1
|
Farberov S, Ulitsky I. Systematic analysis of the target recognition and repression by the Pumilio proteins. Nucleic Acids Res 2024; 52:13402-13418. [PMID: 39470700 PMCID: PMC11602169 DOI: 10.1093/nar/gkae929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/23/2024] [Accepted: 10/07/2024] [Indexed: 10/30/2024] Open
Abstract
RNA binding proteins orchestrate the post-transcriptional fate of RNA molecules, but the principles of their action remain poorly understood. Pumilio (PUM) proteins bind 3' UTRs of mRNAs and lead to mRNA decay. To comprehensively map the determinants of recognition of sequences by PUM proteins in cells and to study the binding outcomes, we developed a massively parallel RNA assay that profiled thousands of PUM-binding sites in cells undergoing various perturbations or RNA immunoprecipitation. By studying fragments from the NORAD long non-coding RNA, we find two features that antagonize repression by PUM proteins - G/C rich sequences, particularly those upstream of the PUM recognition element, and binding of FAM120A, which limits the repression elicited by PUM-binding sites. We also find that arrays of PUM sites separated by 8-12 bases offer particularly strong repression and use them to develop a particularly sensitive reporter for PUM repression. In contrast, PUM sites separated by shorter linkers, such as some of those found in NORAD, exhibit strong activity interdependence, likely mediated by competition between PUM binding and formation of strong secondary structures. Overall, our findings expand our understanding of the determinants of PUM protein activity in human cells.
Collapse
Affiliation(s)
- Svetlana Farberov
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Igor Ulitsky
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
2
|
Carrick BH, Crittenden SL, Linsley M, Dos Santos SJC, Wickens M, Kimble J. The PUF RNA-binding protein, FBF-2, maintains stem cells without binding to RNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.25.620246. [PMID: 39484565 PMCID: PMC11527184 DOI: 10.1101/2024.10.25.620246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Like all canonical PUF proteins, C. elegans FBF-2 binds to specific RNAs via tripartite recognition motifs (TRMs). Here we report that an FBF-2 mutant protein that cannot bind to RNA, is nonetheless biologically active and maintains stem cells. This unexpected result challenges the conventional wisdom that RBPs must bind to RNAs to achieve biological activity. Also unexpectedly, FBF-2 interactions with partner proteins can compensate for loss of RNA-binding. FBF-2 only loses biological activity when its RNA-binding and partner interactions are both defective. These findings highlight the complementary contributions of RNA-binding and protein partner interactions to activity of an RNA-binding protein.
Collapse
Affiliation(s)
- Brian H. Carrick
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI
- Present address: MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | | | - MaryGrace Linsley
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI
- Present address: Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA
| | - Stephany J. Costa Dos Santos
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI
- Present address: WiCell Research Institute, Inc., Madison WI
| | - Marvin Wickens
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI
| | - Judith Kimble
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
3
|
Carrick BH, Crittenden SL, Chen F, Linsley M, Woodworth J, Kroll-Conner P, Ferdous AS, Keleş S, Wickens M, Kimble J. PUF partner interactions at a conserved interface shape the RNA-binding landscape and cell fate in Caenorhabditis elegans. Dev Cell 2024; 59:661-675.e7. [PMID: 38290520 PMCID: PMC11253550 DOI: 10.1016/j.devcel.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/10/2023] [Accepted: 01/08/2024] [Indexed: 02/01/2024]
Abstract
Protein-RNA regulatory networks underpin much of biology. C. elegans FBF-2, a PUF-RNA-binding protein, binds over 1,000 RNAs to govern stem cells and differentiation. FBF-2 interacts with multiple protein partners via a key tyrosine, Y479. Here, we investigate the in vivo significance of partnerships using a Y479A mutant. Occupancy of the Y479A mutant protein increases or decreases at specific sites across the transcriptome, varying with RNAs. Germline development also changes in a specific fashion: Y479A abolishes one FBF-2 function-the sperm-to-oocyte cell fate switch. Y479A's effects on the regulation of one mRNA, gld-1, are critical to this fate change, though other network changes are also important. FBF-2 switches from repression to activation of gld-1 RNA, likely by distinct FBF-2 partnerships. The role of RNA-binding protein partnerships in governing RNA regulatory networks will likely extend broadly, as such partnerships pervade RNA controls in virtually all metazoan tissues and species.
Collapse
Affiliation(s)
- Brian H Carrick
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Sarah L Crittenden
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Fan Chen
- Department of Statistics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - MaryGrace Linsley
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jennifer Woodworth
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Peggy Kroll-Conner
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Ahlan S Ferdous
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Sündüz Keleş
- Department of Statistics, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Marvin Wickens
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Judith Kimble
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
4
|
Smith PR, Campbell ZT. RNA-binding proteins in pain. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1843. [PMID: 38576117 PMCID: PMC11003723 DOI: 10.1002/wrna.1843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 04/06/2024]
Abstract
RNAs are meticulously controlled by proteins. Through direct and indirect associations, every facet in the brief life of an mRNA is subject to regulation. RNA-binding proteins (RBPs) permeate biology. Here, we focus on their roles in pain. Chronic pain is among the largest challenges facing medicine and requires new strategies. Mounting pharmacologic and genetic evidence obtained in pre-clinical models suggests fundamental roles for a broad array of RBPs. We describe their diverse roles that span RNA modification, splicing, stability, translation, and decay. Finally, we highlight opportunities to expand our understanding of regulatory interactions that contribute to pain signaling. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications Translation > Regulation RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Patrick R. Smith
- Department of Anaesthesiology, University of Wisconsin-Madison, Madison, WI, USA 53792
| | - Zachary T. Campbell
- Department of Anaesthesiology, University of Wisconsin-Madison, Madison, WI, USA 53792
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA 53792
| |
Collapse
|
5
|
Hayashi S, Iwamoto K, Yoshihisa T. A non-canonical Puf3p-binding sequence regulates CAT5/COQ7 mRNA under both fermentable and respiratory conditions in budding yeast. PLoS One 2023; 18:e0295659. [PMID: 38100455 PMCID: PMC10723686 DOI: 10.1371/journal.pone.0295659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/23/2023] [Indexed: 12/17/2023] Open
Abstract
The Saccharomyces cerevisiae uses a highly glycolytic metabolism, if glucose is available, through appropriately suppressing mitochondrial functions except for some of them such as Fe/S cluster biogenesis. Puf3p, a Pumillio family protein, plays a pivotal role in modulating mitochondrial activity, especially during fermentation, by destabilizing its target mRNAs and/or by repressing their translation. Puf3p preferentially binds to 8-nt conserved binding sequences in the 3'-UTR of nuclear-encoded mitochondrial (nc-mitochondrial) mRNAs, leading to broad effects on gene expression under fermentable conditions. To further explore how Puf3p post-transcriptionally regulates nc-mitochondrial mRNAs in response to cell growth conditions, we initially focused on nc-mitochondrial mRNAs known to be enriched in monosomes in a glucose-rich environment. We unexpectedly found that one of the monosome-enriched mRNAs, CAT5/COQ7 mRNA, directly interacts with Puf3p through its non-canonical Puf3p binding sequence, which is generally less considered as a Puf3p binding site. Western blot analysis showed that Puf3p represses translation of Cat5p, regardless of culture in fermentable or respiratory medium. In vitro binding assay confirmed Puf3p's direct interaction with CAT5 mRNA via this non-canonical Puf3p-binding site. Although cat5 mutants of the non-canonical Puf3p-binding site grow normally, Cat5p expression is altered, indicating that CAT5 mRNA is a bona fide Puf3p target with additional regulatory factors acting through this sequence. Unlike other yeast PUF proteins, Puf3p uniquely regulates Cat5p by destabilizing mRNA and repressing translation, shedding new light on an unknown part of the Puf3p regulatory network. Given that pathological variants of human COQ7 lead to CoQ10 deficiency and yeast cat5Δ can be complemented by hCOQ7, our findings may also offer some insights into clinical aspects of COQ7-related disorders.
Collapse
Affiliation(s)
- Sachiko Hayashi
- Graduate School of Science, University of Hyogo, Ako-gun, Hyogo, Japan
| | - Kazumi Iwamoto
- Graduate School of Life Science, University of Hyogo, Ako-gun, Hyogo, Japan
| | - Tohru Yoshihisa
- Graduate School of Science, University of Hyogo, Ako-gun, Hyogo, Japan
| |
Collapse
|
6
|
Lin Y, Kwok S, Hein AE, Thai BQ, Alabi Y, Ostrowski MS, Wu K, Floor SN. RNA molecular recording with an engineered RNA deaminase. Nat Methods 2023; 20:1887-1899. [PMID: 37857907 PMCID: PMC11497829 DOI: 10.1038/s41592-023-02046-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 09/13/2023] [Indexed: 10/21/2023]
Abstract
RNA deaminases are powerful tools for base editing and RNA molecular recording. However, the enzymes used in currently available RNA molecular recorders such as TRIBE, DART or STAMP have limitations due to RNA structure and sequence dependence. We designed a platform for directed evolution of RNA molecular recorders. We engineered an RNA A-to-I deaminase (an RNA adenosine base editor, rABE) that has high activity, low bias and low background. Using rABE, we present REMORA (RNA-encoded molecular recording in adenosines), wherein deamination by rABE writes a molecular record of RNA-protein interactions. By combining rABE with the C-to-U deaminase APOBEC1 and long-read RNA sequencing, we measured binding by two RNA-binding proteins on single messenger RNAs. Orthogonal RNA molecular recording of mammalian Pumilio proteins PUM1 and PUM2 shows that PUM1 competes with PUM2 for a subset of sites in cells. Furthermore, we identify transcript isoform-specific RNA-protein interactions driven by isoform changes distal to the binding site. The genetically encodable RNA deaminase rABE enables single-molecule identification of RNA-protein interactions with cell type specificity.
