a new approach to treat several cardiovascular conditions.
Collapse
Affiliation(s)
- Jacob K Meariman
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, 1901 Perdido St, New Orleans, LA 70112
| | - Jane C Sutphen
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, 1901 Perdido St, New Orleans, LA 70112
| | - Juan Gao
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, 1901 Perdido St, New Orleans, LA 70112
| | - Daniel R Kapusta
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, 1901 Perdido St, New Orleans, LA 70112,Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, 1901 Perdido St, New Orleans, LA 70112
| |
Collapse
|
29
|
Abstract
Nalfurafine has been used clinically in Japan for treatment of itch in kidney dialysis patients and in patients with chronic liver diseases. A one-year post-marketing study showed nalfurafine to be safe and efficacious without producing side effects of typical KOR agonists such as anhedonia and psychotomimesis. In this chapter, we summarize in vitro characterization and in vivo preclinical studies on nalfurafine. In vitro, nalfurafine is a highly potent and moderately selective KOR full agonist; however, whether it is a biased KOR agonist is a matter of debate. In animals, nalfurafine produced anti-pruritic effects in a dose range lower than that caused side effects, including conditioned place aversion (CPA), hypolocomotion, motor incoordination, consistent with the human data. In addition, nalfurafine showed antinociceptive effects in several pain models at doses that did not cause the side effects mentioned above. It appears to be effective against inflammatory pain and mechanical pain, but less so against thermal pain, particularly high-intensity thermal pain. U50,488H and nalfurafine differentially modulated several signaling pathways in a brain region-specific manners. Notably, U50,488H, but not nalfurafine, activated the mTOR pathway, which contributed to U50,488H-induced CPA. Because of its lack of side effects associated with typical KOR agonists, nalfurafine has been investigated as a combination therapy with an MOR ligand for pain treatment and for its effects on opioid use disorder and alcohol use disorder, and results indicate potential usefulness for these indications. Thus, although in vitro data regarding uniqueness of nalfurafine in terms of signaling at the KOR are somewhat equivocal, in vivo results support the assertion that nalfurafine is an atypical KOR agonist with a significantly improved side-effect profile relative to typical KOR agonists.
Collapse
|
30
|
Paton KF, Robichon K, Templeton N, Denny L, Al Abadey A, Luo D, Prisinzano TE, La Flamme AC, Kivell BM. The Salvinorin Analogue, Ethoxymethyl Ether Salvinorin B, Promotes Remyelination in Preclinical Models of Multiple Sclerosis. Front Neurol 2021; 12:782190. [PMID: 34987466 PMCID: PMC8721439 DOI: 10.3389/fneur.2021.782190] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/03/2021] [Indexed: 12/24/2022] Open
Abstract
Multiple sclerosis is a neurodegenerative disease associated with demyelination and neuroinflammation in the central nervous system. There is an urgent need to develop remyelinating therapies to better treat multiple sclerosis and other demyelinating diseases. The kappa opioid receptor (KOR) has been identified as a potential target for the development of remyelinating therapies; however, prototypical KOR agonists, such as U50,488 have side effects, which limit clinical use. In the current study, we investigated a Salvinorin A analog, ethoxymethyl ether Salvinorin B (EOM SalB) in two preclinical models of demyelination in C57BL/6J mice. We showed that in cellular assays EOM SalB was G-protein biased, an effect often correlated with fewer KOR-mediated side effects. In the experimental autoimmune encephalomyelitis model, we found that EOM SalB (0.1-0.3 mg/kg) effectively decreased disease severity in a KOR-dependent manner and led to a greater number of animals in recovery compared to U50,488 treatment. Furthermore, EOM SalB treatment decreased immune cell infiltration and increased myelin levels in the central nervous system. In the cuprizone-induced demyelination model, we showed that EOM SalB (0.3 mg/kg) administration led to an increase in the number of mature oligodendrocytes, the number of myelinated axons and the myelin thickness in the corpus callosum. Overall, EOM SalB was effective in two preclinical models of multiple sclerosis and demyelination, adding further evidence to show KOR agonists are a promising target for remyelinating therapies.
