1
|
El-Tanani M, Rabbani SA, Ali AA, Alfaouri IGA, Al Nsairat H, Al-Ani IH, Aljabali AA, Rizzo M, Patoulias D, Khan MA, Parvez S, El-Tanani Y. Circadian rhythms and cancer: implications for timing in therapy. Discov Oncol 2024; 15:767. [PMID: 39692981 DOI: 10.1007/s12672-024-01643-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 11/27/2024] [Indexed: 12/19/2024] Open
Abstract
Circadian rhythms, intrinsic cycles spanning approximately 24 h, regulate numerous physiological processes, including sleep-wake cycles, hormone release, and metabolism. These rhythms are orchestrated by the circadian clock, primarily located in the suprachiasmatic nucleus (SCN) of the hypothalamus. Disruptions in circadian rhythms, whether due to genetic mutations, environmental factors, or lifestyle choices, can significantly impact health, contributing to disorders such as sleep disturbances, metabolic syndrome, and cardiovascular diseases. Additionally, there is a profound link between the disruption of circadian rhythms and development of various cancer, the influence on disease incidence and progression. This incurred regulation by circadian clock on pathways has its implication in tumorigenesis, such as cell cycle control, DNA damage response, apoptosis, and metabolism. Furthermore, the circadian timing system modulates the efficacy and toxicity of cancer treatments. In cancer treatment, the use of chronotherapy to optimize the timing of medical treatments, involves administering chemotherapy, radiation, or other therapeutic interventions at specific intervals to enhance efficacy and minimize side effects. This approach capitalizes on the circadian variations in cellular processes, including DNA repair, cell cycle progression, and drug metabolism. Preclinical and clinical studies have demonstrated that chronotherapy can significantly improve the therapeutic index of chemotherapeutic agents like cisplatin and 5-fluorouracil by enhancing anticancer activity and reducing toxicity. Further research is needed to elucidate the mechanisms underlying circadian regulation of cancer and to develop robust chronotherapeutic protocols tailored to individual patients' circadian profiles, potentially transforming cancer care into more effective and personalized treatment strategies.
Collapse
Affiliation(s)
- Mohamed El-Tanani
- RAK College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates.
- Translational and Medical Research Centre (TMRC), Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates.
| | - Syed Arman Rabbani
- RAK College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
- Translational and Medical Research Centre (TMRC), Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Areeg Anwer Ali
- RAK College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
- Translational and Medical Research Centre (TMRC), Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Ibrahim Ghaleb Ali Alfaouri
- Translational and Medical Research Centre (TMRC), Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
- RAK College of Nursing, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Hamdi Al Nsairat
- Pharmacological and Diagnostic Research Center, Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Israa Hamid Al-Ani
- Pharmacological and Diagnostic Research Center, Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Alaa A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Pharmacy, Yarmouk University, Irbid, Jordan
| | - Manfredi Rizzo
- Department of Health Promotion, Mother and Childcare, Internal Medicine and Medical Specialties, School of Medicine, University of Palermo, Palermo, Italy
| | - Dimitrios Patoulias
- Second Department of Cardiology, Aristotle University of Thessaloniki, Hippokration General Hospital, Athens, Greece
- Outpatient Department of Cardiometabolic Medicine, Second Department of Cardiology, Aristotle University of Thessaloniki, Hippokration General Hospital, Athens, Greece
| | - Mohammad Ahmed Khan
- School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Suhel Parvez
- School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | | |
Collapse
|
2
|
Ali R, Zhen Y, Zanna X, Lin J, Zhang C, Ma J, Zhong Y, Husien HM, Saleh AA, Wang M. Impact of Circadian Clock PER2 Gene Overexpression on Rumen Epithelial Cell Dynamics and VFA Transport Protein Expression. Int J Mol Sci 2024; 25:12428. [PMID: 39596493 PMCID: PMC11594904 DOI: 10.3390/ijms252212428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/05/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
The circadian gene PER2 is recognized for its regulatory effects on cell proliferation and lipid metabolism across various non-ruminant cells. This study investigates the influence of PER2 gene overexpression on goat rumen epithelial cells using a constructed pcDNA3.1-PER2 plasmid, assessing its impact on circadian gene expression, cell proliferation, and mRNA levels of short-chain fatty acid (SCFA) transporters, alongside genes related to lipid metabolism, cell proliferation, and apoptosis. Rumen epithelial cells were obtained every four hours from healthy dairy goats (n = 3; aged 1.5 years; average weight 45.34 ± 4.28 kg), cultured for 48 h in vitro, and segregated into control (pcDNA3.1) and overexpressed (pcDNA3.1-PER2) groups, each with four biological replicates. The study examined the potential connection between circadian rhythms and nutrient assimilation in ruminant, including cell proliferation, apoptosis, cell cycle dynamics, and antioxidant activity and the expression of circadian-related genes, VFA transporter genes and regulatory factors. The introduction of the pcDNA3.1-PER2 plasmid drastically elevated PER2 expression levels by 3471.48-fold compared to controls (p < 0.01), confirming effective overexpression. PER2 overexpression resulted in a significant increase in apoptosis rates (p < 0.05) and a notable reduction in cell proliferation at 24 and 48 h post-transfection (p < 0.05), illustrating an inhibitory effect on rumen epithelial cell growth. PER2 elevation significantly boosted the expression of CCND1, WEE1, p21, and p16 (p < 0.05) while diminishing CDK4 expression (p < 0.05). While the general expression of intracellular inflammation genes remained stable, TNF-α expression notably increased. Antioxidant marker levels (SOD, MDA, GSH-Px, CAT, and T-AOC) exhibited no significant change, suggesting no oxidative damage due to PER2 overexpression. Furthermore, PER2 overexpression significantly downregulated AE2, NHE1, MCT1, and MCT4 mRNA expressions while upregulating PAT1 and VH+ ATPase. These results suggest that PER2 overexpression impairs cell proliferation, enhances apoptosis, and modulates VFA transporter-related factors in the rumen epithelium. This study implies that the PER2 gene may regulate VFA absorption through modulation of VFA transporters in rumen epithelial cells, necessitating further research into its specific regulatory mechanisms.