Collapse
Affiliation(s)
- Yizhu Lin
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
| | - Samentha Kwok
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
| | - Abigail E Hein
- Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Bao Quoc Thai
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
- MSTP Program, University of Arizona, Tuscon, AZ, USA
| | - Yewande Alabi
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Megan S Ostrowski
- Gladstone Institute for Data Science and Biotechnology, San Francisco, CA, USA
| | - Ke Wu
- Gladstone Institute for Data Science and Biotechnology, San Francisco, CA, USA
| | - Stephen N Floor
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
7
|
Qiu C, Zhang Z, Wine RN, Campbell ZT, Zhang J, Hall TMT. Intra- and inter-molecular regulation by intrinsically-disordered regions governs PUF protein RNA binding. Nat Commun 2023; 14:7323. [PMID: 37953271 PMCID: PMC10641069 DOI: 10.1038/s41467-023-43098-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 10/30/2023] [Indexed: 11/14/2023] Open
Abstract
PUF proteins are characterized by globular RNA-binding domains. They also interact with partner proteins that modulate their RNA-binding activities. Caenorhabditis elegans PUF protein fem-3 binding factor-2 (FBF-2) partners with intrinsically disordered Lateral Signaling Target-1 (LST-1) to regulate target mRNAs in germline stem cells. Here, we report that an intrinsically disordered region (IDR) at the C-terminus of FBF-2 autoinhibits its RNA-binding affinity by increasing the off rate for RNA binding. Moreover, the FBF-2 C-terminal region interacts with its globular RNA-binding domain at the same site where LST-1 binds. This intramolecular interaction restrains an electronegative cluster of amino acid residues near the 5' end of the bound RNA to inhibit RNA binding. LST-1 binding in place of the FBF-2 C-terminus therefore releases autoinhibition and increases RNA-binding affinity. This regulatory mechanism, driven by IDRs, provides a biochemical and biophysical explanation for the interdependence of FBF-2 and LST-1 in germline stem cell self-renewal.
Collapse
Affiliation(s)
- Chen Qiu
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Zihan Zhang
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Robert N Wine
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Zachary T Campbell
- Department of Anesthesiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Jun Zhang
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Traci M Tanaka Hall
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA.
| |
Collapse
|
8
|
Bhimsaria D, Rodríguez-Martínez JA, Mendez-Johnson JL, Ghoshdastidar D, Varadarajan A, Bansal M, Daniels DL, Ramanathan P, Ansari AZ. Hidden modes of DNA binding by human nuclear receptors. Nat Commun 2023; 14:4179. [PMID: 37443151 PMCID: PMC10345098 DOI: 10.1038/s41467-023-39577-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Human nuclear receptors (NRs) are a superfamily of ligand-responsive transcription factors that have central roles in cellular function. Their malfunction is linked to numerous diseases, and the ability to modulate their activity with synthetic ligands has yielded 16% of all FDA-approved drugs. NRs regulate distinct gene networks, however they often function from genomic sites that lack known binding motifs. Here, to annotate genomic binding sites of known and unexamined NRs more accurately, we use high-throughput SELEX to comprehensively map DNA binding site preferences of all full-length human NRs, in complex with their ligands. Furthermore, to identify non-obvious binding sites buried in DNA-protein interactomes, we develop MinSeq Find, a search algorithm based on the MinTerm concept from electrical engineering and digital systems design. The resulting MinTerm sequence set (MinSeqs) reveal a constellation of binding sites that more effectively annotate NR-binding profiles in cells. MinSeqs also unmask binding sites created or disrupted by 52,106 single-nucleotide polymorphisms associated with human diseases. By implicating druggable NRs as hidden drivers of multiple human diseases, our results not only reveal new biological roles of NRs, but they also provide a resource for drug-repurposing and precision medicine.
Collapse
Affiliation(s)
- Devesh Bhimsaria
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India.
| | | | | | | | - Ashwin Varadarajan
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Manju Bansal
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India
| | - Danette L Daniels
- Promega Corporation, Madison, WI, 53711, USA
- Foghorn Therapeutics, Cambridge, MA, 02139, USA
| | - Parameswaran Ramanathan
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| | - Aseem Z Ansari
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| |
Collapse
|
9
|
Ferdous AS, Costa Dos Santos SJ, Kanzler CR, Shin H, Carrick BH, Crittenden SL, Wickens M, Kimble J. The in vivo functional significance of PUF hub partnerships in C. elegans germline stem cells. Development 2023; 150:dev201705. [PMID: 37070766 PMCID: PMC10259659 DOI: 10.1242/dev.201705] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/29/2023] [Indexed: 04/19/2023]
Abstract
PUF RNA-binding proteins are conserved stem cell regulators. Four PUF proteins govern self-renewal of Caenorhabditis elegans germline stem cells together with two intrinsically disordered proteins, LST-1 and SYGL-1. Based on yeast two-hybrid results, we previously proposed a composite self-renewal hub in the stem cell regulatory network, with eight PUF partnerships and extensive redundancy. Here, we investigate LST-1-PUF and SYGL-1-PUF partnerships and their molecular activities in their natural context - nematode stem cells. We confirm LST-1-PUF partnerships and their specificity to self-renewal PUFs by co-immunoprecipitation and show that an LST-1(AmBm) mutant defective for PUF-interacting motifs does not complex with PUFs in nematodes. LST-1(AmBm) is used to explore the in vivo functional significance of the LST-1-PUF partnership. Tethered LST-1 requires this partnership to repress expression of a reporter RNA, and LST-1 requires the partnership to co-immunoprecipitate with NTL-1/Not1 of the CCR4-NOT complex. We suggest that the partnership provides multiple molecular interactions that work together to form an effector complex on PUF target RNAs in vivo. Comparison of LST-1-PUF and Nanos-Pumilio reveals fundamental molecular differences, making LST-1-PUF a distinct paradigm for PUF partnerships.
Collapse
Affiliation(s)
- Ahlan S. Ferdous
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | - Charlotte R. Kanzler
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Heaji Shin
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Brian H. Carrick
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Sarah L. Crittenden
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Marvin Wickens
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Judith Kimble
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
10
|
Fusarium oxysporum f. sp. niveum Pumilio 1 Regulates Virulence on Watermelon through Interacting with the ARP2/3 Complex and Binding to an A-Rich Motif in the 3' UTR of Diverse Transcripts. mBio 2023; 14:e0015723. [PMID: 36856417 PMCID: PMC10128047 DOI: 10.1128/mbio.00157-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
Fusarium oxysporum f. sp. niveum (Fon), a soilborne phytopathogenic fungus, causes watermelon Fusarium wilt, resulting in serious yield losses worldwide. However, the underlying molecular mechanism of Fon virulence is largely unknown. The present study investigated the biological functions of six FonPUFs, encoding RNA binding Pumilio proteins, and especially explored the molecular mechanism of FonPUF1 in Fon virulence. A series of phenotypic analyses indicated that FonPUFs have distinct but diverse functions in vegetative growth, asexual reproduction, macroconidia morphology, spore germination, cell wall, or abiotic stress response of Fon. Notably, the deletion of FonPUF1 attenuates Fon virulence by impairing the invasive growth and colonization ability inside the watermelon plants. FonPUF1 possesses RNA binding activity, and its biochemical activity and virulence function depend on the RNA recognition motif or Pumilio domains. FonPUF1 associates with the actin-related protein 2/3 (ARP2/3) complex by interacting with FonARC18, which is also required for Fon virulence and plays an important role in regulating mitochondrial functions, such as ATP generation and reactive oxygen species production. Transcriptomic profiling of ΔFonPUF1 identified a set of putative FonPUF1-dependent virulence-related genes in Fon, possessing a novel A-rich binding motif in the 3' untranslated region (UTR), indicating that FonPUF1 participates in additional mechanisms critical for Fon virulence. These findings highlight the functions and molecular mechanism of FonPUFs in Fon virulence. IMPORTANCE Fusarium oxysporum is a devastating plant-pathogenic fungus that causes vascular wilt disease in many economically important crops, including watermelon, worldwide. F. oxysporum f. sp. nievum (Fon) causes serious yield loss in watermelon production. However, the molecular mechanism of Fusarium wilt development by Fon remains largely unknown. Here, we demonstrate that six putative Pumilio proteins-encoding genes (FonPUFs) differentially operate diverse basic biological processes, including stress response, and that FonPUF1 is required for Fon virulence. Notably, FonPUF1 possesses RNA binding activity and associates with the actin-related protein 2/3 complex to control mitochondrial functions. Furthermore, FonPUF1 coordinates the expression of a set of putative virulence-related genes in Fon by binding to a novel A-rich motif present in the 3' UTR of a diverse set of target mRNAs. Our study disentangles the previously unexplored molecular mechanism involved in regulating Fon virulence, providing a possibility for the development of novel strategies for disease management.
Collapse
|
11
|
Ferdous AS, Costa Dos Santos SJ, Kanzler CR, Shin H, Carrick BH, Crittenden SL, Wickens M, Kimble J. Functional significance of PUF partnerships in C. elegans germline stem cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.15.528708. [PMID: 36824876 PMCID: PMC9949348 DOI: 10.1101/2023.02.15.528708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
PUF RNA-binding proteins are conserved stem cell regulators. Four PUF proteins govern self-renewal of C. elegans germline stem cells together with two intrinsically disordered proteins, LST-1 and SYGL-1. Based on yeast two-hybrid results, we proposed a composite self-renewal hub in the stem cell regulatory network, with eight PUF partnerships and extensive redundancy. Here, we investigate LST-1-PUF and SYGL-1-PUF partnerships and their molecular activities in their natural context - nematode stem cells. We confirm LST-1-PUF partnerships and their specificity to self-renewal PUFs by co-immunoprecipitation and show that an LST-1(A m B m ) mutant defective for PUF-interacting motifs does not complex with PUFs in nematodes. LST-1(A m B m ) is used to explore the functional significance of the LST-1-PUF partnership. Tethered LST-1 requires the partnership to repress expression of a reporter RNA, and LST-1 requires the partnership to co-immunoprecipitate with NTL-1/Not1 of the CCR4-NOT complex. We suggest that the partnership provides multiple molecular interactions that work together to form an effector complex on PUF target RNAs. Comparison of PUF-LST-1 and Pumilio-Nanos reveals fundamental molecular differences, making PUF-LST-1 a distinct paradigm for PUF partnerships. Summary statement Partnerships between PUF RNA-binding proteins and intrinsically disordered proteins are essential for stem cell maintenance and RNA repression.
Collapse
Affiliation(s)
- Ahlan S Ferdous
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | - Charlotte R Kanzler
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Heaji Shin
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Brian H Carrick
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Sarah L Crittenden
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Marvin Wickens
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Judith Kimble
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
12
|
Albarqi MMY, Ryder SP. The role of RNA-binding proteins in orchestrating germline development in Caenorhabditis elegans. Front Cell Dev Biol 2023; 10:1094295. [PMID: 36684428 PMCID: PMC9846511 DOI: 10.3389/fcell.2022.1094295] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/19/2022] [Indexed: 01/06/2023] Open
Abstract
RNA passed from parents to progeny controls several aspects of early development. The germline of the free-living nematode Caenorhabditis elegans contains many families of evolutionarily conserved RNA-binding proteins (RBPs) that target the untranslated regions of mRNA transcripts to regulate their translation and stability. In this review, we summarize what is known about the binding specificity of C. elegans germline RNA-binding proteins and the mechanisms of mRNA regulation that contribute to their function. We examine the emerging role of miRNAs in translational regulation of germline and embryo development. We also provide an overview of current technology that can be used to address the gaps in our understanding of RBP regulation of mRNAs. Finally, we present a hypothetical model wherein multiple 3'UTR-mediated regulatory processes contribute to pattern formation in the germline to ensure the proper and timely localization of germline proteins and thus a functional reproductive system.