Collapse
Affiliation(s)
- Kelly F. Paton
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
- Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - Katharina Robichon
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
- Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - Nikki Templeton
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
- Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - Lisa Denny
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
- Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - Afnan Al Abadey
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
- Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - Dan Luo
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, United States
| | - Thomas E. Prisinzano
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, United States
| | - Anne C. La Flamme
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
- Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Bronwyn M. Kivell
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
- Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
31
|
Zamarripa CA, Pareek T, Schrock HM, Prisinzano TE, Blough BE, Sufka KJ, Freeman KB. The kappa-opioid receptor agonist, triazole 1.1, reduces oxycodone self-administration and enhances oxycodone-induced thermal antinociception in male rats. Psychopharmacology (Berl) 2021; 238:3463-3476. [PMID: 34430992 PMCID: PMC8629928 DOI: 10.1007/s00213-021-05965-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 08/10/2021] [Indexed: 12/29/2022]
Abstract
RATIONALE Triazole 1.1 is a novel kappa-opioid receptor (KOR) agonist reported to produce antinociception without KOR-typical adverse effects. When combined with the mu-opioid receptor (MOR) agonist, oxycodone, triazole 1.1 blocks oxycodone-induced pruritis without producing sedation-like effects in nonhuman primates. However, it is unknown if triazole 1.1 can reduce the abuse-related effects or enhance the antinociceptive effects of oxycodone similarly to other KOR agonists. OBJECTIVES The aim of the present study was to quantitatively compare the behavioral effects of triazole 1.1 to the KOR agonists, U50,488h and nalfurafine, on oxycodone self-administration and oxycodone-induced thermal antinociception when administered as mixtures with oxycodone. METHODS In the self-administration study, male Sprague-Dawley (SD) rats (n = 6) self-administered intravenous (i.v.) oxycodone alone (0.056 mg/kg/inj) or combined with U50,488 h (0.032-0.32 mg/kg/inj), nalfurafine (0.00032-0.0032 mg/kg/inj), or triazole 1.1 (0.32-1.8 mg/kg/inj) under a progressive-ratio schedule of reinforcement. In a hot plate assay, male SD rats (n = 6) received i.v. injections of oxycodone (1.0-5.6 mg/kg), U50,488h (1.0-18.0 mg/kg), nalfurafine (0.01-1.0 mg/kg), or triazole 1.1 (3.2-32.0 mg/kg) alone or in combinations of fixed proportion with oxycodone based on the relative potencies of the single drugs. Each study concluded with administration of the KOR antagonist nor-BNI and some degree of retesting of the previous conditions to verify that the behavioral effects were mediated by KOR activation. RESULTS All KOR agonists reduced oxycodone self-administration in a dose-dependent manner. Moreover, all single drugs and drug combinations produced dose-dependent, fully efficacious thermal antinociception. All KOR agonist:oxycodone combinations produced either additive or super-additive thermal antinociception. Finally, each KOR agonist was blocked in effect by nor-BNI in both behavioral measures. CONCLUSION This study demonstrates that triazole 1.1 reduces oxycodone's reinforcing effects and enhances oxycodone-induced antinociception to degrees that are comparable to typical KOR agonists. Given triazole 1.1's mild adverse-effect profile, developing MOR-KOR agonist combinations from the triazole 1.1 series may render new pain therapeutics with reduced abuse liability.
Collapse
Affiliation(s)
- C Austin Zamarripa
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
| | - Tanya Pareek
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
| | - Hayley M Schrock
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
| | | | | | - Kenneth J Sufka
- Department of Psychology, University of Mississippi, Oxford, MS, USA
| | - Kevin B Freeman
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA.
| |
Collapse
|
32
|
Muratspahić E, Retzl B, Duerrauer L, Freissmuth M, Becker CFW, Gruber CW. Genome Mining-Based Discovery of Blenny Fish-Derived Peptides Targeting the Mouse κ-Opioid Receptor. Front Pharmacol 2021; 12:773029. [PMID: 34744752 PMCID: PMC8569185 DOI: 10.3389/fphar.2021.773029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/01/2021] [Indexed: 11/13/2022] Open
Abstract
Over the past years, peptides have attracted increasing interest for G protein-coupled receptor (GPCR) drug discovery and development. Peptides occupy a unique chemical space that is not easily accessible for small molecules and antibodies and provide advantages over these ligand classes such as lower toxicity and higher selectivity. The κ-opioid receptor (KOR) is a prototypic GPCR and an appealing therapeutic target for the development of safer and more effective analgesics. Recently, peptides have emerged as analgesic drug candidates with improved side effect profiles. We have previously identified plant-derived peptides, which activate KOR. Based on this precedent, here we relied on publicly available databases to discover novel KOR peptide ligands by genome mining. Using human preprodynorphin as a query, we identified blenny fish-derived peptides, referred to as blenniorphins, capable of binding to and activating KOR with nanomolar affinity and potency, respectively. Additionally, the blenniorphins altered β-arrestin-2 recruitment at the KOR. Our study demonstrates the utility of genome mining to identify peptide GPCR ligands with intriguing pharmacological properties and unveils the potential of blenny fishes as a source for novel KOR ligands.
Collapse
Affiliation(s)
- Edin Muratspahić
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Bernhard Retzl
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Leopold Duerrauer
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Michael Freissmuth
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
- Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Christian F. W. Becker
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Christian W. Gruber
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
33
|
Muratspahić E, Tomašević N, Nasrollahi-Shirazi S, Gattringer J, Emser FS, Freissmuth M, Gruber CW. Plant-Derived Cyclotides Modulate κ-Opioid Receptor Signaling. JOURNAL OF NATURAL PRODUCTS 2021; 84:2238-2248. [PMID: 34308635 PMCID: PMC8406418 DOI: 10.1021/acs.jnatprod.1c00301] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Indexed: 05/03/2023]
Abstract
Cyclotides are plant-derived disulfide-rich peptides comprising a cyclic cystine knot, which confers remarkable stability against thermal, proteolytic, and chemical degradation. They represent an emerging class of G protein-coupled receptor (GPCR) ligands. In this study, utilizing a screening approach of plant extracts and pharmacological analysis we identified cyclotides from Carapichea ipecacuanha to be ligands of the κ-opioid receptor (KOR), an attractive target for developing analgesics with reduced side effects and therapeutics for multiple sclerosis (MS). This prompted us to verify whether [T20K]kalata B1, a cyclotide in clinical development for the treatment of MS, is able to modulate KOR signaling. T20K bound to and fully activated KOR in the low μM range. We then explored the ability of T20K to allosterically modulate KOR. Co-incubation of T20K with KOR ligands resulted in positive allosteric modulation in functional cAMP assays by altering either the efficacy of dynorphin A1-13 or the potency and efficacy of U50,488 (a selective KOR agonist), respectively. In addition, T20K increased the basal response upon cotreatment with U50,488. In the bioluminescence resonance energy transfer assay T20K negatively modulated the efficacy of U50,488. This study identifies cyclotides capable of modulating KOR and highlights the potential of plant-derived peptides as an opportunity to develop cyclotide-based KOR modulators.
