1
|
Feng L, Shu HP, Sun LL, Tu YC, Liao QQ, Yao LJ. Role of the SLIT-ROBO signaling pathway in renal pathophysiology and various renal diseases. Front Physiol 2023; 14:1226341. [PMID: 37497439 PMCID: PMC10366692 DOI: 10.3389/fphys.2023.1226341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 06/30/2023] [Indexed: 07/28/2023] Open
Abstract
SLIT ligand and its receptor ROBO were initially recognized for their role in axon guidance in central nervous system development. In recent years, as research has advanced, the role of the SLIT-ROBO signaling pathway has gradually expanded from axonal repulsion to cell migration, tumor development, angiogenesis, and bone metabolism. As a secreted protein, SLIT regulates various pathophysiological processes in the kidney, such as proinflammatory responses and fibrosis progression. Many studies have shown that SLIT-ROBO is extensively involved in various aspects of kidney development and maintenance of structure and function. The SLIT-ROBO signaling pathway also plays an important role in different types of kidney disease. This article reviews the advances in the study of the SLIT-ROBO pathway in various renal pathophysiological and kidney disorders and proposes new directions for further research in this field.
Collapse
|
2
|
Yuan N, Wang X, He M. Robo2 promotes osteoblast differentiation and mineralization through autophagy and is activated by parathyroid hormone induction. Ann Anat 2023; 248:152070. [PMID: 36801365 DOI: 10.1016/j.aanat.2023.152070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/03/2023] [Accepted: 02/03/2023] [Indexed: 02/18/2023]
Abstract
BACKGROUND As a systemic skeletal disorder, osteoporosis can increase fracture risk. This study wants to discuss the mechanism of osteoporosis and find possible molecular therapy. Bone morphogenetic protein 2 (BMP2) was utilized to stimulate MC3T3-E1 to establish a cellular osteoporosis model in vitro. METHODS Initially, the viability of BMP2-induced MC3T3-E1 was assessed with a Cell counting kit-8 (CCK-8) assay. By real-time quantitative PCR (RT-qPCR) and western blot, Robo2 expression after roundabout (Robo) silencing or overexpression was estimated. Besides, alkaline phosphatase (ALP) expression, mineralization level and LC3II green fluorescent protein (GFP) expression were evaluated using ALP assay, Alizarin red staining and immunofluorescence staining, separately. Additionally, the expression of proteins related to osteoblast differentiation and autophagy was analyzed by RT-qPCR and western blot. Then, following autophagy inhibitor 3-methyladenine (3-MA) treatment, osteoblast differentiation and mineralization were measured again. RESULTS MC3T3-E1 cells were differentiated into osteoblasts under BMP2 induction and Robo2 expression was greatly ascended. After Robo2 silencing, Robo2 expression was markedly diminished. ALP activity and mineralization level in BMP2-induced MC3T3-E1 cells were declined after depleting Robo2. Robo2 expression was conspicuously enhanced after overexpressing Robo2. Robo2 overexpression promoted the differentiation and mineralization of BMP2-induced MC3T3-E1 cells. Rescue experiments revealed that Robo2 silence and its overexpression could regulate the autophagy of BMP2-stimulated MC3T3-E1 cells. After 3-MA treatment, the increased ALP activity and mineralization level of BMP2-induced MC3T3-E1 cells with Robo2 upregulation were reduced. Furthermore, parathyroid hormone 1-34 (PTH1-34) treatment enhanced the expression of ALP, Robo2, LC3II and Beclin-1 and reduced the levels of LC3I and p62 of MC3T3-E1 cells concentration-dependently. CONCLUSION Collectively, Robo2, which was activated by PTH1-34, promoted osteoblast differentiation and mineralization through autophagy.
Collapse
Affiliation(s)
- Ning Yuan
- Department of Endocrinology, Nanchong Central Hospital, Nanchong, Sichuan 637000, China.
| | - Xiaojuan Wang
- Department of Endocrinology, Nanchong Central Hospital, Nanchong, Sichuan 637000, China
| | - Minghai He
- Department of Endocrinology, Nanchong Central Hospital, Nanchong, Sichuan 637000, China
| |
Collapse
|
3
|
A slit-diaphragm-associated protein network for dynamic control of renal filtration. Nat Commun 2022; 13:6446. [PMID: 36307401 PMCID: PMC9616960 DOI: 10.1038/s41467-022-33748-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 09/29/2022] [Indexed: 12/25/2022] Open
Abstract
The filtration of blood in the kidney which is crucial for mammalian life is determined by the slit-diaphragm, a cell-cell junction between the foot processes of renal podocytes. The slit-diaphragm is thought to operate as final barrier or as molecular sensor of renal filtration. Using high-resolution proteomic analysis of slit-diaphragms affinity-isolated from rodent kidney, we show that the native slit-diaphragm is built from the junction-forming components Nephrin, Neph1 and Podocin and a co-assembled high-molecular weight network of proteins. The network constituents cover distinct classes of proteins including signaling-receptors, kinases/phosphatases, transporters and scaffolds. Knockout or knock-down of either the core components or the selected network constituents tyrosine kinase MER (MERTK), atrial natriuretic peptide-receptor C (ANPRC), integral membrane protein 2B (ITM2B), membrane-associated guanylate-kinase, WW and PDZ-domain-containing protein1 (MAGI1) and amyloid protein A4 resulted in target-specific impairment or disruption of the filtration process. Our results identify the slit-diaphragm as a multi-component system that is endowed with context-dependent dynamics via a co-assembled protein network.
Collapse
|
4
|
The Role of miR-217-5p in the Puromycin Aminonucleoside-Induced Morphological Change of Podocytes. Noncoding RNA 2022; 8:ncrna8030043. [PMID: 35736640 PMCID: PMC9229466 DOI: 10.3390/ncrna8030043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/06/2022] [Accepted: 06/06/2022] [Indexed: 11/24/2022] Open
Abstract
Podocytes, alternatively called glomerular epithelial cells, are terminally differentiated cells that wrap around glomerular capillaries and function as a part of the glomerular filtration barrier in the kidney. Therefore, podocyte injury with morphological alteration and detachment from glomerular capillaries leads to severe proteinuria and subsequent renal failure through glomerulosclerosis. Previous RNA sequencing analysis of primary rat podocytes exposed to puromycin aminonucleoside (PAN), a well-known experimental model of injured podocytes, identified several transcripts as being aberrantly expressed. However, how the expression of these transcripts is regulated remains unclear. MicroRNAs (miRNAs) are small noncoding RNAs that posttranscriptionally inhibit the expression of their target transcripts. In this study, using small RNA sequencing analysis, miR-217-5p was identified as the most upregulated transcript in PAN-treated rat podocytes. MiR-217-5p overexpression in E11 podocyte cells led to shrunken cells with abnormal actin cytoskeletons. Consistent with these changes in cell morphology, gene ontology (GO) enrichment analysis showed that interactive GO terms related to cell morphogenesis were enriched with the predicted targets of miR-217-5p. Of the predicted targets highly downregulated by PAN, Myosin 1d (Myo1d) is a nonmuscle myosin predicted to be involved in actin filament organization and thought to play a role in podocyte morphogenesis and injury. We demonstrated that miR-217-5p targets Myo1d by luciferase assays, qRT–PCR, and Western blotting. Furthermore, we showed that miR-217-5p was present in urine from PAN- but not saline-administrated rats. Taken together, our data suggest that miR-217-5p may serve as a therapeutic target and a biomarker for podocyte injury.
Collapse
|
5
|
Bais AS, Cerqueira DM, Clugston A, Bodnar AJ, Ho J, Kostka D. Single-cell RNA sequencing reveals differential cell cycle activity in key cell populations during nephrogenesis. Sci Rep 2021; 11:22434. [PMID: 34789782 PMCID: PMC8599654 DOI: 10.1038/s41598-021-01790-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 10/27/2021] [Indexed: 02/08/2023] Open
Abstract
The kidney is a complex organ composed of more than 30 terminally differentiated cell types that all are required to perform its numerous homeostatic functions. Defects in kidney development are a significant cause of chronic kidney disease in children, which can lead to kidney failure that can only be treated by transplant or dialysis. A better understanding of molecular mechanisms that drive kidney development is important for designing strategies to enhance renal repair and regeneration. In this study, we profiled gene expression in the developing mouse kidney at embryonic day 14.5 at single-cell resolution. Consistent with previous studies, clusters with distinct transcriptional signatures clearly identify major compartments and cell types of the developing kidney. Cell cycle activity distinguishes between the "primed" and "self-renewing" sub-populations of nephron progenitors, with increased expression of the cell cycle-related genes Birc5, Cdca3, Smc2 and Smc4 in "primed" nephron progenitors. In addition, augmented expression of cell cycle related genes Birc5, Cks2, Ccnb1, Ccnd1 and Tuba1a/b was detected in immature distal tubules, suggesting cell cycle regulation may be required for early events of nephron patterning and tubular fusion between the distal nephron and collecting duct epithelia.
Collapse
Affiliation(s)
- Abha S Bais
- Department of Developmental Biology, Rangos Research Center 8117, University of Pittsburgh School of Medicine, 530 45th St, Pittsburgh, PA, 15224, USA
| | - Débora M Cerqueira
- Rangos Research Center, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
- Division of Nephrology, Department of Pediatrics, Rangos Research Center 5127, University of Pittsburgh School of Medicine, 530 45th St, Pittsburgh, PA, 15224, USA
| | - Andrew Clugston
- Department of Developmental Biology, Rangos Research Center 8117, University of Pittsburgh School of Medicine, 530 45th St, Pittsburgh, PA, 15224, USA
- Rangos Research Center, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
- Division of Nephrology, Department of Pediatrics, Rangos Research Center 5127, University of Pittsburgh School of Medicine, 530 45th St, Pittsburgh, PA, 15224, USA
| | - Andrew J Bodnar
- Rangos Research Center, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
- Division of Nephrology, Department of Pediatrics, Rangos Research Center 5127, University of Pittsburgh School of Medicine, 530 45th St, Pittsburgh, PA, 15224, USA
| | - Jacqueline Ho
- Rangos Research Center, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA.
- Division of Nephrology, Department of Pediatrics, Rangos Research Center 5127, University of Pittsburgh School of Medicine, 530 45th St, Pittsburgh, PA, 15224, USA.
| | - Dennis Kostka
- Department of Developmental Biology, Rangos Research Center 8117, University of Pittsburgh School of Medicine, 530 45th St, Pittsburgh, PA, 15224, USA.
- Department of Computational and Systems Biology and Pittsburgh Center for Evolutionary Biology and Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
6
|
Marciano DK. The Bloody Mystery of Glomerular Tuft Development. J Am Soc Nephrol 2021; 32:2104-2106. [PMID: 34465603 PMCID: PMC8729830 DOI: 10.1681/asn.2021070900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- Denise K Marciano
- Department of Internal Medicine (Nephrology) and Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
7
|
Li J, Geraldo LH, Dubrac A, Zarkada G, Eichmann A. Slit2-Robo Signaling Promotes Glomerular Vascularization and Nephron Development. J Am Soc Nephrol 2021; 32:2255-2272. [PMID: 34341180 PMCID: PMC8729857 DOI: 10.1681/asn.2020111640] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 04/22/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Kidney function requires continuous blood filtration by glomerular capillaries. Disruption of glomerular vascular development or maintenance contributes to the pathogenesis of kidney diseases, but the signaling events regulating renal endothelium development remain incompletely understood. Here, we discovered a novel role of Slit2-Robo signaling in glomerular vascularization. Slit2 is a secreted polypeptide that binds to transmembrane Robo receptors and regulates axon guidance as well as ureteric bud branching and angiogenesis. METHODS We performed Slit2-alkaline phosphatase binding to kidney cryosections from mice with or without tamoxifen-inducible Slit2 or Robo1 and -2 deletions, and we characterized the phenotypes using immunohistochemistry, electron microscopy, and functional intravenous dye perfusion analysis. RESULTS Only the glomerular endothelium, but no other renal endothelial compartment, responded to Slit2 in the developing kidney vasculature. Induced Slit2 gene deletion or Slit2 ligand trap at birth affected nephrogenesis and inhibited vascularization of developing glomeruli by reducing endothelial proliferation and migration, leading to defective cortical glomerular perfusion and abnormal podocyte differentiation. Global and endothelial-specific Robo deletion showed that both endothelial and epithelial Robo receptors contributed to glomerular vascularization. CONCLUSIONS Our study provides new insights into the signaling pathways involved in glomerular vascular development and identifies Slit2 as a potential tool to enhance glomerular angiogenesis.
