1
|
Nathani A, Sun L, Li Y, Lazarte J, Aare M, Singh M. Targeting EGFR-TKI resistance in lung cancer: Role of miR-5193/miR-149-5p loaded NK-EVs and Carboplatin combination. Int J Pharm 2025; 675:125573. [PMID: 40204039 DOI: 10.1016/j.ijpharm.2025.125573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 03/29/2025] [Accepted: 04/05/2025] [Indexed: 04/11/2025]
Abstract
Lung cancer remains the leading cause of cancer-related deaths, and there is an urgent need for innovative therapies. MicroRNA (miRNA)-based gene therapy has shown promise, but efficient delivery systems are required for its success. This study investigates the use of extracellular vehicles (EVs) secreted by natural killer (NK) cells as delivery systems for miRNAs targeting PD-L1/PD-1 immune checkpoint and FOXM1, in combination with Carboplatin, to enhance anticancer efficacy in lung cancer models. NK-EVs were isolated from NK92-MI cells and characterized using nanoparticle tracking analysis (NTA), proteomics and Western blotting, confirming their exosomal characteristics. Gene ontology profiling and RNA-seq identified highly expressed miRNAs such as miR-5193 and miR-149-5p, which were loaded into NK-EVs via electroporation. Agarose gel electrophoresis confirmed their entrapment and Quickdrop spectrophotometer was used to estimate the quantity. In vitro, miRNA-loaded NK-EVs demonstrated significant cytotoxicity against Osimertinib-resistant PDX (TM0019, Jackson Labs) and H1975R (with L858R mutations) lung cancer cells, with approximately 1.2 to 1.6-fold (p < 0.01) decrease in cell viability compared to NK-EVs alone. In vivo, the combination of miRNA-loaded NK-EVs and Carboplatin significantly reduced tumor volumes (3.5 to 4-fold, p < 0.001) in PDX and H1975R xenograft models, with the most pronounced effect observed in combination therapies. Western blot analysis showed downregulation of tumor-associated markers: PD-1/PD-L1, FOXM1, Survivin, NF-κB and others vs untreated group, p < 0.001) suggesting immune checkpoint inhibition, apoptosis and anti-inflammatory activity. These findings highlight the potential of NK-EVs as effective carriers for miRNAs in combination with chemotherapy, offering a promising therapeutic strategy for NSCLC with EGFR mutations.
Collapse
Affiliation(s)
- Aakash Nathani
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA
| | - Li Sun
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, USA; Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
| | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, USA
| | - Jassy Lazarte
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA
| | - Mounika Aare
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA
| | - Mandip Singh
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA.
| |
Collapse
|
2
|
Fan Y, Meng Y, Hu X, Liu J, Qin X. Uncovering novel mechanisms of chitinase-3-like protein 1 in driving inflammation-associated cancers. Cancer Cell Int 2024; 24:268. [PMID: 39068486 PMCID: PMC11282867 DOI: 10.1186/s12935-024-03425-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024] Open
Abstract
Chitinase-3-like protein 1 (CHI3L1) is a secreted glycoprotein that is induced and regulated by multiple factors during inflammation in enteritis, pneumonia, asthma, arthritis, and other diseases. It is associated with the deterioration of the inflammatory environment in tissues with chronic inflammation caused by microbial infection or autoimmune diseases. The expression of CHI3L1 expression is upregulated in several malignant tumors, underscoring the crucial role of chronic inflammation in the initiation and progression of cancer. While the precise mechanism connecting inflammation and cancer is unclear, the involvement of CHI3L1 is involved in chronic inflammation, suggesting its role as a contributing factor to in the link between inflammation and cancer. CHI3L1 can aggravate DNA oxidative damage, induce the cancerous phenotype, promote the development of a tumor inflammatory environment and angiogenesis, inhibit immune cells, and promote cancer cell growth, invasion, and migration. Furthermore, it participates in the initiation of cancer progression and metastasis by binding with transmembrane receptors to mediate intracellular signal transduction. Based on the current research on CHI3L1, we explore introduce the receptors that interact with CHI3L1 along with the signaling pathways that may be triggered during chronic inflammation to enhance tumorigenesis and progression. In the last section of the article, we provide a brief overview of anti-inflammatory therapies that target CHI3L1.
