1
|
Shin K, Rodriguez-Parks A, Kim C, Silaban IM, Xia Y, Sun J, Dong C, Keles S, Wang J, Cao J, Kang J. Harnessing the regenerative potential of interleukin11 to enhance heart repair. Nat Commun 2024; 15:9666. [PMID: 39516197 PMCID: PMC11549343 DOI: 10.1038/s41467-024-54060-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Balancing between regenerative processes and fibrosis is crucial for heart repair, yet strategies regulating this balance remain a barrier to developing therapies. The role of Interleukin 11 (IL11) in heart regeneration remains controversial, as both regenerative and fibrotic functions have been reported. We uncovered that il11a, an Il11 homolog in zebrafish, can trigger robust regenerative programs in zebrafish hearts, including cardiomyocytes proliferation and coronary expansion, even in the absence of injury. Notably, il11a induction in uninjured hearts also activates the quiescent epicardium to produce epicardial progenitor cells, which later differentiate into cardiac fibroblasts. Consequently, prolonged il11a induction indirectly leads to persistent fibroblast emergence, resulting in cardiac fibrosis. While deciphering the regenerative and fibrotic effects of il11a, we found that il11-dependent fibrosis, but not regeneration, is mediated through ERK activity, suggesting to potentially uncouple il11a dual effects on regeneration and fibrosis. To harness the il11a's regenerative ability, we devised a combinatorial treatment through il11a induction with ERK inhibition. This approach enhances cardiomyocyte proliferation with mitigated fibrosis, achieving a balance between regenerative processes and fibrosis. Thus, we unveil the mechanistic insights into regenerative il11 roles, offering therapeutic avenues to foster cardiac repair without exacerbating fibrosis.
Collapse
Grants
- R01HL151522 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL142762 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL155607 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL166518 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R35GM137878 U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- P30CA014520 U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)
- U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
- U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)
- University of Wisconsin Institute for Clinical and Translational Research (UW ICTR) pilot grant
- Stem Cell and Regenerative Medicine Center Research Training Award
Collapse
Affiliation(s)
- Kwangdeok Shin
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, USA
| | - Anjelica Rodriguez-Parks
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, USA
| | - Chanul Kim
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, USA
| | - Isabella M Silaban
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, USA
| | - Yu Xia
- Cardiovascular Research Institute, Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY, USA
| | - Jisheng Sun
- Cardiology Division, School of Medicine, Emory University, Atlanta, GA, USA
| | - Chenyang Dong
- Departments of Statistics and of Biostatistics and Medical Informatics, University of Wisconsin - Madison, Madison, WI, USA
| | - Sunduz Keles
- Departments of Statistics and of Biostatistics and Medical Informatics, University of Wisconsin - Madison, Madison, WI, USA
| | - Jinhu Wang
- Cardiology Division, School of Medicine, Emory University, Atlanta, GA, USA
| | - Jingli Cao
- Cardiovascular Research Institute, Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY, USA
| | - Junsu Kang
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, USA.
- UW Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, USA.
| |
Collapse
|
2
|
Younesi FS, Miller AE, Barker TH, Rossi FMV, Hinz B. Fibroblast and myofibroblast activation in normal tissue repair and fibrosis. Nat Rev Mol Cell Biol 2024; 25:617-638. [PMID: 38589640 DOI: 10.1038/s41580-024-00716-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2024] [Indexed: 04/10/2024]
Abstract
The term 'fibroblast' often serves as a catch-all for a diverse array of mesenchymal cells, including perivascular cells, stromal progenitor cells and bona fide fibroblasts. Although phenotypically similar, these subpopulations are functionally distinct, maintaining tissue integrity and serving as local progenitor reservoirs. In response to tissue injury, these cells undergo a dynamic fibroblast-myofibroblast transition, marked by extracellular matrix secretion and contraction of actomyosin-based stress fibres. Importantly, whereas transient activation into myofibroblasts aids in tissue repair, persistent activation triggers pathological fibrosis. In this Review, we discuss the roles of mechanical cues, such as tissue stiffness and strain, alongside cell signalling pathways and extracellular matrix ligands in modulating myofibroblast activation and survival. We also highlight the role of epigenetic modifications and myofibroblast memory in physiological and pathological processes. Finally, we discuss potential strategies for therapeutically interfering with these factors and the associated signal transduction pathways to improve the outcome of dysregulated healing.
Collapse
Affiliation(s)
- Fereshteh Sadat Younesi
- Keenan Research Institute for Biomedical Science of the St. Michael's Hospital, Toronto, Ontario, Canada
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Andrew E Miller
- Department of Biomedical Engineering, School of Engineering and Applied Science, University of Virginia, Charlottesville, VA, USA
| | - Thomas H Barker
- Department of Biomedical Engineering, School of Engineering and Applied Science, University of Virginia, Charlottesville, VA, USA
| | - Fabio M V Rossi
- School of Biomedical Engineering and Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Boris Hinz
- Keenan Research Institute for Biomedical Science of the St. Michael's Hospital, Toronto, Ontario, Canada.
