1
|
Guo Y, Ashrafizadeh M, Tambuwala MM, Ren J, Orive G, Yu G. P-glycoprotein (P-gp)-driven cancer drug resistance: biological profile, non-coding RNAs, drugs and nanomodulators. Drug Discov Today 2024; 29:104161. [PMID: 39245345 DOI: 10.1016/j.drudis.2024.104161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/07/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
Drug resistance has compromised the efficacy of chemotherapy. The dysregulation of drug transporters including P-glycoprotein (P-gp) can mediate drug resistance through drug efflux. In this review, we highlight the role of P-gp in cancer drug resistance and the related molecular pathways, including phosphoinositide 3-kinase (PI3K)-Akt, phosphatase and tensin homolog (PTEN) and nuclear factor-κB (NF-κB), along with non-coding RNAs (ncRNAs). Extracellular vesicles secreted by the cells can transport ncRNAs and other proteins to change P-gp activity in cancer drug resistance. P-gp requires ATP to function, and the induction of mitochondrial dysfunction or inhibition of glutamine metabolism can impair P-gp function, thus increasing chemosensitivity. Phytochemicals, small molecules and nanoparticles have been introduced as P-gp inhibitors to increase drug sensitivity in human cancers.
Collapse
Affiliation(s)
- Yang Guo
- Department of Respiratory and Critical Care Medicine, Shenyang Tenth People's Hospital (Shenyang Chest Hospital), No. 11 Beihai Street, Dadong District, Shenyang 110044, Liaoning, China
| | - Milad Ashrafizadeh
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China; Department of Radiation Oncology, Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, UK
| | - Jun Ren
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; University Institute for Regenerative Medicine and Oral Implantology-UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria-Gasteiz, Spain; Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore.
| | - Guiping Yu
- Department of Cardiothoracic Surgery, The Affiliated Jiangyin Hospital of Nantong University, No. 163 Shoushan Road, Jiangyin, China.
| |
Collapse
|
2
|
Liang L, Yi X, Wang C, Su L, Wei G. The Impact of miR-34a on Endothelial Cell Viability and Apoptosis in Ischemic Stroke: Unraveling the MTHFR-Homocysteine Pathway. CLIN INVEST MED 2024; 47:27-37. [PMID: 39325580 DOI: 10.3138/cim-2024-2711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
INTRODUCTION Ischemic stroke (IS) is a global health concern, often tied to dyslipidemia and vascular endothelial dysfunction. MicroRNA-34a (miR-34a) was reported to be up-regulated in the blood samples of patients with IS, but the specific role of miR-34a and methylenetetrahydrofolate reductase (MTHFR) in IS remains to be elucidated. METHODS We studied 143 subjects: 71 IS patients, and 72 healthy controls. Human umbilical vein endothelial cells (HUVECs) were cultured and transfected with a miR-34a mimic, inhibitor, or negative control. The miR-34a expression in serum and HUVECs was quantified via quantitative reverse transcription polymerase chain reaction (qRT-PCR). Viability and apoptosis of HUVECs were assessed using CCK-8 assay and flow cytometry. The expression levels of bcl-2, bax, cyt-c, cleaved caspase 3, MTHFR, and homocysteine were measured by Western blot or enzyme-linked immunosorbent assay (ELISA). The relationship between miR-34a and MTHFR was verified by luciferase reporter assay. The levels of MTHFR and homocysteine in serum were examined by ELISA. RESULTS MiR-34a expression was increased in IS patients and inhibited viability of HUVECs while promoting their apoptosis. Overexpression of miR-34a up-regulated pro-apoptotic proteins (bax, cyt-c and cleaved caspase 3) and down-regulated anti-apoptotic protein bcl-2 in HUVECs. MTHFR was identified as the downstream target of miR-34a and its expression was reduced by miR-34a overexpression, while homocysteine levels increased. Consistently, MTHFR levels were lower and homocysteine levels were higher in IS patients compared with controls. DISCUSSION Our results suggest that up-regulated miR-34a plays a role in the pathogenesis of IS, potentially through inhibiting MTHFR expression and increasing homocysteine in endothelial cells. Therefore, miR-34a might be a therapeutic target for IS.
Collapse
Affiliation(s)
- Lina Liang
- Center for Medical Laboratory Science, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi, 533000, China
- Baise Key Laboratory for Research and Development on Clinical Molecular Diagnosis for High-Incidence Diseases, Guangxi, 533000, China
- *These authors contributed equally
| | - Xueli Yi
- Center for Medical Laboratory Science, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi, 533000, China
- Baise Key Laboratory for Research and Development on Clinical Molecular Diagnosis for High-Incidence Diseases, Guangxi, 533000, China
- *These authors contributed equally
| | - Chunfang Wang
- Center for Medical Laboratory Science, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi, 533000, China
- Baise Key Laboratory for Research and Development on Clinical Molecular Diagnosis for High-Incidence Diseases, Guangxi, 533000, China
| | - Li Su
- Department of Neurology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China
| | - Guijiang Wei
- Center for Medical Laboratory Science, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi, 533000, China
- Baise Key Laboratory for Research and Development on Clinical Molecular Diagnosis for High-Incidence Diseases, Guangxi, 533000, China
| |
Collapse
|
3
|
Hu Z, Chen D, Yan P, Zheng F, Zhu H, Yuan Z, Yang X, Zuo Y, Chen C, Lu H, Wu L, Lyu J, Bai Y. Puerarin suppresses macrophage M1 polarization to alleviate renal inflammatory injury through antagonizing TLR4/MyD88-mediated NF-κB p65 and JNK/FoxO1 activation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155813. [PMID: 38905846 DOI: 10.1016/j.phymed.2024.155813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/20/2024] [Accepted: 06/06/2024] [Indexed: 06/23/2024]
Abstract
BACKGROUND Acute kidney injury (AKI) is a clinically common and serious renal dysfunction, characterized by inflammation and damage to tubular epithelial cells. Puerarin, an isoflavone derivative isolated from Pueraria lobata, has been proven to possess exceptional effectiveness in reducing inflammation. However, the effects and underlying mechanisms of puerarin on AKI remain uncertain. PURPOSE This study investigated the possible therapeutic effects of puerarin on AKI and explored its underlying mechanism. STUDY DESIGN AND METHODS The effects of puerarin on AKI and macrophage polarization were investigated in lipopolysaccharide (LPS)-induced or unilateral ureteral obstruction (UUO)-induced mouse models in vivo and LPS-treated macrophages (Raw264.7) in vitro. Additionally, the effects of puerarin on inflammation-related signaling pathways were analyzed. RESULTS Administration of puerarin effectively alleviated kidney dysfunction and reduced inflammatory response in LPS-induced and UUO-induced AKI. In vitro, puerarin treatment inhibited the polarization of M1 macrophages and the release of inflammatory factors in Raw264.7 cells stimulated by LPS. Mechanistically, puerarin downregulated the activities of NF-κB p65 and JNK/FoxO1 signaling pathways. The application of SRT1460 to activate FoxO1 or anisomycin to activate JNK eliminated puerarin-mediated inhibition of JNK/FoxO1 signaling, leading to suppression of macrophage M1 polarization and reduction of inflammatory factors. Further studies showed that puerarin bound to Toll/interleukin-1 receptor (TIR) domain of MyD88 protein, hindering its binding with TLR4, ultimately resulting in downstream NF-κB p65 and JNK/FoxO1 signaling inactivation. CONCLUSIONS Puerarin antagonizes NF-κB p65 and JNK/FoxO1 activation via TLR4/MyD88 pathway, thereby suppressing macrophage polarization towards M1 phenotype and alleviating renal inflammatory damage.