Collapse
Affiliation(s)
- Yan Fan
- Department of Laboratory Medicine, Liaoning Clinical Research Center for Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110122, China
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, Liaoning Province, China
| | - Yuan Meng
- Department of Laboratory Medicine, Liaoning Clinical Research Center for Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110122, China
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, Liaoning Province, China
| | - Xingwei Hu
- Department of Laboratory Medicine, Liaoning Clinical Research Center for Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110122, China
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, Liaoning Province, China
| | - Jianhua Liu
- Department of Laboratory Medicine, Liaoning Clinical Research Center for Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110122, China
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, Liaoning Province, China
| | - Xiaosong Qin
- Department of Laboratory Medicine, Liaoning Clinical Research Center for Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110122, China.
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, Liaoning Province, China.
| |
Collapse
|
3
|
Shahdab N, Ward C, Hansbro PM, Cummings S, Young JS, Moheimani F. Distinct Effects of Respiratory Viral Infection Models on miR-149-5p, IL-6 and p63 Expression in BEAS-2B and A549 Epithelial Cells. Cells 2024; 13:919. [PMID: 38891051 PMCID: PMC11172188 DOI: 10.3390/cells13110919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 06/20/2024] Open
Abstract
Respiratory viruses cause airway inflammation, resulting in epithelial injury and repair. miRNAs, including miR-149-5p, regulate different pathological conditions. We aimed to determine how miR-149-5p functions in regulating pro-inflammatory IL-6 and p63, key regulators of airway epithelial wound repair, in response to viral proteins in bronchial (BEAS-2B) and alveolar (A549) epithelial cells. BEAS-2B or A549 cells were incubated with poly (I:C, 0.5 µg/mL) for 48 h or SARS-CoV-2 spike protein-1 or 2 subunit (S1 or S2, 1 μg/mL) for 24 h. miR-149-5p was suppressed in BEAS-2B challenged with poly (I:C), correlating with IL-6 and p63 upregulation. miR-149-5p was down-regulated in A549 stimulated with poly (I:C); IL-6 expression increased, but p63 protein levels were undetectable. miR-149-5p remained unchanged in cells exposed to S1 or S2, while S1 transfection increased IL-6 expression in BEAS-2B cells. Ectopic over-expression of miR-149-5p in BEAS-2B cells suppressed IL-6 and p63 mRNA levels and inhibited poly (I:C)-induced IL-6 and p63 mRNA expressions. miR-149-5p directly suppressed IL-6 mRNA in BEAS-2B cells. Hence, BEAS-2B cells respond differently to poly (I:C), S1 or S2 compared to A549 cells. Thus, miR-149-5p dysregulation may be involved in poly (I:C)-stimulated but not S1- or S2-stimulated increased IL-6 production and p63 expression in BEAS-2B cells.
Collapse
Affiliation(s)
- Nafeesa Shahdab
- National Horizons Centre, School of Health and Life Sciences, Teesside University, Middlesbrough TS1 3BX, UK; (N.S.); (S.C.); (J.S.Y.)
| | - Christopher Ward
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE1 7RU, UK;
| | - Philip M. Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney 2007, Australia;
| | - Stephen Cummings
- National Horizons Centre, School of Health and Life Sciences, Teesside University, Middlesbrough TS1 3BX, UK; (N.S.); (S.C.); (J.S.Y.)
| | - John S. Young
- National Horizons Centre, School of Health and Life Sciences, Teesside University, Middlesbrough TS1 3BX, UK; (N.S.); (S.C.); (J.S.Y.)
| | - Fatemeh Moheimani
- Department of Life Sciences, Manchester Metropolitan University, Manchester M15 6BH, UK
| |
Collapse
|
4
|
Mizoguchi E, Sadanaga T, Nanni L, Wang S, Mizoguchi A. Recently Updated Role of Chitinase 3-like 1 on Various Cell Types as a Major Influencer of Chronic Inflammation. Cells 2024; 13:678. [PMID: 38667293 PMCID: PMC11049018 DOI: 10.3390/cells13080678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Chitinase 3-like 1 (also known as CHI3L1 or YKL-40) is a mammalian chitinase that has no enzymatic activity, but has the ability to bind to chitin, the polymer of N-acetylglucosamine (GlcNAc). Chitin is a component of fungi, crustaceans, arthropods including insects and mites, and parasites, but it is completely absent from mammals, including humans and mice. In general, chitin-containing organisms produce mammalian chitinases, such as CHI3L1, to protect the body from exogenous pathogens as well as hostile environments, and it was thought that it had a similar effect in mammals. However, recent studies have revealed that CHI3L1 plays a pathophysiological role by inducing anti-apoptotic activity in epithelial cells and macrophages. Under chronic inflammatory conditions such as inflammatory bowel disease and chronic obstructive pulmonary disease, many groups already confirmed that the expression of CHI3L1 is significantly induced on the apical side of epithelial cells, and activates many downstream pathways involved in inflammation and carcinogenesis. In this review article, we summarize the expression of CHI3L1 under chronic inflammatory conditions in various disorders and discuss the potential roles of CHI3L1 in those disorders on various cell types.
