1
|
Tian J, Cao X, Jiang Z, Wang J, Fan W, Zhang S, Zhao S, Sun J. LncRNA CCAT2 promotes the proliferation and metastasis of colorectal cancer through activation of the ERK and Wnt signaling pathways by regulating GNB2 expression. Cancer Med 2024; 13:e70169. [PMID: 39225546 PMCID: PMC11369988 DOI: 10.1002/cam4.70169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/31/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a prevalent and lethal tumor, with metastasis being the leading cause of mortality. Previous research has indicated that the long non-coding RNA (lncRNA) CCAT2 is involved in the regulation of various tumor progression mechanisms. However, the precise role of CCAT2 in CRC proliferation and metastasis remains ambiguous. This study seeks to elucidate the mechanisms through which CCAT2 influences CRC. METHODS High-throughput sequencing and RT-qPCR were used to detect CCAT2 expression in CRC. Functional analyses including CCK8, colony formation, wound healing migration, transwell chamber, and Muse® Cell Analyzer assays were performed to study the effects of CCAT2 gene deletion on CRC cells. RNA-pulldown and protein mass spectrometry were employed to identify the interaction between CCAT2 and GNB2 protein. RESULTS Increased CCAT2 expression was found in CRC, especially in metastatic CRC. Deletion of CCAT2 gene inhibited CRC cell proliferation, migration, and invasion while promoting apoptosis. The interaction between CCAT2 and GNB2 protein was shown to modulate GNB2 protein alterations and affect the ERK and Wnt signaling pathways, thereby promoting CRC proliferation and metastasis. CONCLUSION CCAT2 plays a crucial role in CRC progression by modulating the ERK and Wnt signaling pathways through its interaction with GNB2. These findings highlight the importance of CCAT2 as a key regulatory element in the mechanisms underlying CRC proliferation and metastasis.
Collapse
Affiliation(s)
- Jinhai Tian
- School of Basic Medical SciencesNingxia Medical UniversityYinchuanChina
- Institute of Medical SciencesGeneral Hospital of Ningxia Medical UniversityYinchuanChina
| | - Xu Cao
- School of Basic Medical SciencesNingxia Medical UniversityYinchuanChina
| | - Zongying Jiang
- Department of PathologyGeneral Hospital of Ningxia Medical UniversityYinchuanChina
| | - Jia Wang
- Institute of Medical SciencesGeneral Hospital of Ningxia Medical UniversityYinchuanChina
| | - Wan Fan
- Clinical Medical College of Ningxia Medical UniversityYinchuanChina
| | - Shaoting Zhang
- School of Basic Medical SciencesNingxia Medical UniversityYinchuanChina
| | - Sien Zhao
- School of Basic Medical SciencesNingxia Medical UniversityYinchuanChina
| | - Jianmin Sun
- School of Basic Medical SciencesNingxia Medical UniversityYinchuanChina
| |
Collapse
|
2
|
Wang Y, Gao L, Wang F, Yu C, Chen C, Xia C. GPRC5A promotes paclitaxel resistance and glucose content in NSCLC. Anticancer Drugs 2024; 35:606-614. [PMID: 38602327 DOI: 10.1097/cad.0000000000001610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Lung cancer is one of the most common and malignant cancers worldwide. Chemotherapy has been widely used in the clinical setting, and paclitaxel is the first-line therapy for lung cancer patients but paclitaxel resistance is the main problem. First, we successfully established paclitaxel-resistant lung cancer cells treated with elevated doses of paclitaxel for 3 months, as confirmed by the CCK-8 assay. Paclitaxel-resistant cancer cells increased glucose content. Second, Gtex, Oncomine, and gene expression omnibus database data mining identified GPRC5A, G protein-coupled receptor, as the most prominent differentially expressed gene in drug-resistant datasets including gemcitabine, paclitaxel, and gefitinib overlapped with the microarray data from cancer cell metabolism. Third, qPCR analysis and western blot technique showed that GPRC5A mRNA and protein levels were significantly enhanced in paclitaxel-resistant lung cancer cells. Fourth, functional analysis was conducted by siRNA-mediated transient knockdown of GPRC5A. Silencing GPRC5A significantly decreased paclitaxel resistance and glucose content. In the end, retinoic acid substantially upregulated GPRC5A proteins and promoted glucose content in two lung cancer cells. Kaplan-Meier plot also confirmed that lung cancer patients with high expression of GPRC5A had a relatively lower survival rate. Our study provided a potential drug target GPRC5A, which may benefit lung cancer patients with acquired paclitaxel resistance in the future and a theoretical basis for future preclinical trials.
