1
|
Hellmann C, Wohlgemuth K, Pennekamp P, George S, Dahmer-Heath M, Konrad M, Omran H, König J. Immunofluorescence analyses of respiratory epithelial cells aid the diagnosis of nephronophthisis. Pediatr Nephrol 2024; 39:3471-3483. [PMID: 39098869 PMCID: PMC11511759 DOI: 10.1007/s00467-024-06443-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/28/2024] [Accepted: 06/10/2024] [Indexed: 08/06/2024]
Abstract
BACKGROUND Nephronophthisis (NPH) comprises a heterogeneous group of inherited renal ciliopathies clinically characterized by progressive kidney failure. So far, definite diagnosis is based on molecular testing only. Here, we studied the feasibility of NPHP1 and NPHP4 immunostaining of nasal epithelial cells to secure and accelerate the diagnosis of NPH. METHODS Samples of 86 individuals with genetically determined renal ciliopathies were analyzed for NPHP1 localization using immunofluorescence microscopy (IF). A sub-cohort of 35 individuals was also analyzed for NPHP4 localization. Western blotting was performed to confirm IF results. RESULTS NPHP1 and NPHP4 were both absent in all individuals with disease-causing NPHP1 variants including one with a homozygous missense variant (c.1027G > A; p.Gly343Arg) formerly classified as a "variant of unknown significance." In individuals with an NPHP4 genotype, we observed a complete absence of NPHP4 while NPHP1 was severely reduced. IF results were confirmed by immunoblotting. Variants in other genes related to renal ciliopathies did not show any impact on NPHP1/NPHP4 expression. Aberrant immunostaining in two genetically unsolved individuals gave rise for a further genetic workup resulting in a genetic diagnosis for both with disease-causing variants in NPHP1 and NPHP4, respectively. CONCLUSIONS IF of patient-derived respiratory epithelial cells may help to secure and accelerate the diagnosis of nephronophthisis-both by verifying inconclusive genetic results and by stratifying genetic diagnostic approaches. Furthermore, we provide in vivo evidence for the interaction of NPHP1 and NPHP4 in a functional module.
Collapse
Affiliation(s)
- Carlotta Hellmann
- Department of General Pediatrics, University Children's Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Kai Wohlgemuth
- Department of General Pediatrics, University Children's Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Petra Pennekamp
- Department of General Pediatrics, University Children's Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Sebastian George
- Department of General Pediatrics, University Children's Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Mareike Dahmer-Heath
- Department of General Pediatrics, University Children's Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Martin Konrad
- Department of General Pediatrics, University Children's Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Heymut Omran
- Department of General Pediatrics, University Children's Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Jens König
- Department of General Pediatrics, University Children's Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany.
| |
Collapse
|
2
|
Collier JB, Kang HS, Roh YG, Srivastava C, Grimm SA, Jarmusch AK, Jetten AM. GLIS3: A novel transcriptional regulator of mitochondrial functions and metabolic reprogramming in postnatal kidney and polycystic kidney disease. Mol Metab 2024; 90:102052. [PMID: 39505148 PMCID: PMC11613186 DOI: 10.1016/j.molmet.2024.102052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/07/2024] [Accepted: 10/19/2024] [Indexed: 11/08/2024] Open
Abstract
OBJECTIVES Deficiency in the transcription factor (TF) GLI-Similar 3 (GLIS3) in humans and mice leads to the development of polycystic kidney disease (PKD). In this study, we investigate the role of GLIS3 in the regulation of energy metabolism and mitochondrial functions in relation to its role in normal kidney and metabolic reprogramming in PKD pathogenesis. METHODS Transcriptomics, cistromics, and metabolomics were used to obtain insights into the role of GLIS3 in the regulation of energy homeostasis and mitochondrial metabolism in normal kidney and PKD pathogenesis using GLIS3-deficient mice. RESULTS Transcriptome analysis showed that many genes critical for mitochondrial biogenesis, oxidative phosphorylation (OXPHOS), fatty acid oxidation (FAO), and the tricarboxylic acid (TCA) cycle, including Tfam, Tfb1m, Tfb2m, Ppargc1a, Ppargc1b, Atp5j2, Hadha, and Sdha, are significantly suppressed in kidneys from both ubiquitous and tissue-specific Glis3-deficient mice. ChIP-Seq analysis demonstrated that GLIS3 is associated with the regulatory region of many of these genes, indicating that their transcription is directly regulated by GLIS3. Cistrome analyses revealed that GLIS3 binding loci frequently located near those of hepatocyte nuclear factor 1-Beta (HNF1B) and nuclear respiratory factor 1 (NRF1) suggesting GLIS3 regulates transcription of many metabolic and mitochondrial function-related genes in coordination with these TFs. Seahorse analysis and untargeted metabolomics corroborated that mitochondrial OXPHOS utilization is suppressed in GLIS3-deficient kidneys and showed that key metabolites in glycolysis, TCA cycle, and glutamine pathways were altered indicating increased reliance on aerobic glycolysis and glutamine anaplerosis. These features of metabolic reprogramming may contribute to a bioenergetic environment that supports renal cyst formation and progression in Glis3-deficient mice kidneys. CONCLUSIONS We identify GLIS3 as a novel positive regulator of the transition from aerobic glycolysis to OXPHOS in normal early postnatal kidney development by directly regulating the transcription of mitochondrial metabolic genes. Loss of GLIS3 induces several features of renal cell metabolic reprogramming. Our study identifies GLIS3 as a new participant in an interconnected transcription regulatory network, that includes HNF1B and NRF1, critical in the regulation of mitochondrial-related gene expression and energy metabolism in normal postnatal kidneys and PKD pathogenesis in Glis3-deficient mice.
Collapse
Affiliation(s)
- Justin B Collier
- Cell Biology Group, Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Hong Soon Kang
- Cell Biology Group, Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Yun-Gil Roh
- Cell Biology Group, Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Chitrangda Srivastava
- Cell Biology Group, Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Sara A Grimm
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Alan K Jarmusch
- Metabolomics Core Facility, Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Anton M Jetten
- Cell Biology Group, Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
3
|
Sánchez-Cazorla E, Carrera N, García-González MÁ. HNF1B Transcription Factor: Key Regulator in Renal Physiology and Pathogenesis. Int J Mol Sci 2024; 25:10609. [PMID: 39408938 PMCID: PMC11476927 DOI: 10.3390/ijms251910609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/19/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
The HNF1B gene, located on chromosome 17q12, encodes a transcription factor essential for the development of several organs. It regulates the expression of multiple genes in renal, pancreatic, hepatic, neurological, and genitourinary tissues during prenatal and postnatal development, influencing processes such as nephrogenesis, cellular polarity, tight junction formation, cilia development, ion transport in the renal tubule, and renal metabolism. Mutations that alter the function of Hnf1b deregulate those processes, leading to various pathologies characterized by both renal and extrarenal manifestations. The main renal diseases that develop are polycystic kidney disease, hypoplastic or dysplastic kidneys, structural abnormalities, Congenital Anomalies of the Kidney and Urinary Tract (CAKUT), and electrolyte imbalances such as hyperuricemia and hypomagnesemia. Extrarenal manifestations include Maturity-Onset Diabetes of the Young (MODY), hypertransaminasemia, genital and urinary tract malformations, Autism Spectrum Disorder (ASD), and other neurodevelopmental disorders. Patients with HNF1B alterations typically carry either punctual mutations or a monoallelic microdeletion in the 17q12 region. Future research on the molecular mechanisms and genotype-phenotype correlations in HNF1B-related conditions will enhance our understanding, leading to improved clinical management, genetic counseling, monitoring, and patient care.
