1
|
McGirr T, Onar O, Jafarnejad SM. Dysregulated ribosome quality control in human diseases. FEBS J 2025; 292:936-959. [PMID: 38949989 PMCID: PMC11880988 DOI: 10.1111/febs.17217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/31/2024] [Accepted: 06/20/2024] [Indexed: 07/03/2024]
Abstract
Precise regulation of mRNA translation is of fundamental importance for maintaining homeostasis. Conversely, dysregulated general or transcript-specific translation, as well as abnormal translation events, have been linked to a multitude of diseases. However, driven by the misconception that the transient nature of mRNAs renders their abnormalities inconsequential, the importance of mechanisms that monitor the quality and fidelity of the translation process has been largely overlooked. In recent years, there has been a dramatic shift in this paradigm, evidenced by several seminal discoveries on the role of a key mechanism in monitoring the quality of mRNA translation - namely, Ribosome Quality Control (RQC) - in the maintenance of homeostasis and the prevention of diseases. Here, we will review recent advances in the field and emphasize the biological significance of the RQC mechanism, particularly its implications in human diseases.
Collapse
Affiliation(s)
- Tom McGirr
- Patrick G. Johnston Centre for Cancer ResearchQueen's University BelfastUK
| | - Okan Onar
- Patrick G. Johnston Centre for Cancer ResearchQueen's University BelfastUK
- Department of Biology, Faculty of ScienceAnkara UniversityTurkey
| | | |
Collapse
|
2
|
Chatterjee S, Naeli P, Onar O, Simms N, Garzia A, Hackett A, Coyle K, Harris Snell P, McGirr T, Sawant TN, Dang K, Stoichkova Z, Azam Y, Saunders M, Braun M, Alain T, Tuschl T, McDade S, Longley D, Gkogkas C, Adrain C, Knight JP, Jafarnejad SM. Ribosome Quality Control mitigates the cytotoxicity of ribosome collisions induced by 5-Fluorouracil. Nucleic Acids Res 2024; 52:12534-12548. [PMID: 39351862 PMCID: PMC11551743 DOI: 10.1093/nar/gkae849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 08/14/2024] [Accepted: 09/17/2024] [Indexed: 11/12/2024] Open
Abstract
Ribosome quality control (RQC) resolves collided ribosomes, thus preventing their cytotoxic effects. The chemotherapeutic agent 5-Fluorouracil (5FU) is best known for its misincorporation into DNA and inhibition of thymidylate synthase. However, while a major determinant of 5FU's anticancer activity is its misincorporation into RNAs, the mechanisms by which cancer cells overcome the RNA-dependent 5FU toxicity remain ill-defined. Here, we report a role for RQC in mitigating the cytotoxic effects of 5FU. We show that 5FU treatment results in rapid induction of the mTOR signalling pathway, enhanced rate of mRNA translation initiation, and increased ribosome collisions. Consistently, a defective RQC exacerbates the 5FU-induced cell death, which is mitigated by blocking mTOR pathway or mRNA translation initiation. Furthermore, 5FU treatment enhances the expression of the key RQC factors ZNF598 and GIGYF2 via an mTOR-dependent post-translational mechanism. This adaptation likely mitigates the cytotoxic consequences of increased ribosome collisions upon 5FU treatment.