Collapse
Affiliation(s)
- Zujian Hu
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, PR China
| | - Dong Chen
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Penghua Yan
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, PR China
| | - Fan Zheng
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, PR China
| | - Hengyue Zhu
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Ziwei Yuan
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, PR China
| | - Xuejia Yang
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, PR China
| | - Yidan Zuo
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, PR China
| | - Chaosheng Chen
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, PR China; Institute of Chronic Nephropathy, Wenzhou Medical University, Wenzhou 325000, PR China
| | - Hong Lu
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Lianfeng Wu
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Jianxin Lyu
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China.
| | - Yongheng Bai
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, PR China; Institute of Chronic Nephropathy, Wenzhou Medical University, Wenzhou 325000, PR China.
| |
Collapse
|
4
|
Gao W, Zhou J, Morshedi M. MicroRNA-34 and gastrointestinal cancers: a player with big functions. Cancer Cell Int 2024; 24:163. [PMID: 38725047 PMCID: PMC11084024 DOI: 10.1186/s12935-024-03338-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 04/18/2024] [Indexed: 05/12/2024] Open
Abstract
It is commonly assumed that gastrointestinal cancer is the most common form of cancer across the globe and is the leading contributor to cancer-related death. The intricate mechanisms underlying the growth of GI cancers have been identified. It is worth mentioning that both non-coding RNAs (ncRNAs) and certain types of RNA, such as circular RNAs (circRNAs), long non-coding RNAs (lncRNAs), and microRNAs (miRNAs), can have considerable impact on the development of gastrointestinal (GI) cancers. As a tumour suppressor, in the group of short non-coding regulatory RNAs is miR-34a. miR-34a silences multiple proto-oncogenes at the post-transcriptional stage by targeting them, which inhibits all physiologically relevant cell proliferation pathways. However, it has been discovered that deregulation of miR-34a plays important roles in the growth of tumors and the development of cancer, including invasion, metastasis, and the tumor-associated epithelial-mesenchymal transition (EMT). Further understanding of miR-34a's molecular pathways in cancer is also necessary for the development of precise diagnoses and effective treatments. We outlined the most recent research on miR-34a functions in GI cancers in this review. Additionally, we emphasize the significance of exosomal miR-34 in gastrointestinal cancers.
Collapse
Affiliation(s)
- Wei Gao
- Department of Gastrointestinal and Hernia and Abdominal Wall Surgery, The First Hospital, China Medical University, Shenyang, 110001, China
| | - Jianping Zhou
- Department of Gastrointestinal and Hernia and Abdominal Wall Surgery, The First Hospital, China Medical University, Shenyang, 110001, China.
| | - Mohammadamin Morshedi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
5
|
Yahya SMM, Nabih HK, Elsayed GH, Mohamed SIA, Elfiky AM, Salem SM. Restoring microRNA-34a overcomes acquired drug resistance and disease progression in human breast cancer cell lines via suppressing the ABCC1 gene. Breast Cancer Res Treat 2024; 204:133-149. [PMID: 38057687 PMCID: PMC10806220 DOI: 10.1007/s10549-023-07170-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/02/2023] [Indexed: 12/08/2023]
Abstract
PURPOSE Breast cancer is one of the leading types of cancer diagnosed in women. Despite the improvements in chemotherapeutic cure strategies, drug resistance is still an obstacle leading to disease aggressiveness. The small non-coding RNA molecules, miRNAs, have been implicated recently to be involved as regulators of gene expression through the silencing of mRNA targets that contributed to several cellular processes related to cancer metastasis. Hence, the present study aimed to investigate the beneficial role and mechanism of miRNA-34a-based gene therapy as a novel approach for conquering drug resistance mediated by ATP-binding cassette (ABC) transporters in breast cancer cells, besides exploring the associated invasive behaviors. MATERIAL AND METHODS Bioinformatics tools were used to predict miRNA ABC transporter targets by tracking the ABC transporter pathway. After the establishment of drug-resistant breast cancer MCF-7 and MDA-MB-231 sublines, cells were transfected with the mimic or inhibitor of miRNA-34a-5p. The quantitative expression of genes involved in drug resistance was performed by QRT-PCR, and the exact ABC transporter target specification interaction was confirmed by dual-luciferase reporter assay. Furthermore, flow cytometric analysis was utilized to determine the ability of miRNA-34a-treated cells against doxorubicin uptake and accumulation in cell cycle phases. The spreading capability was examined by colony formation, migration, and wound healing assays. The apoptotic activity was estimated as well. RESULTS Our findings firstly discovered the mechanism of miRNA-34a-5p restoration as an anti-drug-resistant molecule that highly significantly attenuates the expression of ABCC1 via the direct targeting of its 3'- untranslated regions in resistant breast cancer cell lines, with a significant increase of doxorubicin influx by MDA-MB-231/Dox-resistant cells. Additionally, the current data validated a significant reduction of metastatic potentials upon miRNA-34a-5p upregulation in both types of breast cancer-resistant cells. CONCLUSION The ectopic expression of miRNA-34a ameliorates the acquired drug resistance and the migration properties that may eventually lead to improved clinical strategies and outcomes for breast cancer patients. Additionally, miRNA-34a could be monitored as a diagnostic/prognostic biomarker for resistant conditions.