Collapse
Affiliation(s)
- Eloísa Sánchez-Cazorla
- Group of Genetics and Developmental Biology of Renal Disease, Laboratory of Nephrology, No. 11, Health Research Institute of Santiago de Compostela (IDIS), Clinical University Hospital (CHUS), 15706 Santiago de Compostela, Spain;
- Genomic Medicine Group, Clinical University Hospital (CHUS), 15706 Santiago de Compostela, Spain
| | - Noa Carrera
- Group of Genetics and Developmental Biology of Renal Disease, Laboratory of Nephrology, No. 11, Health Research Institute of Santiago de Compostela (IDIS), Clinical University Hospital (CHUS), 15706 Santiago de Compostela, Spain;
- Genomic Medicine Group, Clinical University Hospital (CHUS), 15706 Santiago de Compostela, Spain
- RICORS 2040 (Kidney Disease), ISCIII, 15706 Santiago de Compostela, Spain
| | - Miguel Ángel García-González
- Group of Genetics and Developmental Biology of Renal Disease, Laboratory of Nephrology, No. 11, Health Research Institute of Santiago de Compostela (IDIS), Clinical University Hospital (CHUS), 15706 Santiago de Compostela, Spain;
- Genomic Medicine Group, Clinical University Hospital (CHUS), 15706 Santiago de Compostela, Spain
- RICORS 2040 (Kidney Disease), ISCIII, 15706 Santiago de Compostela, Spain
| |
Collapse
|
4
|
Fujimaru T, Mori T, Sekine A, Chiga M, Mandai S, Kikuchi H, Mori Y, Hara Y, Fujiki T, Ando F, Susa K, Iimori S, Naito S, Hanazawa R, Hirakawa A, Mochizuki T, Suwabe T, Ubara Y, Uchida S, Sohara E. Importance of IFT140 in Patients with Polycystic Kidney Disease Without a Family History. Kidney Int Rep 2024; 9:2685-2694. [PMID: 39291187 PMCID: PMC11403091 DOI: 10.1016/j.ekir.2024.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 09/19/2024] Open
Abstract
Introduction Recently, the monoallelic loss-of-function IFT140 variant was identified as a causative gene for autosomal dominant polycystic kidney disease (ADPKD). In patients with polycystic kidneys who have a positive family history, >90% have pathogenic variants in PKD1 or PKD2, whereas only 1% have IFT140. However, approximately 40% of patients with polycystic kidneys without a family history do not have any pathogenic variants in PKD1 and PKD2. Methods We conducted a comprehensive genetic analysis of 157 adult patients with polycystic kidneys whose parents did not have evident polycystic kidneys. We sequenced up to 92 genes associated with inherited cystic kidney disease, including IFT140. Results Of the 157 patients, 7 (4.5%) presented with monoallelic loss-of-function variants in the IFT140 gene, 51 (32.5%) with pathogenic variants in the PKD1 or PKD2 gene, and 7 (4.5%) with pathogenic variants in other genes related to inherited kidney cystic disease. The proportion of monoallelic loss-of-function IFT140 variants in this cohort was higher than that in previously reported cohorts with polycystic kidneys who had a positive family history. None of the patients with monoallelic loss-of-function IFT140 variants had polycystic liver disease (PLD). Furthermore, patients with IFT140 pathogenic variants had a significantly smaller kidney volume and a remarkably higher estimated glomerular filtration rate (eGFR) than those with PKD1 pathogenic variants (P = 0.01 and 0.03, respectively). Conclusion Because the phenotype of polycystic kidneys caused by the IFT140 gene is mild, parental kidney disease may be overlooked. Therefore, patients without a positive family history are more likely to carry pathogenic variants in IFT140.
Collapse
Affiliation(s)
- Takuya Fujimaru
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Nephrology, St Luke's International Hospital, Tokyo, Japan
| | - Takayasu Mori
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Akinari Sekine
- Nephrology Center, Toranomon Hospital, Tokyo, Japan
- Okinaka Memorial Institute for Medical Research, Toranomon Hospital, Tokyo, Japan
| | - Motoko Chiga
- Clinical Laboratory, Tokyo Medical and Dental University Hospital, Tokyo Japan
| | - Shintaro Mandai
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroaki Kikuchi
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yutaro Mori
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yu Hara
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tamami Fujiki
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Fumiaki Ando
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Koichiro Susa
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Soichiro Iimori
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shotaro Naito
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ryoichi Hanazawa
- Department of Clinical Biostatistics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Akihiro Hirakawa
- Department of Clinical Biostatistics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | | | - Tatsuya Suwabe
- Nephrology Center, Toranomon Hospital, Tokyo, Japan
- Okinaka Memorial Institute for Medical Research, Toranomon Hospital, Tokyo, Japan
| | - Yoshifumi Ubara
- Nephrology Center, Toranomon Hospital, Tokyo, Japan
- Okinaka Memorial Institute for Medical Research, Toranomon Hospital, Tokyo, Japan
| | - Shinichi Uchida
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Eisei Sohara
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
5
|
Kind L, Molnes J, Tjora E, Raasakka A, Myllykoski M, Colclough K, Saint-Martin C, Adelfalk C, Dusatkova P, Pruhova S, Valtonen-André C, Bellanné-Chantelot C, Arnesen T, Kursula P, Njølstad PR. Molecular mechanism of HNF-1A-mediated HNF4A gene regulation and promoter-driven HNF4A-MODY diabetes. JCI Insight 2024; 9:e175278. [PMID: 38855865 PMCID: PMC11382887 DOI: 10.1172/jci.insight.175278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 04/25/2024] [Indexed: 06/11/2024] Open
Abstract
Monogenic diabetes is a gateway to precision medicine through molecular mechanistic insight. Hepatocyte nuclear factor 1A (HNF-1A) and HNF-4A are transcription factors that engage in crossregulatory gene transcription networks to maintain glucose-stimulated insulin secretion in pancreatic β cells. Variants in the HNF1A and HNF4A genes are associated with maturity-onset diabetes of the young (MODY). Here, we explored 4 variants in the P2-HNF4A promoter region: 3 in the HNF-1A binding site and 1 close to the site, which were identified in 63 individuals from 21 families of different MODY disease registries across Europe. Our goal was to study the disease causality for these variants and to investigate diabetes mechanisms on the molecular level. We solved a crystal structure of HNF-1A bound to the P2-HNF4A promoter and established a set of techniques to probe HNF-1A binding and transcriptional activity toward different promoter variants. We used isothermal titration calorimetry, biolayer interferometry, x-ray crystallography, and transactivation assays, which revealed changes in HNF-1A binding or transcriptional activities for all 4 P2-HNF4A variants. Our results suggest distinct disease mechanisms of the promoter variants, which can be correlated with clinical phenotype, such as age of diagnosis of diabetes, and be important tools for clinical utility in precision medicine.