Collapse
Affiliation(s)
- Jinyu Li
- Department of Cellular and Molecular Physiology, Yale University Medical School, New Haven, Connecticut
- Cardiovascular Research Center, Department of Internal Medicine, Yale University, New Haven, Connecticut
| | - Luiz Henrique Geraldo
- Cardiovascular Research Center, Department of Internal Medicine, Yale University, New Haven, Connecticut
- Université de Paris, Paris Cardiovascular Research Center, Institut National de la Santé et de la Recherche Médicale U907, Paris, France
| | - Alexandre Dubrac
- Cardiovascular Research Center, Department of Internal Medicine, Yale University, New Haven, Connecticut
| | - Georgia Zarkada
- Cardiovascular Research Center, Department of Internal Medicine, Yale University, New Haven, Connecticut
| | - Anne Eichmann
- Department of Cellular and Molecular Physiology, Yale University Medical School, New Haven, Connecticut
- Cardiovascular Research Center, Department of Internal Medicine, Yale University, New Haven, Connecticut
- Université de Paris, Paris Cardiovascular Research Center, Institut National de la Santé et de la Recherche Médicale U907, Paris, France
| |
Collapse
|
8
|
Lim CN, Kantaridis C, Huyghe I, Gorman D, Berasi S, Sonnenberg GE. A Phase 1 first-in-human study of the safety, tolerability, and pharmacokinetics of the ROBO2 fusion protein PF-06730512 in healthy participants. Pharmacol Res Perspect 2021; 9:e00813. [PMID: 34369667 PMCID: PMC8351251 DOI: 10.1002/prp2.813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/28/2021] [Accepted: 05/05/2021] [Indexed: 11/15/2022] Open
Abstract
Proteinuria associated with podocyte effacement is a hallmark of focal segmental glomerulosclerosis (FSGS). Preclinical studies implicated ROBO2/SLIT2 signaling in the regulation of podocyte adhesion, and inhibition of this pathway is a novel target to slow FSGS disease progression. This first-in-human dose-escalation study evaluated the safety, tolerability, pharmacokinetics, and immunogenicity of PF-06730512, an Fc fusion protein that targets the ROBO2/SLIT2 pathway, in healthy adults. In this Phase 1, double-blind, sponsor-open study, single ascending dose (SAD) cohorts were randomized to receive up to 1000 mg or placebo intravenously (IV); multiple ascending dose (MAD) cohorts were randomized to receive up to 400 mg subcutaneous (SC) doses, 1000 mg IV dose, or matching placebo. Safety evaluations were performed up to 71 (SAD) and 113 (MAD) days after dosing; blood samples were collected to measure serum PF-06730512 concentrations and antidrug antibodies (ADA) to PF-06730512. Seventy-nine participants (SAD, 47; MAD, 32) were enrolled. There were 108 mild (SAD, 46; MAD, 62) and 21 moderate (SAD, 13; MAD, 8) treatment-emergent adverse events (TEAEs); no deaths, treatment-related serious AEs, severe TEAEs, or infusion reactions were reported. PF-06730512 exposure generally increased in an approximately dose-proportional manner; mean t1/2 ranged from 12-15 days across 50-1000 mg doses. Immunogenicity incidence was low (SAD, 0 ADA+; MAD, 2 ADA+). In conclusion, single IV doses of PF-06730512 up to 1000 mg and multiple IV and SC dosing up to 1000 and 400 mg, respectively, were safe and well tolerated in healthy participants. Further trials in patients with FSGS are warranted. Clinical trial registration: Clinicaltrials.gov: NCT03146065.
Collapse
|
9
|
Aminophylline modulates the permeability of endothelial cells via the Slit2-Robo4 pathway in lipopolysaccharide-induced inflammation. Exp Ther Med 2021; 22:1042. [PMID: 34373728 PMCID: PMC8343459 DOI: 10.3892/etm.2021.10474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 06/30/2021] [Indexed: 12/13/2022] Open
Abstract
Sepsis and septic shock are the main cause of mortality in intensive care units. The prevention and treatment of sepsis remains a significant challenge worldwide. The endothelial cell barrier plays a critical role in the development of sepsis. Aminophylline, a non-selective phosphodiesterase inhibitor, has been demonstrated to reduce endothelial cell permeability. However, little is known regarding the role of aminophylline in regulating vascular permeability during sepsis, as well as the potential underlying mechanisms. In the present study, the Slit2/Robo4 signaling pathway, the downstream protein, vascular endothelial (VE)-cadherin and endothelial cell permeability were investigated in a lipopolysaccharide (LPS)-induced inflammation model. It was indicated that, in human umbilical vein endothelial cells (HUVECs), LPS downregulated Slit2, Robo4 and VE-cadherin protein expression levels and, as expected, increased endothelial cell permeability in vitro during inflammation. After administration of aminophylline, the protein expression levels of Slit2, Robo4 and VE-cadherin were upregulated and endothelial cell permeability was significantly improved. These results suggested that the permeability of endothelial cells could be mediated by VE-cadherin via the Slit2/Robo4 signaling pathway. Aminophylline reduced endothelial permeability in a LPS-induced inflammation model. Therefore, aminophylline may represent a promising candidate for modulating vascular permeability induced by inflammation or sepsis.
Collapse
|
10
|
Daehn IS, Duffield JS. The glomerular filtration barrier: a structural target for novel kidney therapies. Nat Rev Drug Discov 2021; 20:770-788. [PMID: 34262140 PMCID: PMC8278373 DOI: 10.1038/s41573-021-00242-0] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2021] [Indexed: 12/19/2022]
Abstract
Loss of normal kidney function affects more than 10% of the population and contributes to morbidity and mortality. Kidney diseases are currently treated with immunosuppressive agents, antihypertensives and diuretics with partial but limited success. Most kidney disease is characterized by breakdown of the glomerular filtration barrier (GFB). Specialized podocyte cells maintain the GFB, and structure-function experiments and studies of intercellular communication between the podocytes and other GFB cells, combined with advances from genetics and genomics, have laid the groundwork for a new generation of therapies that directly intervene at the GFB. These include inhibitors of apolipoprotein L1 (APOL1), short transient receptor potential channels (TRPCs), soluble fms-like tyrosine kinase 1 (sFLT1; also known as soluble vascular endothelial growth factor receptor 1), roundabout homologue 2 (ROBO2), endothelin receptor A, soluble urokinase plasminogen activator surface receptor (suPAR) and substrate intermediates for coenzyme Q10 (CoQ10). These molecular targets converge on two key components of GFB biology: mitochondrial function and the actin-myosin contractile machinery. This Review discusses therapies and developments focused on maintaining GFB integrity, and the emerging questions in this evolving field.
Collapse
Affiliation(s)
- Ilse S Daehn
- Department of Medicine, Division of Nephrology, The Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Jeremy S Duffield
- Research and Development, Prime Medicine, Cambridge, MA, USA. .,Department of Medicine, University of Washington, Seattle, WA, USA. .,Department of Medicine, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
11
|
Djenoune L, Tomar R, Dorison A, Ghobrial I, Schenk H, Hegermann J, Beverly-Staggs L, Hidalgo-Gonzalez A, Little MH, Drummond IA. Autonomous Calcium Signaling in Human and Zebrafish Podocytes Controls Kidney Filtration Barrier Morphogenesis. J Am Soc Nephrol 2021; 32:1697-1712. [PMID: 33911000 PMCID: PMC8425667 DOI: 10.1681/asn.2020101525] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/12/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Podocytes are critical to maintaining the glomerular filtration barrier, and mutations in nephrotic syndrome genes are known to affect podocyte calcium signaling. However, the role of calcium signaling during podocyte development remains unknown. METHODS We undertook live imaging of calcium signaling in developing podocytes, using zebrafish larvae and human kidney organoids. To evaluate calcium signaling during development and in response to channel blockers and genetic defects, the calcium biosensor GCaMP6s was expressed in zebrafish podocytes. We used electron microscopy to evaluate filtration barrier formation in zebrafish, and Fluo-4 to detect calcium signals in differentiating podocytes in human kidney organoids. RESULTS Immature zebrafish podocytes (2.5 days postfertilization) generated calcium transients that correlated with interactions with forming glomerular capillaries. Calcium transients persisted until 4 days postfertilization, and were absent after glomerular barrier formation was complete. We detected similar calcium transients in maturing human organoid glomeruli, suggesting a conserved mechanism. In both models, inhibitors of SERCA or IP3 receptor calcium-release channels blocked calcium transients in podocytes, whereas lanthanum was ineffective, indicating the calcium source is from intracellular podocyte endoplasmic-reticulum stores. Calcium transients were not affected by blocking heartbeat or by blocking development of endothelium or endoderm, and they persisted in isolated glomeruli, suggesting podocyte-autonomous calcium release. Inhibition of expression of phospholipase C-γ1, but not nephrin or phospholipase C-ε1, led to significantly decreased calcium activity. Finally, blocking calcium release affected glomerular shape and podocyte foot process formation, supporting the critical role of calcium signaling in glomerular morphogenesis. CONCLUSIONS These findings establish podocyte cell-autonomous calcium signaling as a prominent and evolutionarily conserved feature of podocyte differentiation and demonstrate its requirement for podocyte foot process formation.
Collapse
Affiliation(s)
- Lydia Djenoune
- Nephrology Division, Department of Medicine, Massachusetts General Hospital, Charlestown, Massachusetts
| | - Ritu Tomar
- Nephrology Division, Department of Medicine, Massachusetts General Hospital, Charlestown, Massachusetts
| | - Aude Dorison
- Murdoch Children’s Research Institute, The Royal Children’s Hospital, Parkville, Victoria, Australia
| | - Irene Ghobrial
- Murdoch Children’s Research Institute, The Royal Children’s Hospital, Parkville, Victoria, Australia
| | - Heiko Schenk
- Department of Medicine/Nephrology, Hannover Medical School, Hannover, Germany,Research Core Unit Electron Microscopy, Hannover Medical School, Hannover, Germany
| | - Jan Hegermann
- Research Core Unit Electron Microscopy, Hannover Medical School, Hannover, Germany
| | - Lynne Beverly-Staggs
- Davis Center for Regenerative Biology and Aging, Mount Desert Island Biological Laboratory, Bar Harbor, Maine
| | | | - Melissa H. Little
- Murdoch Children’s Research Institute, The Royal Children’s Hospital, Parkville, Victoria, Australia,Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia,Department of Anatomy and Neuroscience, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Victoria, Australia
| | - Iain A. Drummond
- Davis Center for Regenerative Biology and Aging, Mount Desert Island Biological Laboratory, Bar Harbor, Maine
| |
Collapse
|
12
|
Affiliation(s)
- Thomas Benzing
- From Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine, and University Hospital Cologne, and the Excellence Cluster CECAD, University of Cologne, Cologne, Germany (T.B.); and the Section of Nephrology, Department of Medicine, Boston Medical Center and Boston University School of Medicine, Boston (D.S.)
| | - David Salant
- From Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine, and University Hospital Cologne, and the Excellence Cluster CECAD, University of Cologne, Cologne, Germany (T.B.); and the Section of Nephrology, Department of Medicine, Boston Medical Center and Boston University School of Medicine, Boston (D.S.)
| |
Collapse
|
13
|
Beck LH, Berasi SP, Copley JB, Gorman D, Levy DI, Lim CN, Henderson JM, Salant DJ, Lu W. PODO: Trial Design: Phase 2 Study of PF-06730512 in Focal Segmental Glomerulosclerosis. Kidney Int Rep 2021; 6:1629-1633. [PMID: 34169203 PMCID: PMC8207305 DOI: 10.1016/j.ekir.2021.03.892] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/05/2021] [Accepted: 03/15/2021] [Indexed: 11/18/2022] Open
Abstract
Introduction Focal segmental glomerulosclerosis (FSGS) is characterized by proteinuria and a histologic pattern of glomerular lesions of diverse etiology that share features including glomerular scarring and podocyte foot process effacement. Roundabout guidance receptor 2 (ROBO2)/slit guidance ligand 2 (SLIT2) signaling destabilizes the slit diaphragm and reduces podocyte adhesion to the glomerular basement membrane (GBM). Preclinical studies suggest that inhibition of glomerular ROBO2/SLIT2 signaling can stabilize podocyte adhesion and reduce proteinuria. This clinical trial evaluates the preliminary efficacy and safety of ROBO2/SLIT2 inhibition with the ROBO2 fusion protein PF-06730512 in patients with FSGS. Methods The Study to Evaluate PF-06730512 in Adults With FSGS (PODO; ClinicalTrials.gov identifier NCT03448692), an open-label, phase 2a, multicenter trial in adults with FSGS, will enroll patients into 2 cohorts (n = 22 per cohort) to receive either high- or low-dose PF-06730512 (intravenous) every 2 weeks for 12 weeks. Key inclusion criteria include a confirmed biopsy diagnosis of FSGS, an estimated glomerular filtration rate (eGFR) ≥45 ml/min/1.73 m2 based on the Chronic Kidney Disease Epidemiology Collaboration formula (30–45 with a recent biopsy), and urinary protein-to-creatinine ratio (UPCR) >1.5 g/g. Key exclusion criteria include collapsing FSGS, serious/active infection, ≥50% tubulointerstitial fibrosis on biopsy, and organ transplantation. The primary endpoint is change from baseline to week 13 in UPCR; secondary endpoints include safety, changes in eGFR, and PF-06730512 serum concentration. Results This ongoing trial will report the efficacy, safety, pharmacokinetics, and biomarker results of PF-06730512 for patients with FSGS. Conclusion Findings from this proof-of-concept study may support further development and evaluation of PF-06730512 to treat FSGS and warrant assessment in phase 3 clinical trials.