Collapse
Affiliation(s)
- Rahmat Ali
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (R.A.); (H.M.H.)
| | - Yongkang Zhen
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (R.A.); (H.M.H.)
| | - Xi Zanna
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (R.A.); (H.M.H.)
| | - Jiaqi Lin
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (R.A.); (H.M.H.)
| | - Chong Zhang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (R.A.); (H.M.H.)
| | - Jianjun Ma
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (R.A.); (H.M.H.)
| | - Yuhong Zhong
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (R.A.); (H.M.H.)
| | - Hosameldeen Mohamed Husien
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (R.A.); (H.M.H.)
| | - Ahmad A. Saleh
- College of Animal Science & Technology, Yangzhou University, Yangzhou 225009, China;
| | - Mengzhi Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (R.A.); (H.M.H.)
| |
Collapse
|
3
|
Reynolds JA, Waight EM. Differentially expressed microRNAs in brains of adult females may regulate the maternal block of diapause in Sarcophaga bullata. CURRENT RESEARCH IN INSECT SCIENCE 2024; 6:100099. [PMID: 39431284 PMCID: PMC11489151 DOI: 10.1016/j.cris.2024.100099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 09/08/2024] [Accepted: 09/25/2024] [Indexed: 10/22/2024]
Abstract
The maternal regulation of diapause is one type of phenotypic plasticity where the experience of the mother leads to changes in the phenotype of her offspring that impact how well-suited they will be to their future environment. Sarcophaga bullata females with a diapause history produce offspring that cannot enter diapause even if they are reared in a diapause inducing environment. Accumulating evidence suggests that microRNAs regulate diapause and, possibly, maternal regulation of diapause. We found significant differences in the abundances of several microRNAs (miR-125-5p, miR-124-3p, miR-31-5p, and miR-277-3p) in brains dissected from adult female S. bullata that had experienced diapause compared to females with no diapause history. We also found moderate differences in the mRNA expression of the circadian-clock related genes, clock, clockwork orange, and period. MiR-124-3p and miR-31-5p are part of a gene network that includes these circadian clock-related genes. Taken together our results suggest the maternal block of diapause in S. bullata is regulated, at least in part, by a network that includes microRNAs and the circadian clock.
Collapse
Affiliation(s)
- Julie A Reynolds
- Department of Evolution, Ecology, and Organismal Biolog, The Ohio State University, Columbus, OH 43210, United States
| | - Emma M Waight
- Department of Evolution, Ecology, and Organismal Biolog, The Ohio State University, Columbus, OH 43210, United States
- Hablitz/Nedergaard Lab, Center for Translational Neuromedicine, University of Rochester Medical Center. Rochester, NY 14642, United States
| |
Collapse
|
4
|
Salminen A. Aryl hydrocarbon receptor impairs circadian regulation in Alzheimer's disease: Potential impact on glymphatic system dysfunction. Eur J Neurosci 2024; 60:3901-3920. [PMID: 38924210 DOI: 10.1111/ejn.16450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/23/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024]
Abstract
Circadian clocks maintain diurnal rhythms of sleep-wake cycle of 24 h that regulate not only the metabolism of an organism but also many other periodical processes. There is substantial evidence that circadian regulation is impaired in Alzheimer's disease. Circadian clocks regulate many properties known to be disturbed in Alzheimer's patients, such as the integrity of the blood-brain barrier (BBB) as well as the diurnal glymphatic flow that controls waste clearance from the brain. Interestingly, an evolutionarily conserved transcription factor, that is, aryl hydrocarbon receptor (AhR), impairs the function of the core clock proteins and thus could disturb diurnal rhythmicity in the BBB. There is abundant evidence that the activation of AhR signalling inhibits the expression of the major core clock proteins, such as the brain and muscle arnt-like 1 (BMAL1), clock circadian regulator (CLOCK) and period circadian regulator 1 (PER1) in different experimental models. The expression of AhR is robustly increased in the brains of Alzheimer's patients, and protein level is enriched in astrocytes of the BBB. It seems that AhR signalling inhibits glymphatic flow since it is known that (i) activation of AhR impairs the function of the BBB, which is cooperatively interconnected with the glymphatic system in the brain, and (ii) neuroinflammation and dysbiosis of gut microbiota generate potent activators of AhR, which are able to impair glymphatic flow. I will examine current evidence indicating that activation of AhR signalling could disturb circadian functions of the BBB and impair glymphatic flow and thus be involved in the development of Alzheimer's pathology.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
5
|
Zhao H, Han G, Jiang Z, Gao D, Zhang H, Yang L, Ma T, Gao L, Wang A, Chao HW, Li Q, Jin Y, Chen H. Identification of BMAL1-Regulated circadian genes in mouse liver and their potential association with hepatocellular carcinoma: Gys2 and Upp2 as promising candidates. Biochem Biophys Res Commun 2024; 696:149422. [PMID: 38183795 DOI: 10.1016/j.bbrc.2023.149422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/13/2023] [Accepted: 12/20/2023] [Indexed: 01/08/2024]
Abstract