Collapse
Affiliation(s)
- Laura Kind
- Department of Biomedicine and
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Janne Molnes
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medical Genetics and
| | - Erling Tjora
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Pediatrics and Adolescent Medicine, Haukeland University Hospital, Bergen, Norway
| | | | | | - Kevin Colclough
- Exeter Genomics Laboratory, Royal Devon and Exeter NHS Foundation Trust, Exeter, United Kingdom
| | - Cécile Saint-Martin
- Department of Medical Genetics, Sorbonne Université, AP-HP, Pitié-Salpêtrière Hospital, DMU BioGeM, Paris, France
- Monogenic Diabetes Study Group of the Société Francophone du Diabète, Paris, France
| | - Caroline Adelfalk
- Clinical Genetics, Pathology and Molecular Diagnostics, University Hospital Skåne, Lund, Sweden
| | - Petra Dusatkova
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Stepanka Pruhova
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | | | - Christine Bellanné-Chantelot
- Department of Medical Genetics, Sorbonne Université, AP-HP, Pitié-Salpêtrière Hospital, DMU BioGeM, Paris, France
- Monogenic Diabetes Study Group of the Société Francophone du Diabète, Paris, France
| | - Thomas Arnesen
- Department of Biomedicine and
- Department of Surgery, Haukeland University Hospital, Bergen, Norway
| | - Petri Kursula
- Department of Biomedicine and
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Pål Rasmus Njølstad
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
- Section of Endocrinology and Metabolism, Children and Youth Clinic, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
6
|
Alamri N, Lanktree MB. Large Kidney Cysts in HNF1B Nephropathy Mimicking Autosomal Dominant Polycystic Kidney Disease. Can J Kidney Health Dis 2024; 11:20543581241232470. [PMID: 38370308 PMCID: PMC10874158 DOI: 10.1177/20543581241232470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/10/2024] [Indexed: 02/20/2024] Open
Abstract
Rationale Hepatocyte nuclear factor 1 beta (HNF1B) nephropathy is a rare autosomal dominant monogenic kidney disease. We present a case mimicking autosomal dominant polycystic kidney disease (ADPKD), highlighting the phenotypic heterogeneity of HNF1B-related disease. Presenting concerns of the patient A 37-year-old man presented with hypertensive urgency, accompanied by flank pain and abdominal distension. Despite the absence of familial kidney disease, imaging revealed large bilateral kidney cysts resembling ADPKD. Diagnosis We initially suspected de novo ADPKD. However, negative genetic testing results for PKD1 and PKD2 led to a 43-gene cystic kidney sequencing panel which identified a deletion encompassing the entire HNF1B gene. Intervention To alleviate discomfort caused by the kidney cysts, ultrasound-guided aspiration and foam sclerotherapy were performed. Tolvaptan, used for treating high-risk ADPKD, was not prescribed after confirming the diagnosis was HNF1B nephropathy. Outcomes A diagnosis of HNF1B nephropathy was reached following gene panel testing. Abdominal symptoms improved following cyst aspiration and foam sclerotherapy. Novel findings HNF1B nephropathy has a variable presentation but can lead to cysts appearing like ADPKD. A 43-gene cystic kidney sequencing panel identified the diagnosis in this uncertain case.
Collapse
Affiliation(s)
- Nada Alamri
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Matthew B. Lanktree
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- Department of Health Research Methods, Evidence & Impact, McMaster University, Hamilton, ON, Canada
- Population Health Research Institute, Hamilton, ON, Canada
- Division of Nephrology, St. Joseph’s Healthcare Hamilton, Hamilton, ON, Canada
| |
Collapse
|
7
|
Thompson WS, Babayev SN, McGowan ML, Kattah AG, Wick MJ, Bendel-Stenzel EM, Chebib FT, Harris PC, Dahl NK, Torres VE, Hanna C. State of the Science and Ethical Considerations for Preimplantation Genetic Testing for Monogenic Cystic Kidney Diseases and Ciliopathies. J Am Soc Nephrol 2024; 35:235-248. [PMID: 37882743 PMCID: PMC10843344 DOI: 10.1681/asn.0000000000000253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 10/03/2023] [Indexed: 10/27/2023] Open
Abstract
There is a broad phenotypic spectrum of monogenic polycystic kidney diseases (PKDs). These disorders often involve cilia-related genes and lead to the development of fluid-filled cysts and eventual kidney function decline and failure. Preimplantation genetic testing for monogenic (PGT-M) disorders has moved into the clinical realm. It allows prospective parents to avoid passing on heritable diseases to their children, including monogenic PKD. The PGT-M process involves embryo generation through in vitro fertilization, with subsequent testing of embryos and selective transfer of those that do not harbor the specific disease-causing variant(s). There is a growing body of literature supporting the success of PGT-M for autosomal-dominant and autosomal-recessive PKD, although with important technical limitations in some cases. This technology can be applied to many other types of monogenic PKD and ciliopathies despite the lack of existing reports in the literature. PGT-M for monogenic PKD, like other forms of assisted reproductive technology, raises important ethical questions. When considering PGT-M for kidney diseases, as well as the potential to avoid disease in future generations, there are regulatory and ethical considerations. These include limited government regulation and unstandardized consent processes, potential technical errors, high cost and equity concerns, risks associated with pregnancy for mothers with kidney disease, and the impact on all involved in the process, including the children who were made possible with this technology.
Collapse
Affiliation(s)
- Whitney S. Thompson
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota
- Biomedical Ethics Research Program, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota
- Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota
- Division of Neonatal Medicine, Mayo Clinic, Rochester, Minnesota
| | - Samir N. Babayev
- Division of Reproductive Endocrinology and Infertility, Mayo Clinic, Rochester, Minnesota
- Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, Minnesota
| | - Michelle L. McGowan
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota
- Biomedical Ethics Research Program, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota
| | - Andrea G. Kattah
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Myra J. Wick
- Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota
- Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, Minnesota
| | | | - Fouad T. Chebib
- Division of Nephrology and Hypertension, Mayo Clinic, Jacksonville, Florida
| | - Peter C. Harris
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Neera K. Dahl
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Vicente E. Torres
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Christian Hanna
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
- Division of Pediatric Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
8
|
Nakayama Y, Sawa N, Suwabe T, Yamanouchi M, Ikuma D, Mizuno H, Hasegawa E, Hoshino J, Sekine A, Oba Y, Kono K, Kinowaki K, Ohashi K, Yamaguchi Y, Nozu K, Ubara Y. Kidney Histology Findings in a Patient with Autosomal Dominant Tubulointerstitial Kidney Disease Subtype Hepatocyte Nuclear Factor 1β. Intern Med 2023; 62:419-422. [PMID: 35831109 PMCID: PMC9970820 DOI: 10.2169/internalmedicine.9364-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We evaluated kidney histology in a 43-year-old woman with autosomal dominant tubulointerstitial kidney disease subtype hepatocyte nuclear factor 1β. Magnetic resonance imaging showed multiple cysts in the renal medullary area, and computed tomography showed hypoplasia of the pancreatic body and tail. A kidney biopsy showed thinning of the cortex, size reduction of glomerular tuft area, proximal tubule clustering, fibrosis around the tubules, loss of peritubular capillaries, and multilayered epithelial cells of cortical collecting ducts; this last finding was consistent with so-called medullary dysplasia specific to congenital disease, in which the renal pelvic epithelial cells enter the collecting duct.