Collapse
Affiliation(s)
- Laurence H. Beck
- Boston University School of Medicine, Boston Medical Center, Boston, Massachusetts, USA
- Correspondence: Laurence H. Beck Jr., Boston University School of Medicine, Boston Medical Center, 650 Albany St, X-536, Boston, MA 02118, USA.
| | | | | | | | | | | | - Joel M. Henderson
- Boston University School of Medicine, Boston Medical Center, Boston, Massachusetts, USA
| | - David J. Salant
- Boston University School of Medicine, Boston Medical Center, Boston, Massachusetts, USA
| | - Weining Lu
- Boston University School of Medicine, Boston Medical Center, Boston, Massachusetts, USA
- Weining Lu, Boston University School of Medicine, Boston Medical Center, 650 Albany St, Boston, MA 02118, USA.
| |
Collapse
|
14
|
Matsuda J, Asano-Matsuda K, Kitzler TM, Takano T. Rho GTPase regulatory proteins in podocytes. Kidney Int 2020; 99:336-345. [PMID: 33122025 DOI: 10.1016/j.kint.2020.08.035] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 12/14/2022]
Abstract
The Rho family of small GTPases (Rho GTPases) are the master regulators of the actin cytoskeleton and consist of 22 members. Previous studies implicated dysregulation of Rho GTPases in podocytes in the pathogenesis of proteinuric glomerular diseases. Rho GTPases are primarily regulated by the three families of proteins; guanine nucleotide exchange factors (GEFs; 82 members), GTPase-activating proteins (GAPs; 69 members), and GDP dissociation inhibitors (GDIs; 3 members). Since the regulatory proteins far outnumber their substrate Rho GTPases and act in concert in a cell/context-dependent manner, the upstream regulatory mechanism directing Rho GTPases in podocytes is largely unknown. In this review, we summarize recent advances in the understanding of the role of Rho GTPase regulatory proteins in podocytes, including the known mutations of these proteins that cause proteinuria in humans. We also provide critical appraisal of the in vivo and in vitro studies and identify the knowledge gap in the field that will require further studies.
Collapse
Affiliation(s)
- Jun Matsuda
- Division of Nephrology, McGill University Health Centre, Montreal, Quebec, Canada; Research Institute, McGill University Health Centre, Montreal, Quebec, Canada
| | - Kana Asano-Matsuda
- Division of Nephrology, McGill University Health Centre, Montreal, Quebec, Canada; Research Institute, McGill University Health Centre, Montreal, Quebec, Canada
| | - Thomas M Kitzler
- Research Institute, McGill University Health Centre, Montreal, Quebec, Canada; Division of Medical Genetics, Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada; Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Tomoko Takano
- Division of Nephrology, McGill University Health Centre, Montreal, Quebec, Canada; Research Institute, McGill University Health Centre, Montreal, Quebec, Canada.
| |
Collapse
|
15
|
Chen Q, Chen J, Wang C, Chen X, Liu J, Zhou L, Liu Y. MicroRNA-466o-3p mediates β-catenin-induced podocyte injury by targeting Wilms tumor 1. FASEB J 2020; 34:14424-14439. [PMID: 32888352 DOI: 10.1096/fj.202000464r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 08/04/2020] [Accepted: 08/13/2020] [Indexed: 12/18/2022]
Abstract
Podocytes are highly specialized cells that play an essential role in maintaining the integrity and function of the glomerular filtration barrier. Wilms tumor 1 (WT1) and β-catenin are two master regulators that play opposing roles in podocyte biology and mutually antagonize each other. However, exactly how β-catenin inhibits WT1 remains incompletely understood. In this study, we demonstrated the role of miR-466o-3p in mediating β-catenin-triggered podocyte injury by targeting WT1. The expression of miR-466o-3p was upregulated in cultured podocytes after β-catenin activation and in glomerular podocytes in adriamycin (ADR) nephropathy, remnant kidney after 5/6 renal ablation, and diabetic kidney disease. Bioinformatics analysis and luciferase reporter assay confirmed that miR-466o-3p directly targeted WT1 mRNA. Furthermore, overexpression of miR-466o-3p downregulated WT1 protein and promoted podocyte injury in vitro. Conversely, inhibition of miR-466o-3p alleviated β-catenin-induced podocyte dysfunction. In mouse model of ADR nephropathy, overexpression of miR-466o-3p inhibited WT1, aggravated podocytes injury and deteriorated proteinuria. In contrast, inhibition of renal miR-466o-3p by antagomiR, either prior to or after ADR injection, substantially restored WT1, alleviated podocytes injury and reduced renal fibrosis. These studies reveal a critical role for miR-466o-3p, a novel microRNA that has not been characterized previously, in mediating β-catenin-triggered WT1 inhibition. Our findings also uncover a new pathogenic mechanism by which β-catenin promotes podocyte injury and proteinuria in glomerular diseases.
Collapse
Affiliation(s)
- Qiyan Chen
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiongcheng Chen
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chunhong Wang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaowen Chen
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiafeng Liu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lili Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Youhua Liu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
16
|
Pisarek-Horowitz A, Fan X, Kumar S, Rasouly HM, Sharma R, Chen H, Coser K, Bluette CT, Hirenallur-Shanthappa D, Anderson SR, Yang H, Beck LH, Bonegio RG, Henderson JM, Berasi SP, Salant DJ, Lu W. Loss of Roundabout Guidance Receptor 2 (Robo2) in Podocytes Protects Adult Mice from Glomerular Injury by Maintaining Podocyte Foot Process Structure. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:799-816. [PMID: 32220420 PMCID: PMC7217334 DOI: 10.1016/j.ajpath.2019.12.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 11/24/2019] [Accepted: 12/17/2019] [Indexed: 02/06/2023]
Abstract
Roundabout guidance receptor 2 (ROBO2) plays an important role during early kidney development. ROBO2 is expressed in podocytes, inhibits nephrin-induced actin polymerization, down-regulates nonmuscle myosin IIA activity, and destabilizes kidney podocyte adhesion. However, the role of ROBO2 during kidney injury, particularly in mature podocytes, is not known. Herein, we report that loss of ROBO2 in podocytes [Robo2 conditional knockout (cKO) mouse] is protective from glomerular injuries. Ultrastructural analysis reveals that Robo2 cKO mice display less foot process effacement and better-preserved slit-diaphragm density compared with wild-type littermates injured by either protamine sulfate or nephrotoxic serum (NTS). The Robo2 cKO mice also develop less proteinuria after NTS injury. Further studies reveal that ROBO2 expression in podocytes is up-regulated after glomerular injury because its expression levels are higher in the glomeruli of NTS injured mice and passive Heymann membranous nephropathy rats. Moreover, the amount of ROBO2 in the glomeruli is also elevated in patients with membranous nephropathy. Finally, overexpression of ROBO2 in cultured mouse podocytes compromises cell adhesion. Taken together, these findings suggest that kidney injury increases glomerular ROBO2 expression that might compromise podocyte adhesion and, thus, loss of Robo2 in podocytes could protect from glomerular injury by enhancing podocyte adhesion that helps maintain foot process structure. Our findings also suggest that ROBO2 is a therapeutic target for podocyte injury and podocytopathy.
Collapse
Affiliation(s)
- Anna Pisarek-Horowitz
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston Medical Center, Boston, Massachusetts
| | - Xueping Fan
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston Medical Center, Boston, Massachusetts
| | - Sudhir Kumar
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston Medical Center, Boston, Massachusetts
| | - Hila M Rasouly
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston Medical Center, Boston, Massachusetts
| | - Richa Sharma
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston Medical Center, Boston, Massachusetts
| | - Hui Chen
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston Medical Center, Boston, Massachusetts
| | - Kathryn Coser
- Centers for Therapeutic Innovation, Pfizer Inc., Cambridge, Massachusetts
| | | | | | - Sarah R Anderson
- Global Pathology, Drug Safety Research and Development, Pfizer Inc., Groton, Connecticut
| | - Hongying Yang
- Centers for Therapeutic Innovation, Pfizer Inc., Cambridge, Massachusetts
| | - Laurence H Beck
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston Medical Center, Boston, Massachusetts
| | - Ramon G Bonegio
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston Medical Center, Boston, Massachusetts
| | - Joel M Henderson
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston Medical Center, Boston, Massachusetts
| | - Stephen P Berasi
- Centers for Therapeutic Innovation, Pfizer Inc., Cambridge, Massachusetts
| | - David J Salant
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston Medical Center, Boston, Massachusetts; Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston Medical Center, Boston, Massachusetts
| | - Weining Lu
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston Medical Center, Boston, Massachusetts; Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston Medical Center, Boston, Massachusetts.
| |
Collapse
|
17
|
Li Q, Cui S, Ma Q, Liu Y, Yu H, Geng G, Agborbesong E, Ren C, Wei K, Zhang Y, Yang J, Bai X, Cai G, Xie Y, Li X, Chen X. Disruption of Robo2-Baiap2 integrated signaling drives cystic disease. JCI Insight 2019; 4:127602. [PMID: 31534052 DOI: 10.1172/jci.insight.127602] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 08/21/2019] [Indexed: 11/17/2022] Open
Abstract
Hereditary renal cystic diseases are characterized by defects in primary cilia of renal tubular epithelial cells and abnormality of tubular epithelium, which ultimately result in the development of renal cysts. However, the mechanism leading from abnormality of the tubular epithelium to cystogenesis is not well understood. In this report, we demonstrate a critical role for Robo2 in regulating epithelial development, including ciliogenesis, polarization, and differentiation. We found that Robo2 deficiency results in cystic kidneys, and the cyst cells showed defective cilia and polarity defects in tubular epithelium. The cyst cells, less than terminally differentiated, continue to proliferate. We further established that Robo2 works with p53 as well as polarity and ciliary proteins (Par3, PKCς, ZO-2, and Claudin-2) to regulate these processes. Robo2 binds to Baiap2 (also known as IRSp53) through the IRSp53/MIM homology domain in renal epithelial cells. This binding allows Robo2 to phosphorylate MDM2 at Ser166 via Baiap2 and maintain p53 homeostasis. Disruption of the Robo2-Baiap2 complex causes MDM2 to be subjected to dephosphorylation, leading to a high level of active p53, and initiated p53-mediated cellular senescence via p21 and decreased the expression of ZO-1, ZO-2, PKCς, Par3, and Claudin-2 proteins, resulting in defects in epithelial development, including ciliogenesis, polarization, and differentiation. Importantly, double knockout of Robo2 and p53 rescued all the epithelial defects in kidneys compared with those in Robo2-knockout kidneys. Taken together, the present results demonstrate that Robo2 deficiency causes renal cystic disease, which is largely dependent on defective Robo2-Baiap2 integrated signaling in kidneys.
Collapse
Affiliation(s)
- Qinggang Li
- Department of Nephrology, Chinese PLA General Hospital, Medical School of Chinese PLA, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
| | - Shaoyuan Cui
- Department of Nephrology, Chinese PLA General Hospital, Medical School of Chinese PLA, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
| | - Qian Ma
- Department of Nephrology, Chinese PLA General Hospital, Medical School of Chinese PLA, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
| | - Ying Liu
- Department of Nephrology, Chinese PLA General Hospital, Medical School of Chinese PLA, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
| | - Hongyu Yu
- Department of Nephrology, Chinese PLA General Hospital, Medical School of Chinese PLA, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
| | - GuangRui Geng
- Department of Nephrology, Chinese PLA General Hospital, Medical School of Chinese PLA, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
| | - Ewud Agborbesong
- Department of Internal Medicine, Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Chongyu Ren
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Kai Wei
- Department of Nephrology, Chinese PLA General Hospital, Medical School of Chinese PLA, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
| | - Yingjie Zhang
- Department of Nephrology, Chinese PLA General Hospital, Medical School of Chinese PLA, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
| | - Jurong Yang
- Department of Urology, Third Affiliated Hospital of Chongqing Medical University (General Hospital), Chongqing, China
| | - Xueyuan Bai
- Department of Nephrology, Chinese PLA General Hospital, Medical School of Chinese PLA, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
| | - Guangyan Cai
- Department of Nephrology, Chinese PLA General Hospital, Medical School of Chinese PLA, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
| | - Yuansheng Xie
- Department of Nephrology, Chinese PLA General Hospital, Medical School of Chinese PLA, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
| | - Xiaogang Li
- Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Xiangmei Chen
- Department of Nephrology, Chinese PLA General Hospital, Medical School of Chinese PLA, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
| |
Collapse
|
18
|
Tong M, Jun T, Nie Y, Hao J, Fan D. The Role of the Slit/Robo Signaling Pathway. J Cancer 2019; 10:2694-2705. [PMID: 31258778 PMCID: PMC6584916 DOI: 10.7150/jca.31877] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 04/28/2019] [Indexed: 12/25/2022] Open
Abstract
The Slit family is a family of secreted proteins that play important roles in various physiologic and pathologic activities via interacting with Robo receptors. Slit/Robo signaling was first identified in the nervous system, where it functions in neuronal axon guidance; nevertheless, an increasing number of studies have shown that Slit/Robo signaling even regulates other activities, such as angiogenesis, inflammatory cell chemotaxis, tumor cell migration and metastasis. Although the precise role of the ligand-receptor in organisms has been obscure and the conclusions drawn are sometimes paradoxical, tremendous advances in understanding the Slit/Robo signaling pathway have been made. As such, our review summarizes the characteristics of the Slit/Robo signaling pathway and its role in various cell types.