Collapse
|
13
|
Miao H, Wu F, Li Y, Qin C, Zhao Y, Xie M, Dai H, Yao H, Cai H, Wang Q, Song X, Li L. MALAT1 modulates alternative splicing by cooperating with the splicing factors PTBP1 and PSF. SCIENCE ADVANCES 2022; 8:eabq7289. [PMID: 36563164 PMCID: PMC9788761 DOI: 10.1126/sciadv.abq7289] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Understanding how long noncoding RNAs (lncRNAs) cooperate with splicing factors (SFs) in alternative splicing (AS) control is fundamental to human biology and disease. We show that metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), a well-documented AS-implicated lncRNA, regulates AS via two SFs, polypyrimidine tract-binding protein 1 (PTBP1) and PTB-associated SF (PSF). MALAT1 stabilizes the interaction between PTBP1 and PSF, thereby forming a functional module that affects a network of AS events. The MALAT1-stabilized PTBP1/PSF interaction occurs in multiple cellular contexts; however, the functional module, relative to MALAT1 only, has more dominant pathological significance in hepatocellular carcinoma. MALAT1 also stabilizes the PSF interaction with several heterogeneous nuclear ribonucleoparticle proteins other than PTBP1, hinting a broad role in AS control. We present a model in which MALAT1 cooperates with distinct SFs for AS regulation and pose that, relative to analyses exclusively performed for lncRNAs, a comprehensive consideration of lncRNAs and their binding partners may provide more information about their biological functions.
Collapse
Affiliation(s)
- Hui Miao
- Center for Functional Genomics and Bioinformatics, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, China
- Department of Platform and Technology, lncTAC Company Limited, Chengdu, Sichuan 610219, China
| | - Fan Wu
- Center for Functional Genomics and Bioinformatics, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, China
- Department of Platform and Technology, lncTAC Company Limited, Chengdu, Sichuan 610219, China
| | - Yu Li
- Center for Functional Genomics and Bioinformatics, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, China
| | - Chenyu Qin
- Center for Functional Genomics and Bioinformatics, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, China
| | - Yongyun Zhao
- Center for Functional Genomics and Bioinformatics, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, China
| | - Mingfeng Xie
- Center for Functional Genomics and Bioinformatics, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, China
| | - Hongyuan Dai
- Center for Functional Genomics and Bioinformatics, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, China
| | - Hong Yao
- Center for Functional Genomics and Bioinformatics, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, China
- Department of Platform and Technology, lncTAC Company Limited, Chengdu, Sichuan 610219, China
| | - Haoyang Cai
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, China
| | - Qianhong Wang
- The First Accredited Outpatient Department of Western General Hospital, Chengdu, Sichuan 610091, China
| | - Xu Song
- Center for Functional Genomics and Bioinformatics, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, China
| | - Ling Li
- Center for Functional Genomics and Bioinformatics, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, China
| |
Collapse
|
14
|
Kunder N, de la Peña JB, Lou TF, Chase R, Suresh P, Lawson J, Shukla T, Black B, Campbell ZT. The RNA-Binding Protein HuR Is Integral to the Function of Nociceptors in Mice and Humans. J Neurosci 2022; 42:9129-9141. [PMID: 36270801 PMCID: PMC9761683 DOI: 10.1523/jneurosci.1630-22.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/04/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
Abstract
HuR is an RNA-binding protein implicated in RNA processing, stability, and translation. Previously, we examined protein synthesis in dorsal root ganglion (DRG) neurons treated with inflammatory mediators using ribosome profiling. We found that the HuR consensus binding element was enriched in transcripts with elevated translation. HuR is expressed in the soma of nociceptors and their axons. Pharmacologic inhibition of HuR with the small molecule CMLD-2 reduced the activity of mouse and human sensory neurons. Peripheral administration of CMLD-2 in the paw or genetic elimination of HuR from sensory neurons diminished behavioral responses associated with NGF- and IL-6-induced allodynia in male and female mice. Genetic disruption of HuR altered the proximity of mRNA decay factors near a key neurotrophic factor (TrkA). Collectively, the data suggest that HuR is required for local control of mRNA stability and reveals a new biological function for a broadly conserved post-transcriptional regulatory factor.SIGNIFICANCE STATEMENT Nociceptors undergo long-lived changes in excitability, which may contribute to chronic pain. Noxious cues that promote pain lead to rapid induction of protein synthesis. The underlying mechanisms that confer specificity to mRNA control in nociceptors are unclear. Here, we identify a conserved RNA-binding protein called HuR as a key regulatory factor in sensory neurons. Using a combination of genetics and pharmacology, we demonstrate that HuR is required for signaling in nociceptors. In doing so, we report an important mechanism of mRNA control in sensory neurons that ensures appropriate nociceptive responses to inflammatory mediators.
Collapse
Affiliation(s)
- Nikesh Kunder
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas 75080
| | - June Bryan de la Peña
- Department of Anesthesiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53792
| | - Tzu-Fang Lou
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas 75080
| | - Rebecca Chase
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas 75080
| | - Prarthana Suresh
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas 75080
| | - Jennifer Lawson
- Department of Biomedical Engineering, University of Massachusetts Lowell, Lowell, Massachusetts 01854
| | - Tarjani Shukla
- Department of Anesthesiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53792
| | - Bryan Black
- Department of Biomedical Engineering, University of Massachusetts Lowell, Lowell, Massachusetts 01854
| | - Zachary T Campbell
- Department of Anesthesiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53792
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53792
| |
Collapse
|
15
|
Nag S, Goswami B, Das Mandal S, Ray PS. Cooperation and competition by RNA-binding proteins in cancer. Semin Cancer Biol 2022; 86:286-297. [PMID: 35248729 DOI: 10.1016/j.semcancer.2022.02.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 02/07/2023]
Abstract
Post-transcriptional regulation of gene expression plays a major role in determining the cellular proteome in health and disease. Post-transcriptional control mechanisms are disrupted in many cancers, contributing to multiple processes of tumorigenesis. RNA-binding proteins (RBPs), the main post-transcriptional regulators, often show altered expression and activity in cancer cells. Dysregulation of RBPs contributes to many cancer phenotypes, functioning in complex regulatory networks with other cellular players such as non-coding RNAs, signaling mediators and transcription factors to alter the expression of oncogenes and tumor suppressor genes. RBPs often function combinatorially, based on their binding to target sequences/structures on shared mRNA targets, to regulate the expression of cancer-related genes. This gives rise to cooperativity and competition between RBPs in mRNA binding and resultant functional outcomes in post-transcriptional processes such as mRNA splicing, stability, export and translation. Cooperation and competition is also observed in the case of interaction of RBPs and microRNAs with mRNA targets. RNA structural change is a common mechanism mediating the cooperative/competitive interplay between RBPs and between RBPs and microRNAs. RNA modifications, leading to changes in RNA structure, add a new dimension to cooperative/competitive binding of RBPs to mRNAs, further expanding the RBP regulatory landscape. Therefore, cooperative/competitive interplay between RBPs is a major determinant of the RBP interactome and post-transcriptional regulation of gene expression in cancer cells.
Collapse
Affiliation(s)
- Sharanya Nag
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Binita Goswami
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Sukhen Das Mandal
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Partho Sarothi Ray
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India.
| |
Collapse
|
16
|
Sadée C, Hagler LD, Becker WR, Jarmoskaite I, Vaidyanathan PP, Denny SK, Greenleaf WJ, Herschlag D. A comprehensive thermodynamic model for RNA binding by the Saccharomyces cerevisiae Pumilio protein PUF4. Nat Commun 2022; 13:4522. [PMID: 35927243 PMCID: PMC9352680 DOI: 10.1038/s41467-022-31968-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 07/07/2022] [Indexed: 11/12/2022] Open
Abstract
Genomic methods have been valuable for identifying RNA-binding proteins (RBPs) and the genes, pathways, and processes they regulate. Nevertheless, standard motif descriptions cannot be used to predict all RNA targets or test quantitative models for cellular interactions and regulation. We present a complete thermodynamic model for RNA binding to the S. cerevisiae Pumilio protein PUF4 derived from direct binding data for 6180 RNAs measured using the RNA on a massively parallel array (RNA-MaP) platform. The PUF4 model is highly similar to that of the related RBPs, human PUM2 and PUM1, with one marked exception: a single favorable site of base flipping for PUF4, such that PUF4 preferentially binds to a non-contiguous series of residues. These results are foundational for developing and testing cellular models of RNA-RBP interactions and function, for engineering RBPs, for understanding the biophysical nature of RBP binding and the evolutionary landscape of RNAs and RBPs.
Collapse
Affiliation(s)
- Christoph Sadée
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Lauren D Hagler
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Winston R Becker
- Biophysics Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Inga Jarmoskaite
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Pavanapuresan P Vaidyanathan
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
- Protillion Biosciences, Burlingame, CA, USA
| | - Sarah K Denny
- Biophysics Program, Stanford University School of Medicine, Stanford, CA, USA
- Scribe Therapeutics, Alameda, CA, USA
| | - William J Greenleaf
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Applied Physics, Stanford University, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Daniel Herschlag
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA.
- ChEM-H Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
17
|
Mishra P, Sankar SHH, Gosavi N, Bharathavikru RS. RNA nucleoprotein complexes in biological systems. PROCEEDINGS OF THE INDIAN NATIONAL SCIENCE ACADEMY 2022. [DOI: 10.1007/s43538-022-00087-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
18
|
Systematic Analysis of Targets of Pumilio-Mediated mRNA Decay Reveals that PUM1 Repression by DNA Damage Activates Translesion Synthesis. Cell Rep 2021; 31:107542. [PMID: 32375027 DOI: 10.1016/j.celrep.2020.107542] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 01/28/2020] [Accepted: 03/31/2020] [Indexed: 02/07/2023] Open
Abstract
RNA-binding proteins (RBPs) play a pivotal role in gene expression by modulating the stability of transcripts. However, the identification of degradation target mRNAs of RBPs remains difficult. By the combined analysis of transcriptome-wide mRNA stabilities and the binding of mRNAs to human Pumilio 1 (PUM1), we identify 48 mRNAs that both bind to PUM1 and exhibit PUM1-dependent degradation. Analysis of changes in the abundance of PUM1 and its degradation target mRNAs in RNA-seq data indicate that DNA-damaging agents negatively regulate PUM1-mediated mRNA decay. Cells exposed to cisplatin have reduced PUM1 abundance and increased PCNA and UBE2A mRNAs encoding proteins involved in DNA damage tolerance by translesion synthesis (TLS). Cells overexpressing PUM1 exhibit impaired DNA synthesis and TLS and increased sensitivity to the cytotoxic effect of cisplatin. Thus, our method identifies target mRNAs of PUM1-mediated decay and reveals that cells respond to DNA damage by inhibiting PUM1-mediated mRNA decay to activate TLS.