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
3
|
Zanetti M, Braidotti N, Khumar M, Montelongo E, Lombardi R, Sbaizero O, Mestroni L, Taylor MRG, Baj G, Lazzarino M, Peña B, Andolfi L. Investigations of cardiac fibrosis rheology by in vitro cardiac tissue modeling with 3D cellular spheroids. J Mech Behav Biomed Mater 2024; 155:106571. [PMID: 38744118 DOI: 10.1016/j.jmbbm.2024.106571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/22/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
Cardiac fibrosis refers to the abnormal accumulation of extracellular matrix within the cardiac muscle, leading to increased stiffness and impaired heart function. From a rheological standpoint, knowledge about myocardial behavior is still lacking, partially due to a lack of appropriate techniques to investigate the rheology of in vitro cardiac tissue models. 3D multicellular cardiac spheroids are powerful and versatile platforms for modeling healthy and fibrotic cardiac tissue in vitro and studying how their mechanical properties are modulated. In this study, cardiac spheroids were created by co-culturing neonatal rat ventricular cardiomyocytes and fibroblasts in definite ratios using the hanging-drop method. The rheological characterization of such models was performed by Atomic Force Microscopy-based stress-relaxation measurements on the whole spheroid. After strain application, a viscoelastic bi-exponential relaxation was observed, characterized by a fast relaxation time (τ1) followed by a slower one (τ2). In particular, spheroids with higher fibroblasts density showed reduction for both relaxation times comparing to control, with a more pronounced decrement of τ1 with respect to τ2. Such response was found compatible with the increased production of extracellular matrix within these spheroids, which recapitulates the main feature of the fibrosis pathophysiology. These results demonstrate how the rheological characteristics of cardiac tissue vary as a function of cellular composition and extracellular matrix, confirming the suitability of such system as an in vitro preclinical model of cardiac fibrosis.
Collapse
Affiliation(s)
- Michele Zanetti
- Consiglio Nazionale Delle Ricerche-Istituto Officina Dei Materiali (CNR-IOM), Area Science Park Basovizza, Strada Statale 14, Km 163,5, 34149, Trieste, Italy; Department of Physics, University of Trieste, Via A. Valerio 2, 34127, Trieste, Italy.
| | - Nicoletta Braidotti
- Consiglio Nazionale Delle Ricerche-Istituto Officina Dei Materiali (CNR-IOM), Area Science Park Basovizza, Strada Statale 14, Km 163,5, 34149, Trieste, Italy; Department of Physics, University of Trieste, Via A. Valerio 2, 34127, Trieste, Italy.
| | - Maydha Khumar
- Bioengineering Department, University of Colorado Denver Anschutz Medical Campus, At Bioscience 2 1270 E. Montview Avenue, Suite 100, Aurora, CO, 80045, United States
| | - Efren Montelongo
- Bioengineering Department, University of Colorado Denver Anschutz Medical Campus, At Bioscience 2 1270 E. Montview Avenue, Suite 100, Aurora, CO, 80045, United States
| | - Raffaella Lombardi
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, At 12700 E.19th Avenue, Bldg. P15, Aurora, CO, 80045, United States; Cardiovascular Institute, University of Colorado Denver Anschutz Medical Campus, School of Medicine, Division of Cardiology, At 12700 E.19th Avenue, Bldg. P15, Aurora, CO, 80045, United States
| | - Orfeo Sbaizero
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, At 12700 E.19th Avenue, Bldg. P15, Aurora, CO, 80045, United States; Department of Engineering and Architecture, University of Trieste, Via A. Valerio 6/A, 34127, Trieste, Italy
| | - Luisa Mestroni
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, At 12700 E.19th Avenue, Bldg. P15, Aurora, CO, 80045, United States; Cardiovascular Institute, University of Colorado Denver Anschutz Medical Campus, School of Medicine, Division of Cardiology, At 12700 E.19th Avenue, Bldg. P15, Aurora, CO, 80045, United States
| | - Matthew R G Taylor
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, At 12700 E.19th Avenue, Bldg. P15, Aurora, CO, 80045, United States
| | - Gabriele Baj
- Department of Life Sciences, University of Trieste, Via L. Giorgieri 5, 34127, Trieste, Italy
| | - Marco Lazzarino
- Consiglio Nazionale Delle Ricerche-Istituto Officina Dei Materiali (CNR-IOM), Area Science Park Basovizza, Strada Statale 14, Km 163,5, 34149, Trieste, Italy
| | - Brisa Peña
- Bioengineering Department, University of Colorado Denver Anschutz Medical Campus, At Bioscience 2 1270 E. Montview Avenue, Suite 100, Aurora, CO, 80045, United States; Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, At 12700 E.19th Avenue, Bldg. P15, Aurora, CO, 80045, United States; Cardiovascular Institute, University of Colorado Denver Anschutz Medical Campus, School of Medicine, Division of Cardiology, At 12700 E.19th Avenue, Bldg. P15, Aurora, CO, 80045, United States
| | - Laura Andolfi
- Consiglio Nazionale Delle Ricerche-Istituto Officina Dei Materiali (CNR-IOM), Area Science Park Basovizza, Strada Statale 14, Km 163,5, 34149, Trieste, Italy
| |
Collapse
|
4
|
Bala V, Patel V, Sewell-Loftin MK. Cadherin Expression Is Regulated by Mechanical Phenotypes of Fibroblasts in the Perivascular Matrix. Cells Tissues Organs 2024:1-18. [PMID: 38768571 DOI: 10.1159/000539319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 05/08/2024] [Indexed: 05/22/2024] Open