Collapse
Affiliation(s)
- Edin Muratspahić
- Center
for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Nataša Tomašević
- Center
for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Shahrooz Nasrollahi-Shirazi
- Center
for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
- Gaston
H. Glock Research Laboratories for Exploratory Drug Development, Center
for Physiology and Pharmacology, Medical
University of Vienna, 1090 Vienna, Austria
| | - Jasmin Gattringer
- Center
for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Fabiola Susanna Emser
- Center
for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Michael Freissmuth
- Center
for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
- Gaston
H. Glock Research Laboratories for Exploratory Drug Development, Center
for Physiology and Pharmacology, Medical
University of Vienna, 1090 Vienna, Austria
| | - Christian W. Gruber
- Center
for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
34
|
He Q, Wei Y, Liu X, Ye R, Kong L, Li Z, Jiang S, Yu L, Chai J, Xie Q, Fu W, Wang Y, Li W, Qiu Z, Liu J, Shao L. Discovery of an M-Substituted N-Cyclopropylmethyl-7α-phenyl-6,14-endoethanotetrahydronorthebaine as a Selective, Potent, and Orally Active κ-Opioid Receptor Agonist with an Improved Central Nervous System Safety Profile. J Med Chem 2021; 64:12414-12433. [PMID: 34387468 DOI: 10.1021/acs.jmedchem.1c01082] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The search for selective kappa opioid receptor (κOR) agonists with an improved safety profile is an area of interest in opioid research. In this work, a series of m-substituted analogs were designed, synthesized, and assayed, resulting in the identification of compound 6c (SLL-1206) as a κOR agonist with single-digit nanomolar activities. The subtype selectivity of compound 6c appeared to be a consequence of an enormous decrease in the affinity for μOR and δOR, rather than a significant increase in the affinity for κOR, which was not the case for SLL-039, another selective and potent κOR agonist identified in our previous work. Besides reduced central nervous system effects, SLL-1206 exhibited substantially improved physicochemical and pharmacokinetic properties compared with SLL-039, with increases of over 20-fold in aqueous solubility and approximately 40-fold in oral bioavailability in rats.
Collapse
Affiliation(s)
- Qian He
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai 201203, China
| | - Yuanyuan Wei
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences and Collaborative Innovation Center for Brain Science, 555 Zuchongzhi Road, Shanghai 201203, China
- School of Basic Medicine Sciences and Clinical Pharmacy, China Pharmaceutical University, No.639 Longmian Road, Nanjing 210009, China
| | - Xiao Liu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai 201203, China
| | - Rongrong Ye
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Linghui Kong
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai 201203, China
| | - Zixiang Li
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai 201203, China
| | - Shuang Jiang
- School of Pharmacy, Nanjing University of Chinese Medicine, No.138, Xianlin Road, Nanjing 210023, China
| | - Linqian Yu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai 201203, China
| | - Jingrui Chai
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences and Collaborative Innovation Center for Brain Science, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Qiong Xie
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai 201203, China
| | - Wei Fu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai 201203, China
| | - Yujun Wang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences and Collaborative Innovation Center for Brain Science, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Wei Li
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai 201203, China
| | - Zhuibai Qiu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai 201203, China
| | - Jinggen Liu
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences and Collaborative Innovation Center for Brain Science, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Liming Shao
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai 201203, China
- State Key Laboratory of Medical Neurobiology, Fudan University, No. 138 Yixueyuan Road, Shanghai 200032, China
| |
Collapse
|
35
|
Zhou Y, Liang Y. Involvement of GRK2 in modulating nalfurafine-induced reduction of excessive alcohol drinking in mice. Neurosci Lett 2021; 760:136092. [PMID: 34197905 DOI: 10.1016/j.neulet.2021.136092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 11/24/2022]
Abstract
Though it is well known that G protein-coupled receptor kinase 2 [GRK2] is involved in regulation of mu opioid receptor [MOR] desensitization and morphine-related behaviors, the potential role of GRK2 in regulation of kappa opioid receptor [KOR] functions in vivo has not been established yet. A couple of recent studies have found that GRK2 activity desensitizes KOR functions via decreasing G protein-coupled signaling with sensitizing arrestin-coupled signaling. Nalfurafine, a G protein-biased KOR full agonist, produces an inhibitory effect on alcohol intake in mice, with fewer side effects (sedation, aversion, or anxiety/depression-like behaviors). Using RNA sequencing (RNA-seq) analysis, we first identified that nuclear transcript level of grk2 [adrbk1] (but not other grks) was significantly up-regulated in mouse nucleus accumbens shell (NAcs) after chronic excessive alcohol drinking, suggesting alcohol specifically increased NAcs grk2 expression. We then tested whether selective GRK2/3 inhibitor CMPD101 could alter alcohol intake and found that CMPD101 alone had no effect on alcohol drinking. Therefore, we hypothesized that the grk2 increase in the NAcs could modulate the nalfurafine effect on alcohol intake via interacting with the G protein-mediated KOR signaling. Nalfurafine decreased alcohol drinking in a dose-related manner, and pretreatment with CMPD101 enhanced the reduction in alcohol intake induced by nalfurafine, indicating an involvement of GRK2/3 blockade in modulating G protein-biased KOR agonism of nalfurafine. Together, our study provides initial evidence relevant to the transcriptional change of grk2 gene in the NAc shell after excessive alcohol drinking. Pharmacological GRK2/3 blockade enhanced nalfurafine's efficacy, suggesting a GRK2/3-mediated mechanism, probably through the G protein-mediated KOR signaling.