Identification and functional analysis of key genes regulated by the circadian clock system will provide a comprehensive understanding of the underlying mechanisms through which circadian clock disruption impairs the health of living organisms. The initial phase involved bioinformatics analysis, drawing insights from three RNA-seq datasets (GSE184303, GSE114400, and GSE199061) derived from wild-type mouse liver tissues, which encompassed six distinct time points across a day. As expected, 536 overlapping genes exhibiting rhythmic expression patterns were identified. By intersecting these genes with differentially expressed genes (DEGs) originating from liver RNA-seq data at two representative time points (circadian time, CT: CT2 and CT14) in global Bmal1 knockout mice (Bmal1-/-), hepatocyte-specific Bmal1 knockout mice (L-Bmal1-/-), and their corresponding control groups, 80 genes potentially regulated by BMAL1 (referred to as BMAL1-regulated genes, BRGs) were identified. These genes were significantly enriched in glycolipid metabolism, immune response, and tumorigenesis pathways. Eight BRGs (Nr1d1, Cry1, Gys2, Homer2, Serpina6, Slc2a2, Nmrk1, and Upp2) were selected to validate their expression patterns in both control and L-Bmal1-/- mice livers over 24 h. Real-time quantitative polymerase chain reaction results demonstrated a comprehensive loss of rhythmic expression patterns in the eight selected BRGs in L-Bmal1-/- mice, in contrast to the discernible rhythmic patterns observed in the livers of control mice. Additionally, significant reductions in the expression levels of these selected BRGs, excluding Cry1, were also observed in L-Bmal1-/- mice livers. Chromatin immunoprecipitation (ChIP)-seq (GSE13505 and GSE39860) and JASPAR analyses validated the rhythmic binding of BMAL1 to the promoter and intron regions of these genes. Moreover, the progression of conditions, from basic steatosis to non-alcoholic fatty liver disease, and eventual malignancy, demonstrated a continuous gradual decline in Bmal1 transcripts in the human liver. Combining the aforementioned BRGs with DEGs derived from human liver cancer datasets identified Gys2 and Upp2 as potential node genes bridging the circadian clock system and hepatocellular carcinoma (HCC). In addition, CCK8 and wound healing assays demonstrated that the overexpression of human GYS2 and UPP2 proteins inhibited the proliferation and migration of HepG2 cells, accompanied by elevated expression of p53, a tumor suppressor protein. In summary, this study systematically identified rhythmic genes in the mouse liver, and a subset of circadian genes potentially regulated by BMAL1. Two circadian genes, Gys2 and Upp2, have been proposed and validated as potential candidates for advancing the prevention and treatment of HCC.
Collapse
Affiliation(s)
- Hongcong Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Guohao Han
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhou Jiang
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, Sichuan, 610000, China
| | - Dengke Gao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Haisen Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Luda Yang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Tiantian Ma
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Lei Gao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Aihua Wang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, 712100, China; Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hsu-Wen Chao
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, 11031, China; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan, 11031, China; Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan, 80708, China.
| | - Qian Li
- Medical Experiment Centre, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712000, China
| | - Yaping Jin
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Huatao Chen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
6
|
Stengl M, Schneider AC. Contribution of membrane-associated oscillators to biological timing at different timescales. Front Physiol 2024; 14:1243455. [PMID: 38264332 PMCID: PMC10803594 DOI: 10.3389/fphys.2023.1243455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 12/12/2023] [Indexed: 01/25/2024] Open
Abstract
Environmental rhythms such as the daily light-dark cycle selected for endogenous clocks. These clocks predict regular environmental changes and provide the basis for well-timed adaptive homeostasis in physiology and behavior of organisms. Endogenous clocks are oscillators that are based on positive feedforward and negative feedback loops. They generate stable rhythms even under constant conditions. Since even weak interactions between oscillators allow for autonomous synchronization, coupling/synchronization of oscillators provides the basis of self-organized physiological timing. Amongst the most thoroughly researched clocks are the endogenous circadian clock neurons in mammals and insects. They comprise nuclear clockworks of transcriptional/translational feedback loops (TTFL) that generate ∼24 h rhythms in clock gene expression entrained to the environmental day-night cycle. It is generally assumed that this TTFL clockwork drives all circadian oscillations within and between clock cells, being the basis of any circadian rhythm in physiology and behavior of organisms. Instead of the current gene-based hierarchical clock model we provide here a systems view of timing. We suggest that a coupled system of autonomous TTFL and posttranslational feedback loop (PTFL) oscillators/clocks that run at multiple timescales governs adaptive, dynamic homeostasis of physiology and behavior. We focus on mammalian and insect neurons as endogenous oscillators at multiple timescales. We suggest that neuronal plasma membrane-associated signalosomes constitute specific autonomous PTFL clocks that generate localized but interlinked oscillations of membrane potential and intracellular messengers with specific endogenous frequencies. In each clock neuron multiscale interactions of TTFL and PTFL oscillators/clocks form a temporally structured oscillatory network with a common complex frequency-band comprising superimposed multiscale oscillations. Coupling between oscillator/clock neurons provides the next level of complexity of an oscillatory network. This systemic dynamic network of molecular and cellular oscillators/clocks is suggested to form the basis of any physiological homeostasis that cycles through dynamic homeostatic setpoints with a characteristic frequency-band as hallmark. We propose that mechanisms of homeostatic plasticity maintain the stability of these dynamic setpoints, whereas Hebbian plasticity enables switching between setpoints via coupling factors, like biogenic amines and/or neuropeptides. They reprogram the network to a new common frequency, a new dynamic setpoint. Our novel hypothesis is up for experimental challenge.