Collapse
MESH Headings
- Humans
- Paclitaxel/pharmacology
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Lung Neoplasms/drug therapy
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/pathology
- Drug Resistance, Neoplasm
- Glucose/metabolism
- Cell Line, Tumor
- Antineoplastic Agents, Phytogenic/pharmacology
- Antineoplastic Agents, Phytogenic/therapeutic use
- Gene Expression Regulation, Neoplastic
Collapse
Affiliation(s)
- Yan Wang
- Intensive Care Unit, Department of Respiratory Medicine, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing
| | - Liang Gao
- Life Science and Health Engineering Department, Jiangnan University, Wuxi
| | - Feiyu Wang
- Life Science and Health Engineering Department, Jiangnan University, Wuxi
| | - Cunjun Yu
- Department of Respiratory Medicine, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Chen Chen
- Life Science and Health Engineering Department, Jiangnan University, Wuxi
| | - Chunwei Xia
- Department of Respiratory Medicine, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
3
|
Tang X, Gong J, Ren L, Wang Z, Yang B, Wang W, Wang N. Tanshinone I improves TNBC chemosensitivity by suppressing late-phase autophagy through AKT/p38 MAPK signaling pathway. Biomed Pharmacother 2024; 177:117037. [PMID: 38959602 DOI: 10.1016/j.biopha.2024.117037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/15/2024] [Accepted: 06/25/2024] [Indexed: 07/05/2024] Open
Abstract
The inhibition of autophagy is a potential therapeutic strategy to improve the chemosensitivity of triple-negative breast cancer (TNBC). In this study, we demonstrated that a natural terpenoid tanshinone I (TAN) enhanced the effectiveness of paclitaxel (PTX), at least in part, through an autophagy-dependent mechanism against TNBC. In vitro validation demonstrated that the combined therapy resulted in a synergistic decrease in the growth of TNBC cells. The chemosensitizing impact of TAN might be attributed to its inhibition of PTX-induced autophagy in the late phase by obstructing the fusion of autophagosomes and lysosomes, rather than by inhibiting lysosomal function. The findings from KEGG pathway analysis and molecular docking suggested that TAN might impact breast cancer chemoresistance primarily through the PI3K-Akt and MAPK signaling pathways. The non-canonical AKT/p38 MAPK signaling was further validated as the primary mechanism responsible for the inhibition of autophagy by TAN. In vivo study showed that the combined administration of TAN and PTX demonstrated a more significant suppression of tumor growth and autophagic activity compared to PTX monotherapy in the MDA-MB-231 xenograft nude mouse model. The safety evaluation of TAN in a zebrafish model, along with in vitro and in vivo validation, provided experimental and pre-clinical data supporting its potential as a natural adjunctive therapy in TNBC. Overall, this study suggests that the combination of TAN with PTX could provide an effective treatment option for advanced breast cancer, and targeting the AKT/p38 MAPK/late-autophagy signaling axis may be a promising approach for developing therapeutic interventions against TNBC.
Collapse
Affiliation(s)
- Xinglinzi Tang
- Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jiaqian Gong
- Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Linlin Ren
- Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Zhiyu Wang
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China; Integrative Research Laboratory of Breast Cancer, Discipline of Integrated Chinese and Western Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Bowen Yang
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China; Integrative Research Laboratory of Breast Cancer, Discipline of Integrated Chinese and Western Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Wenzhu Wang
- Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Neng Wang
- Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China.