Collapse
Affiliation(s)
- Yan Zhou
- Laboratory of the Biology of Addictive Diseases, USA.
| | - Yupu Liang
- Research Bioinformatics, CCTS, The Rockefeller University, NY, USA
| |
Collapse
|
36
|
De Neve J, Barlow TMA, Tourwé D, Bihel F, Simonin F, Ballet S. Comprehensive overview of biased pharmacology at the opioid receptors: biased ligands and bias factors. RSC Med Chem 2021; 12:828-870. [PMID: 34223156 PMCID: PMC8221262 DOI: 10.1039/d1md00041a] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/30/2021] [Indexed: 12/19/2022] Open
Abstract
One of the main challenges in contemporary medicinal chemistry is the development of safer analgesics, used in the treatment of pain. Currently, moderate to severe pain is still treated with the "gold standard" opioids whose long-term often leads to severe side effects. With the discovery of biased agonism, the importance of this area of pharmacology has grown exponentially over the past decade. Of these side effects, tolerance, opioid misuse, physical dependence and substance use disorder (SUD) stand out, since these have led to many deaths over the past decades in both USA and Europe. New therapeutic molecules that induce a biased response at the opioid receptors (MOR, DOR, KOR and NOP receptor) are able to circumvent these side effects and, consequently, serve as more advantageous therapies with great promise. The concept of biased signaling extends far beyond the already sizeable field of GPCR pharmacology and covering everything would be vastly outside the scope of this review which consequently covers the biased ligands acting at the opioid family of receptors. The limitation of quantifying bias, however, makes this a controversial subject, where it is dependent on the reference ligand, the equation or the assay used for the quantification. Hence, the major issue in the field of biased ligands remains the translation of the in vitro profiles of biased signaling, with corresponding bias factors to in vivo profiles showing the presence or the lack of specific side effects. This review comprises a comprehensive overview of biased ligands in addition to their bias factors at individual members of the opioid family of receptors, as well as bifunctional ligands.
Collapse
Affiliation(s)
- Jolien De Neve
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel Brussels Belgium
| | - Thomas M A Barlow
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel Brussels Belgium
| | - Dirk Tourwé
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel Brussels Belgium
| | - Frédéric Bihel
- Laboratoire d'Innovation Thérapeutique, Faculté de Pharmacie, UMR 7200, CNRS Université de Strasbourg Illkirch France
| | - Frédéric Simonin
- Biotechnologie et Signalisation Cellulaire, UMR 7242, CNRS, Université de Strasbourg Illkirch France
| | - Steven Ballet
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel Brussels Belgium
| |
Collapse
|
37
|
Abstract
Preclinical evidence has highlighted the importance of the μ-opioid peptide (MOP) receptor on primary afferents for both the analgesic actions of MOP receptor agonists, as well as the development of tolerance, if not opioid-induced hyperalgesia. There is also growing interest in targeting other opioid peptide receptor subtypes (δ-opioid peptide [DOP], κ-opioid peptide [KOP], and nociceptin/orphanin-FQ opioid peptide [NOP]) on primary afferents, as alternatives to MOP receptors, which may not be associated with as many deleterious side effects. Nevertheless, results from several recent studies of human sensory neurons indicate that although there are many similarities between rodent and human sensory neurons, there may also be important differences. Thus, the purpose of this study was to assess the distribution of opioid receptor subtypes among human sensory neurons. A combination of pharmacology, patch-clamp electrophysiology, Ca imaging, and single-cell semiquantitative polymerase chain reaction was used. Our results suggest that functional MOP-like receptors are present in approximately 50% of human dorsal root ganglion neurons. δ-opioid peptide-like receptors were detected in a subpopulation largely overlapping that with MOP-like receptors. Furthermore, KOP-like and NOP-like receptors are detected in a large proportion (44% and 40%, respectively) of human dorsal root ganglion neurons with KOP receptors also overlapping with MOP receptors at a high rate (83%). Our data confirm that all 4 opioid receptor subtypes are present and functional in human sensory neurons, where the overlap of DOP, KOP, and NOP receptors with MOP receptors suggests that activation of these other opioid receptor subtypes may also have analgesic efficacy.
Collapse
|
38
|
Che T, Dwivedi-Agnihotri H, Shukla AK, Roth BL. Biased ligands at opioid receptors: Current status and future directions. Sci Signal 2021; 14:14/677/eaav0320. [PMID: 33824179 DOI: 10.1126/scisignal.aav0320] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The opioid crisis represents a major worldwide public health crisis that has accelerated the search for safer and more effective opioids. Over the past few years, the identification of biased opioid ligands capable of eliciting selective functional responses has provided an alternative avenue to develop novel therapeutics without the side effects of current opioid medications. However, whether biased agonism or other pharmacological properties, such as partial agonism (or low efficacy), account for the therapeutic benefits remains questionable. Here, we provide a summary of the current status of biased opioid ligands that target the μ- and κ-opioid receptors and highlight advances in preclinical and clinical trials of some of these ligands. We also discuss an example of structure-based biased ligand discovery at the μ-opioid receptor, an approach that could revolutionize drug discovery at opioid and other receptors. Last, we briefly discuss caveats and future directions for this important area of research.