Collapse
Affiliation(s)
- Susanta Chatterjee
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT7 9AE, UK
| | - Parisa Naeli
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT7 9AE, UK
| | - Okan Onar
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT7 9AE, UK
- Department of Biology, Faculty of Science, Ankara University, Ankara, Turkey
| | - Nicole Simms
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9NT, UK
| | - Aitor Garzia
- Laboratory of RNA Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Angela Hackett
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT7 9AE, UK
| | - Kelsey Coyle
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT7 9AE, UK
| | - Patric Harris Snell
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT7 9AE, UK
| | - Tom McGirr
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT7 9AE, UK
| | - Tanvi Nitin Sawant
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT7 9AE, UK
| | - Kexin Dang
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9NT, UK
| | - Zornitsa Vasileva Stoichkova
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9NT, UK
| | - Yumna Azam
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT7 9AE, UK
| | - Mark P Saunders
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9NT, UK
| | - Michael Braun
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9NT, UK
| | - Tommy Alain
- Children's Hospital of Eastern Ontario Research Institute, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ONK1H 8L1, Canada
| | - Thomas Tuschl
- Laboratory of RNA Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Simon S McDade
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT7 9AE, UK
| | - Daniel B Longley
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT7 9AE, UK
| | - Christos G Gkogkas
- Biomedical Research Institute, Foundation for Research and Technology-Hellas, University Campus, 45110 Ioannina, Greece
| | - Colin Adrain
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT7 9AE, UK
| | - John R P Knight
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9NT, UK
| | - Seyed Mehdi Jafarnejad
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT7 9AE, UK
| |
Collapse
|
3
|
Sehrawat U. Exploiting Translation Machinery for Cancer Therapy: Translation Factors as Promising Targets. Int J Mol Sci 2024; 25:10835. [PMID: 39409166 PMCID: PMC11477148 DOI: 10.3390/ijms251910835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/26/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
Eukaryotic protein translation has slowly gained the scientific community's attention for its advanced and powerful therapeutic potential. However, recent technical developments in studying ribosomes and global translation have revolutionized our understanding of this complex multistep process. These developments have improved and deepened the current knowledge of mRNA translation, sparking excitement and new possibilities in this field. Translation factors are crucial for maintaining protein synthesis homeostasis. Since actively proliferating cancer cells depend on protein synthesis, dysregulated protein translation is central to tumorigenesis. Translation factors and their abnormal expressions directly affect multiple oncogenes and tumor suppressors. Recently, small molecules have been used to target translation factors, resulting in translation inhibition in a gene-specific manner, opening the door for developing translation inhibitors that can lead to novel chemotherapeutic drugs for treating multiple cancer types caused by dysregulated translation machinery. This review comprehensively summarizes the involvement of translation factors in tumor progression and oncogenesis. Also, it sheds light on the evolution of translation factors as novel drug targets for developing future therapeutic drugs for treating cancer.
Collapse
Affiliation(s)
- Urmila Sehrawat
- Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
4
|
Zeng J, Lu C, Huang X, Li Y. The human eIF4E:4E-BP2 complex structure for studying hyperphosphorylation. Phys Chem Chem Phys 2024; 26:10660-10672. [PMID: 38511550 DOI: 10.1039/d3cp05736d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
The cap-dependent mRNA translation is dysregulated in many kinds of cancers. The interaction between eIF4E and eIF4G through a canonical eIF4E-binding motif (CEBM) determines the efficacy of the cap-dependent mRNA translation. eIF4E-binding proteins (4E-BPs) share the CEBM and compete with eIF4G for the same binding surface of eIF4E and then inhibit the mRNA translation. 4E-BPs function as tumor repressors in nature. Hyperphosphorylation of 4E-BPs regulates the structure folding and causes the dissociation of 4E-BPs from eIF4E. However, until now, there has been no structure of the full-length 4E-BPs in complex with eIF4E. The regulation mechanism of phosphorylation is still unclear. In this work, we first investigate the interactions of human eIF4E with the CEBM and an auxiliary eIF4E-binding motif (AEBM) in eIF4G and 4E-BPs. The results unravel that the structure and interactions of the CEBM are highly conserved between eIF4G and 4E-BPs. However, the extended CEBM (ECEBM) in 4E-BPs forms a longer helix than that in eIF4G. The residue R62 in the ECEBM of 4E-BP2 forms salt bridges with E32 and E70 of eIF4E. The residue R63 of 4E-BP2 forms two special hydrogen bonds with N77 of eIF4E. Both of these interactions are missing in eIF4G. The AEBM of 4E-BPs folds into a β-sheet conformation, which protects V81 inside a hydrophobic core in 4E-BP2. In eIF4G, the AEBM exists in a random coil state. The hydrophilic residues S637 and D638 of eIF4G open the hydrophobic core for solvents. The results show that the ECEBM and AEBM may be responsible for the competing advantage of 4E-BP2. Finally, based on our previous work (J. Zeng, F. Jiang and Y. D. Wu, J. Chem. Theory Comput., 2017, 13, 320), the human eIF4E:4E-BP2 complex (eIF4E:BP2P18-I88) including all reported phosphorylation sites is predicted. The eIF4E:BP2P18-I88 complex is different from the existing experimental eIF4E:eIF4G complex and provides an important structure for further studying the regulation mechanism of phosphorylation in 4E-BPs.