Collapse
Affiliation(s)
- Emiko Mizoguchi
- Department of Immunology, Kurume University School of Medicine, Kurume 830-0011, Japan; (T.S.); (S.W.); (A.M.)
- Department of Molecular Microbiology and Immunology, Brown University Alpert Medical School, Providence, RI 02912, USA
| | - Takayuki Sadanaga
- Department of Immunology, Kurume University School of Medicine, Kurume 830-0011, Japan; (T.S.); (S.W.); (A.M.)
- Department of Molecular Microbiology and Immunology, Brown University Alpert Medical School, Providence, RI 02912, USA
| | - Linda Nanni
- Catholic University of the Sacred Heart, 00168 Rome, Italy;
| | - Siyuan Wang
- Department of Immunology, Kurume University School of Medicine, Kurume 830-0011, Japan; (T.S.); (S.W.); (A.M.)
| | - Atsushi Mizoguchi
- Department of Immunology, Kurume University School of Medicine, Kurume 830-0011, Japan; (T.S.); (S.W.); (A.M.)
| |
Collapse
|
5
|
Wang SS, Wang X, He JJ, Zheng WB, Zhu XQ, Elsheikha HM, Zhou CX. Expression profiles of host miRNAs and circRNAs and ceRNA network during Toxoplasma gondii lytic cycle. Parasitol Res 2024; 123:145. [PMID: 38418741 PMCID: PMC10902104 DOI: 10.1007/s00436-024-08152-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/31/2024] [Indexed: 03/02/2024]
Abstract
Toxoplasma gondii is an opportunistic protozoan parasite that is highly prevalent in the human population and can lead to adverse health consequences in immunocompromised patients and pregnant women. Noncoding RNAs, such as microRNAs (miRNAs) and circular RNAs (circRNAs), play important regulatory roles in the pathogenesis of many infections. However, the differentially expressed (DE) miRNAs and circRNAs implicated in the host cell response during the lytic cycle of T. gondii are unknown. In this study, we profiled the expression of miRNAs and circRNAs in human foreskin fibroblasts (HFFs) at different time points after T. gondii infection using RNA sequencing (RNA-seq). We identified a total of 7, 7, 27, 45, 70, 148, 203, and 217 DEmiRNAs and 276, 355, 782, 1863, 1738, 6336, 1229, and 1680 DEcircRNAs at 1.5, 3, 6, 9, 12, 24, 36, and 48 h post infection (hpi), respectively. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses revealed that the DE transcripts were enriched in immune response, apoptosis, signal transduction, and metabolism-related pathways. These findings provide new insight into the involvement of miRNAs and circRNAs in the host response to T. gondii infection.
Collapse
Affiliation(s)
- Sha-Sha Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, Gansu Province, China
| | - Xiangwei Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, Gansu Province, China
| | - Jun-Jun He
- Key Laboratory of Veterinary Public Health of Higher Education of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650500, Yunnan Province, China
| | - Wen-Bin Zheng
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, China
| | - Xing-Quan Zhu
- Key Laboratory of Veterinary Public Health of Higher Education of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650500, Yunnan Province, China
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, China
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK.
| | - Chun-Xue Zhou
- Department of Pathogen Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250100, Shandong Province, China.
| |
Collapse
|
6
|
Li Q, Li S, Xu C, Zhao J, Hou L, Jiang F, Zhu Z, Wang Y, Tian L. microRNA-149-5p mediates the PM 2.5-induced inflammatory response by targeting TAB2 via MAPK and NF-κB signaling pathways in vivo and in vitro. Cell Biol Toxicol 2023; 39:703-717. [PMID: 34331613 DOI: 10.1007/s10565-021-09638-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 07/13/2021] [Indexed: 12/11/2022]
Abstract
Epidemiological evidence has shown that fine particulate matter (PM2.5)-triggered inflammatory cascades are pivotal causes of chronic obstructive pulmonary disease (COPD). However, the specific molecular mechanism involved in PM2.5-induced COPD has not been clarified. Herein, we found that PM2.5 significantly downregulated miR-149-5p and activated the mitogen-activated protein kinase (MAPK) and nuclear factor-kappa B (NF-κB) signaling pathways and generated the inflammatory response in COPD mice and in human bronchial epithelial (BEAS-2B) cells. We determined that increased expression of interleukin-1β (IL-1β), IL-6, IL-8, and tumor necrosis factor-α (TNF-α) induced by PM2.5 was associated with decreased expression of miR-149-5p. The loss- and gain-of-function approach further confirmed that miR-149-5p could inhibit PM2.5-induced cell inflammation in BEAS-2B cells. The double luciferase reporter assay showed that miR-149-5p directly targeted TGF-beta-activated kinase 1 binding protein 2 (TAB2), which regulates the MAPK and NF-κB signaling pathways. We showed that miR-149-5p mediated the inflammatory response by targeting the 3'-UTR sequence of TAB2 and that it subsequently weakened the TAB2 promotor effect via the MAPK and NF-κB signaling pathways in BEAS-2B cells exposed to PM2.5. Thus, miR-149-5p may be a key factor in PM2.5-induced COPD. This study improves our understanding of the molecular mechanism of COPD.