Collapse
|
19
|
Regulator of calcineurin 1 is a novel RNA-binding protein to regulate neuronal apoptosis. Mol Psychiatry 2021; 26:1361-1375. [PMID: 31451750 DOI: 10.1038/s41380-019-0487-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 05/16/2019] [Accepted: 06/20/2019] [Indexed: 02/06/2023]
Abstract
Posttranscriptional regulation of gene expression plays an important role in the maturation, transport, stability and translation of coding and noncoding RNAs. RNA-binding protein (RBP) is a key factor of the regulation. Regulator of calcineurin 1 (RCAN1) is a multifunctional protein involved in neurodegeneration, mitochondrial dysfunction, inflammation and protein glycosylation, and plays an important role in the pathogenesis of Down syndrome and Alzheimer's disease. In this report, we discovered that RCNA1 is a novel RNA-binding protein. A 23 nucleotide sequence of adenine nucleotide translocator (ANT1) mRNA was identified as the binding motif of RCAN1. Furthermore, we found that R1SR13, as the RNA aptamer of RCAN1 identified by SELEX, blocked RCAN1-induced inhibition of the nuclear factor of activated T cells (NFAT) and NF-κB signaling pathways, and reduced neuronal apoptosis. Taken together, our results demonstrate that RCAN1 is a novel RNA-binding protein and the RNA aptamer of RCAN1 plays a neuroprotective role.
Collapse
|
20
|
Kumar R, Poria DK, Ray PS. RNA-binding proteins La and HuR cooperatively modulate translation repression of PDCD4 mRNA. J Biol Chem 2021; 296:100154. [PMID: 33288677 PMCID: PMC7949077 DOI: 10.1074/jbc.ra120.014894] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 12/03/2020] [Accepted: 12/06/2020] [Indexed: 12/28/2022] Open
Abstract
Posttranscriptional regulation of gene expression plays a critical role in controlling the inflammatory response. An uncontrolled inflammatory response results in chronic inflammation, often leading to tumorigenesis. Programmed cell death 4 (PDCD4) is a proinflammatory tumor-suppressor gene which helps to prevent the transition from chronic inflammation to cancer. PDCD4 mRNA translation is regulated by an interplay between the oncogenic microRNA miR-21 and the RNA-binding protein (RBP) human antigen R (HuR) in response to lipopolysaccharide stimulation, but the role of other regulatory factors remains unknown. Here, we report that the RBP lupus antigen (La) interacts with the 3'-untranslated region of PDCD4 mRNA and prevents miR-21-mediated translation repression. While lipopolysaccharide causes nuclear-cytoplasmic translocation of HuR, it enhances cellular La expression. Remarkably, La and HuR were found to bind cooperatively to the PDCD4 mRNA and mitigate miR-21-mediated translation repression. The cooperative action of La and HuR reduced cell proliferation and enhanced apoptosis, reversing the pro-oncogenic function of miR-21. Together, these observations demonstrate a cooperative interplay between two RBPs, triggered differentially by the same stimulus, which exerts a synergistic effect on PDCD4 expression and thereby helps maintain a balance between inflammation and tumorigenesis.
Collapse
Affiliation(s)
- Ravi Kumar
- Department of Biological Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, Nadia, West Bengal, India
| | - Dipak Kumar Poria
- Department of Biological Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, Nadia, West Bengal, India
| | - Partho Sarothi Ray
- Department of Biological Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, Nadia, West Bengal, India.
| |
Collapse
|
21
|
Wolfe MB, Schagat TL, Paulsen MT, Magnuson B, Ljungman M, Park D, Zhang C, Campbell ZT, Goldstrohm AC, Freddolino PL. Principles of mRNA control by human PUM proteins elucidated from multimodal experiments and integrative data analysis. RNA (NEW YORK, N.Y.) 2020; 26:1680-1703. [PMID: 32753408 PMCID: PMC7566576 DOI: 10.1261/rna.077362.120] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 07/30/2020] [Indexed: 05/27/2023]
Abstract
The human PUF-family proteins, PUM1 and PUM2, posttranscriptionally regulate gene expression by binding to a PUM recognition element (PRE) in the 3'-UTR of target mRNAs. Hundreds of PUM1/2 targets have been identified from changes in steady-state RNA levels; however, prior studies could not differentiate between the contributions of changes in transcription and RNA decay rates. We applied metabolic labeling to measure changes in RNA turnover in response to depletion of PUM1/2, showing that human PUM proteins regulate expression almost exclusively by changing RNA stability. We also applied an in vitro selection workflow to precisely identify the binding preferences of PUM1 and PUM2. By integrating our results with prior knowledge, we developed a "rulebook" of key contextual features that differentiate functional versus nonfunctional PREs, allowing us to train machine learning models that accurately predict the functional regulation of RNA targets by the human PUM proteins.
Collapse
Affiliation(s)
- Michael B Wolfe
- Department of Biological Chemistry and Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | - Michelle T Paulsen
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Brian Magnuson
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Mats Ljungman
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan 48109, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan 48109, USA
- Center for RNA Biomedicine, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Daeyoon Park
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Chi Zhang
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas 75080, USA
| | - Zachary T Campbell
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas 75080, USA
| | - Aaron C Goldstrohm
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Peter L Freddolino
- Department of Biological Chemistry and Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
22
|
Xu B, Meng Y, Jin Y. RNA structures in alternative splicing and back-splicing. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 12:e1626. [PMID: 32929887 DOI: 10.1002/wrna.1626] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/14/2020] [Accepted: 08/22/2020] [Indexed: 12/12/2022]
Abstract
Alternative splicing greatly expands the transcriptomic and proteomic diversities related to physiological and developmental processes in higher eukaryotes. Splicing of long noncoding RNAs, and back- and trans- splicing further expanded the regulatory repertoire of alternative splicing. RNA structures were shown to play an important role in regulating alternative splicing and back-splicing. Application of novel sequencing technologies made it possible to identify genome-wide RNA structures and interaction networks, which might provide new insights into RNA splicing regulation in vitro to in vivo. The emerging transcription-folding-splicing paradigm is changing our understanding of RNA alternative splicing regulation. Here, we review the insights into the roles and mechanisms of RNA structures in alternative splicing and back-splicing, as well as how disruption of these structures affects alternative splicing and then leads to human diseases. This article is categorized under: RNA Processing > Splicing Regulation/Alternative Splicing RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems.
Collapse
Affiliation(s)
- Bingbing Xu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Zhejiang, Hangzhou, China
| | - Yijun Meng
- College of Life and Environmental Sciences, Hangzhou Normal University, Zhejiang, Hangzhou, China
| | - Yongfeng Jin
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Zhejiang, Hangzhou, China
| |
Collapse
|
23
|
Jarmoskaite I, AlSadhan I, Vaidyanathan PP, Herschlag D. How to measure and evaluate binding affinities. eLife 2020; 9:e57264. [PMID: 32758356 PMCID: PMC7452723 DOI: 10.7554/elife.57264] [Citation(s) in RCA: 279] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 08/05/2020] [Indexed: 12/23/2022] Open
Abstract
Quantitative measurements of biomolecule associations are central to biological understanding and are needed to build and test predictive and mechanistic models. Given the advances in high-throughput technologies and the projected increase in the availability of binding data, we found it especially timely to evaluate the current standards for performing and reporting binding measurements. A review of 100 studies revealed that in most cases essential controls for establishing the appropriate incubation time and concentration regime were not documented, making it impossible to determine measurement reliability. Moreover, several reported affinities could be concluded to be incorrect, thereby impacting biological interpretations. Given these challenges, we provide a framework for a broad range of researchers to evaluate, teach about, perform, and clearly document high-quality equilibrium binding measurements. We apply this framework and explain underlying fundamental concepts through experimental examples with the RNA-binding protein Puf4.
Collapse
Affiliation(s)
- Inga Jarmoskaite
- Department of Biochemistry, Stanford UniversityStanfordUnited States
| | - Ishraq AlSadhan
- Department of Biochemistry, Stanford UniversityStanfordUnited States
| | | | - Daniel Herschlag
- Department of Biochemistry, Stanford UniversityStanfordUnited States
- Department of Chemical Engineering, Stanford UniversityStanfordUnited States
- Stanford ChEM-H, Stanford UniversityStanfordUnited States
| |
Collapse
|
24
|
Arribere JA, Kuroyanagi H, Hundley HA. mRNA Editing, Processing and Quality Control in Caenorhabditis elegans. Genetics 2020; 215:531-568. [PMID: 32632025 PMCID: PMC7337075 DOI: 10.1534/genetics.119.301807] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 05/03/2020] [Indexed: 02/06/2023] Open
Abstract
While DNA serves as the blueprint of life, the distinct functions of each cell are determined by the dynamic expression of genes from the static genome. The amount and specific sequences of RNAs expressed in a given cell involves a number of regulated processes including RNA synthesis (transcription), processing, splicing, modification, polyadenylation, stability, translation, and degradation. As errors during mRNA production can create gene products that are deleterious to the organism, quality control mechanisms exist to survey and remove errors in mRNA expression and processing. Here, we will provide an overview of mRNA processing and quality control mechanisms that occur in Caenorhabditis elegans, with a focus on those that occur on protein-coding genes after transcription initiation. In addition, we will describe the genetic and technical approaches that have allowed studies in C. elegans to reveal important mechanistic insight into these processes.
Collapse
Affiliation(s)
| | - Hidehito Kuroyanagi
- Laboratory of Gene Expression, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan, and
| | - Heather A Hundley
- Medical Sciences Program, Indiana University School of Medicine-Bloomington, Indiana 47405
| |
Collapse
|
25
|
Ye X, Jankowsky E. High throughput approaches to study RNA-protein interactions in vitro. Methods 2020; 178:3-10. [PMID: 31494245 PMCID: PMC7071787 DOI: 10.1016/j.ymeth.2019.09.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 06/07/2019] [Accepted: 09/01/2019] [Indexed: 02/08/2023] Open
Abstract
To understand the regulation of gene expression it is critical to determine how proteins interact with and discriminate between different RNAs. In this review, we discuss experimental techniques that utilize high throughput approaches to characterize the interactions of proteins with large numbers of RNAs in vitro. We describe the underlying principles for the main methods, briefly discuss their scope and limitations, and outline how insight from the techniques contributes to our understanding of specificity for RNA-protein interactions.