| |
Collapse
|
4
|
Liu Y, Wang Z, Liu X, Yang Q, Tian Z, Liu J. Serum mir-142-3p release in children with viral encephalitis and its relationship with nerve injury and inflammatory response. J Neurovirol 2024; 30:267-273. [PMID: 38861222 DOI: 10.1007/s13365-024-01214-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/09/2024] [Accepted: 05/20/2024] [Indexed: 06/12/2024]
Abstract
BACKGROUND Viral encephalitis (VE) is a common infectious disease of the central nervous system in children. Children with severe disease may have progressive neurological damage and even lead to death. AIMS To assess the serum miR-142-3p levels in children with VE and the correlation between miR-142-3p and the severity and prognosis of VE. Besides, its relationship with nerve injury and inflammatory response was assessed. METHODS Children with VE were regarded as a case group and healthy children served as control. The content of serum miR-142-3p was determined using real-time quantitative PCR. The risk factors associated with severity and prognosis of cases were evaluated using logistic analysis. The discrepancy in miR-142-3p levels, nerve injury-related indicators, and inflammatory cytokines were contrasted among groups. The ROC curve was conducted to assess the diagnostic performance of serum miR-142-3p in predicting prognosis of children with VE. RESULTS The altered expression of miR-142-3p in serum of children with VE was enhanced in contrast to healthy control. Serum nerve injury indicators MBP, β-EP, and NSE levels and serum inflammatory cytokines IL-6, IL-18, and IFN-γ were high in children with VE in contrast to healthy control, and had positive relevance with serum miR-142-3p. Besides, serum miR-142-3p was a risk factor associated with the severity and prognosis of children with VE. Serum miR-142-3p had diagnostic performance in predicting the prognosis of children with VE. CONCLUSION Serum miR-142-3p content is high in children with VE and maybe a diagnosis marker for predicting prognosis. The specific miR-142-3p expression may be directly related to the severity of nerve injury and inflammatory response for VE.
Collapse
Affiliation(s)
- Yanjiang Liu
- Department of Pediatric Neurological Rehabilitation, Children's Hospital of Shanxi, Women Health Center of Shanxi, No. 13, Xinmin North Street, Xinghualing District, Taiyuan City, 030000, Shanxi Province, China.
| | - ZhenFang Wang
- Department of Pediatric Neurological Rehabilitation, Children's Hospital of Shanxi, Women Health Center of Shanxi, No. 13, Xinmin North Street, Xinghualing District, Taiyuan City, 030000, Shanxi Province, China
| | - Xiaoli Liu
- Department of Pediatric Neurological Rehabilitation, Children's Hospital of Shanxi, Women Health Center of Shanxi, No. 13, Xinmin North Street, Xinghualing District, Taiyuan City, 030000, Shanxi Province, China
| | - Qinghua Yang
- Department of Pediatric Neurological Rehabilitation, Children's Hospital of Shanxi, Women Health Center of Shanxi, No. 13, Xinmin North Street, Xinghualing District, Taiyuan City, 030000, Shanxi Province, China
| | - Zhuoling Tian
- Department of Pediatric Neurological Rehabilitation, Children's Hospital of Shanxi, Women Health Center of Shanxi, No. 13, Xinmin North Street, Xinghualing District, Taiyuan City, 030000, Shanxi Province, China
| | - Junmei Liu
- Department of Pediatric Neurological Rehabilitation, Children's Hospital of Shanxi, Women Health Center of Shanxi, No. 13, Xinmin North Street, Xinghualing District, Taiyuan City, 030000, Shanxi Province, China
| |
Collapse
|
5
|
Wu H, Jiao Y, Guo X, Wu Z, Lv Q. METTL14/miR-29c-3p axis drives aerobic glycolysis to promote triple-negative breast cancer progression though TRIM9-mediated PKM2 ubiquitination. J Cell Mol Med 2024; 28:e18112. [PMID: 38263865 PMCID: PMC10844685 DOI: 10.1111/jcmm.18112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/05/2023] [Accepted: 11/22/2023] [Indexed: 01/25/2024] Open
Abstract
The energy metabolic rearrangement of triple-negative breast cancer (TNBC) from oxidative phosphorylation to aerobic glycolysis is a significant biological feature and can promote the malignant progression. However, there is little knowledge about the functional mechanisms of methyltransferase-like protein 14 (METTL14) mediated contributes to TNBC malignant progression. Our study found that METTL14 expression was significantly upregulated in TNBC tissues and cell lines. Silencing METTL14 significantly inhibited TNBC cell growth and invasion in vitro, as well as suppressed tumour growth. Mechanically, METTL14 was first found to activate miR-29c-3p through m6A and regulate tripartite motif containing 9 (TRIM9) to promote ubiquitination of pyruvate kinase isoform M2 (PKM2) and lead to its transition from tetramer to dimer, resulting in glucose metabolic reprogramming from oxidative phosphorylation to aerobic glycolysis to promote the progress of TNBC. Taken together, these findings reveal important roles of METTL14 in TNBC tumorigenesis and energy metabolism, which might represent a novel potential therapeutic target for TNBC.