Collapse
Affiliation(s)
- Tao Che
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA.
| | - Hemlata Dwivedi-Agnihotri
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Arun K Shukla
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Bryan L Roth
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA. .,National Institute of Mental Health Psychoactive Drug Screening Program, School of Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA.,Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
39
|
Effects of kappa opioid receptor agonists on fentanyl vs. food choice in male and female rats: contingent vs. non-contingent administration. Psychopharmacology (Berl) 2021; 238:1017-1028. [PMID: 33404739 DOI: 10.1007/s00213-020-05749-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 12/08/2020] [Indexed: 01/07/2023]
Abstract
RATIONALE Strategies are needed to decrease the abuse liability of mu opioid receptor (MOR) agonists. One strategy under consideration is to combine MOR agonists with kappa opioid receptor (KOR) agonists. OBJECTIVES The effects of KOR agonists (U50488, nalfurafine) on fentanyl-vs.-food choice were compared under conditions where the KOR agonists were added to the intravenously self-administered fentanyl (contingent delivery) or administered as subcutaneous pretreatments (non-contingent delivery) in male and female rats. METHODS Rats were trained to respond under a concurrent schedule of fentanyl (0, 0.32-10 μg/kg/infusion) and food reinforcement. In experiment 1, U50488 and nalfurafine were co-administered with fentanyl as fixed-proportion mixtures (contingent administration). In experiment 2, U50488 (1-10 mg/kg) and nalfurafine (3.2-32 μg/kg) were administered as acute pretreatments (non-contingent administration). The selective KOR antagonist, nor-BNI (32 mg/kg), was administered prior to contingent and non-contingent KOR-agonist treatment in experiment 3. RESULTS Both U50488 and nalfurafine decreased fentanyl choice when administered contingently, demonstrating that KOR agonists punish opioid choice. However, evidence for punishment corresponded with an elimination of operant responding in the majority of rats. Non-contingent U50488 and nalfurafine administration only decreased the number of choices made during the behavioral session without altering fentanyl choice. Contingent and non-contingent KOR-agonist effects on fentanyl choice were both attenuated by nor-BNI. CONCLUSIONS These results illustrate that the effects of KOR agonists on fentanyl reinforcement are dependent upon the contingencies under which they are administered.
Collapse
|
40
|
Abstract
Opioids such as morphine and oxycodone are analgesics frequently prescribed for the treatment of moderate or severe pain. Unfortunately, these medications are associated with exceptionally high abuse potentials and often cause fatal side effects, mainly through the μ-opioid receptor (MOR). Efforts to discover novel, safer, and more efficacious analgesics targeting MOR have encountered challenges. In this review, we summarize alternative strategies and targets that could be used to develop safer nonopioid analgesics. A molecular understanding of G protein-coupled receptor activation and signaling has illuminated not only the complexities of receptor pharmacology but also the potential for pathway-selective agonists and allosteric modulators as safer medications. The availability of structures of pain-related receptors, in combination with high-throughput computational tools, has accelerated the discovery of multitarget ligands with promising pharmacological profiles. Emerging clinical evidence also supports the notion that drugs targeting peripheral opioid receptors have potential as improved analgesic agents.
Collapse
Affiliation(s)
- Tao Che
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA; .,Center for Clinical Pharmacology, University of Health Sciences and Pharmacy and Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Bryan L Roth
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA;
| |
Collapse
|
41
|
Liu X, Jiang S, Kong L, Ye R, Xiao L, Xu X, He Q, Wei Y, Li Z, Sun H, Xie Q, Xu X, Lu Y, Wang Y, Li W, Fu W, Qiu Z, Liu J, Shao L. Exploration of the SAR Connection between Morphinan- and Arylacetamide-Based κ Opioid Receptor (κOR) Agonists Using the Strategy of Bridging. ACS Chem Neurosci 2021; 12:1018-1030. [PMID: 33650843 DOI: 10.1021/acschemneuro.1c00034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
κ opioid receptor (κOR) is a subtype of opioid receptors, and there are two major κOR agonists currently available, morphinans and arylacetamides, which are structurally distinct from each other. Numerous efforts had been made to correlate these series of compounds in order to establish a consensus binding pattern for κOR agonists. Unfortunately, no morphinan-based agent with an arylacetamidyl substituent has been identified as a κOR agonist with a pharmacological profile similar to arylacetamides. Since the recently described morphinan-based compound SLL-039 was identified as a selective and potent κOR agonist that contains a unique benzamidyl substituent in structure similar to arylacetamides, numerous arylacetamidyl substituents were introduced to this scaffold to examine whether the structure-activity relationships (SARs) of arylacetamides in conferring κOR agonistic activities could be reproduced by these analogues. Thus, a series of N-cyclopropylmethyl-7α-arylacetamidylphenyl-6,14-endoethanotetrahydronorthebaine analogues were designed, synthesized, and assayed for biological activities. Among these compounds, compound 4j with a 3',4'-dimethylphenylacetamidyl substituent showed a single digit low nanomolar affinity to the κOR and relatively high subtype selectivity in binding assays, but this profile was not reproduced in functional assays. In contrast, compound 4i displayed moderately selective κOR agonistic activities in functional assays, which was inconsistent with its nonselective nature in binding assays. Overall, introduction of an arylacetamidyl substituent to the morphinan-based scaffold was associated with pharmacological diversity in both binding and functional activities on opioid receptors in vitro. The resultant SARs were inconsistent with that of classical arylacetamides as κOR agonists, despite bearing a similar arylacetamidyl substituent in the structure. Therefore, the arylacetamidyl substituent of the morphinan-based scaffold was found to be disconnected from that of arylacetamides in conferring κOR activities.