Abstract
INTRODUCTION The influence of mechanical forces generated by stromal cells in the perivascular matrix is thought to be a key regulator in controlling blood vessel growth. Cadherins are mechanosensors that facilitate and maintain cell-cell interactions and blood vessel integrity, but little is known about how stromal cells regulate cadherin signaling in the vasculature. Our objective was to investigate the relationship between mechanical phenotypes of stromal cells with cadherin expression in 3D tissue engineering models of vascular growth. METHODS Stromal cell lines were subjected to a bead displacement assay to track matrix distortions and characterize mechanical phenotypes in 3D microtissue models. These cells included human ventricular cardiac (NHCF), dermal (NHDF), lung (NHLF), breast cancer-associated (CAF), and normal breast fibroblasts (NBF). Cells were embedded in a fibrin matrix (10 mg/mL) with fluorescent tracker beads; images were collected every 30 min. We also studied endothelial cells (ECs) in co-culture with mechanically active or inactive stromal cells and quantified N-Cad, OB-Cad, and VE-Cad expression using immunofluorescence. RESULTS Bead displacement studies identified mechanically active stromal cells (CAFs, NHCFs, NHDFs) that generate matrix distortions and mechanically inactive cells (NHLFs, NBFs). CAFs, NHCFs, and NHDFs displaced the matrix with an average magnitude of 3.17 ± 0.11 μm, 3.13 ± 0.06 μm, and 2.76 ± 0.05 μm, respectively, while NHLFs and NBFs displaced the matrix with an average of 1.82 ± 0.05 μm and 2.66 ± 0.06 μm in fibrin gels. Compared to ECs only, CAFs + ECs as well as NBFs + ECs in 3D co-culture significantly decreased expression of VE-Cad; in addition, Pearson's Correlation Coefficient for N-Cad and VE-Cad showed a strong correlation (>0.7), suggesting cadherin colocalization. Using a microtissue model, we demonstrated that mechanical phenotypes associated with increased matrix deformations correspond to enhanced angiogenic growth. The results could suggest a mechanism to control tight junction regulation in developing vascular beds for tissue engineering scaffolds or understanding vascular growth during developmental processes. CONCLUSION Our studies provide novel data for how mechanical phenotype of stromal cells in combination with secreted factor profiles is related to cadherin regulation, localization, and vascularization potential in 3D microtissue models.
Collapse
Affiliation(s)
- Vaishali Bala
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Vidhi Patel
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Mary Kathryn Sewell-Loftin
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
5
|
Yusuf IH, Burgoyne T, Salman A, McClements ME, MacLaren RE, Charbel Issa P. Rescue of cone and rod photoreceptor function in a CDHR1-model of age-related retinal degeneration. Mol Ther 2024; 32:1445-1460. [PMID: 38504520 PMCID: PMC11081940 DOI: 10.1016/j.ymthe.2024.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/22/2024] [Accepted: 03/15/2024] [Indexed: 03/21/2024] Open
Abstract
Age-related macular degeneration (AMD) is the most common cause of untreatable blindness in the developed world. Recently, CDHR1 has been identified as the cause of a subset of AMD that has the appearance of the "dry" form, or geographic atrophy. Biallelic variants in CDHR1-a specialized protocadherin highly expressed in cone and rod photoreceptors-result in blindness from shortened photoreceptor outer segments and progressive photoreceptor cell death. Here we demonstrate long-term morphological, ultrastructural, functional, and behavioral rescue following CDHR1 gene therapy in a relevant murine model, sustained to 23-months after injection. This represents the first demonstration of rescue of a monogenic cadherinopathy in vivo. Moreover, the durability of CDHR1 gene therapy seems to be near complete-with morphological findings of the rescued retina not obviously different from wildtype throughout the lifespan of the mouse model. A follow-on clinical trial in patients with CDHR1-associated retinal degeneration is warranted. Hypomorphic CDHR1 variants may mimic advanced dry AMD. Accurate clinical classification is now critical, as their pathogenesis and treatment are distinct.
Collapse
Affiliation(s)
- Imran H Yusuf
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, Oxford University, West Wing, John Radcliffe Hospital, Oxford OX3 9DU, UK; Oxford Eye Hospital, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Headley Way, Oxford OX3 9DU, UK
| | - Thomas Burgoyne
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Ahmed Salman
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, Oxford University, West Wing, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Michelle E McClements
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, Oxford University, West Wing, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Robert E MacLaren
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, Oxford University, West Wing, John Radcliffe Hospital, Oxford OX3 9DU, UK; Oxford Eye Hospital, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Headley Way, Oxford OX3 9DU, UK.
| | - Peter Charbel Issa
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, Oxford University, West Wing, John Radcliffe Hospital, Oxford OX3 9DU, UK; Oxford Eye Hospital, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Headley Way, Oxford OX3 9DU, UK.