Collapse
Affiliation(s)
- Mingfu Tong
- Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China.,State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Tie Jun
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Yongzhan Nie
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Jianyu Hao
- Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Daiming Fan
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| |
Collapse
|
19
|
Genet G, Boyé K, Mathivet T, Ola R, Zhang F, Dubrac A, Li J, Genet N, Henrique Geraldo L, Benedetti L, Künzel S, Pibouin-Fragner L, Thomas JL, Eichmann A. Endophilin-A2 dependent VEGFR2 endocytosis promotes sprouting angiogenesis. Nat Commun 2019; 10:2350. [PMID: 31138815 PMCID: PMC6538628 DOI: 10.1038/s41467-019-10359-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 04/30/2019] [Indexed: 12/17/2022] Open
Abstract
Endothelial cell migration, proliferation and survival are triggered by VEGF-A activation of VEGFR2. However, how these cell behaviors are regulated individually is still unknown. Here we identify Endophilin-A2 (ENDOA2), a BAR-domain protein that orchestrates CLATHRIN-independent internalization, as a critical mediator of endothelial cell migration and sprouting angiogenesis. We show that EndoA2 knockout mice exhibit postnatal angiogenesis defects and impaired front-rear polarization of sprouting tip cells. ENDOA2 deficiency reduces VEGFR2 internalization and inhibits downstream activation of the signaling effector PAK but not ERK, thereby affecting front-rear polarity and migration but not proliferation or survival. Mechanistically, VEGFR2 is directed towards ENDOA2-mediated endocytosis by the SLIT2-ROBO pathway via SLIT-ROBO-GAP1 bridging of ENDOA2 and ROBO1. Blocking ENDOA2-mediated endothelial cell migration attenuates pathological angiogenesis in oxygen-induced retinopathy models. This work identifies a specific endocytic pathway controlling a subset of VEGFR2 mediated responses that could be targeted to prevent excessive sprouting angiogenesis in pathological conditions.
Collapse
Affiliation(s)
- Gael Genet
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Kevin Boyé
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Thomas Mathivet
- Inserm U970, Paris Cardiovascular Research Center, Paris, 75015, France
| | - Roxana Ola
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06511, USA
- Functional Genomics, Proteomics and Experimental Pathology Department, Prof. Dr. I. Chiricuta Oncology Institute, Cluj-Napoca, Romania, Department of Basic, Preventive and Clinical Science, University of Transylvania, Brasov, Romania
| | - Feng Zhang
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Alexandre Dubrac
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Jinyu Li
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Nafiisha Genet
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06511, USA
| | | | - Lorena Benedetti
- Department of Neuroscience and Cell Biology, School of Medicine, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Steffen Künzel
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06511, USA
| | | | - Jean-Leon Thomas
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06511, USA
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06511, USA
- Sorbonne Universités, UPMC Université Paris 06, Institut National de la Santé et de la Recherche Médicale U1127, Centre National de la Recherche Scientifique, AP-HP, Institut du Cerveau et de la Moelle Epinière, Hôpital Pitié-Salpêtrière, Paris, France
| | - Anne Eichmann
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06511, USA.
- Inserm U970, Paris Cardiovascular Research Center, Paris, 75015, France.
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, 06511, USA.
| |
Collapse
|
20
|
Barak R, Yom-Tov G, Guez-Haddad J, Gasri-Plotnitsky L, Maimon R, Cohen-Berkman M, McCarthy AA, Perlson E, Henis-Korenblit S, Isupov MN, Opatowsky Y. Structural Principles in Robo Activation and Auto-inhibition. Cell 2019; 177:272-285.e16. [PMID: 30853216 DOI: 10.1016/j.cell.2019.02.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 12/06/2018] [Accepted: 02/06/2019] [Indexed: 01/28/2023]
Abstract
Proper brain function requires high-precision neuronal expansion and wiring, processes controlled by the transmembrane Roundabout (Robo) receptor family and their Slit ligands. Despite their great importance, the molecular mechanism by which Robos' switch from "off" to "on" states remains unclear. Here, we report a 3.6 Å crystal structure of the intact human Robo2 ectodomain (domains D1-8). We demonstrate that Robo cis dimerization via D4 is conserved through hRobo1, 2, and 3 and the C. elegans homolog SAX-3 and is essential for SAX-3 function in vivo. The structure reveals two levels of auto-inhibition that prevent premature activation: (1) cis blocking of the D4 dimerization interface and (2) trans interactions between opposing Robo receptors that fasten the D4-blocked conformation. Complementary experiments in mouse primary neurons and C. elegans support the auto-inhibition model. These results suggest that Slit stimulation primarily drives the release of Robo auto-inhibition required for dimerization and activation.
Collapse
Affiliation(s)
- Reut Barak
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Israel
| | - Galit Yom-Tov
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Israel
| | - Julia Guez-Haddad
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Israel
| | | | - Roy Maimon
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - Moran Cohen-Berkman
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Israel
| | | | - Eran Perlson
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Israel
| | | | | | - Yarden Opatowsky
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Israel.
| |
Collapse
|
21
|
Guan T, Huang K, Liu Y, Hou S, Hu C, Li Y, Zhang J, Zhao J, Zhang J, Wang R, Huang Y. Aristolochic acid inhibits Slit2-induced migration and tube formation via inactivation of Robo1/Robo2-NCK1/NCK2 signaling pathway in human umbilical vein endothelial cells. Toxicol Lett 2018; 300:51-58. [PMID: 30381256 DOI: 10.1016/j.toxlet.2018.10.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 10/15/2018] [Accepted: 10/22/2018] [Indexed: 11/28/2022]
Abstract
Robo1/Robo2-NCK1/NCK2 signaling pathway controls endothelial cell sprouting and migration induced by Slit2 or VEGF, but whether it is involved in peritubular capillary (PTC) rarefaction of Aristolochic acid nephropathy (AAN) is unclear. In the present study, we evaluated whether AA exerts antiangiogenic effects by targeting this signaling pathways in HUVECs. HUVECs or lentivirus-mediated NCK1-overexpressing HUVECs were stimulated with AA (1, 2 or 3 μg/ml) in the absence or presence of 6 nM Slit2. Our results showed that AAІ (1-3 μg/ml) dose-dependently inhibited the migration and tube formation of HUVECs. This inhibition was in parallel with down-regulated mRNA and protein expression of Slit2/Robo1/Robo2-NCK1/NCK2 signaling pathway. Importantly, overexpression of NCK1 rescued AAІ-impaired angiogenesis, as evidenced by the increase of cell migration and tube formation of HUVECs in response to Slit2. The down-regulation of NCK2 and decreased activation of Rac1 was also restored by overexpression of NCK1. Taken together, our findings show that AA inhibits Slit2-induced migration and tube formation via inactivation of Robo1/Robo2-NCK1/NCK2 signaling pathway in HUVECs, and NCK1 might be a potential agent for vascular remodeling in AAN and diseases associated with impaired angiogenesis.
Collapse
Affiliation(s)
- Tao Guan
- Department of Nephrology, Xinqiao Hospital, Army Medical University, The Third Military Medical University, Chongqing 400037, PR China
| | - Ke Huang
- Department of Dermatology, Rheumatic immunology, Xinqiao Hospital, Army Medical University, The Third Military Medical University, Chongqing, 400037, PR China
| | - Yuanyuan Liu
- Department of Nephrology, Xinqiao Hospital, Army Medical University, The Third Military Medical University, Chongqing 400037, PR China
| | - Shihui Hou
- Department of Nephrology, Xinqiao Hospital, Army Medical University, The Third Military Medical University, Chongqing 400037, PR China
| | - Chengfang Hu
- Department of Nephrology, Xinqiao Hospital, Army Medical University, The Third Military Medical University, Chongqing 400037, PR China
| | - Yi Li
- Department of Nephrology, Xinqiao Hospital, Army Medical University, The Third Military Medical University, Chongqing 400037, PR China
| | - Jingbo Zhang
- Department of Nephrology, Xinqiao Hospital, Army Medical University, The Third Military Medical University, Chongqing 400037, PR China
| | - Jinghong Zhao
- Department of Nephrology, Xinqiao Hospital, Army Medical University, The Third Military Medical University, Chongqing 400037, PR China
| | - Jun Zhang
- Department of Nephrology, Xinqiao Hospital, Army Medical University, The Third Military Medical University, Chongqing 400037, PR China
| | - Rupeng Wang
- Department of Dermatology, Rheumatic immunology, Xinqiao Hospital, Army Medical University, The Third Military Medical University, Chongqing, 400037, PR China
| | - Yunjian Huang
- Department of Nephrology, Xinqiao Hospital, Army Medical University, The Third Military Medical University, Chongqing 400037, PR China.
| |
Collapse
|
22
|
Pan Y, Jiang S, Hou Q, Qiu D, Shi J, Wang L, Chen Z, Zhang M, Duan A, Qin W, Zen K, Liu Z. Dissection of Glomerular Transcriptional Profile in Patients With Diabetic Nephropathy: SRGAP2a Protects Podocyte Structure and Function. Diabetes 2018; 67:717-730. [PMID: 29242313 DOI: 10.2337/db17-0755] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 10/26/2017] [Indexed: 01/19/2023]
Abstract
Podocytes play a pivotal role in maintaining glomerular filtration function through their interdigitated foot processes. However, the mechanisms that govern the podocyte cytoskeletal rearrangement remain unclear. Through analyzing the transcriptional profile of renal biopsy specimens from patients with diabetic nephropathy (DN) and control donors, we identify SLIT-ROBO ρGTPase-activating protein 2a (SRGAP2a) as one of the main hub genes strongly associated with proteinuria and glomerular filtration in type 2 DN. Immunofluorescence staining and Western blot analysis revealed that human and mouse SRGAP2a is primarily localized at podocytes and largely colocalized with synaptopodin. Moreover, podocyte SRGAP2a is downregulated in patients with DN and db/db mice at both the mRNA and the protein level. SRGAP2a reduction is observed in cultured podocytes treated with tumor growth factor-β or high concentrations of glucose. Functional and mechanistic studies show that SRGAP2a suppresses podocyte motility through inactivating RhoA/Cdc42 but not Rac1. The protective role of SRGAP2a in podocyte function also is confirmed in zebrafish, in which knockdown of SRGAP2a, a SRGAP2 ortholog in zebrafish, recapitulates podocyte foot process effacement. Finally, increasing podocyte SRGAP2a levels in db/db mice through administration of adenovirus-expressing SRGAP2a significantly mitigates podocyte injury and proteinuria. The results demonstrate that SRGAP2a protects podocytes by suppressing podocyte migration.
Collapse
Affiliation(s)
- Yu Pan
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, China
| | - Song Jiang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, China
| | - Qing Hou
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, China
| | - Dandan Qiu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, China
| | - Jingsong Shi
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, China
| | - Ling Wang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, China
| | - Zhaohong Chen
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, China
| | - Mingchao Zhang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, China
| | - Aiping Duan
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, China
| | - Weisong Qin
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, China
| | - Ke Zen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Zhihong Liu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
23
|
Tumelty KE, Higginson-Scott N, Fan X, Bajaj P, Knowlton KM, Shamashkin M, Coyle AJ, Lu W, Berasi SP. Identification of direct negative cross-talk between the SLIT2 and bone morphogenetic protein-Gremlin signaling pathways. J Biol Chem 2018; 293:3039-3055. [PMID: 29317497 DOI: 10.1074/jbc.m117.804021] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 12/06/2017] [Indexed: 12/28/2022] Open
Abstract
Slit guidance ligand 2 (SLIT2) is a large, secreted protein that binds roundabout (ROBO) receptors on multiple cell types, including neurons and kidney podocytes. SLIT2-ROBO-mediated signaling regulates neuronal migration and ureteric bud (UB) outgrowth during kidney development as well as glomerular filtration in adult kidneys. Additionally, SLIT2 binds Gremlin, an antagonist of bone morphogenetic proteins (BMPs), and BMP-Gremlin signaling also regulates UB formation. However, direct cross-talk between the ROBO2-SLIT2 and BMP-Gremlin signaling pathways has not been established. Here, we report the discovery of negative feedback between the SLIT2 and BMP-Gremlin signaling pathways. We found that the SLIT2-Gremlin interaction inhibited both SLIT2-ROBO2 signaling in neurons and Gremlin antagonism of BMP activity in myoblasts and fibroblasts. Furthermore, BMP2 down-regulated SLIT2 expression and promoter activity through canonical BMP signaling. Gremlin treatment, BMP receptor inhibition, and SMAD family member 4 (SMAD4) knockdown rescued BMP-mediated repression of SLIT2. BMP2 treatment of nephron progenitor cells derived from human embryonic stem cells decreased SLIT2 expression, further suggesting an interaction between the BMP2-Gremlin and SLIT2 pathways in human kidney cells. In conclusion, our study has revealed direct negative cross-talk between two pathways, previously thought to be unassociated, that may regulate both kidney development and adult tissue maintenance.