Collapse
Affiliation(s)
- Xiao Liu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Shuang Jiang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, No. 138, Xianlin Road, Nanjing 210023, China
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences and Collaborative Innovation Center for Brain Science, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Linghui Kong
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Rongrong Ye
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences and Collaborative Innovation Center for Brain Science, 555 Zuchongzhi Road, Shanghai 201203, China
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Li Xiao
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Xuejun Xu
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences and Collaborative Innovation Center for Brain Science, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Qian He
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Yuanyuan Wei
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, No. 639 Longmian Road, Nanjing 210009, China
| | - Zixiang Li
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Huijiao Sun
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Qiong Xie
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Xu Xu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Yan Lu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Yujun Wang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences and Collaborative Innovation Center for Brain Science, 555 Zuchongzhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Wei Li
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Wei Fu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Zhuibai Qiu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Jinggen Liu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, No. 138, Xianlin Road, Nanjing 210023, China
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences and Collaborative Innovation Center for Brain Science, 555 Zuchongzhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Liming Shao
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
- State Key Laboratory of Medical Neurobiology, Fudan University, No. 138 Yixueyuan Road, Shanghai 200032, China
| |
Collapse
|
42
|
Wang H, Cao D, Gillespie JC, Mendez RE, Selley DE, Liu-Chen LY, Zhang Y. Exploring the putative mechanism of allosteric modulations by mixed-action kappa/mu opioid receptor bitopic modulators. Future Med Chem 2021; 13:551-573. [PMID: 33590767 PMCID: PMC8027703 DOI: 10.4155/fmc-2020-0308] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/14/2021] [Indexed: 12/26/2022] Open
Abstract
The modulation and selectivity mechanisms of seven mixed-action kappa opioid receptor (KOR)/mu opioid receptor (MOR) bitopic modulators were explored. Molecular modeling results indicated that the 'message' moiety of seven bitopic modulators shared the same binding mode with the orthosteric site of the KOR and MOR, whereas the 'address' moiety bound with different subdomains of the allosteric site of the KOR and MOR. The 'address' moiety of seven bitopic modulators bound to different subdomains of the allosteric site of the KOR and MOR may exhibit distinguishable allosteric modulations to the binding affinity and/or efficacy of the 'message' moiety. Moreover, the 3-hydroxy group on the phenolic moiety of the seven bitopic modulators induced selectivity to the KOR over the MOR.
Collapse
Affiliation(s)
- Huiqun Wang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Danni Cao
- Center for Substance Abuse Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - James C Gillespie
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Rolando E Mendez
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Dana E Selley
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Lee-Yuan Liu-Chen
- Center for Substance Abuse Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Yan Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
43
|
Ji MJ, Yang J, Gao ZQ, Zhang L, Liu C. The Role of the Kappa Opioid System in Comorbid Pain and Psychiatric Disorders: Function and Implications. Front Neurosci 2021; 15:642493. [PMID: 33716658 PMCID: PMC7943636 DOI: 10.3389/fnins.2021.642493] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 01/27/2021] [Indexed: 01/25/2023] Open
Abstract
Both pain and psychiatric disorders, such as anxiety and depression, significantly impact quality of life for the sufferer. The two also share a strong pathological link: chronic pain-induced negative affect drives vulnerability to psychiatric disorders, while patients with comorbid psychiatric disorders tend to experience exacerbated pain. However, the mechanisms responsible for the comorbidity of pain and psychiatric disorders remain unclear. It is well established that the kappa opioid system contributes to depressive and dysphoric states. Emerging studies of chronic pain have revealed the role and mechanisms of the kappa opioid system in pain processing and, in particular, in the associated pathological alteration of affection. Here, we discuss the key findings and summarize compounds acting on the kappa opioid system that are potential candidates for therapeutic strategies against comorbid pain and psychiatric disorders.
Collapse
Affiliation(s)
- Miao-Jin Ji
- Jiangsu Province Key Laboratory of Anesthesiology and Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Jiao Yang
- Jiangsu Province Key Laboratory of Anesthesiology and Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Zhi-Qiang Gao
- Jiangsu Province Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Liang Zhang
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chao Liu
- Jiangsu Province Key Laboratory of Anesthesiology and Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
44
|
Nguyen E, Lim G, Ding H, Hachisuka J, Ko MC, Ross SE. Morphine acts on spinal dynorphin neurons to cause itch through disinhibition. Sci Transl Med 2021; 13:13/579/eabc3774. [DOI: 10.1126/scitranslmed.abc3774] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 08/13/2020] [Indexed: 12/18/2022]
Abstract
Morphine-induced itch is a very common and debilitating side effect that occurs in laboring women who receive epidural analgesia and in patients who receive spinal morphine for relief of perioperative pain. Although antihistamines are still widely prescribed for the treatment of morphine-induced itch, their use is controversial because the cellular basis for morphine-induced itch remains unclear. Here, we used animal models and show that neuraxial morphine causes itch through neurons and not mast cells. In particular, we found that spinal dynorphin (Pdyn) neurons are both necessary and sufficient for morphine-induced itch in mice. Agonism of the kappa-opioid receptor alleviated morphine-induced itch in mice and nonhuman primates. Thus, our findings not only reveal that morphine causes itch through a mechanism of disinhibition but also challenge the long-standing use of antihistamines, thereby informing the treatment of millions worldwide.