| |
Collapse
|
6
|
Zhang G, Han X, Xu T, Liu M, Chen G, Xie L, Xu H, Hua Y, Pang M, Hu C, Wu Y, Liu B, Zhou Y. Buyang Huanwu Decoction suppresses cardiac inflammation and fibrosis in mice after myocardial infarction through inhibition of the TLR4 signalling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 320:117388. [PMID: 37949329 DOI: 10.1016/j.jep.2023.117388] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/19/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE It has been reported that cardiac inflammation and fibrosis participate in the development of heart failure (HF) following myocardial infarction (MI). Anti-inflammatory and anti-fibrotic treatments exhibit therapeutic efficacy in MI. Buyang Huanwu Decoction (BYHWD) has cardioprotective properties. However, whether BYHWD regulates cardiac inflammation and fibrosis in HF after MI, and the underlying mechanisms, are still unknown. AIM OF THE STUDY This study aimed to explore the effects and potential mechanisms of BYHWD on cardiac inflammation and fibrosis after MI. MATERIALS AND METHODS An MI model was constructed through ligation of the left anterior descending coronary artery (LAD) in mice. The cardioprotective effects of BYHWD were determined by echocardiography, Masson trichrome staining, wheat germ agglutinin (WGA) staining and haematoxylin and eosin (HE) staining. The effects of BYHWD on inflammation and fibrosis, and on the TLR4 signalling pathway, were explored through immunohistochemistry (IHC), Western blot (WB), enzyme-linked immunosorbent assay (ELISA) and quantitative reverse transcription polymerase chain reaction (qRT-PCR) in vivo. Next, the effects of BYHWD on primary cardiac fibroblasts (CFs) inflammation and collagen synthesis, and on the TLR4 signalling pathway, were detected using WB, immunofluorescence (IF) and qRT-PCR in vitro. In addition, the suppression and overexpression of TLR4 in CFs were further explored. RESULTS BYHWD dose-dependently reduced cardiac inflammation, fibrosis and ventricular dysfunction. The expression levels of collagen Ⅰ/Ⅲ, IL-1β and IL-18, as well as critical proteins in the TLR4 signalling pathway and the NLRP3 inflammasome, were suppressed by BYHWD in the in vivo experiment. BYHWD inhibited CFs inflammation and collagen synthesis, as well as critical proteins in the TLR4 signalling pathway and the NLRP3 inflammasome, in the in vitro experiment. TLR4 suppression mitigated these inhibitory effects of BYHWD while overexpression of TLR4 markedly reversed these inhibitory effects of BYHWD. CONCLUSION BYHWD exerts anti-inflammatory and anti-fibrotic effects in mice after MI, and suppresses CFs inflammation and collagen synthesis through suppression of the TLR4 signalling pathway.
Collapse
Affiliation(s)
- Guoyong Zhang
- Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou, 510515, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Xin Han
- Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou, 510515, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Tong Xu
- Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou, 510515, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Min Liu
- Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Guanghong Chen
- Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou, 510515, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Lingpeng Xie
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China; Department of Hepatology, Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, China
| | - Honglin Xu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China; Department of geratology, Affliated Dongguan Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, 523058, China
| | - Yue Hua
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Mingjie Pang
- Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou, 510515, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Changlei Hu
- Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou, 510515, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Yuting Wu
- Binzhou Medical University Hospital, Binzhou, 256603, China.
| | - Bin Liu
- Department of Traditional Chinese Medicine, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510260, China.
| | - Yingchun Zhou
- Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou, 510515, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
7
|
Mukherjee S, Goswami S, Dash S, Samanta D. Structural basis of molecular recognition among classical cadherins mediating cell adhesion. Biochem Soc Trans 2023; 51:2103-2115. [PMID: 37970977 DOI: 10.1042/bst20230356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/19/2023]
Abstract
Cadherins are type-I membrane glycoproteins that primarily participate in calcium-dependent cell adhesion and homotypic cell sorting in various stages of embryonic development. Besides their crucial role in cellular and physiological processes, increasing studies highlight their involvement in pathophysiological functions ranging from cancer progression and metastasis to being entry receptors for pathogens. Cadherins mediate these cellular processes through homophilic, as well as heterophilic interactions (within and outside the superfamily) by their membrane distal ectodomains. This review provides an in-depth structural perspective of molecular recognition among type-I and type-II classical cadherins. Furthermore, this review offers structural insights into different dimeric assemblies like the 'strand-swap dimer' and 'X-dimer' as well as mechanisms relating these dimer forms like 'two-step adhesion' and 'encounter complex'. Alongside providing structural details, this review connects structural studies to bond mechanics merging crystallographic and single-molecule force spectroscopic findings. Finally, the review discusses the recent discoveries on dimeric intermediates that uncover prospects of further research beyond two-step adhesion.
Collapse
Affiliation(s)
- Sarbartha Mukherjee
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Saumyadeep Goswami
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Sagarika Dash
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Dibyendu Samanta
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| |
Collapse
|
8
|
Ezzo M, Hinz B. Novel approaches to target fibroblast mechanotransduction in fibroproliferative diseases. Pharmacol Ther 2023; 250:108528. [PMID: 37708995 DOI: 10.1016/j.pharmthera.2023.108528] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/09/2023] [Accepted: 09/07/2023] [Indexed: 09/16/2023]
Abstract
The ability of cells to sense and respond to changes in mechanical environment is vital in conditions of organ injury when the architecture of normal tissues is disturbed or lost. Among the various cellular players that respond to injury, fibroblasts take center stage in re-establishing tissue integrity by secreting and organizing extracellular matrix into stabilizing scar tissue. Activation, activity, survival, and death of scar-forming fibroblasts are tightly controlled by mechanical environment and proper mechanotransduction ensures that fibroblast activities cease after completion of the tissue repair process. Conversely, dysregulated mechanotransduction often results in fibroblast over-activation or persistence beyond the state of normal repair. The resulting pathological accumulation of extracellular matrix is called fibrosis, a condition that has been associated with over 40% of all deaths in the industrialized countries. Consequently, elements in fibroblast mechanotransduction are scrutinized for their suitability as anti-fibrotic therapeutic targets. We review the current knowledge on mechanically relevant factors in the fibroblast extracellular environment, cell-matrix and cell-cell adhesion structures, stretch-activated membrane channels, stress-regulated cytoskeletal structures, and co-transcription factors. We critically discuss the targetability of these elements in therapeutic approaches and their progress in pre-clinical and/or clinical trials to treat organ fibrosis.