Collapse
Affiliation(s)
- Xuan Ye
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Eckhard Jankowsky
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, OH, United States.
| |
Collapse
|
26
|
RNA-centric approaches to study RNA-protein interactions in vitro and in silico. Methods 2020; 178:11-18. [DOI: 10.1016/j.ymeth.2019.09.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 09/10/2019] [Accepted: 09/10/2019] [Indexed: 01/17/2023] Open
|
27
|
Shukla TN, Song J, Campbell ZT. Molecular entrapment by RNA: an emerging tool for disrupting protein-RNA interactions in vivo. RNA Biol 2020; 17:417-424. [PMID: 31957541 PMCID: PMC7237136 DOI: 10.1080/15476286.2020.1717059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/09/2019] [Accepted: 01/12/2020] [Indexed: 10/25/2022] Open
Abstract
mRNA function is controlled by RNA-binding proteins. The specificity of RNA-binding factors for their targets is critical in that it enables all subsequent regulation. Despite widespread recognition of the pervasive role RNA-binding proteins play in development and disease, they remain challenging to target with small molecules. A renaissance in RNA therapeutics has led to the identification of modifications that substantially increase RNA stability. When combined with information regarding specificity, a new class of oligonucleotide mimics has emerged as a means to competitively disrupt the regulation of endogenous substrates. These decoys have been used to inhibit RNA-binding proteins in living animals. Decoys will likely provide new insights into the expansive roles of RNA-binding proteins in biology and disease. Here, we describe examples where they have been used and discuss how they could be applied to new targets.
Collapse
Affiliation(s)
- Tarjani N. Shukla
- The Department of Biological Sciences, University of Texas-Dallas, Richardson, TX, USA
| | - Jane Song
- The Department of Biological Sciences, University of Texas-Dallas, Richardson, TX, USA
| | - Zachary T. Campbell
- The Department of Biological Sciences, University of Texas-Dallas, Richardson, TX, USA
| |
Collapse
|
28
|
Teubner M, Lenzen B, Espenberger LB, Fuss J, Nickelsen J, Krause K, Ruwe H, Schmitz-Linneweber C. The Chloroplast Ribonucleoprotein CP33B Quantitatively Binds the psbA mRNA. PLANTS 2020; 9:plants9030367. [PMID: 32192026 PMCID: PMC7154868 DOI: 10.3390/plants9030367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 01/25/2023]
Abstract
Chloroplast RNAs are stabilized and processed by a multitude of nuclear-encoded RNA-binding proteins, often in response to external stimuli like light and temperature. A particularly interesting RNA-based regulation occurs with the psbA mRNA, which shows light-dependent translation. Recently, the chloroplast ribonucleoprotein CP33B was identified as a ligand of the psbA mRNA. We here characterized the interaction of CP33B with chloroplast RNAs in greater detail using a combination of RIP-chip, quantitative dot-blot, and RNA-Bind-n-Seq experiments. We demonstrate that CP33B prefers psbA over all other chloroplast RNAs and associates with the vast majority of the psbA transcript pool. The RNA sequence target motif, determined in vitro, does not fully explain CP33B's preference for psbA, suggesting that there are other determinants of specificity in vivo.
Collapse
Affiliation(s)
- Marlene Teubner
- Institute of Biology, Department of Life Sciences, Humboldt University Berlin, 10115 Berlin, Germany; (M.T.); (B.L.); (L.B.E.); (H.R.)
| | - Benjamin Lenzen
- Institute of Biology, Department of Life Sciences, Humboldt University Berlin, 10115 Berlin, Germany; (M.T.); (B.L.); (L.B.E.); (H.R.)
| | - Lucas Bernal Espenberger
- Institute of Biology, Department of Life Sciences, Humboldt University Berlin, 10115 Berlin, Germany; (M.T.); (B.L.); (L.B.E.); (H.R.)
| | - Janina Fuss
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Framstredet 39, 9019 Tromsø, Norway; (J.F.); (K.K.)
| | - Jörg Nickelsen
- Department Biologie I, Botanik, Ludwig-Maximilians-Universität, 82152 Planegg-Martinsried, Germany;
| | - Kirsten Krause
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Framstredet 39, 9019 Tromsø, Norway; (J.F.); (K.K.)
| | - Hannes Ruwe
- Institute of Biology, Department of Life Sciences, Humboldt University Berlin, 10115 Berlin, Germany; (M.T.); (B.L.); (L.B.E.); (H.R.)
| | - Christian Schmitz-Linneweber
- Institute of Biology, Department of Life Sciences, Humboldt University Berlin, 10115 Berlin, Germany; (M.T.); (B.L.); (L.B.E.); (H.R.)
- Correspondence: ; Tel.: ++49-30-2093-49700
| |
Collapse
|
29
|
Chaudhuri A, Das S, Das B. Localization elements and zip codes in the intracellular transport and localization of messenger RNAs in Saccharomyces cerevisiae. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 11:e1591. [PMID: 32101377 DOI: 10.1002/wrna.1591] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/05/2020] [Accepted: 02/07/2020] [Indexed: 12/13/2022]
Abstract
Intracellular trafficking and localization of mRNAs provide a mechanism of regulation of expression of genes with excellent spatial control. mRNA localization followed by localized translation appears to be a mechanism of targeted protein sorting to a specific cell-compartment, which is linked to the establishment of cell polarity, cell asymmetry, embryonic axis determination, and neuronal plasticity in metazoans. However, the complexity of the mechanism and the components of mRNA localization in higher organisms prompted the use of the unicellular organism Saccharomyces cerevisiae as a simplified model organism to study this vital process. Current knowledge indicates that a variety of mRNAs are asymmetrically and selectively localized to the tip of the bud of the daughter cells, to the vicinity of endoplasmic reticulum, mitochondria, and nucleus in this organism, which are connected to diverse cellular processes. Interestingly, specific cis-acting RNA localization elements (LEs) or RNA zip codes play a crucial role in the localization and trafficking of these localized mRNAs by providing critical binding sites for the specific RNA-binding proteins (RBPs). In this review, we present a comprehensive account of mRNA localization in S. cerevisiae, various types of localization elements influencing the mRNA localization, and the RBPs, which bind to these LEs to implement a number of vital physiological processes. Finally, we emphasize the significance of this process by highlighting their connection to several neuropathological disorders and cancers. This article is categorized under: RNA Export and Localization > RNA Localization.
Collapse
Affiliation(s)
- Anusha Chaudhuri
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, India
| | - Subhadeep Das
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, India
| | - Biswadip Das
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, India
| |
Collapse
|
30
|
Wang X, Voronina E. Diverse Roles of PUF Proteins in Germline Stem and Progenitor Cell Development in C. elegans. Front Cell Dev Biol 2020; 8:29. [PMID: 32117964 PMCID: PMC7015873 DOI: 10.3389/fcell.2020.00029] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 01/14/2020] [Indexed: 01/05/2023] Open
Abstract
Stem cell development depends on post-transcriptional regulation mediated by RNA-binding proteins (RBPs) (Zhang et al., 1997; Forbes and Lehmann, 1998; Okano et al., 2005; Ratti et al., 2006; Kwon et al., 2013). Pumilio and FBF (PUF) family RBPs are highly conserved post-transcriptional regulators that are critical for stem cell maintenance (Wickens et al., 2002; Quenault et al., 2011). The RNA-binding domains of PUF proteins recognize a family of related sequence motifs in the target mRNAs, yet individual PUF proteins have clearly distinct biological functions (Lu et al., 2009; Wang et al., 2018). The C. elegans germline is a simple and powerful model system for analyzing regulation of stem cell development. Studies in C. elegans uncovered specific physiological roles for PUFs expressed in the germline stem cells ranging from control of proliferation and differentiation to regulation of the sperm/oocyte decision. Importantly, recent studies started to illuminate the mechanisms behind PUF functional divergence. This review summarizes the many roles of PUF-8, FBF-1, and FBF-2 in germline stem and progenitor cells (SPCs) and discusses the factors accounting for their distinct biological functions. PUF proteins are conserved in evolution, and insights into PUF-mediated regulation provided by the C. elegans model system are likely relevant for other organisms.
Collapse
Affiliation(s)
- Xiaobo Wang
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
| | - Ekaterina Voronina
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
| |
Collapse
|
31
|
Abstract
RNA is produced from the majority of human genomic sequences, although only a relatively small portion of these transcripts has known functions. Diverse RNA species interact with RNA, DNA, proteins, lipids, and metabolites to form intricate molecular networks. In this review, we attempt to delineate diverse RNA functions by interaction types between RNA and other macromolecules. Through such interactions RNAs participate in essentially every major molecular function and process, including information flow and storage, environment sensing, signal transduction, and gene regulation at transcriptional and posttranscriptional levels. Through such interactions, RNAs promote or inhibit diverse biological processes, and act as catalyzer or quencher to modulate the pace of these progresses. Alterations and personal variations of these interactions are mechanistically coupled with disease etiology and phenotypical variations for clinical use.
Collapse
Affiliation(s)
- Xiaofeng Dai
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.
| | - Shuo Zhang
- School of Biotechnology, Jiangnan University, Wuxi, China
| | - Kathia Zaleta-Rivera
- Department of Bioengineering, University of California San Diego, San Diego, USA
| |
Collapse
|
32
|
Integrative Structural Biology of Protein-RNA Complexes. Structure 2020; 28:6-28. [DOI: 10.1016/j.str.2019.11.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 11/17/2019] [Accepted: 11/27/2019] [Indexed: 12/16/2022]
|
33
|
Abstract
3' untranslated regions (3' UTRs) of messenger RNAs (mRNAs) are best known to regulate mRNA-based processes, such as mRNA localization, mRNA stability, and translation. In addition, 3' UTRs can establish 3' UTR-mediated protein-protein interactions (PPIs), and thus can transmit genetic information encoded in 3' UTRs to proteins. This function has been shown to regulate diverse protein features, including protein complex formation or posttranslational modifications, but is also expected to alter protein conformations. Therefore, 3' UTR-mediated information transfer can regulate protein features that are not encoded in the amino acid sequence. This review summarizes both 3' UTR functions-the regulation of mRNA and protein-based processes-and highlights how each 3' UTR function was discovered with a focus on experimental approaches used and the concepts that were learned. This review also discusses novel approaches to study 3' UTR functions in the future by taking advantage of recent advances in technology.