Collapse
Affiliation(s)
- Juan Zeng
- School of Biomedical Engineering, Guangdong Medical University, Dongguan 523808, China.
| | - CuiMin Lu
- School of Biomedical Engineering, Guangdong Medical University, Dongguan 523808, China.
| | - Xuan Huang
- School of Biomedical Engineering, Guangdong Medical University, Dongguan 523808, China.
| | - Yang Li
- Department of Urology, Huaihe Hospital of Henan University, Kaifeng 475000, Henan, China.
| |
Collapse
|
5
|
Guo Y, Yan S, Zhang W. Translatomics to explore dynamic differences in immunocytes in the tumor microenvironment. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 34:102037. [PMID: 37808922 PMCID: PMC10551571 DOI: 10.1016/j.omtn.2023.102037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Protein is an essential component of all living organisms and is primarily responsible for life activities; furthermore, its synthesis depends on a highly complex and accurate translation system. For proteins, the regulation at the translation level exceeds the sum of that during transcription, mRNA degradation, and protein degradation. Therefore, it is necessary to study regulation at the translation level. Imbalance in the translation process may change the cellular landscape, which not only leads to the occurrence, maintenance, progression, invasion, and metastasis of cancer but also affects the function of immune cells and changes the tumor microenvironment. Detailed analysis of transcriptional and protein atlases is needed to better understand how gene translation occurs. However, a more rigorous direct correlation between mRNA and protein levels is needed, which somewhat limits further studies. Translatomics is a technique for capturing and sequencing ribosome-related mRNAs that can effectively identify translation changes caused by ribosome stagnation and local translation abnormalities during cancer occurrence to further understand the changes in the translation landscape of cancer cells themselves and immune cells in the tumor microenvironment, which can provide new strategies and directions for tumor treatment.
Collapse
Affiliation(s)
- Yilin Guo
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
- Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| | - Shiqi Yan
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
- Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| | - Wenling Zhang
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
- Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
6
|
Liang W, Yi H, Mao C, Meng Q, Wu X, Li S, Xue J. Research Progress of RNA Methylation Modification in Colorectal Cancer. Front Pharmacol 2022; 13:903699. [PMID: 35614935 PMCID: PMC9125385 DOI: 10.3389/fphar.2022.903699] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/19/2022] [Indexed: 12/24/2022] Open
Abstract
Accumulating evidence indicates that RNA methylation, as the most common modification of mRNA, is of great significance in tumor progression and metastasis. Colorectal cancer is a common malignant tumor of the digestive system that seriously affects the health of middle-aged and elderly people. Although there have been many studies on the biological mechanism of the occurrence and development of colorectal cancer, there are still major deficiencies in the diagnosis and prognosis of colorectal cancer. With the deep study of RNA methylation, it was found that RNA modification is highly related to colorectal cancer tumorigenesis, development and prognosis. Here, we will highlight various RNA chemical modifications including N6-methyladenosine, 5-methylcytosine, N1-methyladenosine, 7-methylguanine, pseudouridine and their modification enzymes followed by summarizing their functions in colorectal cancer.