Collapse
Affiliation(s)
- Kathleen E Tumelty
- From the Centers for Therapeutic Innovation, Pfizer Inc., Cambridge, Massachusetts 02139
| | - Nathan Higginson-Scott
- From the Centers for Therapeutic Innovation, Pfizer Inc., Cambridge, Massachusetts 02139
| | - Xueping Fan
- the Renal Section, Department of Medicine, Boston University Medical Center, Boston, Massachusetts 02118, and
| | - Piyush Bajaj
- the Drug Safety Research and Development, Pfizer Inc., Groton, Connecticut 06340
| | - Kelly M Knowlton
- From the Centers for Therapeutic Innovation, Pfizer Inc., Cambridge, Massachusetts 02139
| | - Michael Shamashkin
- From the Centers for Therapeutic Innovation, Pfizer Inc., Cambridge, Massachusetts 02139
| | - Anthony J Coyle
- From the Centers for Therapeutic Innovation, Pfizer Inc., Cambridge, Massachusetts 02139
| | - Weining Lu
- the Renal Section, Department of Medicine, Boston University Medical Center, Boston, Massachusetts 02118, and
| | - Stephen P Berasi
- From the Centers for Therapeutic Innovation, Pfizer Inc., Cambridge, Massachusetts 02139,
| |
Collapse
|
24
|
Naudin C, Smith B, Bond DR, Dun MD, Scott RJ, Ashman LK, Weidenhofer J, Roselli S. Characterization of the early molecular changes in the glomeruli of Cd151 -/- mice highlights induction of mindin and MMP-10. Sci Rep 2017; 7:15987. [PMID: 29167507 PMCID: PMC5700190 DOI: 10.1038/s41598-017-15993-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 10/26/2017] [Indexed: 01/06/2023] Open
Abstract
In humans and FVB/N mice, loss of functional tetraspanin CD151 is associated with glomerular disease characterised by early onset proteinuria and ultrastructural thickening and splitting of the glomerular basement membrane (GBM). To gain insight into the molecular mechanisms associated with disease development, we characterised the glomerular gene expression profile at an early stage of disease progression in FVB/N Cd151 -/- mice compared to Cd151 +/+ controls. This study identified 72 up-regulated and 183 down-regulated genes in FVB/N Cd151 -/- compared to Cd151 +/+ glomeruli (p < 0.05). Further analysis highlighted induction of the matrix metalloprotease MMP-10 and the extracellular matrix protein mindin (encoded by Spon2) in the diseased FVB/N Cd151 -/- GBM that did not occur in the C57BL/6 diseased-resistant strain. Interestingly, mindin was also detected in urinary samples of FVB/N Cd151 -/- mice, underlining its potential value as a biomarker for glomerular diseases associated with GBM alterations. Gene set enrichment and pathway analysis of the microarray dataset showed enrichment in axon guidance and actin cytoskeleton signalling pathways as well as activation of inflammatory pathways. Given the known function of mindin, its early expression in the diseased GBM could represent a trigger of both further podocyte cytoskeletal changes and inflammation, thereby playing a key role in the mechanisms of disease progression.
Collapse
Affiliation(s)
- Crystal Naudin
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Newcastle, New South Wales, Australia.,Hunter Medical Research Institute, New Lambton, New South Wales, Australia.,Emory University, Atlanta, Georgia, USA
| | - Brian Smith
- School of Mathematics and Physical Sciences, University of Newcastle, Newcastle, New South Wales, Australia
| | - Danielle R Bond
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Newcastle, New South Wales, Australia.,Hunter Medical Research Institute, New Lambton, New South Wales, Australia
| | - Matthew D Dun
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Newcastle, New South Wales, Australia.,Hunter Medical Research Institute, New Lambton, New South Wales, Australia
| | - Rodney J Scott
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Newcastle, New South Wales, Australia.,Hunter Medical Research Institute, New Lambton, New South Wales, Australia.,Hunter Area Pathology Service, John Hunter Hospital, New Lambton, New South Wales, Australia
| | - Leonie K Ashman
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Newcastle, New South Wales, Australia.,Hunter Medical Research Institute, New Lambton, New South Wales, Australia
| | - Judith Weidenhofer
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Newcastle, New South Wales, Australia.,Hunter Medical Research Institute, New Lambton, New South Wales, Australia
| | - Séverine Roselli
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Newcastle, New South Wales, Australia. .,Hunter Medical Research Institute, New Lambton, New South Wales, Australia.
| |
Collapse
|
25
|
Abstract
Podocytes, the postmitotic and highly branched epithelial cells of the glomerulus, play a pivotal role for the function of the glomerular filtration barrier and the development of chronic kidney disease. It has long been discussed whether podocytes in vivo are motile and can laterally migrate in a coordinated way along the capillaries until they reach the position of naked glomerular basement membrane often found in podocytopathies. Such motility would also be the prerequisite for the replacement of lost podocytes by progenitor cells. Additionally, the change of the podocyte foot processes from a normal to an effaced morphology, like it is found in many kidney diseases, would require a dynamic behavior of podocytes. Since the actin cytoskeleton is expressed in podocytes in vitro and in vivo and the morphology of podocytes is highly dependent on actin, actin-associated, and actin-regulating proteins, it was assumed that podocytes are dynamic and motile. After earlier technical limitations had been overcome and novel microscopic techniques like multiphoton microscopy had been developed, it became possible to continuously study the behavior of podocytes in living rodents and zebrafish larvae under physiological and pathological conditions. Recent in vivo microscopic studies in different model organisms suggest that lateral migration of podocytes in situ is a very unlikely event and only dynamic apical cell protrusions can be observed under pathological conditions. This review discusses recent findings concerning different forms of motility (like lateral translocative (LTM), apical translocative (ATM), and stationary motility (SM)) and their role for podocytopathies.
Collapse
Affiliation(s)
- Nicole Endlich
- Department of Anatomy and Cell Biology, University Medicine Greifswald, 17487, Greifswald, Germany. .,Institut für Anatomie und Zellbiologie, Universitätsmedizin Greifswald, Friedrich-Loeffler-Str. 23c, 17487, Greifswald, Germany.
| | - Florian Siegerist
- Department of Anatomy and Cell Biology, University Medicine Greifswald, 17487, Greifswald, Germany
| | - Karlhans Endlich
- Department of Anatomy and Cell Biology, University Medicine Greifswald, 17487, Greifswald, Germany
| |
Collapse
|
26
|
Wu MF, Liao CY, Wang LY, Chang JT. The role of Slit-Robo signaling in the regulation of tissue barriers. Tissue Barriers 2017; 5:e1331155. [PMID: 28598714 PMCID: PMC5501134 DOI: 10.1080/21688370.2017.1331155] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/11/2017] [Accepted: 05/11/2017] [Indexed: 01/12/2023] Open
Abstract
The role of Slit/Robo signaling has extended from initial axon repulsion in the developing nervous system to organ morphogenesis, cancer development and angiogenesis. Slit/Robo signaling regulates similar pathways within these processes. Slit/Robo ensures the homeostasis of the dynamic interaction between cell-cell and cell-matrix interactions. The dysregulation of Slit/Robo signaling damages the tissue barrier, resulting in developmental abnormalities or disease. Here, we summarize how Slit/Robo controls kidney morphogenesis and describe the dual roles of Slit/Robo signaling in the regulation of tumorigenesis and angiogenesis.
Collapse
Affiliation(s)
- Ming-Fang Wu
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan, R.O.C.
- Divisions of Medical Oncology and Pulmonary Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan, R.O.C.
| | - Chen-Yi Liao
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan, R.O.C.
| | - Ling-Yi Wang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan, R.O.C.
| | - Jinghua Tsai Chang
- Divisions of Medical Oncology and Pulmonary Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan, R.O.C.
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan, R.O.C.
| |
Collapse
|
27
|
Fan X, Yang H, Kumar S, Tumelty KE, Pisarek-Horowitz A, Rasouly HM, Sharma R, Chan S, Tyminski E, Shamashkin M, Belghasem M, Henderson JM, Coyle AJ, Salant DJ, Berasi SP, Lu W. SLIT2/ROBO2 signaling pathway inhibits nonmuscle myosin IIA activity and destabilizes kidney podocyte adhesion. JCI Insight 2016; 1:e86934. [PMID: 27882344 DOI: 10.1172/jci.insight.86934] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The repulsive guidance cue SLIT2 and its receptor ROBO2 are required for kidney development and podocyte foot process structure, but the SLIT2/ROBO2 signaling mechanism regulating podocyte function is not known. Here we report that a potentially novel signaling pathway consisting of SLIT/ROBO Rho GTPase activating protein 1 (SRGAP1) and nonmuscle myosin IIA (NMIIA) regulates podocyte adhesion downstream of ROBO2. We found that the myosin II regulatory light chain (MRLC), a subunit of NMIIA, interacts directly with SRGAP1 and forms a complex with ROBO2/SRGAP1/NMIIA in the presence of SLIT2. Immunostaining demonstrated that SRGAP1 is a podocyte protein and is colocalized with ROBO2 on the basal surface of podocytes. In addition, SLIT2 stimulation inhibits NMIIA activity, decreases focal adhesion formation, and reduces podocyte attachment to collagen. In vivo studies further showed that podocyte-specific knockout of Robo2 protects mice from hypertension-induced podocyte detachment and albuminuria and also partially rescues the podocyte-loss phenotype in Myh9 knockout mice. Thus, we have identified SLIT2/ROBO2/SRGAP1/NMIIA as a potentially novel signaling pathway in kidney podocytes, which may play a role in regulating podocyte adhesion and attachment. Our findings also suggest that SLIT2/ROBO2 signaling might be a therapeutic target for kidney diseases associated with podocyte detachment and loss.
Collapse
Affiliation(s)
- Xueping Fan
- Renal Section, Department of Medicine, Boston University Medical Center, Boston, Massachusetts, USA
| | - Hongying Yang
- Centers for Therapeutic Innovation, Pfizer Inc., Boston, Massachusetts, USA
| | - Sudhir Kumar
- Renal Section, Department of Medicine, Boston University Medical Center, Boston, Massachusetts, USA
| | - Kathleen E Tumelty
- Centers for Therapeutic Innovation, Pfizer Inc., Boston, Massachusetts, USA
| | - Anna Pisarek-Horowitz
- Renal Section, Department of Medicine, Boston University Medical Center, Boston, Massachusetts, USA
| | - Hila Milo Rasouly
- Renal Section, Department of Medicine, Boston University Medical Center, Boston, Massachusetts, USA
| | - Richa Sharma
- Renal Section, Department of Medicine, Boston University Medical Center, Boston, Massachusetts, USA
| | - Stefanie Chan
- Renal Section, Department of Medicine, Boston University Medical Center, Boston, Massachusetts, USA
| | - Edyta Tyminski
- Centers for Therapeutic Innovation, Pfizer Inc., Boston, Massachusetts, USA
| | - Michael Shamashkin
- Centers for Therapeutic Innovation, Pfizer Inc., Boston, Massachusetts, USA
| | - Mostafa Belghasem
- Department of Pathology and Laboratory Medicine, Boston University Medical Center, Boston, Massachusetts, USA
| | - Joel M Henderson
- Department of Pathology and Laboratory Medicine, Boston University Medical Center, Boston, Massachusetts, USA
| | - Anthony J Coyle
- Centers for Therapeutic Innovation, Pfizer Inc., Boston, Massachusetts, USA
| | - David J Salant
- Renal Section, Department of Medicine, Boston University Medical Center, Boston, Massachusetts, USA
| | - Stephen P Berasi
- Centers for Therapeutic Innovation, Pfizer Inc., Boston, Massachusetts, USA
| | - Weining Lu
- Renal Section, Department of Medicine, Boston University Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
28
|
Havasi A, Lu W, Cohen HT, Beck L, Wang Z, Igwebuike C, Borkan SC. Blocking peptides and molecular mimicry as treatment for kidney disease. Am J Physiol Renal Physiol 2016; 312:F1016-F1025. [PMID: 27654896 DOI: 10.1152/ajprenal.00601.2015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 08/25/2016] [Accepted: 09/16/2016] [Indexed: 12/29/2022] Open
Abstract
Protein mimotopes, or blocking peptides, are small therapeutic peptides that prevent protein-protein interactions by selectively mimicking a native binding domain. Inexpensive technology facilitates straightforward design and production of blocking peptides in sufficient quantities to allow preventive and therapeutic trials in both in vitro and in vivo experimental disease models. The kidney is an ideal peptide target, since small molecules undergo rapid filtration and efficient bulk absorption by tubular epithelial cells. Because the half-life of peptides is markedly prolonged in the kidneys compared with the bloodstream, blocking peptides are an attractive tool for treating diverse renal diseases, including ischemia, proteinuric states, such as membranous nephropathy and focal and segmental glomerulosclerosis, and renal cell carcinoma. Therapeutic peptides represent one of the fastest-growing reagent classes for novel drug development in human disease, partly because of their ease of administration, high binding affinity, and minimal off-target effects. This review introduces the concepts of blocking peptide design, production, and administration and highlights the potential use of therapeutic peptides to prevent or treat specific renal diseases.