Collapse
Affiliation(s)
- Shaymaa M M Yahya
- Hormones Department, Medicine and Clinical Studies Research Institute, and Stem Cell Lab, Centre of Excellence for Advanced Sciences, National Research Centre, 33 El Bohouth St., Dokki, P.O. 12622, Giza, Egypt
| | - Heba K Nabih
- Medical Biochemistry Department, Medicine and Clinical Studies Research Institute, National Research Centre, 33 El Bohouth St., Dokki, P.O. 12622, Giza, Egypt.
| | - Ghada H Elsayed
- Hormones Department, Medicine and Clinical Studies Research Institute, and Stem Cell Lab, Centre of Excellence for Advanced Sciences, National Research Centre, 33 El Bohouth St., Dokki, P.O. 12622, Giza, Egypt
| | | | - Asmaa M Elfiky
- Environmental and Occupational Medicine Department, Environmental and Climate Change Research Institute, National Research Centre, 33 El Bohouth St., Dokki, P.O. 12622, Giza, Egypt
| | - Sohair M Salem
- Molecular Genetics and Enzymology Department, National Research Centre, 33 El Bohouth St., Dokki, P.O. 12622, Giza, Egypt
| |
Collapse
|
6
|
Seo JH, Ryu S, Cheon SY, Lee SJ, Won SJ, Yim CD, Lee HJ, Hah YS, Park JJ. Sirt6-Mediated Cell Death Associated with Sirt1 Suppression in Gastric Cancer. Cancers (Basel) 2024; 16:387. [PMID: 38254877 PMCID: PMC10814469 DOI: 10.3390/cancers16020387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/04/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Gastric cancer, one of the leading causes of cancer-related death, is strongly associated with H. pylori infection, although other risk factors have been identified. The sirtuin (Sirt) family is involved in the tumorigenesis of gastric cancer, and sirtuins can have pro- or anti-tumorigenic effects. METHODS After determining the overall survival rate of gastric cancer patients with or without Sirt6 expression, the effect of Sirt6 upregulation was also tested using a xenograft mouse model. The regulation of Sirt6 and Sirt1, leading to the induction of mouse double minute 2 homolog (MDM2) and reactive oxygen species (ROS), was mainly analyzed using Western blotting and immunofluorescence staining, and gastric cancer cell (SNU-638) death associated with these proteins was measured using flow cytometric analysis. RESULTS Sirt6 overexpression led to Sirt1 suppression in gastric cancer cells, resulting in a higher level of gastric cancer cell death in vitro and a reduced tumor volume. ROS and MDM2 expression levels were upregulated by Sirt6 overexpression and/or Sirt1 suppression according to Western blot analysis. The upregulated ROS ultimately led to gastric cancer cell death as determined via Western blot and flow cytometric analysis. CONCLUSION We found that the upregulation of Sirt6 suppressed Sirt1, and Sirt6- and Sirt1-induced gastric cancer cell death was mediated by ROS production. These findings highlight the potential of Sirt6 and Sirt1 as therapeutic targets for treating gastric cancer.
Collapse
Affiliation(s)
- Ji Hyun Seo
- Department of Pediatrics, Institute of Health Science, College of Medicine, Gyeongsang National University, Jinju 52725, Republic of Korea;
- Institute of Medical Science, Gyeongsang National University, Jinju 52725, Republic of Korea; (S.R.); (C.D.Y.)
| | - Somi Ryu
- Institute of Medical Science, Gyeongsang National University, Jinju 52725, Republic of Korea; (S.R.); (C.D.Y.)
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Gyeongsang National University, Gyeongsang National University Hospital, Jinju 52727, Republic of Korea
| | - So Young Cheon
- Biomedical Research Institute, Gyeongsang National University Hospital, Jinju 52727, Republic of Korea;
| | - Seong-Jun Lee
- Department of Convergence of Medical Sciences, Gyeongsang National University, Jinju 52725, Republic of Korea
| | - Seong-Jun Won
- Institute of Medical Science, Gyeongsang National University, Jinju 52725, Republic of Korea; (S.R.); (C.D.Y.)
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Gyeongsang National University, Gyeongsang National University Hospital, Jinju 52727, Republic of Korea
| | - Chae Dong Yim
- Institute of Medical Science, Gyeongsang National University, Jinju 52725, Republic of Korea; (S.R.); (C.D.Y.)
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Gyeongsang National University, Gyeongsang National University Hospital, Jinju 52727, Republic of Korea
| | - Hyun-Jin Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Chung-Ang University, Chung-Ang University Gwangmyeong Hospital, Gwangmyeong 06973, Republic of Korea
| | - Young-Sool Hah
- Institute of Medical Science, Gyeongsang National University, Jinju 52725, Republic of Korea; (S.R.); (C.D.Y.)
- Biomedical Research Institute, Gyeongsang National University Hospital, Jinju 52727, Republic of Korea;
| | - Jung Je Park
- Institute of Medical Science, Gyeongsang National University, Jinju 52725, Republic of Korea; (S.R.); (C.D.Y.)