Collapse
Affiliation(s)
- Monika Stengl
- Department of Biology, Animal Physiology/Neuroethology, University of Kassel, Kassel, Germany
| | | |
Collapse
|
7
|
Lyu J, Zhuang Y, Lin Y. Circadian regulation of translation. RNA Biol 2024; 21:14-24. [PMID: 39324589 PMCID: PMC11441039 DOI: 10.1080/15476286.2024.2408524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 09/09/2024] [Accepted: 09/16/2024] [Indexed: 09/27/2024] Open
Abstract
Most, if not all organisms exhibit robust rhythmicity of their biological functions, allowing a perpetual adaptation to external clues within the daily 24 hours-cycle. Studies on circadian rhythm regulation primarily focused on transcriptional level, considering mRNA levels to represent the primary determinant of oscillations of intracellular protein levels. However, a plethora of emerging evidence suggests that post-transcriptional regulation, particularly rhythmic mRNA translation, is not solely reliant on the oscillation of transcription. Instead, the circadian regulation of mRNA translation plays a critical role as well. A comprehensive understanding of these mechanisms underlying rhythmic translation and its regulation should bridge the gap in rhythm regulation beyond RNA fluctuations in research, and greatly enhance our comprehension of rhythm generation and maintenance. In this review, we summarize the major mechanisms of circadian regulation of translation, including regulation of translation initiation, elongation, and the alteration in rhythmic translation to external stresses, such as endoplasmic reticulum (ER) stress and ageing. We also illuminate the complex interplay between phase separation and mRNA translation. Together, we have summarized various facets of mRNA translation in circadian regulation, to set on forthcoming studies into the intricate regulatory mechanisms underpinning circadian rhythms and their implications for associated disorders.
Collapse
Affiliation(s)
- Jiali Lyu
- State Key Laboratory of Membrane Biology, IDG/McGovern Institute for Brain Research, Tsinghua-Peking Joint Centre for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yanrong Zhuang
- State Key Laboratory of Membrane Biology, IDG/McGovern Institute for Brain Research, Tsinghua-Peking Joint Centre for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yi Lin
- State Key Laboratory of Membrane Biology, IDG/McGovern Institute for Brain Research, Tsinghua-Peking Joint Centre for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
8
|
Kikyo N. Circadian Regulation of Macrophages and Osteoclasts in Rheumatoid Arthritis. Int J Mol Sci 2023; 24:12307. [PMID: 37569682 PMCID: PMC10418470 DOI: 10.3390/ijms241512307] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Rheumatoid arthritis (RA) represents one of the best examples of circadian fluctuations in disease severity. Patients with RA experience stiffness, pain, and swelling in afflicted joints in the early morning, which tends to become milder toward the afternoon. This has been primarily explained by the higher blood levels of pro-inflammatory hormones and cytokines, such as melatonin, TNFα, IL-1, and IL-6, in the early morning than in the afternoon as well as insufficient levels of anti-inflammatory cortisol, which rises later in the morning. Clinical importance of the circadian regulation of RA symptoms has been demonstrated by the effectiveness of time-of-day-dependent delivery of therapeutic agents in chronotherapy. The primary inflammatory site in RA is the synovium, where increased macrophages, T cells, and synovial fibroblasts play central roles by secreting pro-inflammatory cytokines, chemokines, and enzymes to stimulate each other, additional immune cells, and osteoclasts, ultimately leading to cartilage and bone erosion. Among these central players, macrophages have been one of the prime targets for the study of the link between circadian rhythms and inflammatory activities. Gene knockout experiments of various core circadian regulators have established that disruption of any core circadian regulators results in hyper- or hypoactivation of inflammatory responses by macrophages when challenged by lipopolysaccharide and bacteria. Although these stimulations are not directly linked to RA etiology, these findings serve as a foundation for further study by providing proof of principle. On the other hand, circadian regulation of osteoclasts, downstream effectors of macrophages, remain under-explored. Nonetheless, circadian expression of the inducers of osteoclastogenesis, such as TNFα, IL-1, and IL-6, as well as the knockout phenotypes of circadian regulators in osteoclasts suggest the significance of the circadian control of osteoclast activity in the pathogenesis of RA. More detailed mechanistic understanding of the circadian regulation of macrophages and osteoclasts in the afflicted joints could add novel local therapeutic options for RA.