Collapse
Affiliation(s)
- Yuki Nakayama
- Nephrology Center and Okinaka Memorial Institute for Medical Research, Toranomon Hospital Kajigaya, Japan
| | - Naoki Sawa
- Nephrology Center and Okinaka Memorial Institute for Medical Research, Toranomon Hospital Kajigaya, Japan
| | - Tatsuya Suwabe
- Nephrology Center and Okinaka Memorial Institute for Medical Research, Toranomon Hospital Kajigaya, Japan
| | - Masayuki Yamanouchi
- Nephrology Center and Okinaka Memorial Institute for Medical Research, Toranomon Hospital Kajigaya, Japan
| | - Daisuke Ikuma
- Nephrology Center and Okinaka Memorial Institute for Medical Research, Toranomon Hospital Kajigaya, Japan
| | - Hiroki Mizuno
- Nephrology Center and Okinaka Memorial Institute for Medical Research, Toranomon Hospital Kajigaya, Japan
| | - Eiko Hasegawa
- Nephrology Center and Okinaka Memorial Institute for Medical Research, Toranomon Hospital Kajigaya, Japan
| | - Junichi Hoshino
- Nephrology Center and Okinaka Memorial Institute for Medical Research, Toranomon Hospital Kajigaya, Japan
| | - Akinari Sekine
- Nephrology Center and Okinaka Memorial Institute for Medical Research, Toranomon Hospital Kajigaya, Japan
| | - Yuki Oba
- Nephrology Center and Okinaka Memorial Institute for Medical Research, Toranomon Hospital Kajigaya, Japan
| | - Kei Kono
- Department of Pathology, Toranomon Hospital Kajigaya, Japan
| | | | - Kenichi Ohashi
- Department of Pathology, Toranomon Hospital Kajigaya, Japan
- Department of Human Pathology, Tokyo Medical Dental University, Japan
| | | | - Kandai Nozu
- Department of Pediatrics, Kobe University Graduate School of Medicine, Japan
| | - Yoshifumi Ubara
- Nephrology Center and Okinaka Memorial Institute for Medical Research, Toranomon Hospital Kajigaya, Japan
| |
Collapse
|
9
|
Tholen LE, Latta F, Martens JHA, Hoenderop JGJ, de Baaij JHF. Transcription factor HNF1β controls a transcriptional network regulating kidney cell structure and tight junction integrity. Am J Physiol Renal Physiol 2023; 324:F211-F224. [PMID: 36546837 DOI: 10.1152/ajprenal.00199.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Mutations in the hepatocyte nuclear factor (HNF)1β gene (HNF1B) cause autosomal dominant tubulointerstitial kidney disease, a rare and heterogeneous disease characterized by renal cysts and/or malformation, maturity-onset diabetes of the young, hypomagnesemia, and hypokalemia. The electrolyte disturbances may develop in the distal part of the nephron, which is important for fine-tuning of Mg2+ and Ca2+ reabsorption. Therefore, we aimed to study the transcriptional network directed by HNF1β in the distal part of the nephron. We combined HNF1β chromatin immunoprecipitation-sequencing and mRNA expression data to identify direct targets of HNF1β in a renal distal convoluted tubule cell line (mpkDCT). Gene Ontology term pathway analysis demonstrated enrichment of cell polarity, cell-cell junction, and cytoskeleton pathways in the dataset. Genes directly and indirectly regulated by HNF1β within these pathways included members of the apical and basolateral polarity complexes including Crumbs protein homolog 3 (Crb3), partitioning defective 6 homolog-β (Pard6b), and LLGL Scribble cell polarity complex component 2 (Llgl2). In monolayers of mouse inner medullary collecting duct 3 cells expressing dominant negative Hnf1b, tight junction integrity was compromised, as observed by reduced transepithelial electrical resistance values and increased permeability for fluorescein (0.4 kDa) compared with wild-type cells. Expression of dominant negative Hnf1b also led to a decrease in height (30%) and an increase in surface (58.5%) of cells grown on membranes. Moreover, three-dimensional spheroids formed by cells expressing dominant negative Hnf1b were reduced in size compared with wild-type spheroids (30%). Together, these findings demonstrate that HNF1β directs a transcriptional network regulating tight junction integrity and cell structure in the distal part of the nephron.NEW & NOTEWORTHY Genetic defects in transcription factor hepatocyte nuclear factor (HNF)1β cause a heterogeneous disease characterized by electrolyte disturbances, kidney cysts, and diabetes. By combining RNA-sequencing and HNF1β chromatin immunoprecipitation-sequencing data, we identified new HNF1β targets that were enriched for cell polarity pathways. Newly discovered targets included members of polarity complexes Crb3, Pard6b, and Llgl2. Functional assays in kidney epithelial cells demonstrated decreased tight junction integrity and a loss of typical cuboidal morphology in mutant Hnf1b cells.
Collapse
Affiliation(s)
- Lotte E Tholen
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Femke Latta
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Joost H A Martens
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Joost G J Hoenderop
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jeroen H F de Baaij
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
10
|
Aron AW, Dahl NK, Besse W. A Practical Guide to Genetic Testing for Kidney Disorders of Unknown Etiology. KIDNEY360 2022; 3:1640-1651. [PMID: 36245662 PMCID: PMC9528385 DOI: 10.34067/kid.0007552021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/08/2022] [Indexed: 01/18/2023]
Abstract
Genetic testing is increasingly used in the workup and diagnosis of kidney disease and kidney-related disorders of undetermined cause. Out-of-pocket costs for clinical genetic testing have become affordable, and logistical hurdles overcome. The interest in genetic testing may stem from the need to make or confirm a diagnosis, guide management, or the patient's desire to have a more informed explanation or prognosis. This poses a challenge for providers who do not have formal training in the selection, interpretation, and limitations of genetic tests. In this manuscript, we provide detailed discussion of relevant cases in which clinical genetic testing using a kidney gene panel was applied. The cases demonstrate identification of pathogenic variants for monogenic diseases-contrasting them from genetic risk alleles-and bring up diagnostic limitations and diagnostic utility of these tests in nephrology. This review aims to guide clinicians in formulating pretest conversations with their patients, interpreting genetic variant nomenclature, and considering follow-up investigations. Although providers are gaining experience, there is still risk of testing causing more anxiety than benefit. However, with provider education and support, clinical genetic testing applied to otherwise unexplained kidney-related disorders will increasingly serve as a valuable diagnostic tool with the potential to reshape how we consider and treat many kidney-related diagnoses.