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Gyeongsang National University, Gyeongsang National University Hospital, Jinju 52727, Republic of Korea
- Biomedical Research Institute, Gyeongsang National University Hospital, Jinju 52727, Republic of Korea;
| |
Collapse
|
7
|
Xing P, Wang S, Cao Y, Liu B, Zheng F, Guo W, Huang J, Zhao Z, Yang Z, Lin X, Sang L, Liu Z. Treatment strategies and drug resistance mechanisms in adenocarcinoma of different organs. Drug Resist Updat 2023; 71:101002. [PMID: 37678078 DOI: 10.1016/j.drup.2023.101002] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/11/2023] [Accepted: 08/12/2023] [Indexed: 09/09/2023]
Abstract
Adenocarcinoma is a common type of malignant tumor, originating from glandular epithelial cells in various organs, such as pancreas, breast, lung, stomach, colon, rectus, and prostate. For patients who lose the opportunity for radical surgery, medication is available to provide potential clinical benefits. However, drug resistance is a big obstacle to obtain desired clinical prognosis. In this review, we provide a summary of treatment strategies and drug resistance mechanisms in adenocarcinoma of different organs, including pancreatic cancer, gastric adenocarcinoma, colorectal adenocarcinoma, lung adenocarcinoma, and prostate cancer. Although the underlying molecular mechanisms involved in drug resistance of adenocarcinoma vary from one organ to the other, there are several targets that are universal for drug resistance in adenocarcinoma, and targeting these molecules could potentially reverse drug resistance in the treatment of adenocarcinomas.
Collapse
Affiliation(s)
- Peng Xing
- Department of Surgical Oncology, Breast Surgery, General Surgery,The First Hospital of China Medical University, Shenyang, China
| | - Shuo Wang
- Department of Surgical Oncology, Breast Surgery, General Surgery,The First Hospital of China Medical University, Shenyang, China
| | - Yu Cao
- Department of Surgical Oncology, Breast Surgery, General Surgery,The First Hospital of China Medical University, Shenyang, China
| | - Bo Liu
- Department of Cardiac Surgery,The First Hospital of China Medical University, Shenyang, China
| | - Feifei Zheng
- Department of Laboratory Medicine, the Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Wei Guo
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Junhao Huang
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Zimo Zhao
- Department of Ultrasound, The First Hospital of China Medical University, Shenyang, China
| | - Ziyi Yang
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Xingda Lin
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Liang Sang
- Department of Ultrasound, The First Hospital of China Medical University, Shenyang, China.
| | - Zhe Liu
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
8
|
Fu J, Imani S, Wu MY, Wu RC. MicroRNA-34 Family in Cancers: Role, Mechanism, and Therapeutic Potential. Cancers (Basel) 2023; 15:4723. [PMID: 37835417 PMCID: PMC10571940 DOI: 10.3390/cancers15194723] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
MicroRNA (miRNA) are small noncoding RNAs that play vital roles in post-transcriptional gene regulation by inhibiting mRNA translation or promoting mRNA degradation. The dysregulation of miRNA has been implicated in numerous human diseases, including cancers. miR-34 family members (miR-34s), including miR-34a, miR-34b, and miR-34c, have emerged as the most extensively studied tumor-suppressive miRNAs. In this comprehensive review, we aim to provide an overview of the major signaling pathways and gene networks regulated by miR-34s in various cancers and highlight the critical tumor suppressor role of miR-34s. Furthermore, we will discuss the potential of using miR-34 mimics as a novel therapeutic approach against cancer, while also addressing the challenges associated with their development and delivery. It is anticipated that gaining a deeper understanding of the functions and mechanisms of miR-34s in cancer will greatly contribute to the development of effective miR-34-based cancer therapeutics.
Collapse
Affiliation(s)
- Junjiang Fu
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Saber Imani
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310022, China
| | - Mei-Yi Wu
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland Baltimore, Baltimore, MD 21201, USA
| | - Ray-Chang Wu
- Department of Biochemistry and Molecular Medicine, The George Washington University, Washington, DC 20052, USA
| |
Collapse
|
9
|
Firouzjaei AA, Sharifi K, Khazaei M, Mohammadi-Yeganeh S, Aghaee-Bakhtiari SH. Screening and introduction of key cell cycle microRNAs deregulated in colorectal cancer by integrated bioinformatics analysis. Chem Biol Drug Des 2023; 102:137-152. [PMID: 37081586 DOI: 10.1111/cbdd.14242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 03/05/2023] [Accepted: 04/03/2023] [Indexed: 04/22/2023]
Abstract
Colorectal cancer (CRC) is the second most common cancer in women and the third most common in men worldwide. Impaired cell cycle regulation leads to many cancers and is also approved in CRC. Therefore, cell cycle regulation is a critical therapeutic target for CRC. Furthermore, miRNAs have been discovered as regulators in a variety of cancer-related pathways. This study is designed to investigate how miRNAs and mRNAs interact to regulate the cell cycle in CRC patients. Utilizing the Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Expression Omnibus (GEO), and Therapeutic Target Database (TTD), cell cycle-associated genes were identified and evaluated. Seven of the 22 differentially expressed genes (DEGs) implicated in the cell cycle in three GSEs (GSE24514, GSE10950, and GSE74604) were identified as potential therapeutic targets. Then, using PyRx software, we performed docking proteins with selected drugs. The results demonstrated that these drugs are appropriate molecules for targeting cell cycle DEGs. Tarbase, miRTarbase, miRDIP, and miRCancer databases were used to find miRNAs that target the indicated genes. The ability of these six miRNAs to impact the cell cycle in colorectal cancer may be concluded. These miRNAs were found to be downregulated in SW480 cells when compared to the normal tissue. Our data imply that a precise selection of bioinformatics tools can facilitate the identification of miRNAs that impact mRNA translation at different stages of the cell cycle. The candidates can be investigated more as targets for cell cycle arrest in cancers.