Collapse
Affiliation(s)
- Maya Ezzo
- Keenan Research Institute for Biomedical Science of the St. Michael's Hospital, and Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Boris Hinz
- Keenan Research Institute for Biomedical Science of the St. Michael's Hospital, and Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
9
|
Fang G, Li Y, Yuan J, Cao W, Song S, Chen L, Wang Y, Wang Q. Cadherin-11-Interleukin-6 Signaling between Cardiac Fibroblast and Cardiomyocyte Promotes Ventricular Remodeling in a Mouse Pressure Overload-Induced Heart Failure Model. Int J Mol Sci 2023; 24:ijms24076549. [PMID: 37047522 PMCID: PMC10094910 DOI: 10.3390/ijms24076549] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/07/2023] [Accepted: 03/16/2023] [Indexed: 04/03/2023] Open
Abstract
Heart failure is a serious and life-threatening disease worldwide. Cadherin-11 (Cad-11) is highly expressed in the heart and closely associated with inflammation. There is currently limited understanding on how Cad-11 contributes to cardiac remodeling and its underline molecular mechanism. We found an increased expression of Cad-11 in biopsy heart samples from heart failure patients, suggesting a link between Cad-11 and heart failure. To determine the role of Cad-11 in cardiac remodeling, Cad-11-deficient mice were used in a well-established mouse transverse aortic constriction (TAC) model. Loss of Cad11 greatly improved pressure overload-induced LV structural and electrical remodeling. IL (interleukin)-6 production was increased following TAC in WT mice and this increase was inhibited in cadherin-11−/− mice. We further tested the effect of IL-6 on myocyte hypertrophy and fibrosis in a primary culture system. The addition of hCad-11-Fc to cultured cardiac fibroblasts increased IL-6 production and fibroblast cell activation, whereas neutralizing IL-6 with an IL-6 antibody resulted in alleviating the fibroblast activation induced by hCad-11-Fc. On the other hand, cardiomyocytes were promoted to cardiomyocyte hypertrophy when cultured in condition media collected from cardiac fibroblasts stimulated by hCad-11-Fc.Similarly, neutralizing IL-6 prevented cardiomyocyte hypertrophy. Finally, we found that MAPKs and CaMKII–STAT3 pathways were activated in both hCad-11-Fc stimulated fibroblasts and cardiomyocytes treated with hCad-11-Fc stimulated fibroblast condition medium. IL-6 neutralization inhibited such MAPK and CaMKII-STAT3 signaling activation. These data demonstrate that Cad-11 functions in pressure overload-induced ventricular remodeling through inducing IL-6 secretion from cardiac fibroblasts to modulate the pathophysiology of neighboring cardiomyocytes.
Collapse
Affiliation(s)
- Guojian Fang
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai 200092, China
| | - Yingze Li
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai 200092, China
| | - Jiali Yuan
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai 200092, China
| | - Wei Cao
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai 200092, China
| | - Shuai Song
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai 200092, China
| | - Long Chen
- Department of Cardiovascular Surgery, Huadong Hospital Affiliated of Fudan University, 221 Yananxi Road, Shanghai 200040, China
| | - Yuepeng Wang
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai 200092, China
| | - Qunshan Wang
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai 200092, China
| |
Collapse
|
10
|
Schuster R, Younesi F, Ezzo M, Hinz B. The Role of Myofibroblasts in Physiological and Pathological Tissue Repair. Cold Spring Harb Perspect Biol 2023; 15:cshperspect.a041231. [PMID: 36123034 PMCID: PMC9808581 DOI: 10.1101/cshperspect.a041231] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Myofibroblasts are the construction workers of wound healing and repair damaged tissues by producing and organizing collagen/extracellular matrix (ECM) into scar tissue. Scar tissue effectively and quickly restores the mechanical integrity of lost tissue architecture but comes at the price of lost tissue functionality. Fibrotic diseases caused by excessive or persistent myofibroblast activity can lead to organ failure. This review defines myofibroblast terminology, phenotypic characteristics, and functions. We will focus on the central role of the cell, ECM, and tissue mechanics in regulating tissue repair by controlling myofibroblast action. Additionally, we will discuss how therapies based on mechanical intervention potentially ameliorate wound healing outcomes. Although myofibroblast physiology and pathology affect all organs, we will emphasize cutaneous wound healing and hypertrophic scarring as paradigms for normal tissue repair versus fibrosis. A central message of this review is that myofibroblasts can be activated from multiple cell sources, varying with local environment and type of injury, to either restore tissue integrity and organ function or create an inappropriate mechanical environment.