Collapse
Affiliation(s)
- Abraham W. Aron
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Neera K. Dahl
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Whitney Besse
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
11
|
Tholen LE, Hoenderop JGJ, de Baaij JHF. Mechanisms of ion transport regulation by HNF1β in the kidney: beyond transcriptional regulation of channels and transporters. Pflugers Arch 2022; 474:901-916. [PMID: 35554666 PMCID: PMC9338905 DOI: 10.1007/s00424-022-02697-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 01/01/2023]
Abstract
Hepatocyte nuclear factor 1β (HNF1β) is a transcription factor essential for the development and function of the kidney. Mutations in and deletions of HNF1β cause autosomal dominant tubule interstitial kidney disease (ADTKD) subtype HNF1β, which is characterized by renal cysts, diabetes, genital tract malformations, and neurodevelopmental disorders. Electrolyte disturbances including hypomagnesemia, hyperuricemia, and hypocalciuria are common in patients with ADTKD-HNF1β. Traditionally, these electrolyte disturbances have been attributed to HNF1β-mediated transcriptional regulation of gene networks involved in ion transport in the distal part of the nephron including FXYD2, CASR, KCNJ16, and FXR. In this review, we propose additional mechanisms that may contribute to the electrolyte disturbances observed in ADTKD-HNF1β patients. Firstly, kidney development is severely affected in Hnf1b-deficient mice. HNF1β is required for nephron segmentation, and the absence of the transcription factor results in rudimentary nephrons lacking mature proximal tubule, loop of Henle, and distal convoluted tubule cluster. In addition, HNF1β is proposed to be important for apical-basolateral polarity and tight junction integrity in the kidney. Interestingly, cilia formation is unaffected by Hnf1b defects in several models, despite the HNF1β-mediated transcriptional regulation of many ciliary genes. To what extent impaired nephron segmentation, apical-basolateral polarity, and cilia function contribute to electrolyte disturbances in HNF1β patients remains elusive. Systematic phenotyping of Hnf1b mouse models and the development of patient-specific kidney organoid models will be essential to advance future HNF1β research.
Collapse
Affiliation(s)
- Lotte E Tholen
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P. O. Box 9101, Nijmegen, 6500 HB, The Netherlands
| | - Joost G J Hoenderop
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P. O. Box 9101, Nijmegen, 6500 HB, The Netherlands
| | - Jeroen H F de Baaij
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P. O. Box 9101, Nijmegen, 6500 HB, The Netherlands.
| |
Collapse
|
12
|
Zhu Y, Wang Z, Liang Z, Xu S, Teng Y, Li X, Zeng Y. LncRNA4474 inhibits renal fibrosis by regulating hepatocyte nuclear factor-1β through miR-615 modulation. Cell Cycle 2022; 21:1233-1248. [PMID: 35230916 PMCID: PMC9132390 DOI: 10.1080/15384101.2022.2046982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) and microRNAs (miRNAs) are involved in the development and progression of renal fibrosis. lncRNAs can regulate target messenger RNAs (mRNAs) by competitively binding to miRNAs. However, research on lncRNA-miRNA-mRNA interactions remains inadequate. Therefore, the aim of the present study was to investigate the possible function of lncRNA-miRNA-mRNA interactions in chronic renal fibrosis. The relationships among the expression levels of lncRNA4474, miR-615, and hepatocyte nuclear factor-1β (HNF-1β) mRNAs were determined through RNA sequencing. The biological roles of lncRNA4474, miR-615, and HNF-1β in renal fibrosis were investigated with gain-of-function and loss-of-function experiments. Results showed that miR-615 expression increased in unilateral ureteral obstruction rats, accompanied by decreased lncRNA4474 and HNF-1β mRNA expression. The overexpression of HNF-1β attenuated the development of chronic renal fibrosis, whereas HNF-1β knockdown promoted the development. Increase in HNF-1β expression downregulated and upregulated the expression levels of miR-615 and lncRNA4474, respectively, thereby attenuating renal fibrosis progression. Furthermore, lncRNA4474 promoted the expression of HNF-1β by inhibiting miR-615 expression, whereas miR-615 regulated the expression of HNF-1β and thus activated the Wnt signaling pathway. This study demonstrated that the overexpression of lncRNA4474 may attenuate fibrosis progression, accompanied by the downregulation of miR-615 and upregulation of HNF-1β. Hence, this study provides novel information that can be useful in the early diagnosis and treatment of renal fibrosis.
Collapse
Affiliation(s)
- Yun Zhu
- Department of Dermatology and Venereology, The 6th Affiliated Hospital of Kunming Medical University, Yuxi, Yunnan, China
| | - Zhenyu Wang
- Biomedical Engineering Research Center, Kunming Medical University, Kunming, Yunnan, China
| | - Zuohui Liang
- Department of Dermatology and Venereology, The 6th Affiliated Hospital of Kunming Medical University, Yuxi, Yunnan, China
| | - Shuangyan Xu
- Department of Dermatology and Venereology, The 6th Affiliated Hospital of Kunming Medical University, Yuxi, Yunnan, China
| | - Yirong Teng
- Department of Dermatology and Venereology, The 6th Affiliated Hospital of Kunming Medical University, Yuxi, Yunnan, China
| | - Xiaolan Li
- Department of Dermatology and Venereology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China,CONTACT Xiaolan LiThe Second Affiliated Hospital of Kunming Medical University, No. 374 Dianmian Road, Kunming, Yunnan650101, China
| | - Yong Zeng
- Department of Dermatology and Venereology, The 6th Affiliated Hospital of Kunming Medical University, Yuxi, Yunnan, China,Yong Zeng the 6th Affiliated Hospital of Kunming Medical University, No. 21 Nieer Road, Yuxi, 653100 China
| |
Collapse
|
13
|
Wu HT, Lin YT, Chew SH, Wu KJ. Organ defects of the Usp7 mutant mouse strain indicate the essential role of K63-polyubiquitinated Usp7 in organ formation. Biomed J 2022; 46:122-133. [PMID: 35183794 PMCID: PMC10104958 DOI: 10.1016/j.bj.2022.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/12/2022] [Accepted: 02/09/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND K63-linked polyubiquitination of proteins have nonproteolytic functions and regulate the activity of many signal transduction pathways. USP7, a HIF1α deubiquitinase, undergoes K63-linked polyubiquitination under hypoxia. K63-polyubiquitinated USP7 serves as a scaffold to anchor HIF1α, CREBBP, the mediator complex, and the super elongation complex to enhance HIF1α-induced gene transcription. However, the physiological role of K63-polyubiquitinated USP7 remains unknown. METHODS Using a Usp7K444R point mutation knock-in mouse strain, we performed immunohistochemistry and standard molecular biological methods to examine the organ defects of liver and kidney in this knock-in mouse strain. Mechanistic studies were performed by using deubiquitination, immunoprecipitation, and quantitative immunoprecipitations (qChIP) assays. RESULTS We observed multiple organ defects, including decreased liver and muscle weight, decreased tibia/fibula length, liver glycogen storage defect, and polycystic kidneys. The underlying mechanisms include the regulation of protein stability and/or modulation of transcriptional activation of several key factors, leading to decreased protein levels of Prr5l, Hnf4α, Cebpα, and Hnf1β. Repression of these crucial factors leads to the organ defects described above. CONCLUSIONS K63-polyubiquitinated Usp7 plays an essential role in the development of multiple organs and illustrates the importance of the process of K63-linked polyubiquitination in regulating critical protein functions.