Collapse
Affiliation(s)
- Eileen Nguyen
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Medical Scientist Training Program, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Grace Lim
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Huiping Ding
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Junichi Hachisuka
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| | - Mei-Chuan Ko
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Sarah E. Ross
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
45
|
Denny L, Al Abadey A, Robichon K, Templeton N, Prisinzano TE, Kivell BM, La Flamme AC. Nalfurafine reduces neuroinflammation and drives remyelination in models of CNS demyelinating disease. Clin Transl Immunology 2021; 10:e1234. [PMID: 33489124 PMCID: PMC7811802 DOI: 10.1002/cti2.1234] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/22/2020] [Accepted: 12/14/2020] [Indexed: 12/31/2022] Open
Abstract
Objectives Multiple sclerosis (MS) is a neurodegenerative disease characterised by inflammation and damage to the myelin sheath, resulting in physical and cognitive disability. There is currently no cure for MS, and finding effective treatments to prevent disease progression has been challenging. Recent evidence suggests that activating kappa opioid receptors (KOR) has a beneficial effect on the progression of MS. Although many KOR agonists like U50,488 are not suitable for clinical use because of a poor side‐effect profile, nalfurafine is a potent, clinically used KOR agonist with a favorable side‐effect profile. Methods Using the experimental autoimmune encephalomyelitis (EAE) model, the effect of therapeutically administered nalfurafine or U50,488 on remyelination, CNS infiltration and peripheral immune responses were compared. Additionally, the cuprizone model was used to compare the effects on non‐immune demyelination. Results Nalfurafine enabled recovery and remyelination during EAE. Additionally, it was more effective than U50,488 and promoted disease reduction when administered after chronic demyelination. Blocking KOR with the antagonist, nor‐BNI, impaired full recovery by nalfurafine, indicating that nalfurafine mediates recovery from EAE in a KOR‐dependent fashion. Furthermore, nalfurafine treatment reduced CNS infiltration (especially CD4+ and CD8+ T cells) and promoted a more immunoregulatory environment by decreasing Th17 responses. Finally, nalfurafine was able to promote remyelination in the cuprizone demyelination model, supporting the direct effect on remyelination in the absence of peripheral immune cell invasion. Conclusions Overall, our findings support the potential of nalfurafine to promote recovery and remyelination and highlight its promise for clinical use in MS.
Collapse
Affiliation(s)
- Lisa Denny
- School of Biological Sciences Victoria University of Wellington Wellington New Zealand.,Centre for Biodiscovery Victoria University of Wellington Wellington New Zealand
| | - Afnan Al Abadey
- School of Biological Sciences Victoria University of Wellington Wellington New Zealand.,Centre for Biodiscovery Victoria University of Wellington Wellington New Zealand
| | - Katharina Robichon
- School of Biological Sciences Victoria University of Wellington Wellington New Zealand.,Centre for Biodiscovery Victoria University of Wellington Wellington New Zealand
| | - Nikki Templeton
- School of Biological Sciences Victoria University of Wellington Wellington New Zealand.,Centre for Biodiscovery Victoria University of Wellington Wellington New Zealand
| | - Thomas E Prisinzano
- Department of Pharmaceutical Sciences University of Kentucky Lexington KY 40536 USA
| | - Bronwyn M Kivell
- School of Biological Sciences Victoria University of Wellington Wellington New Zealand.,Centre for Biodiscovery Victoria University of Wellington Wellington New Zealand
| | - Anne C La Flamme
- School of Biological Sciences Victoria University of Wellington Wellington New Zealand.,Centre for Biodiscovery Victoria University of Wellington Wellington New Zealand.,Malaghan Institute of Medical Research Wellington New Zealand
| |
Collapse
|
46
|
Yang D, Zhou Q, Labroska V, Qin S, Darbalaei S, Wu Y, Yuliantie E, Xie L, Tao H, Cheng J, Liu Q, Zhao S, Shui W, Jiang Y, Wang MW. G protein-coupled receptors: structure- and function-based drug discovery. Signal Transduct Target Ther 2021; 6:7. [PMID: 33414387 PMCID: PMC7790836 DOI: 10.1038/s41392-020-00435-w] [Citation(s) in RCA: 261] [Impact Index Per Article: 87.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/30/2020] [Accepted: 12/05/2020] [Indexed: 02/08/2023] Open
Abstract
As one of the most successful therapeutic target families, G protein-coupled receptors (GPCRs) have experienced a transformation from random ligand screening to knowledge-driven drug design. We are eye-witnessing tremendous progresses made recently in the understanding of their structure-function relationships that facilitated drug development at an unprecedented pace. This article intends to provide a comprehensive overview of this important field to a broader readership that shares some common interests in drug discovery.
Collapse
Affiliation(s)
- Dehua Yang
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.,The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
| | - Qingtong Zhou
- School of Basic Medical Sciences, Fudan University, 200032, Shanghai, China
| | - Viktorija Labroska
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Shanshan Qin
- iHuman Institute, ShanghaiTech University, 201210, Shanghai, China
| | - Sanaz Darbalaei
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yiran Wu
- iHuman Institute, ShanghaiTech University, 201210, Shanghai, China
| | - Elita Yuliantie
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Linshan Xie
- iHuman Institute, ShanghaiTech University, 201210, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Houchao Tao
- iHuman Institute, ShanghaiTech University, 201210, Shanghai, China
| | - Jianjun Cheng
- iHuman Institute, ShanghaiTech University, 201210, Shanghai, China
| | - Qing Liu
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.,The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
| | - Suwen Zhao
- iHuman Institute, ShanghaiTech University, 201210, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Wenqing Shui
- iHuman Institute, ShanghaiTech University, 201210, Shanghai, China. .,School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China.
| | - Yi Jiang
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.
| | - Ming-Wei Wang
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China. .,The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China. .,School of Basic Medical Sciences, Fudan University, 200032, Shanghai, China. .,University of Chinese Academy of Sciences, 100049, Beijing, China. .,School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China. .,School of Pharmacy, Fudan University, 201203, Shanghai, China.