Collapse
Affiliation(s)
- Qiuyue Li
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, No. 10, Xitoutiao Youanmen Street, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Siling Li
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, No. 10, Xitoutiao Youanmen Street, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Chunjie Xu
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, No. 10, Xitoutiao Youanmen Street, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Jing Zhao
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, No. 10, Xitoutiao Youanmen Street, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Lin Hou
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, No. 10, Xitoutiao Youanmen Street, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Fuyang Jiang
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, No. 10, Xitoutiao Youanmen Street, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Zhonghui Zhu
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, No. 10, Xitoutiao Youanmen Street, Beijing, 100069, China.
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.
| | - Yan Wang
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, No. 10, Xitoutiao Youanmen Street, Beijing, 100069, China.
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.
| | - Lin Tian
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, No. 10, Xitoutiao Youanmen Street, Beijing, 100069, China.
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
7
|
MicroRNA Profiles in Intestinal Epithelial Cells in a Mouse Model of Sepsis. Cells 2023; 12:cells12050726. [PMID: 36899862 PMCID: PMC10001189 DOI: 10.3390/cells12050726] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/22/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
Sepsis is a systemic inflammatory disorder that leads to the dysfunction of multiple organs. In the intestine, the deregulation of the epithelial barrier contributes to the development of sepsis by triggering continuous exposure to harmful factors. However, sepsis-induced epigenetic changes in gene-regulation networks within intestinal epithelial cells (IECs) remain unexplored. In this study, we analyzed the expression profile of microRNAs (miRNAs) in IECs isolated from a mouse model of sepsis generated via cecal slurry injection. Among 239 miRNAs, 14 miRNAs were upregulated, and 9 miRNAs were downregulated in the IECs by sepsis. Upregulated miRNAs in IECs from septic mice, particularly miR-149-5p, miR-466q, miR-495, and miR-511-3p, were seen to exhibit complex and global effects on gene regulation networks. Interestingly, miR-511-3p has emerged as a diagnostic marker in this sepsis model due to its increase in blood in addition to IECs. As expected, mRNAs in the IECs were remarkably altered by sepsis; specifically, 2248 mRNAs were decreased, while 612 mRNAs were increased. This quantitative bias may be possibly derived, at least partly, from the direct effects of the sepsis-increased miRNAs on the comprehensive expression of mRNAs. Thus, current in silico data indicate that there are dynamic regulatory responses of miRNAs to sepsis in IECs. In addition, the miRNAs that were increased with sepsis had enriched downstream pathways including Wnt signaling, which is associated with wound healing, and FGF/FGFR signaling, which has been linked to chronic inflammation and fibrosis. These modifications in miRNA networks in IECs may lead to both pro- and anti-inflammatory effects in sepsis. The four miRNAs discovered above were shown to putatively target LOX, PTCH1, COL22A1, FOXO1, or HMGA2, via in silico analysis, which were associated with Wnt or inflammatory pathways and selected for further study. The expressions of these target genes were downregulated in sepsis IECs, possibly through posttranscriptional modifications of these miRNAs. Taken together, our study suggests that IECs display a distinctive miRNA profile which is capable of comprehensively and functionally reshaping the IEC-specific mRNA landscape in a sepsis model.