Collapse
Affiliation(s)
- Christine Mayr
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| |
Collapse
|
34
|
Miranda RG, McDermott JJ, Barkan A. RNA-binding specificity landscapes of designer pentatricopeptide repeat proteins elucidate principles of PPR-RNA interactions. Nucleic Acids Res 2019; 46:2613-2623. [PMID: 29294070 PMCID: PMC5861457 DOI: 10.1093/nar/gkx1288] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 12/18/2017] [Indexed: 01/30/2023] Open
Abstract
Pentatricopeptide repeat (PPR) proteins are helical-repeat proteins that offer a promising scaffold for the engineering of proteins to bind specified RNAs. PPR tracts bind RNA in a modular 1-repeat, 1-nucleotide fashion. An amino acid code specifying the bound nucleotide has been elucidated. However, this code does not fully explain the sequence specificity of native PPR proteins. Furthermore, it does not address nuances such as the contribution toward binding affinity of various repeat-nucleotide pairs or the impact of mismatches between a repeat and aligning nucleotide. We used an in vitro bind-n-seq approach to describe the population of sequences bound by four artificial PPR proteins built from consensus scaffolds. The specificity of these proteins can be accounted for by canonical code-based nucleotide recognition. The results show, however, that interactions near the 3′-end of binding sites make less contribution to binding affinity than do those near the 5′-end, that proteins with 11 and 14 repeats exhibit similar affinity for their intended targets but 14-repeats are more permissive for mismatches, and that purine-binding repeats are less tolerant of transversion mismatches than are pyrimidine-binding motifs. These findings have implications for mechanisms that establish PPR–RNA interactions and for optimizing PPR design to minimize off-target interactions.
Collapse
Affiliation(s)
- Rafael G Miranda
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - James J McDermott
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Alice Barkan
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| |
Collapse
|
35
|
Jarmoskaite I, Denny SK, Vaidyanathan PP, Becker WR, Andreasson JOL, Layton CJ, Kappel K, Shivashankar V, Sreenivasan R, Das R, Greenleaf WJ, Herschlag D. A Quantitative and Predictive Model for RNA Binding by Human Pumilio Proteins. Mol Cell 2019; 74:966-981.e18. [PMID: 31078383 DOI: 10.1101/403006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 01/31/2019] [Accepted: 04/05/2019] [Indexed: 05/20/2023]
Abstract
High-throughput methodologies have enabled routine generation of RNA target sets and sequence motifs for RNA-binding proteins (RBPs). Nevertheless, quantitative approaches are needed to capture the landscape of RNA-RBP interactions responsible for cellular regulation. We have used the RNA-MaP platform to directly measure equilibrium binding for thousands of designed RNAs and to construct a predictive model for RNA recognition by the human Pumilio proteins PUM1 and PUM2. Despite prior findings of linear sequence motifs, our measurements revealed widespread residue flipping and instances of positional coupling. Application of our thermodynamic model to published in vivo crosslinking data reveals quantitative agreement between predicted affinities and in vivo occupancies. Our analyses suggest a thermodynamically driven, continuous Pumilio-binding landscape that is negligibly affected by RNA structure or kinetic factors, such as displacement by ribosomes. This work provides a quantitative foundation for dissecting the cellular behavior of RBPs and cellular features that impact their occupancies.
Collapse
Affiliation(s)
- Inga Jarmoskaite
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sarah K Denny
- Biophysics Program, Stanford University School of Medicine, Stanford, CA 94305, USA; Scribe Therapeutics, Berkeley, CA, 94704, USA
| | | | - Winston R Becker
- Biophysics Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Johan O L Andreasson
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Curtis J Layton
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kalli Kappel
- Biophysics Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - Raashi Sreenivasan
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Rhiju Das
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - William J Greenleaf
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Applied Physics, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| | - Daniel Herschlag
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Chemistry, Stanford University, Stanford, CA 94305, USA; Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA; ChEM-H Institute, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
36
|
Becker WR, Jarmoskaite I, Vaidyanathan PP, Greenleaf WJ, Herschlag D. Demonstration of protein cooperativity mediated by RNA structure using the human protein PUM2. RNA (NEW YORK, N.Y.) 2019; 25:702-712. [PMID: 30914482 PMCID: PMC6521599 DOI: 10.1261/rna.068585.118] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 03/14/2019] [Indexed: 05/03/2023]
Abstract
Posttranslational gene regulation requires a complex network of RNA-protein interactions. Cooperativity, which tunes response sensitivities, originates from protein-protein interactions in many systems. For RNA-binding proteins, cooperativity can also be mediated through RNA structure. RNA structural cooperativity (RSC) arises when binding of one protein induces a redistribution of RNA conformational states that enhance access (positive cooperativity) or block access (negative cooperativity) to additional binding sites. As RSC does not require direct protein-protein interactions, it allows cooperativity to be tuned for individual RNAs, via alterations in sequence that alter structural stability. Given the potential importance of this mechanism of control and our desire to quantitatively dissect features that underlie physiological regulation, we developed a statistical mechanical framework for RSC and tested this model by performing equilibrium binding measurements of the human PUF family protein PUM2. Using 68 RNAs that contain two to five PUM2-binding sites and RNA structures of varying stabilities, we observed a range of structure-dependent cooperative behaviors. To test our ability to account for this cooperativity with known physical constants, we used PUM2 affinity and nearest-neighbor RNA secondary structure predictions. Our model gave qualitative agreement for our disparate set of 68 RNAs across two temperatures, but quantitative deviations arise from overestimation of RNA structural stability. Our results demonstrate cooperativity mediated by RNA structure and underscore the power of quantitative stepwise experimental evaluation of mechanisms and computational tools.
Collapse
Affiliation(s)
- Winston R Becker
- Program in Biophysics, Stanford University, Stanford, California 94035, USA
| | - Inga Jarmoskaite
- Department of Biochemistry, Stanford University, Stanford, California 94035, USA
| | | | - William J Greenleaf
- Department of Genetics, Stanford University, Stanford, California 94035, USA
- Department of Applied Physics, Stanford University, Stanford, California 94035, USA
- Chan Zuckerberg Biohub, San Francisco, California 94158, USA
| | - Daniel Herschlag
- Department of Biochemistry, Stanford University, Stanford, California 94035, USA
- Departments of Chemical Engineering and Chemistry, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
37
|
de la Peña JBI, Song JJ, Campbell ZT. RNA control in pain: Blame it on the messenger. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 10:e1546. [PMID: 31090211 DOI: 10.1002/wrna.1546] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/17/2019] [Accepted: 04/22/2019] [Indexed: 12/12/2022]
Abstract
mRNA function is meticulously controlled. We provide an overview of the integral role that posttranscriptional controls play in the perception of painful stimuli by sensory neurons. These specialized cells, termed nociceptors, precisely regulate mRNA polarity, translation, and stability. A growing body of evidence has revealed that targeted disruption of mRNAs and RNA-binding proteins robustly diminishes pain-associated behaviors. We propose that the use of multiple independent regulatory paradigms facilitates robust temporal and spatial precision of protein expression in response to a range of pain-promoting stimuli. This article is categorized under: RNA in Disease and Development > RNA in Disease Translation > Translation Regulation RNA Turnover and Surveillance > Regulation of RNA Stability.
Collapse
Affiliation(s)
- June Bryan I de la Peña
- Department of Biological Sciences and the Center for Advanced Pain Studies, University of Texas, Dallas, Richardson, Texas
| | - Jane J Song
- Department of Biological Sciences and the Center for Advanced Pain Studies, University of Texas, Dallas, Richardson, Texas
| | - Zachary T Campbell
- Department of Biological Sciences and the Center for Advanced Pain Studies, University of Texas, Dallas, Richardson, Texas
| |
Collapse
|
38
|
Jarmoskaite I, Denny SK, Vaidyanathan PP, Becker WR, Andreasson JOL, Layton CJ, Kappel K, Shivashankar V, Sreenivasan R, Das R, Greenleaf WJ, Herschlag D. A Quantitative and Predictive Model for RNA Binding by Human Pumilio Proteins. Mol Cell 2019; 74:966-981.e18. [PMID: 31078383 DOI: 10.1016/j.molcel.2019.04.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 01/31/2019] [Accepted: 04/05/2019] [Indexed: 01/09/2023]
Abstract
High-throughput methodologies have enabled routine generation of RNA target sets and sequence motifs for RNA-binding proteins (RBPs). Nevertheless, quantitative approaches are needed to capture the landscape of RNA-RBP interactions responsible for cellular regulation. We have used the RNA-MaP platform to directly measure equilibrium binding for thousands of designed RNAs and to construct a predictive model for RNA recognition by the human Pumilio proteins PUM1 and PUM2. Despite prior findings of linear sequence motifs, our measurements revealed widespread residue flipping and instances of positional coupling. Application of our thermodynamic model to published in vivo crosslinking data reveals quantitative agreement between predicted affinities and in vivo occupancies. Our analyses suggest a thermodynamically driven, continuous Pumilio-binding landscape that is negligibly affected by RNA structure or kinetic factors, such as displacement by ribosomes. This work provides a quantitative foundation for dissecting the cellular behavior of RBPs and cellular features that impact their occupancies.
Collapse
Affiliation(s)
- Inga Jarmoskaite
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sarah K Denny
- Biophysics Program, Stanford University School of Medicine, Stanford, CA 94305, USA; Scribe Therapeutics, Berkeley, CA, 94704, USA
| | | | - Winston R Becker
- Biophysics Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Johan O L Andreasson
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Curtis J Layton
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kalli Kappel
- Biophysics Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - Raashi Sreenivasan
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Rhiju Das
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - William J Greenleaf
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Applied Physics, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| | - Daniel Herschlag
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Chemistry, Stanford University, Stanford, CA 94305, USA; Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA; ChEM-H Institute, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
39
|
Nyikó T, Auber A, Bucher E. Functional and molecular characterization of the conserved Arabidopsis PUMILIO protein, APUM9. PLANT MOLECULAR BIOLOGY 2019; 100:199-214. [PMID: 30868544 PMCID: PMC6513901 DOI: 10.1007/s11103-019-00853-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 03/01/2019] [Indexed: 05/08/2023]
Abstract
Here we demonstrate that the APUM9 RNA-binding protein and its co-factors play a role in mRNA destabilization and how this activity might regulate early plant development. APUM9 is a conserved PUF RNA-binding protein (RBP) under complex transcriptional control mediated by a transposable element (TE) that restricts its expression in Arabidopsis. Currently, little is known about the functional and mechanistic details of the plant PUF regulatory system and the biological relevance of the TE-mediated repression of APUM9 in plant development and stress responses. By combining a range of transient assays, we show here, that APUM9 binding to target transcripts can trigger their rapid decay via its conserved C-terminal RNA-binding domain. APUM9 directly interacts with DCP2, the catalytic subunit of the decapping complex and DCP2 overexpression induces rapid decay of APUM9 targeted mRNAs. We show that APUM9 negatively regulates the expression of ABA signaling genes during seed imbibition, and thereby might contribute to the switch from dormant stage to seed germination. By contrast, strong TE-mediated repression of APUM9 is important for normal plant growth in the later developmental stages. Finally, APUM9 overexpression plants show slightly enhanced heat tolerance suggesting that TE-mediated control of APUM9, might have a role not only in embryonic development, but also in plant adaptation to heat stress conditions.