Collapse
Affiliation(s)
- Nobuaki Kikyo
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA;
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
9
|
Lyons LC, Vanrobaeys Y, Abel T. Sleep and memory: The impact of sleep deprivation on transcription, translational control, and protein synthesis in the brain. J Neurochem 2023; 166:24-46. [PMID: 36802068 PMCID: PMC10919414 DOI: 10.1111/jnc.15787] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 01/31/2023] [Accepted: 02/07/2023] [Indexed: 02/20/2023]
Abstract
In countries around the world, sleep deprivation represents a widespread problem affecting school-age children, teenagers, and adults. Acute sleep deprivation and more chronic sleep restriction adversely affect individual health, impairing memory and cognitive performance as well as increasing the risk and progression of numerous diseases. In mammals, the hippocampus and hippocampus-dependent memory are vulnerable to the effects of acute sleep deprivation. Sleep deprivation induces changes in molecular signaling, gene expression and may cause changes in dendritic structure in neurons. Genome wide studies have shown that acute sleep deprivation alters gene transcription, although the pool of genes affected varies between brain regions. More recently, advances in research have drawn attention to differences in gene regulation between the level of the transcriptome compared with the pool of mRNA associated with ribosomes for protein translation following sleep deprivation. Thus, in addition to transcriptional changes, sleep deprivation also affects downstream processes to alter protein translation. In this review, we focus on the multiple levels through which acute sleep deprivation impacts gene regulation, highlighting potential post-transcriptional and translational processes that may be affected by sleep deprivation. Understanding the multiple levels of gene regulation impacted by sleep deprivation is essential for future development of therapeutics that may mitigate the effects of sleep loss.
Collapse
Affiliation(s)
- Lisa C Lyons
- Program in Neuroscience, Department of Biological Science, Florida State University, Tallahassee, Florida, USA
| | - Yann Vanrobaeys
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Iowa Neuroscience Institute, Iowa City, Iowa, USA
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, Iowa, USA
| | - Ted Abel
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Iowa Neuroscience Institute, Iowa City, Iowa, USA
| |
Collapse
|
10
|
Islam W, Waheed A, Idrees A, Rashid J, Zeng F. Role of plant microRNAs and their corresponding pathways in fluctuating light conditions. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119304. [PMID: 35671849 DOI: 10.1016/j.bbamcr.2022.119304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 01/03/2023]
Abstract
In recent years, it has been established that microRNAs (miRNAs) are critical for various plant physiological regulations in numerous species. Next-generation sequencing technologies have aided to our understandings related to the critical role of miRNAs during environmental stress conditions and plant development. Light influences not just miRNA accumulation but also their biological activities via regulating miRNA gene transcription, biosynthesis, and RNA-induced silencing complex (RISC) activity. Light-regulated routes, processes, and activities can all be affected by miRNAs. Here, we will explore how light affects miRNA gene expression and how conserved and novel miRNAs exhibit altered expression across different plant species in response to variable light quality. Here, we will mainly discuss recent advances in understanding how miRNAs are involved in photomorphogenesis, and photoperiod-dependent plant biological processes such as cell proliferation, metabolism, chlorophyll pigment synthesis and axillary bud growth. The review concludes by presenting future prospects via hoping that light-responsive miRNAs can be exploited in a better way to engineer economically important crops to ensure future food security.
Collapse
Affiliation(s)
- Waqar Islam
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele 848300, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Abdul Waheed
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Atif Idrees
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| | | | - Fanjiang Zeng
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele 848300, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
11
|
Otsuka K, Cornelissen G, Weydahl A, Gubin D, Beaty LA, Murase M. Rules of Heliogeomagnetics Diversely Coordinating Biological Rhythms and Promoting Human Health. APPLIED SCIENCES 2023; 13:951. [DOI: 10.3390/app13020951] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2024]
Abstract
This investigation reviews how geomagnetic activity affects the circadian variation in blood pressure (BP) and heart rate (HR) and their variabilities of clinically healthy individuals. A small study in Alta, Norway (latitude of 70.0° N), serves to illustrate the methodology used to outline rules of procedure in exploring heliogeomagnetic effects on human physiology. Volunteers in the Alta study were monitored for at least 2 days between 18 March 2002 and 9 January 2005. Estimates of the circadian characteristics of BP and HR by cosinor and the Maximum Entropy Method (MEM) indicate an increase in the circadian amplitude of systolic (S) BP on geomagnetic-disturbance days compared to quiet days (p = 0.0236). Geomagnetic stimulation was found to be circadian-phase dependent, with stimulation in the evening inducing a 49.2% increase in the circadian amplitude of SBP (p = 0.0003), not observed in relation to stimulation in the morning. In two participants monitored for 7 days, the circadian amplitude of SBP decreased by 23.4% on an extremely disturbed day but increased by 50.3% on moderately disturbed days (p = 0.0044), suggesting a biphasic (hormetic) reaction of the circadian SBP rhythm to geomagnetics. These results indicate a possible role of geomagnetic fluctuations in modulating the circadian system.