Collapse
Affiliation(s)
- Hao Wu
- Division of Breast Surgery, Department of General SurgeryWest China Hospital, Sichuan UniversityChengduChina
- Breast Center, West China HospitalSichuan UniversityChengduChina
| | - Yile Jiao
- Division of Breast Surgery, Department of General SurgeryWest China Hospital, Sichuan UniversityChengduChina
- Breast Center, West China HospitalSichuan UniversityChengduChina
| | - Xinyi Guo
- Division of Breast Surgery, Department of General SurgeryWest China Hospital, Sichuan UniversityChengduChina
- Breast Center, West China HospitalSichuan UniversityChengduChina
| | - Zhenru Wu
- Laboratory of Pathology, West China HospitalSichuan UniversityChengduChina
| | - Qing Lv
- Division of Breast Surgery, Department of General SurgeryWest China Hospital, Sichuan UniversityChengduChina
- Breast Center, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
6
|
Qiu Z, He S, Lu B, Sun Y, Zhang T, Lv W, Shen D. The E3 ubiquitin ligase RNF135 modulates chemotherapy resistance to oxaliplatin for colorectal cancer by modulating autophagy. Tissue Cell 2024; 86:102282. [PMID: 38056362 DOI: 10.1016/j.tice.2023.102282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/26/2023] [Accepted: 11/28/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND RING finger protein 135 plays an important role in tumorigenesis and is associated with drug resistance. METHODS Bioinformatics analysis showed that RNF135 was significantly differentially expressed in colorectal cancer. RT-qPCR and western blot were used to detect the expression of RNF135. Immunohistochemical analysis were used to measure the expression of RNF135 and Ki-67. RESULTS The expression of RNF135 was up-regulated in human tissue samples and colorectal cancer and was positively correlated with Ki-67. Compared with oxaliplatin sensitive patients, RNF135 expression levels were higher in the tissue of resistant patients. The regulatory effect of RNF135 on colorectal cancer cells was further investigated in vitro. Therefore, inhibition of autophagy by down-regulating RNF135 can partially increase its susceptibility to oxaliplatin.
Collapse
Affiliation(s)
- Zhen Qiu
- Department of Pathology, Hongze People's Hospital, 102 Dongfeng Road, Hongze 223100, China
| | - Shuyan He
- Department of Tumor Center, Affiliated Jiangyin Clinical College of Xuzhou Medical University, 163 Shoushan Road, Jiangyin 214400, China
| | - Boyi Lu
- Department of Tumor Center, Affiliated Jiangyin Clinical College of Xuzhou Medical University, 163 Shoushan Road, Jiangyin 214400, China
| | - Yuejun Sun
- Department of Pathology, Affiliated Jiangyin Clinical College of Xuzhou Medical University, 163 Shoushan Road, Jiangyin 214400, China
| | - Ting Zhang
- Department of Central Laboratory, Affiliated Jiangyin Clinical College of Xuzhou Medical University, 163 Shoushan Road, Jiangyin 214400, China
| | - Wei Lv
- Department of Pharmacy, Jiangyin Hospital Affiliated to Nantong University, 163 Shoushan Road, Jiangyin 214400, China.
| | - Dong Shen
- Department of Tumor Center, Affiliated Jiangyin Clinical College of Xuzhou Medical University, 163 Shoushan Road, Jiangyin 214400, China.
| |
Collapse
|
7
|
Wang Z, Wei B, Ma S. EGR1/ LINC00839/SOX5 axis modulates migration, invasion and Gemcitabine resistance of bladder cancer cells. Cancer Biol Ther 2023; 24:2270106. [PMID: 37862152 PMCID: PMC10591773 DOI: 10.1080/15384047.2023.2270106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/09/2023] [Indexed: 10/22/2023] Open
Abstract
BACKGROUND Bladder cancer is one of the most common malignant tumors of the urinary system, and its incidence is increasing worldwide. However, the underlying mechanisms that trigger migration, invasion and chemotherapy resistance are unclear. RESULTS Bioinformatics analysis of bladder cancer cohort indicated that LINC00839 is deregulated in bladder cancer. LINC00839 was validated and highly expressed in bladder cancer patients and cell lines. In addition, LINC00839 induced the migration, invasion and Gemcitabine resistance of bladder cancer cells. We identified that the transcription factor EGR1 directly repressed LINC00839 and thereby suppressed the migration and invasion of bladder cancer cells. Furthermore, LINC00839 interacted with miR-142, which subsequently regulated the expression of SOX5, a well-studied oncogene and targeted by miR-142. In addition, EGR1 served as a suppressive transcription factor of SOX5. Therefore, EGR1 directly or indirectly regulates SOX5 via LINC00839/miR-142 axis. LINC00839 induced Gemcitabine resistance by promoting autophagy. CONCLUSIONS EGR1, LINC00839/miR-142 and SOX5 form a coherent feed-forward loop that modulates the migration, invasion and Gemcitabine resistance of bladder cancer.