Collapse
Affiliation(s)
- Andrea Havasi
- Renal Section, Boston University Medical Center, Boston, Massachusetts
| | - Weining Lu
- Renal Section, Boston University Medical Center, Boston, Massachusetts
| | - Herbert T Cohen
- Renal Section, Boston University Medical Center, Boston, Massachusetts
| | - Laurence Beck
- Renal Section, Boston University Medical Center, Boston, Massachusetts
| | - Zhiyong Wang
- Renal Section, Boston University Medical Center, Boston, Massachusetts
| | | | - Steven C Borkan
- Renal Section, Boston University Medical Center, Boston, Massachusetts
| |
Collapse
|
29
|
Abstract
Slits are secreted proteins that bind to Roundabout (Robo) receptors. Slit-Robo signaling is best known for mediating axon repulsion in the developing nervous system. However, in recent years the functional repertoire of Slits and Robo has expanded tremendously and Slit-Robo signaling has been linked to roles in neurogenesis, angiogenesis and cancer progression among other processes. Likewise, our mechanistic understanding of Slit-Robo signaling has progressed enormously. Here, we summarize new insights into Slit-Robo evolutionary and system-dependent diversity, receptor-ligand interactions, signaling crosstalk and receptor activation.
Collapse
Affiliation(s)
- Heike Blockus
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision, 17 Rue Moreau, Paris 75012, France Ecole des Neurosciences de Paris, Paris F-75005, France
| | - Alain Chédotal
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision, 17 Rue Moreau, Paris 75012, France
| |
Collapse
|
30
|
Abstract
Genetic studies of hereditary forms of nephrotic syndrome have identified several proteins that are involved in regulating the permselective properties of the glomerular filtration system. Further extensive research has elucidated the complex molecular basis of the glomerular filtration barrier and clearly established the pivotal role of podocytes in the pathophysiology of glomerular diseases. Podocyte architecture is centred on focal adhesions and slit diaphragms - multiprotein signalling hubs that regulate cell morphology and function. A highly interconnected actin cytoskeleton enables podocytes to adapt in order to accommodate environmental changes and maintain an intact glomerular filtration barrier. Actin-based endocytosis has now emerged as a regulator of podocyte integrity, providing an impetus for understanding the precise mechanisms that underlie the steady-state control of focal adhesion and slit diaphragm components. This Review outlines the role of actin dynamics and endocytosis in podocyte biology, and discusses how molecular heterogeneity in glomerular disorders could be exploited to deliver more rational therapeutic interventions, paving the way for targeted medicine in nephrology.
Collapse
|
31
|
Liu J, Sun L, Shen Q, Wu X, Xu H. New congenital anomalies of the kidney and urinary tract and outcomes in Robo2 mutant mice with the inserted piggyBac transposon. BMC Nephrol 2016; 17:98. [PMID: 27460642 PMCID: PMC4962383 DOI: 10.1186/s12882-016-0308-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 07/19/2016] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Disruption of ROBO2 in humans causes vesicoureteral reflux (VUR)/congenital anomalies of the kidney and urinary tract (CAKUT). PiggyBac (PB) is a DNA transposon, and its insertion often reduces-but does not eliminate-gene expression. The Robo2 insertion mutant exhibited non-dilating VUR, ureteropelvic junction obstruction (UPJO) not found in reported models. We studied the incidence and outcomes of VUR/CAKUT in this mutant and explored the relationship between Robo2 gene expression and the occurrence and severity of VUR/CAKUT. METHODS The urinary systems of newborn mutants were evaluated via Vevo 770 micro-ultrasound. Some of the normal animals-and all of the abnormal animals-were followed to adulthood and tested for VUR. Urinary obstruction experiments were performed on mice with hydronephrosis. The histology of the kidney and ureter was examined by light microscopy and transmission electron microscopy. Robo2 (PB/PB) mice were crossed with Hoxb7/myr-Venus mice to visualize the location of the ureters relative to the bladder. RESULTS In Robo2 (PB/PB) mice, PB insertion led to an approximately 50 % decrease in Robo2 gene expression. The most common (27.07 %, 62/229) abnormality was non-dilating VUR, and no statistically significant differences were found between age groups. Approximately 6.97 % displayed ultrasound-detectable CAKUT, and these mice survived to adulthood without improvement. No severe CAKUT were found in Robo2 (PB/+) mice. The refluxing ureters showed disorganized smooth muscle fibers, reduced muscle cell populations, intercellular edema and intracytoplasmic vacuoles in smooth muscle cells. Both UPJ and UVJ muscle defects were noted in Robo2 (PB/PB) mice. CONCLUSIONS Robo2 (PB/PB) mice is the first Robo2-deficient mouse model to survive to adulthood while displaying non-dilating VUR, UPJO, and multiple ureters with blind endings. The genetic background of these mutants may influence the penetrance and severity of the CAKUT phenotypes. VUR and other CAKUT found in this mutant had little chance of spontaneous resolution, and this requires careful follow-up. We reported for the first time that the non-dilated refluxing ureters showed disorganized smooth muscle fibers and altered smooth muscle cell structure, more accurately mimicking the characteristics of human cases. Future studies are required to test the role of Robo2 in the ureteric smooth muscle.
Collapse
Affiliation(s)
- Jialu Liu
- Department of Nephrology and Rheumatism, Children's Hospital of Fudan University, 399 WanYuan Road, Shanghai, 201102, China
| | - Li Sun
- Department of Nephrology and Rheumatism, Children's Hospital of Fudan University, 399 WanYuan Road, Shanghai, 201102, China
| | - Qian Shen
- Department of Nephrology and Rheumatism, Children's Hospital of Fudan University, 399 WanYuan Road, Shanghai, 201102, China
| | - Xiaohui Wu
- State Key Laboratory of Genetic Engineering and National Center for International Research of Development and Disease, Institute of Developmental Biology and Molecular Medicine, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Hong Xu
- Department of Nephrology and Rheumatism, Children's Hospital of Fudan University, 399 WanYuan Road, Shanghai, 201102, China.
| |
Collapse
|
32
|
Nino F, Ilari M, Noviello C, Santoro L, Rätsch IM, Martino A, Cobellis G. Genetics of Vesicoureteral Reflux. Curr Genomics 2016; 17:70-9. [PMID: 27013925 PMCID: PMC4780477 DOI: 10.2174/1389202916666151014223507] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 06/29/2015] [Accepted: 07/05/2015] [Indexed: 12/13/2022] Open
Abstract
Vesicoureteral reflux (VUR) is the retrograde passage of urine from the bladder to the upper urinary tract. It is the most common congenital urological anomaly affecting 1-2% of children and 30-40% of patients with urinary tract infections. VUR is a major risk factor for pyelonephritic scarring and chronic renal failure in children. It is the result of a shortened intravesical ureter with an enlarged or malpositioned ureteric orifice. An ectopic embryonal ureteric budding development is implicated in the pathogenesis of VUR, which is a complex genetic developmental disorder. Many genes are involved in the ureteric budding formation and subsequently in the urinary tract and kidney development. Previous studies demonstrate an heterogeneous genetic pattern of VUR. In fact no single major locus or gene for primary VUR has been identified. It is likely that different forms of VUR with different genetic determinantes are present. Moreover genetic studies of syndromes with associated VUR have revealed several possible candidate genes involved in the pathogenesis of VUR and related urinary tract malformations. Mutations in genes essential for urinary tract morphogenesis are linked to numerous congenital syndromes, and in most of those VUR is a feature. The Authors provide an overview of the developmental processes leading to the VUR. The different genes and signaling pathways controlling the embryonal urinary tract development are analyzed. A better understanding of VUR genetic bases could improve the management of this condition in children.
Collapse
Affiliation(s)
- F Nino
- Pediatric Surgery Unit - Salesi Children s Hospital - UniversitPolitecnica delle Marche - Ancona,Italy
| | - M Ilari
- Pediatric Surgery Unit - Salesi Children s Hospital - UniversitPolitecnica delle Marche - Ancona,Italy
| | - C Noviello
- Pediatric Surgery Unit - Salesi Children s Hospital - UniversitPolitecnica delle Marche - Ancona,Italy
| | - L Santoro
- Clinics of Pediatrics - Pediatric Nephrology Unit - Salesi Children s Hospital - Universit Politecnica delle Marche - Ancona, Italy
| | - I M Rätsch
- Clinics of Pediatrics - Pediatric Nephrology Unit - Salesi Children s Hospital - Universit Politecnica delle Marche - Ancona, Italy
| | - A Martino
- Pediatric Surgery Unit - Salesi Children s Hospital - UniversitPolitecnica delle Marche - Ancona,Italy
| | - G Cobellis
- Pediatric Surgery Unit - Salesi Children s Hospital - UniversitPolitecnica delle Marche - Ancona,Italy
| |
Collapse
|
33
|
Dubrac A, Genet G, Ola R, Zhang F, Pibouin-Fragner L, Han J, Zhang J, Thomas JL, Chedotal A, Schwartz MA, Eichmann A. Targeting NCK-Mediated Endothelial Cell Front-Rear Polarity Inhibits Neovascularization. Circulation 2015; 133:409-21. [PMID: 26659946 DOI: 10.1161/circulationaha.115.017537] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 12/04/2015] [Indexed: 12/22/2022]
Abstract
BACKGROUND Sprouting angiogenesis is a key process driving blood vessel growth in ischemic tissues and an important drug target in a number of diseases, including wet macular degeneration and wound healing. Endothelial cells forming the sprout must develop front-rear polarity to allow sprout extension. The adaptor proteins Nck1 and 2 are known regulators of cytoskeletal dynamics and polarity, but their function in angiogenesis is poorly understood. Here, we show that the Nck adaptors are required for endothelial cell front-rear polarity and migration downstream of the angiogenic growth factors VEGF-A and Slit2. METHODS AND RESULTS Mice carrying inducible, endothelial-specific Nck1/2 deletions fail to develop front-rear polarized vessel sprouts and exhibit severe angiogenesis defects in the postnatal retina and during embryonic development. Inactivation of NCK1 and 2 inhibits polarity by preventing Cdc42 and Pak2 activation by VEGF-A and Slit2. Mechanistically, NCK binding to ROBO1 is required for both Slit2- and VEGF-induced front-rear polarity. Selective inhibition of polarized endothelial cell migration by targeting Nck1/2 prevents hypersprouting induced by Notch or Bmp signaling inhibition, and pathological ocular neovascularization and wound healing, as well. CONCLUSIONS These data reveal a novel signal integration mechanism involving NCK1/2, ROBO1/2, and VEGFR2 that controls endothelial cell front-rear polarity during sprouting angiogenesis.
Collapse
Affiliation(s)
- Alexandre Dubrac
- From Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (A.D., G.G., R.O., F.Z., J.H., J.Z., J.-L.T., A.E.); INSERM U1050, Collège de France, Center for Interdisciplinary Research in Biology (CIRB), Paris (L.P.-F., A.E.); Department of Neurology, Yale University School of Medicine, New Haven, CT (J.-L.T.); Institut du Cerveau et de la Moelle, Inserm, Université Pierre et Marie Curie, Paris, France (J.-L.T.); Sorbonne Universités, UPMC Universités Paris 06, INSERM, UMR-S968, CNRS, UMR-7210, Institut de la Vision, France (A.C.); Departments of Cell Biology and Biomedical Engineering, Yale University, New Haven, CT (M.A.S.); and Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT (A.E.)
| | - Gael Genet
- From Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (A.D., G.G., R.O., F.Z., J.H., J.Z., J.-L.T., A.E.); INSERM U1050, Collège de France, Center for Interdisciplinary Research in Biology (CIRB), Paris (L.P.-F., A.E.); Department of Neurology, Yale University School of Medicine, New Haven, CT (J.-L.T.); Institut du Cerveau et de la Moelle, Inserm, Université Pierre et Marie Curie, Paris, France (J.-L.T.); Sorbonne Universités, UPMC Universités Paris 06, INSERM, UMR-S968, CNRS, UMR-7210, Institut de la Vision, France (A.C.); Departments of Cell Biology and Biomedical Engineering, Yale University, New Haven, CT (M.A.S.); and Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT (A.E.)
| | - Roxana Ola
- From Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (A.D., G.G., R.O., F.Z., J.H., J.Z., J.-L.T., A.E.); INSERM U1050, Collège de France, Center for Interdisciplinary Research in Biology (CIRB), Paris (L.P.-F., A.E.); Department of Neurology, Yale University School of Medicine, New Haven, CT (J.-L.T.); Institut du Cerveau et de la Moelle, Inserm, Université Pierre et Marie Curie, Paris, France (J.-L.T.); Sorbonne Universités, UPMC Universités Paris 06, INSERM, UMR-S968, CNRS, UMR-7210, Institut de la Vision, France (A.C.); Departments of Cell Biology and Biomedical Engineering, Yale University, New Haven, CT (M.A.S.); and Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT (A.E.)