Collapse
Affiliation(s)
- Han-Tsang Wu
- Department of Cell and Tissue Engineering, Changhua Christian Hospital, Changhua, Taiwan
| | - Yueh-Te Lin
- Cancer Genome Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Shan Hwu Chew
- Cancer Research Malaysia, Outpatient Centre, Sime Darby Medical Centre, Subang Jaya, Selangor, Malaysia
| | - Kou-Juey Wu
- Cancer Genome Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan; Inst. of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
14
|
Modarage K, Malik SA, Goggolidou P. Molecular Diagnostics of Ciliopathies and Insights Into Novel Developments in Diagnosing Rare Diseases. Br J Biomed Sci 2022; 79:10221. [PMID: 35996505 PMCID: PMC8915726 DOI: 10.3389/bjbs.2021.10221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/02/2021] [Indexed: 11/16/2022]
Abstract
The definition of a rare disease in the European Union describes genetic disorders that affect less than 1 in 2,000 people per individual disease; collectively these numbers amount to millions of individuals globally, who usually manifest a rare disease early on in life. At present, there are at least 8,000 known rare conditions, of which only some are clearly molecularly defined. Over the recent years, the use of genetic diagnosis is gaining ground into informing clinical practice, particularly in the field of rare diseases, where diagnosis is difficult. To demonstrate the complexity of genetic diagnosis for rare diseases, we focus on Ciliopathies as an example of a group of rare diseases where an accurate diagnosis has proven a challenge and novel practices driven by scientists are needed to help bridge the gap between clinical and molecular diagnosis. Current diagnostic difficulties lie with the vast multitude of genes associated with Ciliopathies and trouble in distinguishing between Ciliopathies presenting with similar phenotypes. Moreover, Ciliopathies such as Autosomal Recessive Polycystic Kidney Disease (ARPKD) and Meckel-Gruber syndrome (MKS) present with early phenotypes and may require the analysis of samples from foetuses with a suspected Ciliopathy. Advancements in Next Generation Sequencing (NGS) have now enabled assessing a larger number of target genes, to ensure an accurate diagnosis. The aim of this review is to provide an overview of current diagnostic techniques relevant to Ciliopathies and discuss the applications and limitations associated with these techniques.
Collapse
|
15
|
Hua Tan CS, Ang SF, Yeoh E, Goh BX, Loh WJ, Shum CF, May Ping Eng M, Yan Lun Liu A, Wan Ting Chan L, Goh LX, Subramaniam T, Sum CF, Lim SC. MODY5 Hepatocyte Nuclear Factor 1ß (HNF1ß)-Associated Nephropathy: experience from a regional monogenic diabetes referral centre in Singapore. J Investig Med High Impact Case Rep 2022; 10:23247096211065626. [PMID: 35038894 PMCID: PMC8784948 DOI: 10.1177/23247096211065626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/11/2021] [Accepted: 11/20/2021] [Indexed: 11/16/2022] Open
Abstract
From our monogenic diabetes registry set-up at a secondary-care diabetes center, we identified a nontrivial subpopulation (~15%) of maturity-onset diabetes of the young (MODY) among people with young-onset diabetes. In this report, we describe the diagnostic caveats, clinical features and long-term renal-trajectory of people with HNF1B mutations (HNF1B-MODY). Between 2013 and 2020, we received 267 referrals to evaluate MODY from endocrinologists in both public and private practice. Every participant was subjected to a previously reported structured evaluation process, high-throughput nucleotide sequencing and gene-dosage analysis. Out of 40 individuals with confirmed MODY, 4 (10%) had HNF1B-MODY (harboring either a HNF1B whole-gene deletion or duplication). Postsequencing follow-up biochemical and radiological evaluations revealed the known HNF1B-MODY associated systemic-features, such as transaminitis and structural renal-lesions. These anomalies could have been missed without prior knowledge of the nucleotide-sequencing results. Interestingly, preliminary longitudinal observation (up to 15 years) suggested possibly 2 distinct patterns of renal-deterioration (albuminuric vs. nonalbuminuric chronic kidney disease). Monogenic diabetes like HNF1B-MODY may be missed among young-onset diabetes in a resource-limited routine-care clinic. Collaboration with a MODY-evaluation center may fill the care-gap. The long-term renal-trajectories of HNF1B-MODY will require further studies by dedicated registries and international consortium.
Collapse
Affiliation(s)
| | - Su Fen Ang
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | - Ester Yeoh
- Diabetes Centre, Admiralty Medical Centre, Singapore
| | - Bing Xing Goh
- Diabetes Centre, Admiralty Medical Centre, Singapore
| | - Wann Jia Loh
- Department of Endocrinology, Changi General Hospital, Singapore
| | - Cheuk Fan Shum
- Department of Surgery, Woodlands Health Campus, Singapore
| | | | | | | | - Li Xian Goh
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | | | - Chee Fang Sum
- Diabetes Centre, Admiralty Medical Centre, Singapore
| | - Su Chi Lim
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
- Diabetes Centre, Admiralty Medical Centre, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| |
Collapse
|
16
|
Wu M, Harafuji N, O'Connor AK, Caldovic L, Guay-Woodford LM. Transcription factor Ap2b regulates the mouse autosomal recessive polycystic kidney disease genes, Pkhd1 and Cys1. Front Mol Biosci 2022; 9:946344. [PMID: 36710876 PMCID: PMC9877354 DOI: 10.3389/fmolb.2022.946344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 12/29/2022] [Indexed: 01/14/2023] Open
Abstract
Transcription factor Ap2b (TFAP2B), an AP-2 family transcription factor, binds to the palindromic consensus DNA sequence, 5'-GCCN3-5GGC-3'. Mice lacking functional Tfap2b gene die in the perinatal or neonatal period with cystic dilatation of the kidney distal tubules and collecting ducts, a phenotype resembling autosomal recessive polycystic kidney disease (ARPKD). Human ARPKD is caused by mutations in PKHD1, DZIP1L, and CYS1, which are conserved in mammals. In this study, we examined the potential role of TFAP2B as a common regulator of Pkhd1 and Cys1. We determined the transcription start site (TSS) of Cys1 using 5' Rapid Amplification of cDNA Ends (5'RACE); the TSS of Pkhd1 has been previously established. Bioinformatic approaches identified cis-regulatory elements, including two TFAP2B consensus binding sites, in the upstream regulatory regions of both Pkhd1 and Cys1. Based on reporter gene assays performed in mouse renal collecting duct cells (mIMCD-3), TFAP2B activated the Pkhd1 and Cys1 promoters and electromobility shift assay (EMSA) confirmed TFAP2B binding to the in silico identified sites. These results suggest that Tfap2b participates in a renal epithelial cell gene regulatory network that includes Pkhd1 and Cys1. Disruption of this network impairs renal tubular differentiation, causing ductal dilatation that is the hallmark of recessive PKD.