Collapse
Affiliation(s)
- Weizheng Liang
- Central Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Hongyang Yi
- The Third People's Hospital of Shenzhen, Shenzhen, China
| | - Chenyu Mao
- School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
| | - Qingxue Meng
- Central Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Xueliang Wu
- Department of General Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Shanliang Li
- Department of Pharmacology, Guangxi University of Chinese Medicine, Nanning, China
| | - Jun Xue
- Department of General Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| |
Collapse
|
7
|
Kwak J, Kim MJ, Kim S, Park GB, Jo J, Jeong M, Kang S, Moon S, Bang S, An H, Hwang S, Kim MS, Yoo JW, Moon HR, Chang W, Chung KW, Jeong JY, Yun H. A bioisosteric approach to the discovery of novel N-aryl-N′-[4-(aryloxy)cyclohexyl]squaramide-based activators of eukaryotic initiation factor 2 alpha (eIF2α) phosphorylation. Eur J Med Chem 2022; 239:114501. [DOI: 10.1016/j.ejmech.2022.114501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/21/2022] [Accepted: 05/26/2022] [Indexed: 11/25/2022]
|
8
|
The nano delivery systems and applications of mRNA. Eur J Med Chem 2022; 227:113910. [PMID: 34689071 PMCID: PMC8497955 DOI: 10.1016/j.ejmech.2021.113910] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/06/2021] [Accepted: 10/06/2021] [Indexed: 02/06/2023]
Abstract
The current COVID-19 epidemic has greatly accelerated the application of mRNA technology to our real world, and during this battle mRNA has proven it's unique advantages compared to traditional biopharmaceutical and vaccine technology. In order to overcome mRNA instability in human physiological environments, mRNA chemical modifications and nano delivery systems are two key factors for their in vivo applications. In this review, we would like to summarize the challenges for clinical translation of mRNA-based therapeutics, with an emphasis on recent advances in innovative materials and delivery strategies. The nano delivery systems include lipid delivery systems (lipid nanoparticles and liposomes), polymer complexes, micelles, cationic peptides and so on. The similarities and differences of lipid nanoparticles and liposomes are also discussed. In addition, this review also present the applications of mRNA to other areas than COVID-19 vaccine, such as infectious diseases, tumors, and cardiovascular disease, for which a variety of candidate vaccines or drugs have entered clinical trials. Furthermore, mRNA was found that it might be used to treat some genetic disease, overcome the immaturity of the immune system due to the small fetal size in utero, treat some neurological diseases that are difficult to be treated surgically, even be used in advancing the translation of iPSC technology et al. In short, mRNA has a wide range of applications, and its era has just begun.
Collapse
|
9
|
Fu XM, Wang WJ, Song ZF. Role of RNA modification in gastrointestinal tumors. Shijie Huaren Xiaohua Zazhi 2021; 29:1179-1185. [DOI: 10.11569/wcjd.v29.i20.1179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Specific chemical modification of macromolecular substances in organisms is an efficient way to regulate molecular structure and function. DNA and protein modifications can affect the activation of downstream signaling pathways, while RNA chemical modification plays a key role in the regulation of gene selective expression. There are more than 170 different types of RNA modification in nature. They are involved in the modification of coding and non-coding RNA. The dysregulation of RNA modification can affect many diseases. In this review, we focus on various RNA modifications including N6-methyladenosine, 5-methylcytosine, 1-methyladenosine, N7-methylguanosine, and pseudouridine. We also summarize their roles in gastrointestinal tumors.
Collapse
Affiliation(s)
- Xue-Ming Fu
- Department of Painology, Xiaogan Hospital Affiliated to Wuhan University of Science and Technology, Xiaogan 432100, Hubei Province, China
| | - Wen-Jie Wang
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Zi-Fang Song
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| |
Collapse
|