Collapse
|
8
|
Jing Y, Hu S, Song J, Dong X, Zhang Y, Sun X, Wang D. Association between polymorphisms in miRNAs and ischemic stroke: A meta-analysis. Medicine (Baltimore) 2022; 101:e32078. [PMID: 36596006 PMCID: PMC9803434 DOI: 10.1097/md.0000000000032078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Atherosclerosis remains a predominant cause of ischemic stroke (IS). Four miRNA polymorphisms associated with arteriosclerosis mechanism were meta-analyzed to explore whether they had predictive significance for IS. METHODS PubMed, Excerpta Medica database, Web of Science, Cochrane Library, Scopus, China National Knowledge Infrastructure, and China Wanfang Database were searched for relevant case-control studies published before September 2022. Two researchers independently reviewed the studies and extracted the data. Data synthesis was carried out on eligible studies. Meta-analysis, subgroup analysis, sensitivity analysis, and publication bias analysis were performed using Stata software 16.0. RESULTS Twenty-two studies were included, comprising 8879 cases and 12,091 controls. The results indicated that there were no significant associations between miR-146a C>G (rs2910164), miR-196a2 T>C (rs11614913) and IS risk in the overall analyses, but miR-149 T>C (rs2292832) and miR-499 A>G (rs3746444) increased IS risk under the allelic model, homozygote model and recessive model. The subgroup analyses based on Trial of Org 101072 in Acute Stroke Treatment classification indicated that rs2910164 increased small artery occlusion (SAO) risk under the allelic model, heterozygote model and dominant model; rs11614913 decreased the risk of SAO under the allelic model, homozygote model, heterozygote model and dominant model. CONCLUSION This Meta-analysis showed that all 4 single nucleotide polymorphisms were associated with the risk of IS or SAO, even though the overall and subgroup analyses were not entirely consistent.
Collapse
Affiliation(s)
- Yunnan Jing
- Heilongjiang University of Chinese Medicine, Harbin, China
- Department of Acupuncture and Moxibustion, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Siya Hu
- Heilongjiang University of Chinese Medicine, Harbin, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jing Song
- Department of Acupuncture and Moxibustion, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xu Dong
- Department of Acupuncture and Moxibustion, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ying Zhang
- Heilongjiang University of Chinese Medicine, Harbin, China
- Department of Acupuncture and Moxibustion, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiaowei Sun
- Heilongjiang University of Chinese Medicine, Harbin, China
- Department of Acupuncture and Moxibustion, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Dongyan Wang
- Department of Acupuncture and Moxibustion, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
- * Correspondence: Dongyan Wang, Department of Acupuncture and Moxibustion, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, 411 Gogoli Dajie, Nangang District, Harbin City, Heilongjiang Province 150000, China (e-mail: )
| |
Collapse
|
9
|
Anderson G. Amyotrophic Lateral Sclerosis Pathoetiology and Pathophysiology: Roles of Astrocytes, Gut Microbiome, and Muscle Interactions via the Mitochondrial Melatonergic Pathway, with Disruption by Glyphosate-Based Herbicides. Int J Mol Sci 2022; 24:ijms24010587. [PMID: 36614029 PMCID: PMC9820185 DOI: 10.3390/ijms24010587] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022] Open
Abstract
The pathoetiology and pathophysiology of motor neuron loss in amyotrophic lateral sclerosis (ALS) are still to be determined, with only a small percentage of ALS patients having a known genetic risk factor. The article looks to integrate wider bodies of data on the biological underpinnings of ALS, highlighting the integrative role of alterations in the mitochondrial melatonergic pathways and systemic factors regulating this pathway across a number of crucial hubs in ALS pathophysiology, namely glia, gut, and the muscle/neuromuscular junction. It is proposed that suppression of the mitochondrial melatonergic pathway underpins changes in muscle brain-derived neurotrophic factor, and its melatonergic pathway mimic, N-acetylserotonin, leading to a lack of metabolic trophic support at the neuromuscular junction. The attenuation of the melatonergic pathway in astrocytes prevents activation of toll-like receptor agonists-induced pro-inflammatory transcription factors, NF-kB, and yin yang 1, from having a built-in limitation on inflammatory induction that arises from their synchronized induction of melatonin release. Such maintained astrocyte activation, coupled with heightened microglia reactivity, is an important driver of motor neuron susceptibility in ALS. Two important systemic factors, gut dysbiosis/permeability and pineal melatonin mediate many of their beneficial effects via their capacity to upregulate the mitochondrial melatonergic pathway in central and systemic cells. The mitochondrial melatonergic pathway may be seen as a core aspect of cellular function, with its suppression increasing reactive oxygen species (ROS), leading to ROS-induced microRNAs, thereby altering the patterning of genes induced. It is proposed that the increased occupational risk of ALS in farmers, gardeners, and sportsmen and women is intimately linked to exposure, whilst being physically active, to the widely used glyphosate-based herbicides. This has numerous research and treatment implications.