Collapse
Affiliation(s)
- Tünde Nyikó
- Université d'Angers, UMR1345 Institut de Recherche en Horticulture et Semences (IRHS-INRA), 42 rue Georges Morel, 24, 49071, Beaucouzé, France
- Agricultural Biotechnology Institute, Szent-Györgyi Albert 4, Gödöllő, 2100, Hungary
| | - Andor Auber
- Agricultural Biotechnology Institute, Szent-Györgyi Albert 4, Gödöllő, 2100, Hungary
| | - Etienne Bucher
- Université d'Angers, UMR1345 Institut de Recherche en Horticulture et Semences (IRHS-INRA), 42 rue Georges Morel, 24, 49071, Beaucouzé, France.
| |
Collapse
|
40
|
Bhat VD, McCann KL, Wang Y, Fonseca DR, Shukla T, Alexander JC, Qiu C, Wickens M, Lo TW, Tanaka Hall TM, Campbell ZT. Engineering a conserved RNA regulatory protein repurposes its biological function in vivo. eLife 2019; 8:43788. [PMID: 30652968 PMCID: PMC6351103 DOI: 10.7554/elife.43788] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 01/15/2019] [Indexed: 12/18/2022] Open
Abstract
PUF (PUmilio/FBF) RNA-binding proteins recognize distinct elements. In C. elegans, PUF-8 binds to an 8-nt motif and restricts proliferation in the germline. Conversely, FBF-2 recognizes a 9-nt element and promotes mitosis. To understand how motif divergence relates to biological function, we first determined a crystal structure of PUF-8. Comparison of this structure to that of FBF-2 revealed a major difference in a central repeat. We devised a modified yeast 3-hybrid screen to identify mutations that confer recognition of an 8-nt element to FBF-2. We identified several such mutants and validated structurally and biochemically their binding to 8-nt RNA elements. Using genome engineering, we generated a mutant animal with a substitution in FBF-2 that confers preferential binding to the PUF-8 element. The mutant largely rescued overproliferation in animals that spontaneously generate tumors in the absence of puf-8. This work highlights the critical role of motif length in the specification of biological function.
Collapse
Affiliation(s)
- Vandita D Bhat
- Department of Biological Sciences, University of Texas Dallas, Richardson, United States
| | - Kathleen L McCann
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, United States
| | - Yeming Wang
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, United States
| | | | - Tarjani Shukla
- Department of Biological Sciences, University of Texas Dallas, Richardson, United States
| | | | - Chen Qiu
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, United States
| | - Marv Wickens
- Department of Biochemistry, University of Wisconsin-Madison, Madison, United States
| | - Te-Wen Lo
- Department of Biology, Ithaca College, Ithaca, United States
| | - Traci M Tanaka Hall
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, United States
| | - Zachary T Campbell
- Department of Biological Sciences, University of Texas Dallas, Richardson, United States
| |
Collapse
|
41
|
Porter DF, Prasad A, Carrick BH, Kroll-Connor P, Wickens M, Kimble J. Toward Identifying Subnetworks from FBF Binding Landscapes in Caenorhabditis Spermatogenic or Oogenic Germlines. G3 (BETHESDA, MD.) 2019; 9:153-165. [PMID: 30459181 PMCID: PMC6325917 DOI: 10.1534/g3.118.200300] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 11/09/2018] [Indexed: 12/31/2022]
Abstract
Metazoan PUF (Pumilio and FBF) RNA-binding proteins regulate various biological processes, but a common theme across phylogeny is stem cell regulation. In Caenorhabditis elegans, FBF (fem-3 Binding Factor) maintains germline stem cells regardless of which gamete is made, but FBF also functions in the process of spermatogenesis. We have begun to "disentangle" these biological roles by asking which FBF targets are gamete-independent, as expected for stem cells, and which are gamete-specific. Specifically, we compared FBF iCLIP binding profiles in adults making sperm to those making oocytes. Normally, XX adults make oocytes. To generate XX adults making sperm, we used a fem-3(gf) mutant requiring growth at 25°; for comparison, wild-type oogenic hermaphrodites were also raised at 25°. Our FBF iCLIP data revealed FBF binding sites in 1522 RNAs from oogenic adults and 1704 RNAs from spermatogenic adults. More than half of these FBF targets were independent of germline gender. We next clustered RNAs by FBF-RNA complex frequencies and found four distinct blocks. Block I RNAs were enriched in spermatogenic germlines, and included validated target fog-3, while Block II and III RNAs were common to both genders, and Block IV RNAs were enriched in oogenic germlines. Block II (510 RNAs) included almost all validated FBF targets and was enriched for cell cycle regulators. Block III (21 RNAs) was enriched for RNA-binding proteins, including previously validated FBF targets gld-1 and htp-1 We suggest that Block I RNAs belong to the FBF network for spermatogenesis, and that Blocks II and III are associated with stem cell functions.
Collapse
Affiliation(s)
- Douglas F Porter
- Department of Biochemistry, University of Wisconsin-Madison, Wisconsin 53706
| | - Aman Prasad
- Department of Biochemistry, University of Wisconsin-Madison, Wisconsin 53706
| | - Brian H Carrick
- Department of Biochemistry, University of Wisconsin-Madison, Wisconsin 53706
| | - Peggy Kroll-Connor
- Howard Hughes Medical Institute, University of Wisconsin-Madison, Wisconsin 53706
| | - Marvin Wickens
- Department of Biochemistry, University of Wisconsin-Madison, Wisconsin 53706
| | - Judith Kimble
- Department of Biochemistry, University of Wisconsin-Madison, Wisconsin 53706
- Howard Hughes Medical Institute, University of Wisconsin-Madison, Wisconsin 53706
| |
Collapse
|
42
|
Qiu C, Bhat VD, Rajeev S, Zhang C, Lasley AE, Wine RN, Campbell ZT, Hall TMT. A crystal structure of a collaborative RNA regulatory complex reveals mechanisms to refine target specificity. eLife 2019; 8:48968. [PMID: 31397673 PMCID: PMC6697444 DOI: 10.7554/elife.48968] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 08/09/2019] [Indexed: 01/09/2023] Open
Abstract
In the Caenorhabditis elegans germline, fem-3 Binding Factor (FBF) partners with LST-1 to maintain stem cells. A crystal structure of an FBF-2/LST-1/RNA complex revealed that FBF-2 recognizes a short RNA motif different from the characteristic 9-nt FBF binding element, and compact motif recognition coincided with curvature changes in the FBF-2 scaffold. Previously, we engineered FBF-2 to favor recognition of shorter RNA motifs without curvature change (Bhat et al., 2019). In vitro selection of RNAs bound by FBF-2 suggested sequence specificity in the central region of the compact element. This bias, reflected in the crystal structure, was validated in RNA-binding assays. FBF-2 has the intrinsic ability to bind to this shorter motif. LST-1 weakens FBF-2 binding affinity for short and long motifs, which may increase target selectivity. Our findings highlight the role of FBF scaffold flexibility in RNA recognition and suggest a new mechanism by which protein partners refine target site selection.
Collapse
Affiliation(s)
- Chen Qiu
- Epigenetics and Stem Cell Biology LaboratoryNational Institute of Environmental Health Sciences, National Institutes of HealthResearch Triangle ParkUnited States
| | - Vandita D Bhat
- Department of Biological SciencesUniversity of Texas at DallasRichardsonUnited States
| | - Sanjana Rajeev
- Department of Biological SciencesUniversity of Texas at DallasRichardsonUnited States
| | - Chi Zhang
- Department of Biological SciencesUniversity of Texas at DallasRichardsonUnited States
| | - Alexa E Lasley
- Department of Biological SciencesUniversity of Texas at DallasRichardsonUnited States
| | - Robert N Wine
- Epigenetics and Stem Cell Biology LaboratoryNational Institute of Environmental Health Sciences, National Institutes of HealthResearch Triangle ParkUnited States
| | - Zachary T Campbell
- Department of Biological SciencesUniversity of Texas at DallasRichardsonUnited States
| | - Traci M Tanaka Hall
- Epigenetics and Stem Cell Biology LaboratoryNational Institute of Environmental Health Sciences, National Institutes of HealthResearch Triangle ParkUnited States
| |
Collapse
|
43
|
Preparation of cooperative RNA recognition complexes for crystallographic structural studies. Methods Enzymol 2019; 623:1-22. [PMID: 31239042 PMCID: PMC6697268 DOI: 10.1016/bs.mie.2019.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
It is essential that mRNA-binding proteins recognize specific motifs in target mRNAs to control their processing, localization, and expression. Although mRNAs are typically targets of many different regulatory factors, our understanding of how they work together is limited. In some cases, RNA-binding proteins work cooperatively to regulate an mRNA target. A classic example is Drosophila melanogaster Pumilio (Pum) and Nanos (Nos). Pum is a sequence-specific RNA-binding protein. Nos also binds RNA, but interaction with some targets requires Pum to bind first. We recently determined crystal structures of complexes of Pum and Nos with two different target RNA sequences. A crystal structure in complex with the hunchback mRNA element showed how Pum and Nos together can recognize an extended RNA sequence with Nos binding to an A/U-rich sequence 5' of the Pum sequence element. Nos also enables recognition of elements that contain an A/U-rich 5' sequence, but imperfectly match the Pum sequence element. We determined a crystal structure of Pum and Nos in complex with the Cyclin B mRNA element, which demonstrated how Nos clamps the Pum-RNA complex and enables recognition of the imperfect element. Here, we describe methods for expression and purification of stable Pum-Nos-RNA complexes for crystallization, details of the crystallization and structure determination, and guidance on how to analyze protein-RNA structures and evaluate structure-driven hypotheses. We aim to provide tips and guidance that can be applied to other protein-RNA complexes. With hundreds of mRNA-binding proteins identified, combinatorial control is likely to be common, and much work remains to understand them structurally.
Collapse
|
44
|
Specificity landscapes unmask submaximal binding site preferences of transcription factors. Proc Natl Acad Sci U S A 2018; 115:E10586-E10595. [PMID: 30341220 DOI: 10.1073/pnas.1811431115] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
We have developed Differential Specificity and Energy Landscape (DiSEL) analysis to comprehensively compare DNA-protein interactomes (DPIs) obtained by high-throughput experimental platforms and cutting edge computational methods. While high-affinity DNA binding sites are identified by most methods, DiSEL uncovered nuanced sequence preferences displayed by homologous transcription factors. Pairwise analysis of 726 DPIs uncovered homolog-specific differences at moderate- to low-affinity binding sites (submaximal sites). DiSEL analysis of variants of 41 transcription factors revealed that many disease-causing mutations result in allele-specific changes in binding site preferences. We focused on a set of highly homologous factors that have different biological roles but "read" DNA using identical amino acid side chains. Rather than direct readout, our results indicate that DNA noncontacting side chains allosterically contribute to sculpt distinct sequence preferences among closely related members of transcription factor families.