Collapse
Affiliation(s)
- Ronen Schuster
- Faculty of Dentistry, University of Toronto, Toronto, M5S 3E2 Ontario, Canada
| | - Fereshteh Younesi
- Faculty of Dentistry, University of Toronto, Toronto, M5S 3E2 Ontario, Canada.,Laboratory of Tissue Repair and Regeneration, Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, Toronto, Ontario M5B 1T8, Canada
| | - Maya Ezzo
- Faculty of Dentistry, University of Toronto, Toronto, M5S 3E2 Ontario, Canada.,Laboratory of Tissue Repair and Regeneration, Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, Toronto, Ontario M5B 1T8, Canada
| | - Boris Hinz
- Faculty of Dentistry, University of Toronto, Toronto, M5S 3E2 Ontario, Canada.,Laboratory of Tissue Repair and Regeneration, Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, Toronto, Ontario M5B 1T8, Canada
| |
Collapse
|
11
|
Beaven E, Kumar R, Bhatt HN, Esquivel SV, Nurunnabi M. Myofibroblast specific targeting approaches to improve fibrosis treatment. Chem Commun (Camb) 2022; 58:13556-13571. [PMID: 36445310 PMCID: PMC9946855 DOI: 10.1039/d2cc04825f] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Fibrosis has been shown to develop in individuals with underlying health conditions, especially chronic inflammatory diseases. Fibrosis is often diagnosed in various organs, including the liver, lungs, kidneys, heart, and skin, and has been described as excessive accumulation of extracellular matrix that can affect specific organs in the body or systemically throughout the body. Fibrosis as a chronic condition can result in organ failure and result in death of the individual. Understanding and identification of specific biomarkers associated with fibrosis has emerging potential in the development of diagnosis and targeting treatment modalities. Therefore, in this review, we will discuss multiple signaling pathways such as TGF-β, collagen, angiotensin, and cadherin and outline the chemical nature of the different signaling pathways involved in fibrogenesis as well as the mechanisms. Although it has been well established that TGF-β is the main catalyst initiating and driving multiple pathways for fibrosis, targeting TGF-β can be challenging as this molecule regulates essential functions throughout the body that help to keep the body in homeostasis. We also discuss collagen, angiotensin, and cadherins and their role in fibrosis. We comprehensively discuss the various delivery systems used to target collagen, angiotensin, and cadherins to manage fibrosis. Nevertheless, understanding the steps by which this molecule drives fibrosis development can aid in the development of specific targets of its cascading mechanism. Throughout the review, we will demonstrate the mechanism of fibrosis targeting to improve targeting delivery and therapy.
Collapse
Affiliation(s)
- Elfa Beaven
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX 79902, USA.
- Department of Biomedical Engineering, The University of Texas El Paso, El Paso, TX 79968, USA
| | - Raj Kumar
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX 79902, USA.
- Department of Biomedical Engineering, The University of Texas El Paso, El Paso, TX 79968, USA
| | - Himanshu N Bhatt
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX 79902, USA.
- Department of Biomedical Engineering, The University of Texas El Paso, El Paso, TX 79968, USA
| | - Stephanie V Esquivel
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX 79902, USA.
- Aerospace Center (cSETR), The University of Texas El Paso, El Paso, TX 79968, USA
| | - Md Nurunnabi
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX 79902, USA.
- Department of Biomedical Engineering, The University of Texas El Paso, El Paso, TX 79968, USA
- Aerospace Center (cSETR), The University of Texas El Paso, El Paso, TX 79968, USA
- Border Biomedical Research Center, The University of Texas El Paso, El Paso, TX 79968, USA
| |
Collapse
|
12
|
Liu H, Fan P, Jin F, Huang G, Guo X, Xu F. Dynamic and static biomechanical traits of cardiac fibrosis. Front Bioeng Biotechnol 2022; 10:1042030. [PMID: 36394025 PMCID: PMC9659743 DOI: 10.3389/fbioe.2022.1042030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/20/2022] [Indexed: 11/29/2022] Open
Abstract
Cardiac fibrosis is a common pathology in cardiovascular diseases which are reported as the leading cause of death globally. In recent decades, accumulating evidence has shown that the biomechanical traits of fibrosis play important roles in cardiac fibrosis initiation, progression and treatment. In this review, we summarize the four main distinct biomechanical traits (i.e., stretch, fluid shear stress, ECM microarchitecture, and ECM stiffness) and categorize them into two different types (i.e., static and dynamic), mainly consulting the unique characteristic of the heart. Moreover, we also provide a comprehensive overview of the effect of different biomechanical traits on cardiac fibrosis, their transduction mechanisms, and in-vitro engineered models targeting biomechanical traits that will aid the identification and prediction of mechano-based therapeutic targets to ameliorate cardiac fibrosis.