Collapse
Affiliation(s)
- Kuniaki Otsuka
- Tokyo Women’s Medical University, Tokyo 162-8666, Japan
- Halberg Chronobiology Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Germaine Cornelissen
- Halberg Chronobiology Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Andi Weydahl
- School of Sport Sciences, The Arctic University of Norway, Campus Alta, N-9509 Alta, Norway
| | - Denis Gubin
- Laboratory for Chronobiology and Chronomedicine, Research Institute of Biomedicine and Biomedical Technologies, Medical University, 625023 Tyumen, Russia
- Department of Biology, Medical University, 625023 Tyumen, Russia
- Tyumen Cardiology Research Center, Tomsk National Research Medical Center, Russian Academy of Science, 634009 Tomsk, Russia
| | - Larry A. Beaty
- Halberg Chronobiology Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Masatoshi Murase
- Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
12
|
Castillo KD, Wu C, Ding Z, Lopez-Garcia OK, Rowlinson E, Sachs MS, Bell-Pedersen D. A circadian clock translational control mechanism targets specific mRNAs to cytoplasmic messenger ribonucleoprotein granules. Cell Rep 2022; 41:111879. [PMID: 36577368 PMCID: PMC10241597 DOI: 10.1016/j.celrep.2022.111879] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 09/13/2022] [Accepted: 12/04/2022] [Indexed: 12/29/2022] Open
Abstract
Phosphorylation of Neurospora crassa eukaryotic initiation factor 2 α (eIF2α), a conserved translation initiation factor, is clock controlled. To determine the impact of rhythmic eIF2α phosphorylation on translation, we performed temporal ribosome profiling and RNA sequencing (RNA-seq) in wild-type (WT), clock mutant Δfrq, eIF2α kinase mutant Δcpc-3, and constitutively active cpc-3c cells. About 14% of mRNAs are rhythmically translated in WT cells, and translation rhythms for ∼30% of these mRNAs, which we named circadian translation-initiation-controlled genes (cTICs), are dependent on the clock and CPC-3. Most cTICs are expressed from arrhythmic mRNAs and contain a P-body (PB) localization motif in their 5' leader sequence. Deletion of SNR-1, a component of cytoplasmic messenger ribonucleoprotein granules (cmRNPgs) that include PBs and stress granules (SGs), and the PB motif on one of the cTIC mRNAs, zip-1, significantly alters zip-1 rhythmic translation. These results reveal that the clock regulates rhythmic translation of specific mRNAs through rhythmic eIF2α activity and cmRNPg metabolism.
Collapse
Affiliation(s)
- Kathrina D Castillo
- Center for Biological Clocks Research, Texas A&M University, College Station, TX 77843, USA; Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - Cheng Wu
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - Zhaolan Ding
- Center for Biological Clocks Research, Texas A&M University, College Station, TX 77843, USA; Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | | | - Emma Rowlinson
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - Matthew S Sachs
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - Deborah Bell-Pedersen
- Center for Biological Clocks Research, Texas A&M University, College Station, TX 77843, USA; Department of Biology, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
13
|
Males of Aedes aegypti show different clock gene expression profiles in the presence of conspecific females. Parasit Vectors 2022; 15:374. [PMID: 36258200 PMCID: PMC9578191 DOI: 10.1186/s13071-022-05529-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 10/05/2022] [Indexed: 11/20/2022] Open
Abstract
Background The study of behavioral and physiological traits in mosquitoes has been mainly focused on females since males are not hematophagous and thus do not transfer the parasites that cause diseases in human populations. However, the performance of male mosquitoes is key for the expansion of populations and the perpetuation of mosquito species. Pre-copulatory communication between males and females is the initial and essential step for the success of copulation and studying the male facet of this interaction provides fertile ground for the improvement of vector control strategies. Like in most animals, reproduction, feeding, and oviposition are closely associated with locomotor activity in mosquitoes. Rhythmic cycles of locomotor activity have been previously described in Aedes aegypti, and in females, they are known to be altered by blood-feeding and arbovirus infection. In previous work, we found that males in the presence of females significantly change their locomotor activity profiles, with a shift in the phase of the activity peak. Here, we investigated whether this shift is associated with changes in the expression level of three central circadian clock genes. Methods Real-time PCR reactions were performed for the gene period, cycle, and cryptochrome 2 in samples of heads, antennae, and abdominal tips of solitary males and males in the presence of females. Assays with antennae-ablated males were also performed, asking whether this is an essential organ mediating the communication and the variation in activity profiles. Results The gene period showed a conserved expression pattern in all tissues and conditions, while the other two genes varied according to the male condition. A remarking pattern was observed in cry2, where the difference between the amplitude of expression at the beginning of photophase and the expression peak in the scotophase was greater when males were in the presence of females. Antennae ablation in males did not have a significant effect on the expression profiles, suggesting that female recognition may involve other senses besides hearing and olfaction. Conclusion Our results suggest that the expression of gene cryptochrome 2 varies in association with the interaction between males and females. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05529-8.
Collapse
|
14
|
Buel SM, Debopadhaya S, De los Santos H, Edwards KM, David AM, Dao UH, Bennett KP, Hurley JM. The PAICE suite reveals circadian posttranscriptional timing of noncoding RNAs and spliceosome components in Mus musculus macrophages. G3 (BETHESDA, MD.) 2022; 12:6649694. [PMID: 35876788 PMCID: PMC9434326 DOI: 10.1093/g3journal/jkac176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/27/2022] [Indexed: 01/07/2023]
Abstract
Circadian rhythms broadly regulate physiological functions by tuning oscillations in the levels of mRNAs and proteins to the 24-h day/night cycle. Globally assessing which mRNAs and proteins are timed by the clock necessitates accurate recognition of oscillations in RNA and protein data, particularly in large omics data sets. Tools that employ fixed-amplitude models have previously been used to positive effect. However, the recognition of amplitude change in circadian oscillations required a new generation of analytical software to enhance the identification of these oscillations. To address this gap, we created the Pipeline for Amplitude Integration of Circadian Exploration suite. Here, we demonstrate the Pipeline for Amplitude Integration of Circadian Exploration suite's increased utility to detect circadian trends through the joint modeling of the Mus musculus macrophage transcriptome and proteome. Our enhanced detection confirmed extensive circadian posttranscriptional regulation in macrophages but highlighted that some of the reported discrepancy between mRNA and protein oscillations was due to noise in data. We further applied the Pipeline for Amplitude Integration of Circadian Exploration suite to investigate the circadian timing of noncoding RNAs, documenting extensive circadian timing of long noncoding RNAs and small nuclear RNAs, which control the recognition of mRNA in the spliceosome complex. By tracking oscillating spliceosome complex proteins using the PAICE suite, we noted that the clock broadly regulates the spliceosome, particularly the major spliceosome complex. As most of the above-noted rhythms had damped amplitude changes in their oscillations, this work highlights the importance of the PAICE suite in the thorough enumeration of oscillations in omics-scale datasets.