Collapse
Affiliation(s)
- Zunxian Wang
- Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang, China
- Department of Oncology Comprehensive Treatment, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang, China
| | - Bo Wei
- Department of Urology, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang, China
| | - Shuxia Ma
- Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang, China
| |
Collapse
|
8
|
Rasoolnezhad M, Safaralizadeh R, Hosseinpour Feizi MA, Banan-Khojasteh SM, Roshani Asl E, Lotfinejad P, Baradaran B. MiR-138-5p improves the chemosensitivity of MDA-MB-231 breast cancer cell line to paclitaxel. Mol Biol Rep 2023; 50:8407-8420. [PMID: 37620737 DOI: 10.1007/s11033-023-08711-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023]
Abstract
BACKGROUND Chemotherapy is a predominant strategy for breast cancer (BC) treatment and paclitaxel (PTX) has been known as a conventional chemotherapeutic drug. However, insensitivity of BC cells to PTX limits the anti-tumor effects of this agent. MicroRNAs are closely related to BC which are suggested as therapeutic factors in the combination therapy of BC. We examined the possible efficacy of miR-138-5p restoration in combination with PTX to impove BC treatment. METHODS The human breast cancer cell line MDA-MB-231 was transfected with miR-138-5p mimics and treated with PTX, in a combined or separate manner. The MTT assay was accomplished to determine inhibitory doses of PTX. Annexin V/PI assay and DAPI staining were applied to evaluate apoptosis. Flow cytometry was applied to determine cells arrested in different phases of the cell-cycle. Expression levels of molecular factors involved in cell migration, proliferation, apoptosis, and cell cycle were determined via western blotting and qRT-PCR. RESULTS MiR-138-5p combined with PTX suppressed cell migration via modulating MMP2, E-cadherin, and vimentin and sustained colony formation and proliferation by downregulation of the PI3K/AKT pathway. qRT-PCR showed that miR-138-5p increases BC chemosensitivity to PTX by regulating the apoptosis factors, including Bcl-2, Bax, Caspase 3, and Caspase 9. Moreover, miR-138-5p restoration and paclitaxel therapy combined arrest the cells in the sub-G1 and G1 phases of cell cycle by regulating p21, CCND1, and CDK4. CONCLUSIONS Restored miR-138-5p intensified the chemosensitivity of MDA-MB-231 cell line to PTX, and the combination of miR-138-5p with PTX might represent a novel approach in BC treatment.
Collapse
Affiliation(s)
- Mina Rasoolnezhad
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Safaralizadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| | | | | | - Elmira Roshani Asl
- Social Determinants of Health Research Center, Saveh University of Medical Sciences, Saveh, Iran
| | - Parisa Lotfinejad
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
9
|
Landry J, Shows K, Jagdeesh A, Shah A, Pokhriyal M, Yakovlev V. Regulatory miRNAs in cancer cell recovery from therapy exposure and its implications as a novel therapeutic strategy for preventing disease recurrence. Enzymes 2023; 53:113-196. [PMID: 37748835 DOI: 10.1016/bs.enz.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
The desired outcome of cancer therapies is the eradication of disease. This can be achieved when therapy exposure leads to therapy-induced cancer cell death as the dominant outcome. Theoretically, a permanent therapy-induced growth arrest could also contribute to a complete response, which has the potential to lead to remission. However, preclinical models have shown that therapy-induced growth arrest is not always durable, as recovering cancer cell populations can contribute to the recurrence of cancer. Significant research efforts have been expended to develop strategies focusing on the prevention of recurrence. Recovery of cells from therapy exposure can occur as a result of several cell stress adaptations. These include cytoprotective autophagy, cellular quiescence, a reversable form of senescence, and the suppression of apoptosis and necroptosis. It is well documented that microRNAs regulate the response of cancer cells to anti-cancer therapies, making targeting microRNAs therapeutically a viable strategy to sensitization and the prevention of recovery. We propose that the use of microRNA-targeting therapies in prolonged sequence, that is, a significant period after initial therapy exposure, could reduce toxicity from the standard combination strategy, and could exploit new epigenetic states essential for cancer cells to recover from therapy exposure. In a step toward supporting this strategy, we survey the available scientific literature to identify microRNAs which could be targeted in sequence to eliminate residual cancer cell populations that were arrested as a result of therapy exposure. It is our hope that by successfully identifying microRNAs which could be targeted in sequence we can prevent disease recurrence.