Collapse
Affiliation(s)
- Maoqing Wu
- Center for Translational Research, Children's National Hospital, Washington, DC, United States
| | - Naoe Harafuji
- Center for Translational Research, Children's National Hospital, Washington, DC, United States
| | - Amber K O'Connor
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ljubica Caldovic
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC, United States.,Department of Genomics and Precision Medicine, School of Medical and Health Sciences, The George Washington University, Washington, DC, United States
| | - Lisa M Guay-Woodford
- Center for Translational Research, Children's National Hospital, Washington, DC, United States.,Center for Genetic Medicine Research, Children's National Hospital, Washington, DC, United States
| |
Collapse
|
17
|
Niborski LL, Paces-Fessy M, Ricci P, Bourgeois A, Magalhães P, Kuzma-Kuzniarska M, Lesaulnier C, Reczko M, Declercq E, Zürbig P, Doucet A, Umbhauer M, Cereghini S. Hnf1b haploinsufficiency differentially affects developmental target genes in a new renal cysts and diabetes mouse model. Dis Model Mech 2021; 14:dmm047498. [PMID: 33737325 PMCID: PMC8126479 DOI: 10.1242/dmm.047498] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 03/09/2021] [Indexed: 12/26/2022] Open
Abstract
Heterozygous mutations in HNF1B cause the complex syndrome renal cysts and diabetes (RCAD), characterized by developmental abnormalities of the kidneys, genital tracts and pancreas, and a variety of renal, pancreas and liver dysfunctions. The pathogenesis underlying this syndrome remains unclear as mice with heterozygous null mutations have no phenotype, while constitutive/conditional Hnf1b ablation leads to more severe phenotypes. We generated a novel mouse model carrying an identified human mutation at the intron-2 splice donor site. Unlike heterozygous mice previously characterized, mice heterozygous for the splicing mutation exhibited decreased HNF1B protein levels and bilateral renal cysts from embryonic day 15, originated from glomeruli, early proximal tubules (PTs) and intermediate nephron segments, concurrently with delayed PT differentiation, hydronephrosis and rare genital tract anomalies. Consistently, mRNA sequencing showed that most downregulated genes in embryonic kidneys were primarily expressed in early PTs and the loop of Henle and involved in ion/drug transport, organic acid and lipid metabolic processes, while the expression of previously identified targets upon Hnf1b ablation, including cystic disease genes, was weakly or not affected. Postnatal analyses revealed renal abnormalities, ranging from glomerular cysts to hydronephrosis and, rarely, multicystic dysplasia. Urinary proteomics uncovered a particular profile predictive of progressive decline in kidney function and fibrosis, and displayed common features with a recently reported urine proteome in an RCAD pediatric cohort. Altogether, our results show that reduced HNF1B levels lead to developmental disease phenotypes associated with the deregulation of a subset of HNF1B targets. They further suggest that this model represents a unique clinical/pathological viable model of the RCAD disease.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Cell Polarity
- Central Nervous System Diseases/genetics
- Central Nervous System Diseases/pathology
- Cilia/pathology
- Dental Enamel/abnormalities
- Dental Enamel/pathology
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/pathology
- Disease Models, Animal
- Embryo, Mammalian/pathology
- Gene Dosage
- Gene Expression Profiling
- Genes, Developmental
- Haploinsufficiency/genetics
- Hepatocyte Nuclear Factor 1-beta/genetics
- Heterozygote
- Humans
- Hydronephrosis/complications
- Kidney Diseases, Cystic/genetics
- Kidney Diseases, Cystic/pathology
- Kidney Glomerulus/pathology
- Kidney Tubules/pathology
- Mice, Inbred C57BL
- Mutation/genetics
- Nephrons/pathology
- RNA Splicing/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Severity of Illness Index
- Mice
Collapse
Affiliation(s)
- Leticia L. Niborski
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine, Laboratoire de Biologie du Développement, IBPS, UMR7622, F-75005 Paris, France
| | - Mélanie Paces-Fessy
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine, Laboratoire de Biologie du Développement, IBPS, UMR7622, F-75005 Paris, France
| | - Pierbruno Ricci
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine, Laboratoire de Biologie du Développement, IBPS, UMR7622, F-75005 Paris, France
| | - Adeline Bourgeois
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine, Laboratoire de Biologie du Développement, IBPS, UMR7622, F-75005 Paris, France
| | - Pedro Magalhães
- Mosaiques Diagnostics, 30659 Hannover, Germany
- Department of Pediatric Nephrology, Hannover Medical School, 30625 Hannover, Germany
| | - Maria Kuzma-Kuzniarska
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine, Laboratoire de Biologie du Développement, IBPS, UMR7622, F-75005 Paris, France
| | - Celine Lesaulnier
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine, Laboratoire de Biologie du Développement, IBPS, UMR7622, F-75005 Paris, France
| | - Martin Reczko
- Biomedical Sciences Research Center Alexander Fleming, Institute for Fundamental Biomedical Science, 16672 Athens, Greece
| | - Edwige Declercq
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine, Laboratoire de Biologie du Développement, IBPS, UMR7622, F-75005 Paris, France
| | | | - Alain Doucet
- Sorbonne Université, Université Paris Descartes, UMRS 1138, CNRS, ERL 8228, Centre de Recherche des Cordeliers, F-75006 Paris, France
| | - Muriel Umbhauer
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine, Laboratoire de Biologie du Développement, IBPS, UMR7622, F-75005 Paris, France
| | - Silvia Cereghini
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine, Laboratoire de Biologie du Développement, IBPS, UMR7622, F-75005 Paris, France
| |
Collapse
|
18
|
Non-Coding RNAs in Hereditary Kidney Disorders. Int J Mol Sci 2021; 22:ijms22063014. [PMID: 33809516 PMCID: PMC7998154 DOI: 10.3390/ijms22063014] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 12/17/2022] Open
Abstract
Single-gene defects have been revealed to be the etiologies of many kidney diseases with the recent advances in molecular genetics. Autosomal dominant polycystic kidney disease (ADPKD), as one of the most common inherited kidney diseases, is caused by mutations of PKD1 or PKD2 gene. Due to the complexity of pathophysiology of cyst formation and progression, limited therapeutic options are available. The roles of noncoding RNAs in development and disease have gained widespread attention in recent years. In particular, microRNAs in promoting PKD progression have been highlighted. The dysregulated microRNAs modulate cyst growth through suppressing the expression of PKD genes and regulating cystic renal epithelial cell proliferation, mitochondrial metabolism, apoptosis and autophagy. The antagonists of microRNAs have emerged as potential therapeutic drugs for the treatment of ADPKD. In addition, studies have also focused on microRNAs as potential biomarkers for ADPKD and other common hereditary kidney diseases, including HNF1β-associated kidney disease, Alport syndrome, congenital abnormalities of the kidney and urinary tract (CAKUT), von Hippel-Lindau (VHL) disease, and Fabry disease. This review assembles the current understanding of the non-coding RNAs, including microRNAs and long noncoding RNAs, in polycystic kidney disease and these common monogenic kidney diseases.