Collapse
Affiliation(s)
- Ali Ahmadizad Firouzjaei
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kazem Sharifi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samira Mohammadi-Yeganeh
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Hamid Aghaee-Bakhtiari
- Bioinformatics Research Group, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
10
|
Fathi D, Elballal MS, Elesawy AE, Abulsoud AI, Elshafei A, Elsakka EG, Ismail A, El-Mahdy HA, Elrebehy MA, Doghish AS. An emphasis on the interaction of signaling pathways highlights the role of miRNAs in the etiology and treatment resistance of gastric cancer. Life Sci 2023; 322:121667. [PMID: 37023952 DOI: 10.1016/j.lfs.2023.121667] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/01/2023] [Accepted: 04/03/2023] [Indexed: 04/07/2023]
Abstract
Gastric cancer (GC) is 4th in incidence and mortality rates globally. Several genetic and epigenetic factors, including microRNAs (miRNAs), affect its initiation and progression. miRNAs are short chains of nucleic acids that can regulate several cellular processes by controlling their gene expression. So, dysregulation of miRNAs expressions is associated with GC initiation, progression, invasion capacity, apoptosis evasions, angiogenesis, promotion and EMT enhancement. Of important pathways in GC and controlled by miRNAs are Wnt/β-catenin signaling, HMGA2/mTOR/P-gp, PI3K/AKT/c-Myc, VEGFR and TGFb signaling. Hence, this review was conducted to review an updated view of the role of miRNAs in GC pathogenesis and their modulatory effects on responses to different GC treatment modalities.
Collapse
|
11
|
Zhu M, Wei C, Wang H, Han S, Cai L, Li X, Liao X, Che X, Li X, Fan L, Qiu G. SIRT1 mediated gastric cancer progression under glucose deprivation through the FoxO1-Rab7-autophagy axis. Front Oncol 2023; 13:1175151. [PMID: 37293593 PMCID: PMC10244632 DOI: 10.3389/fonc.2023.1175151] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/28/2023] [Indexed: 06/10/2023] Open
Abstract
Purpose Silent mating type information regulator 2 homolog 1 (SIRT1) and autophagy have a two-way action (promoting cell death or survival) on the progression and treatment of gastric cancer (GC) under different conditions or environments. This study aimed to investigate the effects and underlying mechanism of SIRT1 on autophagy and the malignant biological behavior of GC cells under conditions of glucose deprivation (GD). Materials and methods Human immortalized gastric mucosal cell GES-1 and GC cell lines SGC-7901, BGC-823, MKN-45 and MKN-28 were utilized. A sugar-free or low-sugar (glucose concentration, 2.5 mmol/L) DMEM medium was used to simulate GD. Additionally, CCK8, colony formation, scratches, transwell, siRNA interference, mRFP-GFP-LC3 adenovirus infection, flow cytometry and western blot assays were performed to investigate the role of SIRT1 in autophagy and malignant biological behaviors (proliferation, migration, invasion, apoptosis and cell cycle) of GC under GD and the underlying mechanism. Results SGC-7901 cells had the longest tolerance time to GD culture conditions, which had the highest expression of SIRT1 protein and the level of basal autophagy. With the extension of GD time, the autophagy activity in SGC-7901 cells also increased. Under GD conditions, we found a close relationship between SIRT1, FoxO1 and Rab7 in SGC-7901 cells. SIRT1 regulated the activity of FoxO1 and upregulated the expression of Rab7 through deacetylation, which ultimately affected autophagy in GC cells. In addition, changing the expression of FoxO1 provided feedback on the expression of SIRT1 in the cell. Reducing SIRT1, FoxO1 or Rab7 expression significantly inhibited the autophagy levels of GC cells under GD conditions, decreased the tolerance of GC cells to GD, enhanced the inhibition of GD in GC cell proliferation, migration and invasion and increased apoptosis induced by GD. Conclusion The SIRT1-FoxO1-Rab7 pathway is crucial for the autophagy and malignant biological behaviors of GC cells under GD conditions, which could be a new target for the treatment of GC.
Collapse
Affiliation(s)
- Mengke Zhu
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Chao Wei
- Clinical Medicine Teaching and Research Section, Xi’an Health School, Xi’an, Shaanxi, China
| | - Haijiang Wang
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Shangning Han
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Lindi Cai
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Xiaowen Li
- Department of General Surgery, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Xinhua Liao
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Xiangming Che
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Xuqi Li
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Lin Fan
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Guanglin Qiu
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| |
Collapse
|
12
|
Khatoon F, Haque S, Hashem A, Mahmoud A, Tashkandi H, Mathkor D, Harakeh S, Alghamdi B, Kumar V. Network-based approach for targeting human kinases commonly associated with amyotrophic lateral sclerosis and cancer. Front Mol Neurosci 2022; 15:1023286. [PMID: 36590916 PMCID: PMC9802580 DOI: 10.3389/fnmol.2022.1023286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/09/2022] [Indexed: 12/23/2022] Open
Abstract
Background Amyotrophic Lateral Sclerosis (ALS) is a rare progressive and chronic motor neuron degenerative disease for which at present no cure is available. In recent years, multiple genes encode kinases and other causative agents for ALS have been identified. Kinases are enzymes that show pleiotropic nature and regulate different signal transduction processes and pathways. The dysregulation of kinase activity results in dramatic changes in processes and causes many other human diseases including cancers. Methods In this study, we have adopted a network-based system biology approach to investigate the kinase-based molecular interplay between ALS and other human disorders. A list of 62 ALS-associated-kinases was first identified and then we identified the disease associated with them by scanning multiple disease-gene interaction databases to understand the link between the ALS-associated kinases and other disorders. Results An interaction network with 36 kinases and 381 different disorders associated with them was prepared, which represents the complexity and the comorbidity associated with the kinases. Further, we have identified 5 miRNAs targeting the majority of the kinases in the disease-causing network. The gene ontology and pathways enrichment analysis of those miRNAs were performed to understand their biological and molecular functions along with to identify the important pathways. We also identified 3 drug molecules that can perturb the disease-causing network by drug repurposing. Conclusion This network-based study presented hereby contributes to a better knowledge of the molecular underpinning of comorbidities associated with the kinases associated with the ALS disease and provides the potential therapeutic targets to disrupt the highly complex disease-causing network.