| |
Collapse
|
47
|
Spetea M, Schmidhammer H. Kappa Opioid Receptor Ligands and Pharmacology: Diphenethylamines, a Class of Structurally Distinct, Selective Kappa Opioid Ligands. Handb Exp Pharmacol 2021; 271:163-195. [PMID: 33454858 DOI: 10.1007/164_2020_431] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The kappa opioid receptor (KOR), a G protein-coupled receptor, and its endogenous ligands, the dynorphins, are prominent members of the opioid neuromodulatory system. The endogenous kappa opioid system is expressed in the central and peripheral nervous systems, and has a key role in modulating pain in central and peripheral neuronal circuits and a wide array of physiological functions and neuropsychiatric behaviors (e.g., stress, reward, emotion, motivation, cognition, epileptic seizures, itch, and diuresis). We review the latest advances in pharmacology of the KOR, chemical developments on KOR ligands with advances and challenges, and therapeutic and potential applications of KOR ligands. Diverse discovery strategies of KOR ligands targeting natural, naturally derived, and synthetic compounds with different scaffolds, as small molecules or peptides, with short or long-acting pharmacokinetics, and central or peripheral site of action, are discussed. These research efforts led to ligands with distinct pharmacological properties, as agonists, partial agonists, biased agonists, and antagonists. Differential modulation of KOR signaling represents a promising strategy for developing pharmacotherapies for several human diseases, either by activating (treatment of pain, pruritus, and epilepsy) or blocking (treatment of depression, anxiety, and addiction) the receptor. We focus on the recent chemical and pharmacological advances on diphenethylamines, a new class of structurally distinct, selective KOR ligands. Design strategies and investigations to define structure-activity relationships together with in vivo pharmacology of diphenethylamines as agonists, biased agonists, and antagonists and their potential use as therapeutics are discussed.
Collapse
Affiliation(s)
- Mariana Spetea
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria.
| | - Helmut Schmidhammer
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
48
|
Abstract
Preclinical models that assess "pain" in rodents typically measure increases in behaviors produced by a "pain stimulus." A large literature exists showing that kappa opioid receptor (KOR) agonists can decrease these "pain-stimulated behaviors" following many different pain stimuli. Despite showing apparent antinociceptive properties in these preclinical models, KOR agonists failed as analgesics in clinical trials. Recent studies that assessed decreases in behavior due to a pain stimulus show that KOR agonists are not effective in restoring these "pain-depressed behaviors" to normal levels, which agrees with the lack of effectiveness for KOR agonists in clinical trials. One current explanation for the failure of previous KOR agonists in clinical trials is that those agonists activated beta-arrestin signaling and that KOR agonists with a greater bias for G protein signaling will be more successful. However, neither G protein-biased agonists nor beta-arrestin-biased agonists are very effective in assays of pain-depressed behavior, which suggests that novel biased agonists may still not be effective analgesics. This review provides a concise account of the effectiveness of KOR agonists in preclinical models of pain-stimulated and pain-depressed behaviors following the administration of different pain stimuli. Based on the previous results, it may be appropriate to include both behaviors when testing the analgesic potential of KOR agonists.
Collapse
Affiliation(s)
- Matthew F Lazenka
- Department of Biology and Chemistry, Liberty University, Lynchburg, VA, USA.
| |
Collapse
|
49
|
Cao D, Huang P, Chiu YT, Chen C, Wang H, Li M, Zheng Y, Ehlert FJ, Zhang Y, Liu-Chen LY. Comparison of Pharmacological Properties between the Kappa Opioid Receptor Agonist Nalfurafine and 42B, Its 3-Dehydroxy Analogue: Disconnect between in Vitro Agonist Bias and in Vivo Pharmacological Effects. ACS Chem Neurosci 2020; 11:3036-3050. [PMID: 32897695 DOI: 10.1021/acschemneuro.0c00407] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Nalfurafine, a moderately selective kappa opioid receptor (KOR) agonist, is used in Japan for treatment of itch without causing dysphoria or psychotomimesis. Here we characterized the pharmacology of compound 42B, a 3-dehydroxy analogue of nalfurafine and compared with that of nalfurafine. Nalfurafine and 42B acted as full KOR agonists and partial μ opioid receptor (MOR) agonists, but 42B showed much lower potency for both receptors and lower KOR/MOR selectivity, different from previous reports. Molecular modeling revealed that water-mediated hydrogen-bond formation between 3-OH of nalfurafine and KOR accounted for its higher KOR potency than 42B. The higher potency of both at KOR over MOR may be due to hydrogen-bond formation between nonconserved Y7.35 of KOR and their carbonyl groups. Both showed modest G protein signaling biases. In mice, like nalfurafine, 42B produced antinociceptive and antiscratch effects and did not cause conditioned place aversion (CPA) in the effective dose ranges. Unlike nalfurafine, 42B caused motor incoordination and hypolocomotion. As both agonists showed G protein biases, yet produced different effects on locomotor activity and motor incoordination, the findings and those in the literature suggest caution in correlating in vitro biochemical data with in vivo behavior effects. The factors contributing to the disconnect, including pharmacodynamic and pharmacokinetic issues, are discussed. In addition, our results suggest that among the KOR-induced adverse behaviors, CPA can be separated from motor incoordination and hypolocomotion.
Collapse
Affiliation(s)
- Danni Cao
- Center for Substance Abuse Research, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania 19140, United States
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Peng Huang
- Center for Substance Abuse Research, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania 19140, United States
| | - Yi-Ting Chiu
- Center for Substance Abuse Research, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania 19140, United States
| | - Chongguang Chen
- Center for Substance Abuse Research, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania 19140, United States
| | - Huiqun Wang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Mengchu Li
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Yi Zheng
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Frederick J. Ehlert
- Department of Pharmaceutical Sciences, Center of Health Sciences, University of California, Irvine, California 92697, United States
| | - Yan Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Lee-Yuan Liu-Chen
- Center for Substance Abuse Research, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania 19140, United States
| |
Collapse
|
50
|
Zhang Y, Kreek MJ. Nalfurafine modulates the reinforcing effects of oxycodone in male and female adolescent C57BL/6J mice. Neuropharmacology 2020; 176:108244. [DOI: 10.1016/j.neuropharm.2020.108244] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 07/01/2020] [Accepted: 07/14/2020] [Indexed: 10/23/2022]
|