Collapse
Affiliation(s)
- Han Liu
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan Province and Education Ministry of China, Zhengzhou, China
| | - Pengbei Fan
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan Province and Education Ministry of China, Zhengzhou, China
| | - Fanli Jin
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan Province and Education Ministry of China, Zhengzhou, China
| | - Guoyou Huang
- Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan, China
| | - Xiaogang Guo
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
13
|
Chen G, Xu H, Xu T, Ding W, Zhang G, Hua Y, Wu Y, Han X, Xie L, Liu B, Zhou Y. Calycosin reduces myocardial fibrosis and improves cardiac function in post-myocardial infarction mice by suppressing TGFBR1 signaling pathways. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 104:154277. [PMID: 35752078 DOI: 10.1016/j.phymed.2022.154277] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/31/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Excessive myocardial fibrosis is the pathological basis of heart failure following myocardial infarction (MI). Although calycosin improves cardiac function, its effect on cardiac fibrosis and cardiac function after MI in mice and its precise mechanism remain unclear. PURPOSE Here, we firstly investigated the effects of calycosin on cardiac fibrosis and ventricular function in mice after MI and the role of transforming growth factor-beta receptor 1 (TGFBR1) signaling in the amelioration of cardiac fibrosis and ventricular function. METHODS In vivo effects of calycosin on cardiac structure and function in mice with MI induced by left anterior descending coronary artery ligation were determined by hematoxylin and eosin staining, Masson trichrome staining, and echocardiography. The molecular mechanism of the interaction between TGFBR1 and calycosin was investigated using molecular docking, molecular dynamics (MD) simulation, surface plasmon resonance imaging (SPRi), immunohistochemistry, and western blotting (WB). Subsequently, cardiac-specific Tgfbr1 knockout mice were used to verify the effects of calycosin. The effect of calycosin on primary cardiac fibroblasts (CFs) proliferation and collagen deposition was detected using cell counting (CCK-8), EdU assay, and WB in vitro. CFs infected with an adenovirus that encodes TGFBR1 were used to verify the effects of calycosin. RESULTS In vivo, calycosin attenuated myocardial fibrosis and cardiac dysfunction following MI in a dose-dependent pattern. Calycosin-TGFBR1 complex was found to have a binding energy of -9.04 kcal/mol based on molecular docking. In addition, calycosin bound steadily in the cavity of TGFBR1 during the MD simulation. Based on SPRi results, the solution equilibrium dissociation constant for calycosin and TGFBR1 was 5.11 × 10-5 M. Calycosin inhibited the expression of TGFBR1, Smad2/3, collagen I, and collagen III. The deletion of TGFBR1 partially counteracted these effects. In vitro, calycosin suppressed CFs proliferation and collagen deposition after TGF-β1 stimulation by suppressing the TGFBR1 signaling pathway. The suppressive effects of calycosin were partially rescued by overexpression of TGFBR1. CONCLUSION Calycosin attenuates myocardial fibrosis and cardiac dysfunction following MI in mice in vivo via suppressing the TGFBR1 signaling pathway. Calycosin suppresses CFs proliferation and collagen deposition induced by TGF-β1 via inhibition of the TGFBR1 signaling pathway in vitro.
Collapse
Affiliation(s)
- Guanghong Chen
- Department of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou 510515, China
| | - Honglin Xu
- Department of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou 510515, China
| | - Tong Xu
- Department of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou 510515, China
| | - Wenjun Ding
- Department of Traditional Chinese Medicine (Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, State Key Laboratory of Respiratory Disease), the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510260, China
| | - Guoyong Zhang
- Department of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou 510515, China
| | - Yue Hua
- Department of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou 510515, China; Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou 510515, China
| | - Yuting Wu
- Department of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou 510515, China
| | - Xin Han
- Department of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou 510515, China
| | - Lingpeng Xie
- Department of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou 510515, China
| | - Bin Liu
- Department of Traditional Chinese Medicine (Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, State Key Laboratory of Respiratory Disease), the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510260, China.
| | - Yingchun Zhou
- Department of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
14
|
Saril A, Kocaturk M, Shimada K, Uemura A, Akgün E, Levent P, Baykal AT, Prieto AM, Agudelo CF, Tanaka R, Ceron JJ, Koch J, Yilmaz Z. Serum Proteomic Changes in Dogs with Different Stages of Chronic Heart Failure. Animals (Basel) 2022; 12:ani12040490. [PMID: 35203200 PMCID: PMC8868296 DOI: 10.3390/ani12040490] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/04/2022] [Accepted: 02/14/2022] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Canine MMVD is a progressive chronic disease with variable clinical signs, with some patients remaining completely asymptomatic while others develop CHF. Here, the aims of the pilot study were to evaluate serum proteins by proteomic analysis in dogs at different stages of chronic heart failure (CHF) due to degenerative mitral valve disease (MMVD), and how these proteins can change after a conventional treatment. Study revealed 157 different proteins; 11 were up- and 21 down-regulated at a statistically significant level in dogs with CHF compared to controls. Based on the bioinformatic analysis, protein–protein interactions between complement proteins, fibrinogen subtypes and others (albumin precursor, serpins, inter-alpha-trypsin inhibitor heavy chain, fetuin, clusterin, apolipoproteins, and alpha-glycoproteins) showed that pathophysiology of CHF seems to be more sophisticated than we had thought. These proteins are associated with several cellular, biologic, and metabolic processes such as immune-inflammatory responses, hemostasis, oxidative stress, and energy metabolism, which might be detrimental in the progression of canine CHF. Their molecular and biological functions as well as roles in the signaling pathways, such as inflammation, cadherin signaling, nicotinic acetylcholine receptor signaling and Wnt signaling make them possible biomarkers and therapeutic targets for the diagnosis and treatments in dogs with different stages of CHF. Abstract MMVD, the most common cause of CHF in dogs, is a chronic disease with variable clinical signs, with some patients remaining asymptomatic while others develop CHF. Here, we aimed to evaluate serum proteins by proteomic analysis in dogs at different stages of CHF due to MMVD, and proteome behaviors after conventional treatment. A total of 32 dogs were divided equally into four groups—stage A (healthy/controls), stage B2 (asymptomatic), stage C and stage D (symptomatic)—according to the ACVIM consensus. Serum proteomes were evaluated using LC/MS-based label-free differential proteome analysis. The study revealed 157 different proteins; 11 were up- and 21 down-regulated in dogs with CHF compared to controls. In stage B2 dogs, angiotensinogen (AGT) was up-regulated, but immunoglobulin iota chain-like, lipopolysaccharide-binding protein, and carboxypeptidase (CPN) were down-regulated. In stage C dogs, complement C3 (C3) and inter-alpha-trypsin inhibitor heavy chain were up-regulated, but hemopexin, and actin-cytoplasmic-1 (ACT-1) were down-regulated. In stage D dogs, AGT was up-regulated, whereas tetranectin, paraoxonase-1, adiponectin and ACT-1 were down-regulated. A decrease in CPN, C3 and AGT and an increase in ACT-1 were observed after treatment of dogs in stage C. This pilot study identified that dogs at different stages of CHF show different serum protein composition which has potential to be biomarker for diagnose and treatment monitorization.