Collapse
Affiliation(s)
- Fatima Khatoon
- Amity Institute of Neuropsychology and Neurosciences, Amity University, Noida, Uttar Pradesh, India
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Anwar Hashem
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia,Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmad Mahmoud
- College of Applied Medical Sciences, Taibah University, Medina, Saudi Arabia
| | - Hanaa Tashkandi
- Department of General Surgery, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Darin Mathkor
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Steve Harakeh
- King Fahd Medical Research Center, and Yousef Abdullatif Jameel Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Badra Alghamdi
- Department of Physiology, Neuroscience Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Vijay Kumar
- Amity Institute of Neuropsychology and Neurosciences, Amity University, Noida, Uttar Pradesh, India,*Correspondence: Vijay Kumar,
| |
Collapse
|
13
|
Hashemi M, Mirzaei S, Barati M, Hejazi ES, Kakavand A, Entezari M, Salimimoghadam S, Kalbasi A, Rashidi M, Taheriazam A, Sethi G. Curcumin in the treatment of urological cancers: Therapeutic targets, challenges and prospects. Life Sci 2022; 309:120984. [PMID: 36150461 DOI: 10.1016/j.lfs.2022.120984] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/09/2022] [Accepted: 09/17/2022] [Indexed: 11/26/2022]
Abstract
Urological cancers include bladder, prostate and renal cancers that can cause death in males and females. Patients with urological cancers are mainly diagnosed at an advanced disease stage when they also develop resistance to therapy or poor response. The use of natural products in the treatment of urological cancers has shown a significant increase. Curcumin has been widely used in cancer treatment due to its ability to trigger cell death and suppress metastasis. The beneficial effects of curcumin in the treatment of urological cancers is the focus of current review. Curcumin can induce apoptosis in the three types of urological cancers limiting their proliferative potential. Furthermore, curcumin can suppress invasion of urological cancers through EMT inhibition. Notably, curcumin decreases the expression of MMPs, therefore interfering with urological cancer metastasis. When used in combination with chemotherapy agents, curcumin displays synergistic effects in suppressing cancer progression. It can also be used as a chemosensitizer. Based on pre-clinical studies, curcumin administration is beneficial in the treatment of urological cancers and future clinical applications might be considered upon solving problems related to the poor bioavailability of the compound. To improve the bioavailability of curcumin and increase its therapeutic index in urological cancer suppression, nanostructures have been developed to favor targeted delivery.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Maryamsadat Barati
- Department of Biology, Faculty of Basic (Fundamental) Science, Shahr Qods Branch, Islamic Azad University, Tehran, Iran
| | - Elahe Sadat Hejazi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amirabbas Kakavand
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Alireza Kalbasi
- Department of Pharmacy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States of America
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore.
| |
Collapse
|
14
|
Thomaidou AC, Batsaki P, Adamaki M, Goulielmaki M, Baxevanis CN, Zoumpourlis V, Fortis SP. Promising Biomarkers in Head and Neck Cancer: The Most Clinically Important miRNAs. Int J Mol Sci 2022; 23:ijms23158257. [PMID: 35897831 PMCID: PMC9367895 DOI: 10.3390/ijms23158257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 02/01/2023] Open
Abstract
Head and neck cancers (HNCs) comprise a heterogeneous group of tumors that extend from the oral cavity to the upper gastrointestinal tract. The principal etiologic factors for oral tumors include tobacco smoking and alcohol consumption, while human papillomavirus (HPV) infections have been accused of a high incidence of pharyngeal tumors. Accordingly, HPV detection has been extensively used to categorize carcinomas of the head and neck. The diverse nature of HNC highlights the necessity for novel, sensitive, and precise biomarkers for the prompt diagnosis of the disease, its successful monitoring, and the timely prognosis of patient clinical outcomes. In this context, the identification of certain microRNAs (miRNAs) and/or the detection of alterations in their expression patterns, in a variety of somatic fluids and tissues, could serve as valuable biomarkers for precision oncology. In the present review, we summarize some of the most frequently studied miRNAs (including miR-21, -375, -99, -34a, -200, -31, -125a/b, -196a/b, -9, -181a, -155, -146a, -23a, -16, -29, and let-7), their role as biomarkers, and their implication in HNC pathogenesis. Moreover, we designate the potential of given miRNAs and miRNA signatures as novel diagnostic and prognostic tools for successful patient stratification. Finally, we discuss the currently ongoing clinical trials that aim to identify the diagnostic, prognostic, or therapeutic utility of miRNAs in HNC.
Collapse
Affiliation(s)
- Arsinoe C. Thomaidou
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece; (A.C.T.); (M.A.)
| | - Panagiota Batsaki
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 11522 Athens, Greece; (P.B.); (M.G.); (C.N.B.)
| | - Maria Adamaki
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece; (A.C.T.); (M.A.)
| | - Maria Goulielmaki
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 11522 Athens, Greece; (P.B.); (M.G.); (C.N.B.)
| | - Constantin N. Baxevanis
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 11522 Athens, Greece; (P.B.); (M.G.); (C.N.B.)
| | - Vassilis Zoumpourlis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece; (A.C.T.); (M.A.)
- Correspondence: (V.Z.); (S.P.F.); Tel.: +30-210-727-3730 (V.Z.); +30-210-640-9462 (S.P.F.)
| | - Sotirios P. Fortis
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 11522 Athens, Greece; (P.B.); (M.G.); (C.N.B.)