Collapse
Affiliation(s)
- Joseph Landry
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States.
| | - Kathryn Shows
- Department of Biology, Virginia State University, Petersburg, VA, United States
| | - Akash Jagdeesh
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Aashka Shah
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Mihir Pokhriyal
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Vasily Yakovlev
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA, United States.
| |
Collapse
|
10
|
Jiang Y, Liu Y, Zhang Y, Ouyang J, Feng Y, Li S, Wang J, Zhang C, Tan L, Zhong J, Zou L. MicroRNA-142-3P suppresses the progression of papillary thyroid carcinoma by targeting FN1 and inactivating FAK/ERK/PI3K signaling. Cell Signal 2023:110792. [PMID: 37406787 DOI: 10.1016/j.cellsig.2023.110792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/25/2023] [Accepted: 06/30/2023] [Indexed: 07/07/2023]
Abstract
OBJECTIVES miR-142-3P is a tumor suppressor in various malignant cancers. However, the function of miR-142-3P in papillary thyroid carcinoma (PTC) remains to be elucidated. The aim of this study was to explore the function and mechanism of miR-142-3P in PTC. METHODS Real Time Quantitative PCR (RT-qPCR) was used to assess the expression of miR-142-3P and Fibronectin 1 (FN1) in PTC. The correlation between FN1 and miR-142-3P expression was analyzed by Spearman's correlation analysis. Cell Counting Kit 8 (CCK8), 5-ethynyl-2'-deoxyuridine (EDU) assay, cell migration and invasion assay and wound healing measures evaluated the effect of miR-142-3P and FN1 on cell proliferation, migration and invasion. Dural Luciferase reported gene assay evaluated the interaction between miR-142-3P and 3' untranslated region (UTR) of FN1. The Epithelial-Mesenchymal-Transition (EMT) and apoptosis related marker genes were measured using western blot analysis (WB). RESULTS miR-142-3P was significantly decreased in both PTC specimens and relevant cell lines. Functionally, miR-142-3P inhibited cell proliferation, migration, invasion and EMT, and induced the cell apoptosis in PTC. In addition, miR-142-3P bound directly with 3' UTR of FN1 and negatively regulated the expression of FN1 in PTC. FN1 expression is elevated in PTC, and its aberrant high correlated with declines in recurrence-free survival (RFS). Moreover, FN1 promoted cell proliferation, migration, invasion and EMT, induced cell apoptosis in PTC cells. Depletion of FN1 rescues the effect of miR-142-3P inhibitor on cell proliferation, invasion, apoptosis and EMT via inactivating Focal Adhesion Kinase (FAK)/Extracellular Signal-Regulated Kinase (ERK) / Phosphoinostide 3-kinase (P13K) signaling. CONCLUSION miR-142-3P suppressed cell proliferation, migration, invasion and EMT through modulating FN1/FAK/ERK/PI3K signaling in PTC, suggesting it as a potential therapeutic target for PTC.