| | - Feng Zhang
- From Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (A.D., G.G., R.O., F.Z., J.H., J.Z., J.-L.T., A.E.); INSERM U1050, Collège de France, Center for Interdisciplinary Research in Biology (CIRB), Paris (L.P.-F., A.E.); Department of Neurology, Yale University School of Medicine, New Haven, CT (J.-L.T.); Institut du Cerveau et de la Moelle, Inserm, Université Pierre et Marie Curie, Paris, France (J.-L.T.); Sorbonne Universités, UPMC Universités Paris 06, INSERM, UMR-S968, CNRS, UMR-7210, Institut de la Vision, France (A.C.); Departments of Cell Biology and Biomedical Engineering, Yale University, New Haven, CT (M.A.S.); and Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT (A.E.)
| | - Laurence Pibouin-Fragner
- From Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (A.D., G.G., R.O., F.Z., J.H., J.Z., J.-L.T., A.E.); INSERM U1050, Collège de France, Center for Interdisciplinary Research in Biology (CIRB), Paris (L.P.-F., A.E.); Department of Neurology, Yale University School of Medicine, New Haven, CT (J.-L.T.); Institut du Cerveau et de la Moelle, Inserm, Université Pierre et Marie Curie, Paris, France (J.-L.T.); Sorbonne Universités, UPMC Universités Paris 06, INSERM, UMR-S968, CNRS, UMR-7210, Institut de la Vision, France (A.C.); Departments of Cell Biology and Biomedical Engineering, Yale University, New Haven, CT (M.A.S.); and Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT (A.E.)
| | - Jinah Han
- From Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (A.D., G.G., R.O., F.Z., J.H., J.Z., J.-L.T., A.E.); INSERM U1050, Collège de France, Center for Interdisciplinary Research in Biology (CIRB), Paris (L.P.-F., A.E.); Department of Neurology, Yale University School of Medicine, New Haven, CT (J.-L.T.); Institut du Cerveau et de la Moelle, Inserm, Université Pierre et Marie Curie, Paris, France (J.-L.T.); Sorbonne Universités, UPMC Universités Paris 06, INSERM, UMR-S968, CNRS, UMR-7210, Institut de la Vision, France (A.C.); Departments of Cell Biology and Biomedical Engineering, Yale University, New Haven, CT (M.A.S.); and Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT (A.E.)
| | - Jiasheng Zhang
- From Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (A.D., G.G., R.O., F.Z., J.H., J.Z., J.-L.T., A.E.); INSERM U1050, Collège de France, Center for Interdisciplinary Research in Biology (CIRB), Paris (L.P.-F., A.E.); Department of Neurology, Yale University School of Medicine, New Haven, CT (J.-L.T.); Institut du Cerveau et de la Moelle, Inserm, Université Pierre et Marie Curie, Paris, France (J.-L.T.); Sorbonne Universités, UPMC Universités Paris 06, INSERM, UMR-S968, CNRS, UMR-7210, Institut de la Vision, France (A.C.); Departments of Cell Biology and Biomedical Engineering, Yale University, New Haven, CT (M.A.S.); and Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT (A.E.)
| | - Jean-Léon Thomas
- From Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (A.D., G.G., R.O., F.Z., J.H., J.Z., J.-L.T., A.E.); INSERM U1050, Collège de France, Center for Interdisciplinary Research in Biology (CIRB), Paris (L.P.-F., A.E.); Department of Neurology, Yale University School of Medicine, New Haven, CT (J.-L.T.); Institut du Cerveau et de la Moelle, Inserm, Université Pierre et Marie Curie, Paris, France (J.-L.T.); Sorbonne Universités, UPMC Universités Paris 06, INSERM, UMR-S968, CNRS, UMR-7210, Institut de la Vision, France (A.C.); Departments of Cell Biology and Biomedical Engineering, Yale University, New Haven, CT (M.A.S.); and Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT (A.E.)
| | - Alain Chedotal
- From Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (A.D., G.G., R.O., F.Z., J.H., J.Z., J.-L.T., A.E.); INSERM U1050, Collège de France, Center for Interdisciplinary Research in Biology (CIRB), Paris (L.P.-F., A.E.); Department of Neurology, Yale University School of Medicine, New Haven, CT (J.-L.T.); Institut du Cerveau et de la Moelle, Inserm, Université Pierre et Marie Curie, Paris, France (J.-L.T.); Sorbonne Universités, UPMC Universités Paris 06, INSERM, UMR-S968, CNRS, UMR-7210, Institut de la Vision, France (A.C.); Departments of Cell Biology and Biomedical Engineering, Yale University, New Haven, CT (M.A.S.); and Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT (A.E.)
| | - Martin A Schwartz
- From Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (A.D., G.G., R.O., F.Z., J.H., J.Z., J.-L.T., A.E.); INSERM U1050, Collège de France, Center for Interdisciplinary Research in Biology (CIRB), Paris (L.P.-F., A.E.); Department of Neurology, Yale University School of Medicine, New Haven, CT (J.-L.T.); Institut du Cerveau et de la Moelle, Inserm, Université Pierre et Marie Curie, Paris, France (J.-L.T.); Sorbonne Universités, UPMC Universités Paris 06, INSERM, UMR-S968, CNRS, UMR-7210, Institut de la Vision, France (A.C.); Departments of Cell Biology and Biomedical Engineering, Yale University, New Haven, CT (M.A.S.); and Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT (A.E.)
| | - Anne Eichmann
- From Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (A.D., G.G., R.O., F.Z., J.H., J.Z., J.-L.T., A.E.); INSERM U1050, Collège de France, Center for Interdisciplinary Research in Biology (CIRB), Paris (L.P.-F., A.E.); Department of Neurology, Yale University School of Medicine, New Haven, CT (J.-L.T.); Institut du Cerveau et de la Moelle, Inserm, Université Pierre et Marie Curie, Paris, France (J.-L.T.); Sorbonne Universités, UPMC Universités Paris 06, INSERM, UMR-S968, CNRS, UMR-7210, Institut de la Vision, France (A.C.); Departments of Cell Biology and Biomedical Engineering, Yale University, New Haven, CT (M.A.S.); and Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT (A.E.).
| |
Collapse
|
34
|
Sharmin S, Taguchi A, Kaku Y, Yoshimura Y, Ohmori T, Sakuma T, Mukoyama M, Yamamoto T, Kurihara H, Nishinakamura R. Human Induced Pluripotent Stem Cell-Derived Podocytes Mature into Vascularized Glomeruli upon Experimental Transplantation. J Am Soc Nephrol 2015; 27:1778-91. [PMID: 26586691 DOI: 10.1681/asn.2015010096] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 08/26/2015] [Indexed: 01/11/2023] Open
Abstract
Glomerular podocytes express proteins, such as nephrin, that constitute the slit diaphragm, thereby contributing to the filtration process in the kidney. Glomerular development has been analyzed mainly in mice, whereas analysis of human kidney development has been minimal because of limited access to embryonic kidneys. We previously reported the induction of three-dimensional primordial glomeruli from human induced pluripotent stem (iPS) cells. Here, using transcription activator-like effector nuclease-mediated homologous recombination, we generated human iPS cell lines that express green fluorescent protein (GFP) in the NPHS1 locus, which encodes nephrin, and we show that GFP expression facilitated accurate visualization of nephrin-positive podocyte formation in vitro These induced human podocytes exhibited apicobasal polarity, with nephrin proteins accumulated close to the basal domain, and possessed primary processes that were connected with slit diaphragm-like structures. Microarray analysis of sorted iPS cell-derived podocytes identified well conserved marker gene expression previously shown in mouse and human podocytes in vivo Furthermore, we developed a novel transplantation method using spacers that release the tension of host kidney capsules, thereby allowing the effective formation of glomeruli from human iPS cell-derived nephron progenitors. The human glomeruli were vascularized with the host mouse endothelial cells, and iPS cell-derived podocytes with numerous cell processes accumulated around the fenestrated endothelial cells. Therefore, the podocytes generated from iPS cells retain the podocyte-specific molecular and structural features, which will be useful for dissecting human glomerular development and diseases.
Collapse
Affiliation(s)
- Sazia Sharmin
- Department of Kidney Development, Institute of Molecular Embryology and Genetics, and
| | - Atsuhiro Taguchi
- Department of Kidney Development, Institute of Molecular Embryology and Genetics, and
| | - Yusuke Kaku
- Department of Kidney Development, Institute of Molecular Embryology and Genetics, and
| | - Yasuhiro Yoshimura
- Department of Kidney Development, Institute of Molecular Embryology and Genetics, and Department of Nephrology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Tomoko Ohmori
- Department of Kidney Development, Institute of Molecular Embryology and Genetics, and
| | - Tetsushi Sakuma
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima, Japan
| | - Masashi Mukoyama
- Department of Nephrology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Takashi Yamamoto
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima, Japan
| | - Hidetake Kurihara
- Division of Anatomy, Juntendo University School of Medicine, Tokyo, Japan; and
| | - Ryuichi Nishinakamura
- Department of Kidney Development, Institute of Molecular Embryology and Genetics, and Japan Science and Technology Agency, CREST, Kumamoto, Japan
| |
Collapse
|
35
|
Hwang DY, Kohl S, Fan X, Vivante A, Chan S, Dworschak GC, Schulz J, van Eerde AM, Hilger AC, Gee HY, Pennimpede T, Herrmann BG, van de Hoek G, Renkema KY, Schell C, Huber TB, Reutter HM, Soliman NA, Stajic N, Bogdanovic R, Kehinde EO, Lifton RP, Tasic V, Lu W, Hildebrandt F. Mutations of the SLIT2-ROBO2 pathway genes SLIT2 and SRGAP1 confer risk for congenital anomalies of the kidney and urinary tract. Hum Genet 2015; 134:905-16. [PMID: 26026792 PMCID: PMC4497857 DOI: 10.1007/s00439-015-1570-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 05/18/2015] [Indexed: 12/26/2022]
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) account for 40-50% of chronic kidney disease that manifests in the first two decades of life. Thus far, 31 monogenic causes of isolated CAKUT have been described, explaining ~12% of cases. To identify additional CAKUT-causing genes, we performed whole-exome sequencing followed by a genetic burden analysis in 26 genetically unsolved families with CAKUT. We identified two heterozygous mutations in SRGAP1 in 2 unrelated families. SRGAP1 is a small GTPase-activating protein in the SLIT2-ROBO2 signaling pathway, which is essential for development of the metanephric kidney. We then examined the pathway-derived candidate gene SLIT2 for mutations in cohort of 749 individuals with CAKUT and we identified 3 unrelated individuals with heterozygous mutations. The clinical phenotypes of individuals with mutations in SLIT2 or SRGAP1 were cystic dysplastic kidneys, unilateral renal agenesis, and duplicated collecting system. We show that SRGAP1 is expressed in early mouse nephrogenic mesenchyme and that it is coexpressed with ROBO2 in SIX2-positive nephron progenitor cells of the cap mesenchyme in developing rat kidney. We demonstrate that the newly identified mutations in SRGAP1 lead to an augmented inhibition of RAC1 in cultured human embryonic kidney cells and that the SLIT2 mutations compromise the ability of the SLIT2 ligand to inhibit cell migration. Thus, we report on two novel candidate genes for causing monogenic isolated CAKUT in humans.
Collapse
Affiliation(s)
- Daw-Yang Hwang
- Division of Nephrology, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Division of Nephrology, Department of Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Stefan Kohl
- Division of Nephrology, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Xueping Fan
- Renal Section, Department of Medicine, Boston University Medical Center, Boston, MA, USA
| | - Asaf Vivante
- Division of Nephrology, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Stefanie Chan
- Renal Section, Department of Medicine, Boston University Medical Center, Boston, MA, USA
| | - Gabriel C Dworschak
- Division of Nephrology, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Julian Schulz
- Division of Nephrology, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Albertien M van Eerde
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Alina C Hilger
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Heon Yung Gee
- Division of Nephrology, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Tracie Pennimpede
- Max Planck Institute for Molecular Genetics, Developmental Genetics Department, Berlin, Germany
| | - Bernhard G Herrmann
- Max Planck Institute for Molecular Genetics, Developmental Genetics Department, Berlin, Germany
| | - Glenn van de Hoek
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Kirsten Y Renkema
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Christoph Schell
- Renal Division, University Hospital Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, Albert-Ludwigs-University, Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-University, Freiburg, Germany
| | - Tobias B Huber
- Renal Division, University Hospital Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, Germany
| | - Heiko M Reutter
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Neonatology, Children’s Hospital, University of Bonn, Bonn, Germany
| | - Neveen A Soliman
- Department of Pediatrics, Kasr Al Ainy School of Medicine, Cairo University, Cairo, Egypt
- Egyptian Group for Orphan Renal Diseases (EGORD), Cairo, Egypt
| | - Natasa Stajic
- Medical Faculty, University of Belgrade, Belgrade, Serbia
- Institute of Mother and Child Healthcare of Serbia, Belgrade, Serbia
| | - Radovan Bogdanovic
- Medical Faculty, University of Belgrade, Belgrade, Serbia
- Institute of Mother and Child Healthcare of Serbia, Belgrade, Serbia
| | | | - Richard P Lifton
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
- Yale Center for Mendelian Genomics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Velibor Tasic
- Department of Pediatric Nephrology, University Children’s Hospital, Skopje, Macedonia
| | - Weining Lu
- Renal Section, Department of Medicine, Boston University Medical Center, Boston, MA, USA
| | - Friedhelm Hildebrandt
- Division of Nephrology, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| |
Collapse
|
36
|
Abstract
The function of the kidney, filtering blood and concentrating metabolic waste into urine, takes place in an intricate and functionally elegant structure called the renal glomerulus. Normal glomerular function retains circulating cells and valuable macromolecular components of plasma in blood, resulting in urine with just trace amounts of proteins. Endothelial cells of glomerular capillaries, the podocytes wrapped around them, and the fused extracellular matrix these cells form altogether comprise the glomerular filtration barrier, a dynamic and highly selective filter that sieves on the basis of molecular size and electrical charge. Current understanding of the structural organization and the cellular and molecular basis of renal filtration draws from studies of human glomerular diseases and animal models of glomerular dysfunction.