Collapse
Affiliation(s)
- George Anderson
- CRC Scotland & London, Eccleston Square, London SW1V 1PG, UK
| |
Collapse
|
10
|
Di Francesco AM, Verrecchia E, Manna S, Urbani A, Manna R. The chitinases as biomarkers in immune-mediate diseases. Clin Chem Lab Med 2022:cclm-2022-0767. [DOI: 10.1515/cclm-2022-0767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/15/2022] [Indexed: 12/12/2022]
Abstract
Abstract
The role of chitinases has been focused as potential biomarkers in a wide number of inflammatory diseases, in monitoring active disease state, and predicting prognosis and response to therapies. The main chitinases, CHIT1 and YKL-40, are derived from 18 glycosyl hydrolases macrophage activation and play important roles in defense against chitin-containing pathogens and in food processing. Moreover, chitinases may have organ- as well as cell-specific effects in the context of infectious diseases and inflammatory disorders and able to induce tissue remodelling. The CHIT1 measurement is an easy, reproducible, reliable, and cost-effective affordable assay. The clinical use of CHIT1 for the screening of lysosomal storage disorders is quite practical, when proper cut-off values are determined for each laboratory. The potential of CHIT1 and chitinases has not been fully explored yet and future studies will produce many surprising discoveries in the immunology and allergology fields of research. However, since the presence of a null CHIT1 gene in a subpopulation would be responsible of false-negative values, the assay should be completed with the other markers such ACE and, if necessary, by genetic analysis when CHIT1 is unexpected low.
Collapse
Affiliation(s)
- Angela Maria Di Francesco
- Periodic Fever and Rare Diseases Research Centre, Catholic University of Sacred Heart , Rome , Italy
| | - Elena Verrecchia
- Periodic Fever and Rare Diseases Research Centre, Catholic University of Sacred Heart , Rome , Italy
| | - Stefano Manna
- Periodic Fever and Rare Diseases Research Centre, Catholic University of Sacred Heart , Rome , Italy
| | - Andrea Urbani
- Institute of Internal Medicine, Policlinico A. Gemelli Foundation IRCCS , Rome , Italy
- Department of Chemistry, Biochemistry and Molecular Biology , Policlinico A. Gemelli Foundation IRCCS , Rome , Italy
| | - Raffaele Manna
- Periodic Fever and Rare Diseases Research Centre, Catholic University of Sacred Heart , Rome , Italy
- Institute of Internal Medicine, Policlinico A. Gemelli Foundation IRCCS , Rome , Italy
| |
Collapse
|
11
|
Vitamin-D ameliorates sepsis-induced acute lung injury via augmenting miR-149-5p and downregulating ER stress. J Nutr Biochem 2022; 110:109130. [PMID: 35988833 DOI: 10.1016/j.jnutbio.2022.109130] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/10/2022] [Accepted: 07/25/2022] [Indexed: 01/13/2023]
Abstract
Acute lung injury is a life-threatening medical problem induced by sepsis or endotoxins and may be associated with enhanced Endoplasmic reticulum stress (ER stress). Vitamin-D (Vit-D) possesses an anti-inflammatory effect; however, this specific mechanism on acute lung injury is still unknown. Here we scrutinize the mechanism of Vit-D on Acute lung injury (ALI) models and explored the Vit-D augmented miRNA's role in regulating the ER stress pathway in ALI. Sepsis was induced by CLP, and Endotoxemia was caused by lipopolysaccharide (LPS). We found that Vit-D alleviates pulmonary edema, improves lung histoarchitecture, infiltration of neutrophils, endothelial barrier in mice, and improves ER stress markers Activating Transcription Factor 6 (ATF6) and CHOP (C/EBP Homologous Protein) expression elevated by CLP/LPS induce ALI. Vit-D decreases the nitric oxide production and ATF6 in macrophages induced by LPS. Vit-D augments miR (miR-149-5p) in LPS-induce macrophages, CLP, and LPS-induced ALI models. Vit-D enhanced miRNA-149-5p when overexpressed, inhibited ER-specific ATF6 inflammatory pathway in LPS-stimulated macrophages, and improved histoarchitecture of the lung in LPS/CLP-induced mice models. This vitro and vivo studies demonstrate that Vit-D could improve ALI induced by CLP/LPS. In this regard, miR-149-5p may play a crucial role in vitamin-D inhibiting LPS/CLP induce ALI. The mechanism might be an association of increased miR-149-5p and its regulated gene target ATF6, and downstream CHOP proteins were suppressed. Thus, these findings demonstrate that the anti-inflammatory effect of Vit-D is achieved by augmentation of miRNA-149-5p expression, which may be a key physiologic mediator in the prevention and treatment of ALI.