Collapse
Affiliation(s)
- Yufei Jiang
- The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan Province 410005, People's Republic of China; Institute of Clinical and Translational Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan Province 410005, People's Republic of China; Aculty of Healty Science, University of Macau, Macau 999078, People's Republic of China
| | - Yarong Liu
- The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan Province 410005, People's Republic of China; Institute of Clinical and Translational Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan Province 410005, People's Republic of China
| | - Yiyuan Zhang
- Institute of Clinical and Translational Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan Province 410005, People's Republic of China
| | - Jielin Ouyang
- The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan Province 410005, People's Republic of China; Institute of Clinical and Translational Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan Province 410005, People's Republic of China
| | - Yang Feng
- The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan Province 410005, People's Republic of China; Institute of Clinical and Translational Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan Province 410005, People's Republic of China
| | - Shumei Li
- The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan Province 410005, People's Republic of China; Institute of Clinical and Translational Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan Province 410005, People's Republic of China
| | - Jingjing Wang
- Institute of Clinical and Translational Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan Province 410005, People's Republic of China
| | - Chaojie Zhang
- Department of Papillary Thyroid Surgery, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan Province 410005, People's Republic of China
| | - Lihong Tan
- Institute of Clinical and Translational Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan Province 410005, People's Republic of China.
| | - Jie Zhong
- Institute of Clinical and Translational Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan Province 410005, People's Republic of China.
| | - Lianhong Zou
- Institute of Clinical and Translational Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan Province 410005, People's Republic of China.
| |
Collapse
|
11
|
Pan L, Liu W, Zhao H, Chen B, Yue X. MiR-191-5p inhibits KLF6 to promote epithelial-mesenchymal transition in breast cancer. Technol Health Care 2023; 31:2251-2265. [PMID: 37545272 DOI: 10.3233/thc-230217] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
BACKGROUND MicroRNAs (miRNAs) exert certain functions in the development of several cancers and can be a potential hallmark for cancer diagnosis and prognosis. MiR-191-5p has been proven to have high expression in breast cancer (BC), while its biological role and potential regulatory mechanisms in BC remain an open issue. OBJECTIVE Bioinformatics was utilized to assay miR-191-5p level in BC tissues and predict its downstream target gene as well as the enriched signaling pathways of the target gene. METHODS qRT-PCR was carried out to assay miR-191-5p and KLF6 levels in BC cells as well as miR-191-5p level in blood-derived exosomes from BC patients. Western blot was to examine the expression of proteins linked with cell adhesion, epithelial-mesenchymal transition (EMT), and exosome markers. A dual luciferase reporter assay was utilized to verify the interaction between miR-191-5p and KLF6. Abilities of cell phenotypes of BC cells were detected by CCK8, Transwell, and cell adhesion assay, separately. RESULTS Upregulated miR-191-5p expression and downregulated KLF6 expression were observed in BC cells. There was a targeting relationship between miR-191-5p and KLF6. MiR-191-5p negatively regulated KLF6 to promote EMT and malignant progression of BC cells. Additionally, we described a dramatically high level of miR-191-5p in the blood exosomes of BC patients. CONCLUSION MiR-191-5p advances the EMT of BC by targeting KLF6, indicating that miR-191-5p and KLF6 may be new biomarkers for BC.
Collapse
|
12
|
Fu Y, Yang Q, Yang H, Zhang X. New progress in the role of microRNAs in the diagnosis and prognosis of triple negative breast cancer. Front Mol Biosci 2023; 10:1162463. [PMID: 37122564 PMCID: PMC10134903 DOI: 10.3389/fmolb.2023.1162463] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/30/2023] [Indexed: 05/02/2023] Open
Abstract
Triple negative breast cancer is distinguished by its high malignancy, aggressive invasion, rapid progression, easy recurrence, and distant metastases. Additionally, it has a poor prognosis, a high mortality, and is unresponsive to conventional endocrine and targeted therapy, making it a challenging problem for breast cancer treatment and a hotspot for scientific research. Recent research has revealed that certain miRNA can directly or indirectly affect the occurrence, progress and recurrence of TNBC. Their expression levels have a significant impact on TNBC diagnosis, treatment and prognosis. Some miRNAs can serve as biomarkers for TNBC diagnosis and prognosis. This article summarizes the progress of miRNA research in TNBC, discusses their roles in the occurrence, invasion, metastasis, prognosis, and chemotherapy of TNBC, and proposes a treatment strategy for TNBC by interfering with miRNA expression levels.
Collapse
Affiliation(s)
- Yeqin Fu
- Department of Breast Surgery, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
- Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qiuhui Yang
- Department of Breast Surgery, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
- Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hongjian Yang
- Department of Breast Surgery, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
- *Correspondence: Hongjian Yang, ; Xiping Zhang,
| | - Xiping Zhang
- Department of Breast Surgery, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
- *Correspondence: Hongjian Yang, ; Xiping Zhang,
| |
Collapse
|