Collapse
Affiliation(s)
- Ahmet Saril
- Department of Internal Medicine, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa 16059, Turkey; (A.S.); (M.K.); (P.L.); (Z.Y.)
| | - Meric Kocaturk
- Department of Internal Medicine, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa 16059, Turkey; (A.S.); (M.K.); (P.L.); (Z.Y.)
| | - Kazumi Shimada
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan;
- Correspondence:
| | - Akiko Uemura
- Laboratory of Veterinary Surgery, Department of Clinical Veterinary Medicine, Division of Veterinary Research, Obihiro University of Agriculture and Veterinary Medicine, Sapporo 080-8555, Japan;
| | - Emel Akgün
- Department of Medical Biochemistry, Acibadem University School of Medicine, Istanbul 34750, Turkey; (E.A.); (A.T.B.)
| | - Pinar Levent
- Department of Internal Medicine, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa 16059, Turkey; (A.S.); (M.K.); (P.L.); (Z.Y.)
| | - Ahmet Tarik Baykal
- Department of Medical Biochemistry, Acibadem University School of Medicine, Istanbul 34750, Turkey; (E.A.); (A.T.B.)
| | - Alberto Muñoz Prieto
- Clinic for Internal Diseases, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia;
| | - Carlos Fernando Agudelo
- Small Animal Clinic, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, Palackého Tř. 1946/1, 612 42 Brno, Czech Republic;
| | - Ryou Tanaka
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan;
| | - Jose Joaquin Ceron
- Interdisciplinary Laboratory of Clinical Analysis, Interlab-UMU, Regional Campus of International Excellence, University of Murcia, Espinardo, 30100 Murcia, Spain;
| | - Jorgen Koch
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, DK-1870 Frederiksberg, Denmark;
| | - Zeki Yilmaz
- Department of Internal Medicine, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa 16059, Turkey; (A.S.); (M.K.); (P.L.); (Z.Y.)
| |
Collapse
|
15
|
Abstract
Fibroblasts are important cells for the support of homeostatic tissue function. In inflammatory diseases such as rheumatoid arthritis and inflammatory bowel disease, fibroblasts take on different roles (a) as inflammatory cells themselves and (b) in recruiting leukocytes, driving angiogenesis, and enabling chronic inflammation in tissues. Recent advances in single-cell profiling techniques have transformed the ability to examine fibroblast states and populations in inflamed tissues, providing evidence of previously underappreciated heterogeneity and disease-associated fibroblast populations. These studies challenge the preconceived notion that fibroblasts are homogeneous and provide new insights into the role of fibroblasts in inflammatory pathology. In addition, new molecular insights into the mechanisms of fibroblast activation reveal powerful cell-intrinsic amplification loops that synergize with primary fibroblast stimuli to result in striking responses. In this Review, we focus on recent developments in our understanding of fibroblast heterogeneity and fibroblast pathology across tissues and diseases in rheumatoid arthritis and inflammatory bowel diseases. We highlight new approaches to, and applications of, single-cell profiling techniques and what they teach us about fibroblast biology. Finally, we address how these insights could lead to the development of novel therapeutic approaches to targeting fibroblasts in disease.
Collapse
|
16
|
Czubryt MP, Hale TM. Cardiac fibrosis: Pathobiology and therapeutic targets. Cell Signal 2021; 85:110066. [PMID: 34146658 DOI: 10.1016/j.cellsig.2021.110066] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 06/15/2021] [Indexed: 12/15/2022]
Abstract
Cardiac fibrosis is characteristic of the end stage in nearly all forms of heart disease. Accumulation of extracellular matrix in the myocardium leads to increased risk of arrhythmia and impaired cardiac function, and ultimately progression to heart failure. Despite the critical need to slow or reverse development of cardiac fibrosis to maintain cardiac function, there are no approved therapies that directly target the extracellular matrix. Research into the underlying causes and therapeutic targets has been hampered, in part, by the lack of a clear marker for cardiac fibroblasts - the cells responsible for regulating extracellular matrix turnover. Lineage tracing studies as well as single-cell RNA sequencing studies have provided new insights into cardiac fibroblast origins and heterogeneity. Moreover, a greater understanding of pathways governing fibroblast activation during ischemic and non-ischemic cardiac remodeling and their communication with other inflammatory and cardiac cells may lead to novel therapeutic targets to slow or reverse fibrotic remodeling. The special issue of Cellular Signaling entitled "Cardiac Fibrosis: Pathobiology and Therapeutic Targets" is comprised of review articles in which these topics, as well as important open questions for future investigation, are discussed.
Collapse
Affiliation(s)
- Michael P Czubryt
- Institute of Cardiovascular Sciences, St Boniface Hospital Albrechtsen Research Centre and Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Taben M Hale
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ, USA.
| |
Collapse
|