Collapse
|
12
|
Zhang F, Zhou Y, Ding J. The current landscape of microRNAs (miRNAs) in bacterial pneumonia: opportunities and challenges. Cell Mol Biol Lett 2022; 27:70. [PMID: 35986232 PMCID: PMC9392286 DOI: 10.1186/s11658-022-00368-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/01/2022] [Indexed: 11/12/2022] Open
Abstract
MicroRNAs (miRNAs), which were initially discovered in Caenorhabditis elegans, can regulate gene expression by recognizing cognate sequences and interfering with the transcriptional or translational machinery. The application of bioinformatics tools for structural analysis and target prediction has largely driven the investigation of certain miRNAs. Notably, it has been found that certain miRNAs which are widely involved in the inflammatory response and immune regulation are closely associated with the occurrence, development, and outcome of bacterial pneumonia. It has been shown that certain miRNA techniques can be used to identify related targets and explore associated signal transduction pathways. This enhances the understanding of bacterial pneumonia, notably for "refractory" or drug-resistant bacterial pneumonia. Although these miRNA-based methods may provide a basis for the clinical diagnosis and treatment of this disease, they still face various challenges, such as low sensitivity, poor specificity, low silencing efficiency, off-target effects, and toxic reactions. The opportunities and challenges of these methods have been completely reviewed, notably in bacterial pneumonia. With the continuous improvement of the current technology, the miRNA-based methods may surmount the aforementioned limitations, providing promising support for the clinical diagnosis and treatment of "refractory" or drug-resistant bacterial pneumonia.
Collapse
Affiliation(s)
- Fan Zhang
- Beijing Key Laboratory of Basic Research With Traditional Chinese Medicine On Infectious Diseases, Beijing Institute of Chinese Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Yunxin Zhou
- Beijing Key Laboratory of Basic Research With Traditional Chinese Medicine On Infectious Diseases, Beijing Institute of Chinese Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Junying Ding
- Beijing Key Laboratory of Basic Research With Traditional Chinese Medicine On Infectious Diseases, Beijing Institute of Chinese Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China.
| |
Collapse
|
13
|
Yang PS, Yu MH, Hou YC, Chang CP, Lin SC, Kuo IY, Su PC, Cheng HC, Su WC, Shan YS, Wang YC. Targeting protumor factor chitinase-3-like-1 secreted by Rab37 vesicles for cancer immunotherapy. Am J Cancer Res 2022; 12:340-361. [PMID: 34987649 PMCID: PMC8690922 DOI: 10.7150/thno.65522] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/26/2021] [Indexed: 02/07/2023] Open
Abstract
Background: Chitinase 3-like-1 (CHI3L1) is a secretion glycoprotein associated with the immunosuppressive tumor microenvironment (TME). The secretory mode of CHI3L1 makes it a promising target for cancer treatment. We have previously reported that Rab37 small GTPase mediates secretion of IL-6 in macrophages to promote cancer progression, whereas the roles of Rab37 in the intracellular trafficking and exocytosis of CHI3L1 are unclear. Methods: We examined the concentration of CHI3L1 in the culture medium of splenocytes and bone marrow derived macrophages (BMDMs) from wild-type or Rab37 knockout mice, and macrophage or T cell lines expressing wild type, active GTP-bound or inactive GDP-bound Rab37. Vesicle isolation, total internal reflection fluorescence microscopy, and real-time confocal microscopy were conducted. We developed polyclonal neutralizing-CHI3L1 antibodies (nCHI3L1 Abs) to validate the therapeutic efficacy in orthotopic lung, pancreas and colon cancer allograft models. Multiplex fluorescence immunohistochemistry was performed to detect the protein level of Rab37 and CHI3L1, and localization of the tumor-infiltrating immune cells in allografts from mice or tumor specimens from cancer patients. Results: We demonstrate a novel secretion mode of CHI3L1 mediated by the small GTPase Rab37 in T cells and macrophages. Rab37 mediated CHI3L1 intracellular vesicle trafficking and exocytosis in a GTP-dependent manner, which is abolished in the splenocytes and BMDMs from Rab37 knockout mice and attenuated in macrophage or T cell lines expressing the inactive Rab37. The secreted CHI3L1 activated AKT, ß-catenin and NF-κB signal pathways in cancer cells and macrophages to foster a protumor TME characterized by activating M2 macrophages and increasing the population of regulatory T cells. Our developed nCHI3L1 Abs showed the dual properties of reducing tumor growth/metastases and eliciting an immunostimulatory TME in syngeneic orthotopic lung, pancreas and colon tumor models. Clinically, high plasma level or intratumoral expression of CHI3L1 correlated with poor survival in 161 lung cancer, 155 pancreatic cancer and 180 colon cancer patients. Conclusions: These results provide the first evidence that Rab37 mediates CHI3L1 secretion in immune cells and highlight nCHI3L1 Abs that can simultaneously target both cancer cells and tumor microenvironment.