- Correspondence: (V.Z.); (S.P.F.); Tel.: +30-210-727-3730 (V.Z.); +30-210-640-9462 (S.P.F.)
| |
Collapse
|
15
|
Liu H, Qi L, Tang X, Tan S, Gou Z, Qi J, Lu X, Li D, Chen C. Astragalus Polysaccharides Affect Glioblastoma Cells Through Targeting miR-34a-5p. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This study discussed Astragalus Polysaccharides (APS)’s effect on the cytobiology of glioma. U87 glioma cells were assigned into control group (U87 cells), miR-34a-5p mimic group (transfected with miR-34a-5p mimic), and APS group (treated with 10 μM APS) followed by
analysis of miR-34a-5p level, cell proliferation and invasion, Caspase3 and SOD activity as well as E-cadherin, Vimentin and survivn expression. APS treatment significantly upregulated miR-34a-5p expression, inhibits cell proliferation and invasion, and promoted cell apoptosis. In addition,
APS also significantly upregulated E-cadherin, downregulated Vimentin and survivn level in glioma cells as well as inhibited ROS generation and increased SOD activity. In conclusion, the level of miR-34a-5a in glioma cells is up-regulated by APS so as to restrain the biological behaviors of
glioma cells, indicating that it might be used as novel agent for the treatment of glioma.
Collapse
Affiliation(s)
- Hongjun Liu
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, China
| | - Lingjun Qi
- Department of Neurosurgery, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Xiaoping Tang
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, China
| | - Shasha Tan
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, China
| | - Zhangyang Gou
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, China
| | - Jian Qi
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, China
| | - Xingyu Lu
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, China
| | - Dong Li
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, China
| | - Chunbao Chen
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, China
| |
Collapse
|
16
|
Wu S, Wu Z, Xu H, Zhang J, Gu W, Tan X, Pan Z, Cao D, Li D, Yang L, Li D, Pan Y. miR-34a-5p inhibits the malignant progression of KSHV-infected SH-SY5Y cells by targeting c-fos. PeerJ 2022; 10:e13233. [PMID: 35444864 PMCID: PMC9014853 DOI: 10.7717/peerj.13233] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 03/17/2022] [Indexed: 01/15/2023] Open
Abstract
Background We aimed to investigate the effects of miR-34a-5p on c-fos regulation mediating the malignant behaviors of SH-SY5Y cells infected with Kaposi's sarcoma-associated herpesvirus (KSHV). Methods The KSHV-infected (SK-RG) and uninfected SH-SY5Y parent cells were compared for differentially expressed miRNAs using transcriptome sequencing. Then miR-34a-5p was upregulated in SK-RG cells by the miRNA mimics transfection. Cell proliferation ability was determined by MTT and plate clone assays. The cell cycle was assessed by flow cytometry analysis, and CDK4, CDK6, cyclin D1 levels were determined by Western blot analysis. The migration behavior was detected by wound healing and transwell assays. The protein levels of MMP2 and MMP9 were measured by Western blot analysis. The regulation of c-fos by miR-34a-5p was detected by the dual-luciferase reporter gene assay. Rescue assays were carried out by upregulating c-fos in miR-34a-5p-overexpressing SK-RG cells. KSHV DNA copy numbers and relative virus gene expressions were detected. Xenograft tumor experiments and immunohistochemistry assays were further used to detect the effects of miR-34a-5p. Results miR-34a-5p was lower in SK-RG cells. Restoration of miR-34a-5p decreased cell proliferation and migration, leading to a G1 cell cycle arrest and down-regulation of CDK4/6, cyclin D1, MMP2, MMP9. KSHV copy number and expression of virus gene including latency-associated nuclear antigen (LANA), replication and transcription activator (RTA), open reading frame (K8.1), and KSHV G protein-coupled receptor (v-GPCR) were also reduced. Furthermore, c-fos is the target of miR-34a-5p, while enhanced c-fos weakened cellular behaviors of miR-34a-5p-overexpressing cells. Xenograft experiments and immunohistochemistry assays showed that miR-34a-5p inhibited tumor growth and virus gene expression. Conclusion Upregulated miR-34a-5p in KSHV-infected SH-SY5Y cells suppressed cell proliferation and migration through down-regulating c-fos. miR-34a-5p was a candidate molecular drug for KSHV-infected neuronal cells.
Collapse
Affiliation(s)
- Shuyuan Wu
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases/NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Zhaofu Wu
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases/NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Huiling Xu
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases/NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Jinli Zhang
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases/NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Wenyi Gu
- Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland (UQ), St Lucia, Brisbane, Australia
| | - Xiaohua Tan
- School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Zemin Pan
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases/NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Dongdong Cao
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases/NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Dongmei Li
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases/NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Lei Yang
- School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Dongmei Li
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases/NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Yuanming Pan
- Department of Cellular and Molecular Biology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, Beijing, China
| |
Collapse
|
17
|
Liang X, Chen Y, Fan Y. Bioinformatics approach to identify common gene signatures of patients with coronavirus 2019 and lung adenocarcinoma. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:22012-22030. [PMID: 34775559 PMCID: PMC8590527 DOI: 10.1007/s11356-021-17321-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/28/2021] [Indexed: 02/05/2023]
Abstract
Coronavirus disease 2019 (COVID-19) continues as a global pandemic. Patients with lung cancer infected with COVID-19 may develop severe disease or die. Treating such patients severely burdens overwhelmed healthcare systems. Here, we identified potential pathological mechanisms shared between patients with COVID-19 and lung adenocarcinoma (LUAD). Co-expressed, differentially expressed genes (DEGs) in patients with COVID-19 and LUAD were identified and used to construct a protein-protein interaction (PPI) network and to perform enrichment analysis. We used the NetworkAnalyst platform to establish a co-regulatory of the co-expressed DEGs, and we used Spearman's correlation to evaluate the significance of associations of hub genes with immune infiltration and immune checkpoints. Analysis of three datasets identified 112 shared DEGs, which were used to construct a protein-PPI network. Subsequent enrichment analysis revealed co-expressed genes related to biological process (BP), molecular function (MF), and cellular component (CC) as well as to pathways, specific organs, cells, and diseases. Ten co-expressed hub genes were employed to construct a gene-miRNA, transcription factor (TF)-gene, and TF-miRNA network. Hub genes were significantly associated with immune infiltration and immune checkpoints. Finally, methylation level of hub genes in LUAD was obtained via UALCAN database. The present multi-dimensional study reveals commonality in specific gene expression by patients with COVID-19 and LUAD. These findings provide insights into developing strategies for optimising the management and treatment of patients with LUAD with COVID-19.