Collapse
|
45
|
Kulandaisamy A, Srivastava A, Kumar P, Nagarajan R, Priya SB, Gromiha MM. Identification and Analysis of Key Residues in Protein-RNA Complexes. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2018; 15:1436-1444. [PMID: 29993582 DOI: 10.1109/tcbb.2018.2834387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Protein-RNA complexes play important roles in various biological processes. The functions of protein-RNA complexes are dictated by their interactions, binding, stability, and affinity. In this work, we have identified the key residues (KRs), which are involved in both stability and binding. We found that 42 percent of considered proteins share common binding and stabilizing residues, whereas these residues are distinct in 58 percent of the proteins. Overall, 5 percent of stabilizing and 3 percent of binding residues serve as key residues. These residues are enriched with the combination of polar, charged, aliphatic, and aromatic residues. Analysis on subclasses of protein-RNA complexes based on protein structural class, function and RNA type showed that regulatory proteins, and complexes with single stranded RNA and rRNA have appreciable number of key residues. Specifically, Arg, Tyr, and Thr are preferred in most of the subclasses of protein-RNA complexes. In addition, residues with similar chemical behavior have different preferences to be KRs, such that Arg, Tyr, Val, and Thr are preferred over Lys, Trp, Ile, and Ser, respectively. Atomic level contacts revealed that charged and polar-nonpolar contacts are dominant in enzymes, polar in structural, and nonpolar in regulatory proteins. On the other hand, polar-nonpolar contacts are enriched in all these classes of protein-RNA complexes. Further, the influence of sequence and structural features such as conservation score, surrounding hydrophobicity, solvent accessibility, secondary structure, and long-range order in key residues are also discussed. We envisage that the present study provides insights to understand the structural and functional aspects of protein-RNA complexes.
Collapse
|
46
|
Donlic A, Hargrove AE. Targeting RNA in mammalian systems with small molecules. WILEY INTERDISCIPLINARY REVIEWS. RNA 2018; 9:e1477. [PMID: 29726113 PMCID: PMC6002909 DOI: 10.1002/wrna.1477] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/06/2018] [Accepted: 03/06/2018] [Indexed: 12/18/2022]
Abstract
The recognition of RNA functions beyond canonical protein synthesis has challenged the central dogma of molecular biology. Indeed, RNA is now known to directly regulate many important cellular processes, including transcription, splicing, translation, and epigenetic modifications. The misregulation of these processes in disease has led to an appreciation of RNA as a therapeutic target. This potential was first recognized in bacteria and viruses, but discoveries of new RNA classes following the sequencing of the human genome have invigorated exploration of its disease-related functions in mammals. As stable structure formation is evolving as a hallmark of mammalian RNAs, the prospect of utilizing small molecules to specifically probe the function of RNA structural domains and their interactions is gaining increased recognition. To date, researchers have discovered bioactive small molecules that modulate phenotypes by binding to expanded repeats, microRNAs, G-quadruplex structures, and RNA splice sites in neurological disorders, cancers, and other diseases. The lessons learned from achieving these successes both call for additional studies and encourage exploration of the plethora of mammalian RNAs whose precise mechanisms of action remain to be elucidated. Efforts toward understanding fundamental principles of small molecule-RNA recognition combined with advances in methodology development should pave the way toward targeting emerging RNA classes such as long noncoding RNAs. Together, these endeavors can unlock the full potential of small molecule-based probing of RNA-regulated processes and enable us to discover new biology and underexplored avenues for therapeutic intervention in human disease. This article is categorized under: RNA Methods > RNA Analyses In Vitro and In Silico RNA Interactions with Proteins and Other Molecules > Small Molecule-RNA Interactions RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Anita Donlic
- Department of Chemistry, Duke University, Durham, North Carolina
| | - Amanda E Hargrove
- Department of Chemistry, Duke University, Durham, North Carolina
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
47
|
Global pairwise RNA interaction landscapes reveal core features of protein recognition. Nat Commun 2018; 9:2511. [PMID: 29955037 PMCID: PMC6023938 DOI: 10.1038/s41467-018-04729-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 05/16/2018] [Indexed: 01/14/2023] Open
Abstract
RNA–protein interactions permeate biology. Transcription, translation, and splicing all hinge on the recognition of structured RNA elements by RNA-binding proteins. Models of RNA–protein interactions are generally limited to short linear motifs and structures because of the vast sequence sampling required to access longer elements. Here, we develop an integrated approach that calculates global pairwise interaction scores from in vitro selection and high-throughput sequencing. We examine four RNA-binding proteins of phage, viral, and human origin. Our approach reveals regulatory motifs, discriminates between regulated and non-regulated RNAs within their native genomic context, and correctly predicts the consequence of mutational events on binding activity. We design binding elements that improve binding activity in cells and infer mutational pathways that reveal permissive versus disruptive evolutionary trajectories between regulated motifs. These coupling landscapes are broadly applicable for the discovery and characterization of protein–RNA recognition at single nucleotide resolution. RNA–protein interactions often depend on the recognition of extended RNA elements but the identification of these motifs is challenging. Here, the authors present a global integrated approach to analyze RNA–protein binding landscapes, mapping extended RNA interaction motifs for four RNA-binding proteins.
Collapse
|
48
|
Barragán-Iglesias P, Lou TF, Bhat VD, Megat S, Burton MD, Price TJ, Campbell ZT. Inhibition of Poly(A)-binding protein with a synthetic RNA mimic reduces pain sensitization in mice. Nat Commun 2018; 9:10. [PMID: 29295980 PMCID: PMC5750225 DOI: 10.1038/s41467-017-02449-5] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 11/30/2017] [Indexed: 12/26/2022] Open
Abstract
Nociceptors rely on cap-dependent translation to rapidly induce protein synthesis in response to pro-inflammatory signals. Comparatively little is known regarding the role of the regulatory factors bound to the 3' end of mRNA in nociceptor sensitization. Poly(A)-binding protein (PABP) stimulates translation initiation by bridging the Poly(A) tail to the eukaryotic initiation factor 4F complex associated with the mRNA cap. Here, we use unbiased assessment of PABP binding specificity to generate a chemically modified RNA-based competitive inhibitor of PABP. The resulting RNA mimic, which we designated as the Poly(A) SPOT-ON, is more stable than unmodified RNA and binds PABP with high affinity and selectivity in vitro. We show that injection of the Poly(A) SPOT-ON at the site of an injury can attenuate behavioral response to pain. Collectively, these results suggest that PABP is integral for nociceptive plasticity. The general strategy described here provides a broad new source of mechanism-based inhibitors for RNA-binding proteins and is applicable for in vivo studies.
Collapse
Affiliation(s)
| | - Tzu-Fang Lou
- Department of Biological Sciences, University of Texas Dallas, Richardson, TX, 75080, USA
| | - Vandita D Bhat
- Department of Biological Sciences, University of Texas Dallas, Richardson, TX, 75080, USA
| | - Salim Megat
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Michael D Burton
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Theodore J Price
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, 75080, USA.
| | - Zachary T Campbell
- Department of Biological Sciences, University of Texas Dallas, Richardson, TX, 75080, USA.
| |
Collapse
|
49
|
Shin H, Haupt KA, Kershner AM, Kroll-Conner P, Wickens M, Kimble J. SYGL-1 and LST-1 link niche signaling to PUF RNA repression for stem cell maintenance in Caenorhabditis elegans. PLoS Genet 2017; 13:e1007121. [PMID: 29232700 PMCID: PMC5741267 DOI: 10.1371/journal.pgen.1007121] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 12/22/2017] [Accepted: 11/20/2017] [Indexed: 01/14/2023] Open
Abstract
Central questions in regenerative biology include how stem cells are maintained and how they transition from self-renewal to differentiation. Germline stem cells (GSCs) in Caeno-rhabditis elegans provide a tractable in vivo model to address these questions. In this system, Notch signaling and PUF RNA binding proteins, FBF-1 and FBF-2 (collectively FBF), maintain a pool of GSCs in a naïve state. An open question has been how Notch signaling modulates FBF activity to promote stem cell self-renewal. Here we report that two Notch targets, SYGL-1 and LST-1, link niche signaling to FBF. We find that SYGL-1 and LST-1 proteins are cytoplasmic and normally restricted to the GSC pool region. Increasing the distribution of SYGL-1 expands the pool correspondingly, and vast overexpression of either SYGL-1 or LST-1 generates a germline tumor. Thus, SYGL-1 and LST-1 are each sufficient to drive "stemness" and their spatial restriction prevents tumor formation. Importantly, SYGL-1 and LST-1 can only drive tumor formation when FBF is present. Moreover, both proteins interact physically with FBF, and both are required to repress a signature FBF mRNA target. Together, our results support a model in which SYGL-1 and LST-1 form a repressive complex with FBF that is crucial for stem cell maintenance. We further propose that progression from a naïve stem cell state to a state primed for differentiation relies on loss of SYGL-1 and LST-1, which in turn relieves FBF target RNAs from repression. Broadly, our results provide new insights into the link between niche signaling and a downstream RNA regulatory network and how this circuitry governs the balance between self-renewal and differentiation.
Collapse
Affiliation(s)
- Heaji Shin
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Kimberly A. Haupt
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Aaron M. Kershner
- Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Peggy Kroll-Conner
- Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Marvin Wickens
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Judith Kimble
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
50
|
Lapointe CP, Preston MA, Wilinski D, Saunders HAJ, Campbell ZT, Wickens M. Architecture and dynamics of overlapped RNA regulatory networks. RNA (NEW YORK, N.Y.) 2017; 23:1636-1647. [PMID: 28768715 PMCID: PMC5648032 DOI: 10.1261/rna.062687.117] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 07/28/2017] [Indexed: 06/07/2023]
Abstract
A single protein can bind and regulate many mRNAs. Multiple proteins with similar specificities often bind and control overlapping sets of mRNAs. Yet little is known about the architecture or dynamics of overlapped networks. We focused on three proteins with similar structures and related RNA-binding specificities-Puf3p, Puf4p, and Puf5p of S. cerevisiae Using RNA Tagging, we identified a "super-network" comprised of four subnetworks: Puf3p, Puf4p, and Puf5p subnetworks, and one controlled by both Puf4p and Puf5p. The architecture of individual subnetworks, and thus the super-network, is determined by competition among particular PUF proteins to bind mRNAs, their affinities for binding elements, and the abundances of the proteins. The super-network responds dramatically: The remaining network can either expand or contract. These strikingly opposite outcomes are determined by an interplay between the relative abundance of the RNAs and proteins, and their affinities for one another. The diverse interplay between overlapping RNA-protein networks provides versatile opportunities for regulation and evolution.
Collapse
Affiliation(s)
- Christopher P Lapointe
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Melanie A Preston
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Daniel Wilinski
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Harriet A J Saunders
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Zachary T Campbell
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Marvin Wickens
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|