Collapse
Affiliation(s)
| | | | | | - Kaelyn M Edwards
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Alexandra M David
- Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Uyen H Dao
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Kristin P Bennett
- Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA,Department of Computer Science, Rensselaer Polytechnic Institute, Troy, NY 12180, USA,Institute for Data Exploration and Applications, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Jennifer M Hurley
- Corresponding author: Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| |
Collapse
|
15
|
The intersection between circadian and heat-responsive regulatory networks controls plant responses to increasing temperatures. Biochem Soc Trans 2022; 50:1151-1165. [PMID: 35758233 PMCID: PMC9246330 DOI: 10.1042/bst20190572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 11/17/2022]
Abstract
Increasing temperatures impact plant biochemistry, but the effects can be highly variable. Both external and internal factors modulate how plants respond to rising temperatures. One such factor is the time of day or season the temperature increase occurs. This timing significantly affects plant responses to higher temperatures altering the signaling networks and affecting tolerance levels. Increasing overlaps between circadian signaling and high temperature responses have been identified that could explain this sensitivity to the timing of heat stress. ELF3, a circadian clock component, functions as a thermosensor. ELF3 regulates thermoresponsive hypocotyl elongation in part through its cellular localization. The temperature sensitivity of ELF3 depends on the length of a polyglutamine region, explaining how plant temperature responses vary between species. However, the intersection between the circadian system and increased temperature stress responses is pervasive and extends beyond this overlap in thermosensing. Here, we review the network responses to increased temperatures, heat stress, and the impacts on the mechanisms of gene expression from transcription to translation, highlighting the intersections between the elevated temperature and heat stress response pathways and circadian signaling, focusing on the role of ELF3 as a thermosensor.
Collapse
|
16
|
Examples of Inverse Comorbidity between Cancer and Neurodegenerative Diseases: A Possible Role for Noncoding RNA. Cells 2022; 11:cells11121930. [PMID: 35741059 PMCID: PMC9221903 DOI: 10.3390/cells11121930] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/25/2022] [Accepted: 06/13/2022] [Indexed: 02/06/2023] Open
Abstract
Cancer is one of the most common causes of death; in parallel, the incidence and prevalence of central nervous system diseases are equally high. Among neurodegenerative diseases, Alzheimer’s dementia is the most common, while Parkinson’s disease (PD) is the second most frequent neurodegenerative disease. There is a significant amount of evidence on the complex biological connection between cancer and neurodegeneration. Noncoding RNAs (ncRNAs) are defined as transcribed nucleotides that perform a variety of regulatory functions. The mechanisms by which ncRNAs exert their functions are numerous and involve every aspect of cellular life. The same ncRNA can act in multiple ways, leading to different outcomes; in fact, a single ncRNA can participate in the pathogenesis of more than one disease—even if these seem very different, as cancer and neurodegenerative disorders are. The ncRNA activates specific pathways leading to one or the other clinical phenotype, sometimes with obvious mechanisms of inverse comorbidity. We aimed to collect from the existing literature examples of inverse comorbidity in which ncRNAs seem to play a key role. We also investigated the example of mir-519a-3p, and one of its target genes Poly (ADP-ribose) polymerase 1, for the inverse comorbidity mechanism between some cancers and PD. We believe it is very important to study the inverse comorbidity relationship between cancer and neurodegenerative diseases because it will help us to better assess these two major areas of human disease.
Collapse
|
17
|
Ruta V, Pagliarini V, Sette C. Coordination of RNA Processing Regulation by Signal Transduction Pathways. Biomolecules 2021; 11:biom11101475. [PMID: 34680108 PMCID: PMC8533259 DOI: 10.3390/biom11101475] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 02/06/2023] Open
Abstract
Signal transduction pathways transmit the information received from external and internal cues and generate a response that allows the cell to adapt to changes in the surrounding environment. Signaling pathways trigger rapid responses by changing the activity or localization of existing molecules, as well as long-term responses that require the activation of gene expression programs. All steps involved in the regulation of gene expression, from transcription to processing and utilization of new transcripts, are modulated by multiple signal transduction pathways. This review provides a broad overview of the post-translational regulation of factors involved in RNA processing events by signal transduction pathways, with particular focus on the regulation of pre-mRNA splicing, cleavage and polyadenylation. The effects of several post-translational modifications (i.e., sumoylation, ubiquitination, methylation, acetylation and phosphorylation) on the expression, subcellular localization, stability and affinity for RNA and protein partners of many RNA-binding proteins are highlighted. Moreover, examples of how some of the most common signal transduction pathways can modulate biological processes through changes in RNA processing regulation are illustrated. Lastly, we discuss challenges and opportunities of therapeutic approaches that correct RNA processing defects and target signaling molecules.
Collapse
Affiliation(s)
- Veronica Ruta
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168 Rome, Italy; (V.R.); (V.P.)
- Organoids Facility, IRCCS Fondazione Policlinico Universitario Agostino Gemelli, 00168 Rome, Italy
| | - Vittoria Pagliarini
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168 Rome, Italy; (V.R.); (V.P.)