Collapse
Affiliation(s)
- Xiao Liang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yali Chen
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yuchao Fan
- Department of Anesthesiology, Sichuan Cancer Center, Sichuan Cancer Hospital & Institute, School of Medicine, University of Electronic Science and Technology of China, No.55, Section 4, Renmin South Road, Chengdu, 610041, Sichuan Province, China.
| |
Collapse
|
18
|
Zuo J, Zhang Z, Li M, Yang Y, Zheng B, Wang P, Huang C, Zhou S. The crosstalk between reactive oxygen species and noncoding RNAs: from cancer code to drug role. Mol Cancer 2022; 21:30. [PMID: 35081965 PMCID: PMC8790843 DOI: 10.1186/s12943-021-01488-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/26/2021] [Indexed: 02/08/2023] Open
Abstract
Oxidative stress (OS), characterized by the excessive accumulation of reactive oxygen species (ROS), is an emerging hallmark of cancer. Tumorigenesis and development driven by ROS require an aberrant redox homeostasis, that activates onco-signaling and avoids ROS-induced programmed death by orchestrating antioxidant systems. These processes are revealed to closely associate with noncoding RNAs (ncRNAs). On the basis of the available evidence, ncRNAs have been widely identified as multifarious modulators with the involvement of several key redox sensing pathways, such as NF-κB and Nrf2 signaling, therefore potentially becoming effective targets for cancer therapy. Furthermore, the vast majority of ncRNAs with property of easy detected in fluid samples (e.g., blood and urine) facilitate clinicians to monitor redox homeostasis, indicating a novel method for cancer diagnosis. Herein, focusing on carcinoma initiation, metastasis and chemoradiotherapy resistance, we aimed to discuss the ncRNAs-ROS network involved in cancer progression, and the potential clinical application as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Jing Zuo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Zhe Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Maomao Li
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, People's Republic of China
| | - Yun Yang
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, People's Republic of China
| | - Bohao Zheng
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, People's Republic of China
| | - Ping Wang
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, People's Republic of China.
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China.
| | - Shengtao Zhou
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, People's Republic of China.
| |
Collapse
|
19
|
Yue Y, Lin X, Qiu X, Yang L, Wang R. The Molecular Roles and Clinical Implications of Non-Coding RNAs in Gastric Cancer. Front Cell Dev Biol 2021; 9:802745. [PMID: 34966746 PMCID: PMC8711095 DOI: 10.3389/fcell.2021.802745] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/29/2021] [Indexed: 01/19/2023] Open
Abstract
Gastric cancer (GC) is one of the most common malignancies in the world. It is also the fifth most common cancer in China. In recent years, a large number of studies have proved that non-coding RNAs (ncRNAs) can regulate cell proliferation, invasion, metastasis, apoptosis, and angiogenesis. NcRNAs also influence the therapeutic resistance of gastric cancer. NcRNAs mainly consist of miRNAs, lncRNAs and circRNAs. In this paper, we summarized ncRNAs as biomarkers and therapeutic targets for gastric cancer, and also reviewed their role in clinical trials and diagnosis. We sum up different ncRNAs and related moleculars and signaling pathway in gastric cancer, like Bcl-2, PTEN, Wnt signaling. In addition, the potential clinical application of ncRNAs in overcoming chemotherapy and radiotherapy resistance in GC in the future were also focused on.
Collapse
Affiliation(s)
- Yanping Yue
- Department of Medical Oncology, Affiliated Cancer Hospital, Nantong University, Nantong, China
| | - Xinrong Lin
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xinyue Qiu
- Department of Medical Oncology, Affiliated Cancer Hospital, Nantong University, Nantong, China
| | - Lei Yang
- Department of Medical Oncology, Affiliated Cancer Hospital, Nantong University, Nantong, China
| | - Rui Wang
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
20
|
Effect of Combining Early Chemotherapy with Zhipu Liujunzi Decoction under the Concept of Strengthening and Consolidating Body Resistance for Gastric Cancer Patients and Nursing Strategy. CONTRAST MEDIA & MOLECULAR IMAGING 2021; 2021:2135924. [PMID: 34934408 PMCID: PMC8651398 DOI: 10.1155/2021/2135924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/21/2021] [Accepted: 10/29/2021] [Indexed: 12/03/2022]
Abstract
Objective To explore the clinical efficacy of combining early chemotherapy with Zhipu Liujunzi decoction under the concept of strengthening and consolidating body resistance for gastric cancer patients and nursing strategy. Methods The clinical data of 100 patients undergoing radical gastrectomy in our hospital from July 2019 to July 2020 were selected for the retrospective analysis, and the patients were divided into the control group and experimental group according to different treatment methods, with 50 cases in each group. Early chemotherapy after surgery was given to patients in the control group, and on the basis of the aforesaid treatment and under the concept of strengthening and consolidating body resistance, patients in the experimental group took Zhipu Liujunzi decoction and received the nursing strategy, so as to compare their effective rate, adverse reaction rate (ARR), immune function indicators, KPS scores, and nursing satisfaction scores. Results After treatment, the experimental group obtained significantly higher objective remission rate (ORR) and disease control rate (DCR) (P < 0.05), lower carcinoembryonic antigen (CEA) and carbohydrate antigen 19-9 (CA19-9) levels (P < 0.001), higher immune parameters levels (P < 0.001), higher KPS scores and lower TCM symptom scores (P < 0.001), lower PSQI scores, SAS scores, and SDS scores (P < 0.001) and higher nursing satisfaction scores (P < 0.001), and lower total accidence rate of toxic side effects (P < 0.05) than the control group. Conclusion Under the concept of strengthening and consolidating body resistance, combining early chemotherapy with Zhipu Liujunzi decoction is a reliable method for improving the immune function and quality of life for gastric cancer patients with higher safety. Such a strategy greatly reduces the tumor marker levels in patients. Further research will be conducive to establishing a better solution for gastric cancer patients.
Collapse
|