Collapse
|
19
|
Zhang Y, Hao J, Du Z, Li P, Hu J, Ruan M, Li S, Ma Y, Lou Q. Inhibition of hepatocyte nuclear factor 1β contributes to cisplatin nephrotoxicity via regulation of nf-κb pathway. J Cell Mol Med 2021; 25:2861-2871. [PMID: 33512774 PMCID: PMC7957194 DOI: 10.1111/jcmm.16316] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/06/2021] [Accepted: 01/11/2021] [Indexed: 12/12/2022] Open
Abstract
Cisplatin nephrotoxicity has been considered as serious side effect caused by cisplatin‐based chemotherapy. Recent evidence indicates that renal tubular cell apoptosis and inflammation contribute to the progression of cisplatin‐induced acute kidney injury (AKI). Hepatocyte nuclear factor 1β (HNF1β) has been reported to regulate the development of kidney cystogenesis, diabetic nephrotoxicity, etc However, the regulatory mechanism of HNF1β in cisplatin nephrotoxicity is largely unknown. In the present study, we examined the effects of HNF1β deficiency on the development of cisplatin‐induced AKI in vitro and in vivo. HNF1β down‐regulation exacerbated cisplatin‐induced RPTC apoptosis by indirectly inducing NF‐κB p65 phosphorylation and nuclear translocation. HNF1β knockdown C57BL/6 mice were constructed by injecting intravenously with HNF1β‐interfering shRNA and PEI. The HNF1β scramble and knockdown mice were treated with 30 mg/kg cisplatin for 3 days to induce acute kidney injury. Cisplatin treatment caused increased caspase 3 cleavage and p65 phosphorylation, elevated serum urea nitrogen and creatinine, and obvious histological damage of kidney such as fractured tubules in control mice, which were enhanced in HNF1β knockdown mice. These results suggest that HNF1β may ameliorate cisplatin nephrotoxicity in vitro and in vivo, probably through regulating NF‐κB signalling pathway.
Collapse
Affiliation(s)
- Yan Zhang
- Joint National Laboratory for Antibody Drug Engineering, Henan University, Kaifeng, China
| | - Jielu Hao
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Zijun Du
- Joint National Laboratory for Antibody Drug Engineering, Henan University, Kaifeng, China
| | - Peiyao Li
- Joint National Laboratory for Antibody Drug Engineering, Henan University, Kaifeng, China
| | - Jinghua Hu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Mengna Ruan
- Department of Nephrology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Shulian Li
- Joint National Laboratory for Antibody Drug Engineering, Henan University, Kaifeng, China
| | - Yuanfang Ma
- Joint National Laboratory for Antibody Drug Engineering, Henan University, Kaifeng, China
| | - Qiang Lou
- Joint National Laboratory for Antibody Drug Engineering, Henan University, Kaifeng, China
| |
Collapse
|
20
|
Chan SC, Hajarnis SS, Vrba SM, Patel V, Igarashi P. Hepatocyte nuclear factor 1β suppresses canonical Wnt signaling through transcriptional repression of lymphoid enhancer-binding factor 1. J Biol Chem 2020; 295:17560-17572. [PMID: 33453998 DOI: 10.1074/jbc.ra120.015592] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/30/2020] [Indexed: 11/06/2022] Open
Abstract
Hepatocyte nuclear factor-1β (HNF-1β) is a tissue-specific transcription factor that is required for normal kidney development and renal epithelial differentiation. Mutations of HNF-1β produce congenital kidney abnormalities and inherited renal tubulopathies. Here, we show that ablation of HNF-1β in mIMCD3 renal epithelial cells results in activation of β-catenin and increased expression of lymphoid enhancer-binding factor 1 (LEF1), a downstream effector in the canonical Wnt signaling pathway. Increased expression and nuclear localization of LEF1 are also observed in cystic kidneys from Hnf1b mutant mice. Expression of dominant-negative mutant HNF-1β in mIMCD3 cells produces hyperresponsiveness to exogenous Wnt ligands, which is inhibited by siRNA-mediated knockdown of Lef1. WT HNF-1β binds to two evolutionarily conserved sites located 94 and 30 kb from the mouse Lef1 promoter. Ablation of HNF-1β decreases H3K27 trimethylation repressive marks and increases β-catenin occupancy at a site 4 kb upstream to Lef1. Mechanistically, WT HNF-1β recruits the polycomb-repressive complex 2 that catalyzes H3K27 trimethylation. Deletion of the β-catenin-binding domain of LEF1 in HNF-1β-deficient cells abolishes the increase in Lef1 transcription and decreases the expression of downstream Wnt target genes. The canonical Wnt target gene, Axin2, is also a direct transcriptional target of HNF-1β through binding to negative regulatory elements in the gene promoter. These findings demonstrate that HNF-1β regulates canonical Wnt target genes through long-range effects on histone methylation at Wnt enhancers and reveal a new mode of active transcriptional repression by HNF-1β.
Collapse
Affiliation(s)
- Siu Chiu Chan
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Sachin S Hajarnis
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Sophia M Vrba
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Vishal Patel
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Peter Igarashi
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
| |
Collapse
|
21
|
Bustamante C, Sanchez J, Seeherunvong T, Ukarapong S. EARLY ONSET OF MODY5 DUE TO HAPLOINSUFFICIENCY OF HNF1B. AACE Clin Case Rep 2020; 6:e243-e246. [PMID: 32984530 DOI: 10.4158/accr-2020-0161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 05/10/2020] [Indexed: 12/12/2022] Open
Abstract
Objective To report 2 patients with haploinsufficiency of hepatic nuclear factor 1 homeobox B (HNF1B) that results in the onset of maturity onset diabetes of the young type 5 (MODY5) before 3 years of age. Methods We present 2 unusual patients with MODY5 that was diagnosed at 33 and 22 months of age, respectively. We describe the presentations, clinical course, and genetic tests of both patients, and lastly, we review the literature on the prevalence and the age of presentation of MODY5 both in children and in adult patients. Results The first patient had severe congenital renal dysplasia, and deoxyribonucleic acid microarray indicated the deletion of 17q12. Hemoglobin A1c (HbA1c) was obtained due to the concern of MODY5, and the initial level (6.6%, 49 mmol/mol) was abnormally elevated. The second patient had mild renal dysplasia and 17q12 deletion encompassing the HNF1B gene. Hyperglycemia was identified during an episode of respiratory illness. HbA1c (6.2%, 44 mmol/mol) level was abnormally elevated. Pancreatic autoantibodies were absent in both patients. Diet modification resulted in an improvement of HbA1c in both patients. Conclusion Our report highlights the importance of considering MODY5 in patients with congenital anomalies of kidney. Identification of children with MODY5 permits early management of hyperglycemia.
Collapse
Affiliation(s)
- Carmen Bustamante
- Division of Pediatric Endocrinology, University of Miami, Miller School of Medicine, Miami, Florida
| | - Janine Sanchez
- Division of Pediatric Endocrinology, University of Miami, Miller School of Medicine, Miami, Florida
| | - Tossaporn Seeherunvong
- Division of Pediatric Endocrinology, University of Miami, Miller School of Medicine, Miami, Florida
| | - Supamit Ukarapong
- Division of Pediatric Endocrinology, University of Miami, Miller School of Medicine, Miami, Florida
| |
Collapse
|