- Organoids Facility, IRCCS Fondazione Policlinico Universitario Agostino Gemelli, 00168 Rome, Italy
| | - Claudio Sette
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168 Rome, Italy; (V.R.); (V.P.)
- Laboratory of Neuroembryology, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
- Correspondence:
| |
Collapse
|
18
|
Kay H, Grünewald E, Feord HK, Gil S, Peak-Chew SY, Stangherlin A, O'Neill JS, van Ooijen G. Deep-coverage spatiotemporal proteome of the picoeukaryote Ostreococcus tauri reveals differential effects of environmental and endogenous 24-hour rhythms. Commun Biol 2021; 4:1147. [PMID: 34593975 PMCID: PMC8484446 DOI: 10.1038/s42003-021-02680-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 09/07/2021] [Indexed: 11/18/2022] Open
Abstract
The cellular landscape changes dramatically over the course of a 24 h day. The proteome responds directly to daily environmental cycles and is additionally regulated by the circadian clock. To quantify the relative contribution of diurnal versus circadian regulation, we mapped proteome dynamics under light:dark cycles compared with constant light. Using Ostreococcus tauri, a prototypical eukaryotic cell, we achieved 85% coverage, which allowed an unprecedented insight into the identity of proteins that facilitate rhythmic cellular functions. The overlap between diurnally- and circadian-regulated proteins was modest and these proteins exhibited different phases of oscillation between the two conditions. Transcript oscillations were generally poorly predictive of protein oscillations, in which a far lower relative amplitude was observed. We observed coordination between the rhythmic regulation of organelle-encoded proteins with the nuclear-encoded proteins that are targeted to organelles. Rhythmic transmembrane proteins showed a different phase distribution compared with rhythmic soluble proteins, indicating the existence of a circadian regulatory process specific to the biogenesis and/or degradation of membrane proteins. Our observations argue that the cellular spatiotemporal proteome is shaped by a complex interaction between intrinsic and extrinsic regulatory factors through rhythmic regulation at the transcriptional as well as post-transcriptional, translational, and post-translational levels. Holly Kay, Ellen Grünewald, et al. provide an in-depth examination of the proteome in the eukaryotic green alga, Ostreococcus tauri, under circadian constant light or cycling diurnal light-dark conditions. They observe that there is little overlap between mRNA and protein expression rhythms, or the diurnal and circadian proteome, suggesting that the cellular spatiotemporal proteome is shaped through rhythmic regulation at multiple stages of transcription and translation.
Collapse
Affiliation(s)
- Holly Kay
- School of Biological Sciences, University of Edinburgh, Max Born Crescent, Edinburgh, EH9 3BF, UK
| | - Ellen Grünewald
- School of Biological Sciences, University of Edinburgh, Max Born Crescent, Edinburgh, EH9 3BF, UK
| | - Helen K Feord
- School of Biological Sciences, University of Edinburgh, Max Born Crescent, Edinburgh, EH9 3BF, UK
| | - Sergio Gil
- School of Biological Sciences, University of Edinburgh, Max Born Crescent, Edinburgh, EH9 3BF, UK
| | - Sew Y Peak-Chew
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | | | - John S O'Neill
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Gerben van Ooijen
- School of Biological Sciences, University of Edinburgh, Max Born Crescent, Edinburgh, EH9 3BF, UK.
| |
Collapse
|
19
|
McCabe CJ, Aryal UK, Casey T, Boerman J. Impact of Exposure to Chronic Light-Dark Phase Shifting Circadian Rhythm Disruption on Muscle Proteome in Periparturient Dairy Cows. Proteomes 2021; 9:35. [PMID: 34449733 PMCID: PMC8396217 DOI: 10.3390/proteomes9030035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/10/2021] [Accepted: 07/13/2021] [Indexed: 01/21/2023] Open
Abstract
Muscle tissue serves as a key nutrient reservoir that dairy cows utilize to meet energy and amino acid requirements for fetal growth and milk production. Circadian clocks act as homeostatic regulators so that organisms can anticipate regular environmental changes. The objective of this study was to use liquid chromatography tandem mass spectrometry (LC-MS/MS) to determine how chronic circadian disruption in late gestation affected the muscle tissue proteome. At five weeks before expected calving (BEC), multiparous Holstein cows were assigned to either a control (CON, n = 8) or a 6 h forward phase shift (PS, n = 8) of the light-dark cycle every 3 days. At calving, all animals were exposed to CON light-dark cycles. Muscle biopsies were collected from longissimus dorsi muscles at 21 days BEC and at 21 days postpartum (PP). At p < 0.1, 116 and 121 proteins were differentially abundant between PS and CON at 21 days BEC and 21 days PP, respectively. These proteins regulate beta oxidation and glycolysis. Between pregnancy and lactation, 134 and 145 proteins were differentially abundant in CON and PS cows, respectively (p < 0.1). At both timepoints, PS cows exhibited an oxidative stress signature. Thus, dairy cattle management strategies that minimize circadian disruptions may ensure optimal health and production performance.
Collapse
Affiliation(s)
- Conor John McCabe
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA; (C.J.M.); (J.B.)
| | - Uma K. Aryal
- Purdue Proteomics Facility, Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA;
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
| | - Theresa Casey
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA; (C.J.M.); (J.B.)
| | - Jacquelyn Boerman
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA; (C.J.M.); (J.B.)
| |
Collapse
|