Collapse
|
14
|
Hedetoft M, Hansen MB, Madsen MB, Johansen JS, Hyldegaard O. Associations between YKL-40 and markers of disease severity and death in patients with necrotizing soft-tissue infection. BMC Infect Dis 2021; 21:1046. [PMID: 34627195 PMCID: PMC8502346 DOI: 10.1186/s12879-021-06760-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 10/01/2021] [Indexed: 12/20/2022] Open
Abstract
Background Necrotizing soft-tissue infection (NSTI) is a severe and fast-progressing bacterial infection. Prognostic biomarkers may provide valuable information in treatment guidance and decision-making, but none have provided sufficient robustness to have a clinical impact. YKL-40 may reflect the ongoing pathological inflammatory processes more accurately than traditional biomarkers as it is secreted by the activated immune cells, but its prognostic yields in NSTI remains unknown. For this purpose, we investigated the association between plasma YKL-40 and 30-day mortality in patients with NSTI, and assessed its value as a marker of disease severity. Methods We determined plasma YKL-40 levels in patients with NSTI (n = 161) and age-sex matched controls (n = 65) upon admission and at day 1, 2 and 3. Results Baseline plasma YKL-40 was 1191 ng/mL in patients with NSTI compared with 40 ng/mL in controls (p < 0.001). YKL-40 was found to be significantly higher in patients with septic shock (1942 vs. 720 ng/mL, p < 0.001), and in patients receiving renal-replacement therapy (2382 vs. 1041 ng/mL, p < 0.001). YKL-40 correlated with Simplified Acute Physiology Score II (Rho 0.33, p < 0.001). Baseline YKL-40 above 1840 ng/mL was associated with increased risk of 30-day mortality in age-sex-comorbidity adjusted analysis (OR 3.77, 95% CI; 1.59–9.24, p = 0.003), but after further adjustment for Simplified Acute Physiology Score II no association was found between YKL-40 and early mortality. Conclusion High plasma YKL-40 to be associated with disease severity, renal-replacement therapy and risk of death in patients with NSTI. However, YKL-40 is not an independent predictor of 30-day mortality. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-021-06760-x.
Collapse
Affiliation(s)
- Morten Hedetoft
- Department of Anaesthesia, Centre of Head and Orthopaedics, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark.
| | - Marco Bo Hansen
- Department of Anaesthesia, Centre of Head and Orthopaedics, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark.,Konduto ApS, Sani nudge, Copenhagen, Denmark
| | - Martin Bruun Madsen
- Department of Intensive Care 4131, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Julia Sidenius Johansen
- Department of Medicine, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Oncology, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ole Hyldegaard
- Department of Anaesthesia, Centre of Head and Orthopaedics, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
| |
Collapse
|
15
|
Wygrecka M, Schaefer L. Between life and death: Epithelial cells in lung pathologies. Cell Signal 2020; 72:109652. [PMID: 32325184 DOI: 10.1016/j.cellsig.2020.109652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 04/18/2020] [Indexed: 10/24/2022]
Abstract
Recent lineage tracing strategies, single-cell RNA sequencing approaches and high-resolution imaging identified remarkable heterogeneity of lung epithelial cells thus leaving open a question as to their specific functions in lung health and disease. Understanding the molecular mechanisms controlling lung epithelial cell morphogenesis and differentiation as well as communication with other cell types and extracellular matrix provides a basis for improving the outcome for patients with respiratory diseases. Although, the substantial progress has been made towards achieving this goal, we are still far away from being able to train/instruct lung epithelial cells in order to facilitate lung repair and regeneration. The special issue of the Cellular Signaling entitled "Between life and death: epithelial cells in lung pathologies" represents a blend of research articles and reviews, in which structural and functional diversities of lung epithelial cells in health and disease are discussed.
Collapse
Affiliation(s)
- Malgorzata Wygrecka
- Department of Biochemistry, Universities of Giessen and Marburg Lung Center, Giessen, Germany.
| | - Liliana Schaefer
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt Am Main, Germany
| |
Collapse
|