Collapse
Affiliation(s)
- Rizaldy P Scott
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Susan E Quaggin
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| |
Collapse
|
37
|
An update: the role of Nephrin inside and outside the kidney. SCIENCE CHINA-LIFE SCIENCES 2015; 58:649-57. [PMID: 25921941 DOI: 10.1007/s11427-015-4844-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 02/27/2015] [Indexed: 12/18/2022]
Abstract
Nephrin is a key molecule in podocytes to maintain normal slit diaphragm structure. Nephin interacts with many other podocyte and slit diaphragm protein and also mediates important cell signaling pathways in podocytes. Loss of nephrin during the development leads to the congenital nephrotic syndrome in children. Reduction of nephrin expression is often observed in adult kidney diseases including diabetic nephropathy and HIV-associated nephropathy. The critical role of nephrin has been confirmed by different animal models with nephrin knockout and knockdown. Recent studies demonstrate that knockdown of nephrin expression in adult mice aggravates the progression of unilateral nephrectomy and Adriamycin-induced kidney disease. In addition to its critical role in maintaining normal glomerular filtration unit in the kidney, nephrin is also expressed in other organs. However, the exact role of nephrin in kidney and extra-renal organs has not been well characterized. Future studies are required to determine whether nephrin could be developed as a drug target to treat patients with kidney disease.
Collapse
|
38
|
Liu W, Qiao F, Liu H, Gong X, Shi X, Li Y, Wu Y. Low molecular weight heparin improves proteinuria in rats with L-NAME induced preeclampsia by decreasing the expression of nephrin, but not podocin. Hypertens Pregnancy 2014; 34:24-35. [PMID: 25181538 DOI: 10.3109/10641955.2014.951655] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
OBJECTIVE We investigated the relationship between proteinuria in L-NAME induced preeclampsia and the expression of nephrin and podocin, and the effect of low-molecular-weight-heparin (LMWH) on proteinuria in rats. METHODS We detected nephrin and podocin expression of kidneys of pregnant rats after L-NAME and after LMWH intervening pregnant rats. RESULTS Glomerular nephrin expression in L-NAME induced preeclampsia significantly decreased, but not podocin. Nephrin was relatively increased after LMWH intervention and this was accompanied by a decrease in proteinuria. CONCLUSION We demonstrate that down-regulation of nephrin is involved in L-NAME induced proteinuria, and that LMWH reduces proteinuria by up-regulation of neprhin.
Collapse
Affiliation(s)
- Wanlu Liu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , P.R. China
| | | | | | | | | | | | | |
Collapse
|
39
|
Finne K, Vethe H, Skogstrand T, Leh S, Dahl TD, Tenstad O, Berven FS, Reed RK, Vikse BE. Proteomic analysis of formalin-fixed paraffin-embedded glomeruli suggests depletion of glomerular filtration barrier proteins in two-kidney, one-clip hypertensive rats. Nephrol Dial Transplant 2014; 29:2217-27. [PMID: 25129444 PMCID: PMC4240179 DOI: 10.1093/ndt/gfu268] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background It is well known that hypertension may cause glomerular damage, but the molecular mechanisms involved are still incompletely understood. Methods In the present study, we used formalin-fixed paraffin-embedded (FFPE) tissue to investigate changes in the glomerular proteome in the non-clipped kidney of two-kidney one-clip (2K1C) hypertensive rats, with special emphasis on the glomerular filtration barrier. 2K1C hypertension was induced in 6-week-old Wistar Hannover rats (n = 6) that were sacrificed 23 weeks later and compared with age-matched sham-operated controls (n = 6). Tissue was stored in FFPE tissue blocks and later prepared on tissue slides for laser microdissection. Glomeruli without severe morphological damage were isolated, and the proteomes were analysed using liquid chromatography–tandem mass spectrometry. Results 2K1C glomeruli showed reduced abundance of proteins important for slit diaphragm complex, such as nephrin, podocin and neph1. The podocyte foot process had a pattern of reduced abundance of transmembrane proteins but unchanged abundances of the podocyte cytoskeletal proteins synaptopodin and α-actinin-4. Lower abundance of important glomerular basement membrane proteins was seen. Possible glomerular markers of damage with increased abundance in 2K1C were transgelin, desmin and acyl-coenzyme A thioesterase 1. Conclusions Microdissection and tandem mass spectrometry could be used to investigate the proteome of isolated glomeruli from FFPE tissue. Glomerular filtration barrier proteins had reduced abundance in the non-clipped kidney of 2K1C hypertensive rats.
Collapse
Affiliation(s)
- Kenneth Finne
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Heidrun Vethe
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Trude Skogstrand
- Department of Clinical Medicine, University of Bergen, Bergen, Norway Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Sabine Leh
- Department of Clinical Medicine, University of Bergen, Bergen, Norway Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Tone D Dahl
- Department of Clinical Medicine, University of Bergen, Bergen, Norway Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Olav Tenstad
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Frode S Berven
- Department of Biomedicine, University of Bergen, Bergen, Norway The Norwegian Multiple Sclerosis National Competence Centre, Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Rolf K Reed
- Department of Biomedicine, University of Bergen, Bergen, Norway Centre for Cancer Biomarkers (CCBIO), University of Bergen, Bergen, Norway
| | - Bjørn Egil Vikse
- Department of Clinical Medicine, University of Bergen, Bergen, Norway Department of Medicine, Haukeland University Hospital, Bergen, Norway Department of Medicine, Haugesund Hospital, Haugesund, Norway
| |
Collapse
|
40
|
|
41
|
Wang Y, Wang J, Li BH, Qu H, Luo CL, Shu DM. An association between genetic variation in the roundabout, axon guidance receptor, homolog 2 gene and immunity traits in chickens. Poult Sci 2014; 93:31-8. [PMID: 24570420 DOI: 10.3382/ps.2013-03512] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The roundabout, axon guidance receptor, homolog 2 (ROBO2) gene is one member of the roundabout (ROBO) family, which belongs to the immunoglobulin superfamily. The ROBO molecules are known to function in axon guidance and cell migration and are involved in SLIT/ROBO signaling. In this study, we obtained the full-length cDNA sequence of the chicken ROBO2 gene. Sequence analysis indicated that 3 SNP (1418G > A, 1421C > A and 2462T > C) exist in exons 5 and 12 of the ROBO2 gene. Genotyping results revealed that the allele frequency of SNP 1421C > A was similar in all tested breeds, but the allele frequencies of the other 2 SNP were different between White Leghorn and Chinese indigenous chickens. Allele G of 1418G > A and allele T of 2462T > C predominated in the Chinese indigenous breed, whereas alleles A and C predominated in the White Leghorn breed. Association analyses revealed that birds with the GG genotype of SNP 1418G > A or the TT genotype of SNP 2462T > C had significantly higher antibody responses to Newcastle disease virus (NDV_S/P; P < 0.01) than carriers of the A allele (GA and AA) or the C allele (TC), respectively. Real-time PCR further revealed that ROBO2 expression in the spleens of the birds with higher antibody responses (GG and TT genotypes at SNP 1418 and 2462, respectively) was significantly higher than in the spleens of birds with the AA and AG genotypes at SNP 1418 or the TC genotype at SNP 2462 (P < 0.01). The results demonstrated that genetic variation at the ROBO2 gene plays a key role in the immune response to Newcastle disease virus, and SNP 1418G > A and 2462T > C can be used as genetic markers for the selection of chickens with stronger immune responses to Newcastle disease virus.
Collapse
Affiliation(s)
- Y Wang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; and State Key Laboratory of Livestock and Poultry Breeding, Guangzhou 510640, China
| | | | | | | | | | | |
Collapse
|
42
|
Yu M, Ren Q, Yu SY. Role of nephrin phosphorylation inducted by dexamethasone and angiotensin II in podocytes. Mol Biol Rep 2014; 41:3591-5. [PMID: 24515388 DOI: 10.1007/s11033-014-3222-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 01/28/2014] [Indexed: 11/27/2022]
Abstract
The phosphorylation of nephrin plays an important role in maintaining the normal structure and function in podocytes. Dexamethasone (Dex) is usually used to treat glomerular diseases with proteinuria. In this study, we observated the effect of Dex and angiotensin II (AngII) on the change of nephrin phosphorylation in cultured podocytes. In vitro, cultured podocytes were exposed to AngII (10(-6) mol/L) pretreated with or without Dex (100 nM) for different time periods. Nck or Fyn were silenced by small interfering RNA (siRNA), nephrin and its phosphorylation expression were analyzed by Western blotting. In vitro, the phosphorylation of nephrin was significantly reduced after AngII stimulation (P < 0.05). Dex significantly resisted podocyte injury inducted by AngII via increasing the phosphorylation of nephrin (P < 0.05), siRNA silencing Nck can partially inhibited nephrin phosphorylation, siRNA silencing Fyn can completely inhibited nephrin phosphorylation. Phosphorylation of nephrin is important for the survival status of podocytes. Glucocorticoid treatment for human glomerulonephritis may exert its function by regulating Nck and Fyn complex to promote phosphorylation of nephrin. These results elucidate a novel mechanism of glucocorticoid treatment for glomerulonephritis.
Collapse
Affiliation(s)
- Meng Yu
- Nephrology Department of the Frist Hospital Affiliated to Ji'nan University, Guangzhou, China
| | | | | |
Collapse
|
43
|
Lennon R, Randles MJ, Humphries MJ. The importance of podocyte adhesion for a healthy glomerulus. Front Endocrinol (Lausanne) 2014; 5:160. [PMID: 25352829 PMCID: PMC4196579 DOI: 10.3389/fendo.2014.00160] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 09/21/2014] [Indexed: 12/23/2022] Open
Abstract
Podocytes are specialized epithelial cells that cover the outer surfaces of glomerular capillaries. Unique cell junctions, known as slit diaphragms, which feature nephrin and Neph family proteins in addition to components of adherens, tight, and gap junctions, connect adjacent podocyte foot processes. Single gene disorders affecting the slit diaphragm result in nephrotic syndrome in humans, characterized by massive loss of protein across the capillary wall. In addition to specialized cell junctions, interconnecting podocytes also adhere to the glomerular basement membrane (GBM) of the capillary wall. The GBM is a dense network of secreted, extracellular matrix (ECM) components and contains tissue-restricted isoforms of collagen IV and laminin in addition to other structural proteins and ECM regulators such as proteases and growth factors. The specialized niche of the GBM provides a scaffold for endothelial cells and podocytes to support their unique functions and human genetic mutations in GBM components lead to renal failure, thus highlighting the importance of cell-matrix interactions in the glomerulus. Cells adhere to ECM via adhesion receptors, including integrins, syndecans, and dystroglycan and in particular the integrin heterodimer α3β1 is required to maintain barrier integrity. Therefore, the sophisticated function of glomerular filtration relies on podocyte adhesion both at cell junctions and at the interface with the ECM. In health, the podocyte coordinates signals from cell junctions and cell-matrix interactions, in response to environmental cues in order to regulate filtration and as our understanding of mechanisms that control cell adhesion in the glomerulus develops, then insight into the effects of disease will improve. The ultimate goal will be to develop targeted therapies to prevent or repair defects in the filtration barrier and to restore glomerular function.
Collapse
Affiliation(s)
- Rachel Lennon
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, The University of Manchester, Manchester, UK
- Institute of Human Development, Faculty of Medical and Human Sciences, The University of Manchester, Manchester, UK
- Department of Paediatric Nephrology, Manchester Academic Health Science Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK
- *Correspondence: Rachel Lennon, Wellcome Trust Centre for Cell-Matrix Research, The University of Manchester, Michael Smith Building, Manchester M13 9PT, UK e-mail:
| | - Michael J. Randles
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, The University of Manchester, Manchester, UK
- Institute of Human Development, Faculty of Medical and Human Sciences, The University of Manchester, Manchester, UK
| | - Martin J. Humphries
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, The University of Manchester, Manchester, UK
| |
Collapse
|
44
|
Promiscuity as a functional trait: intrinsically disordered regions as central players of interactomes. Biochem J 2013; 454:361-9. [PMID: 23988124 DOI: 10.1042/bj20130545] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Because of their pervasiveness in eukaryotic genomes and their unique properties, understanding the role that ID (intrinsically disordered) regions in proteins play in the interactome is essential for gaining a better understanding of the network. Especially critical in determining this role is their ability to bind more than one partner using the same region. Studies have revealed that proteins containing ID regions tend to take a central role in protein interaction networks; specifically, they act as hubs, interacting with multiple different partners across time and space, allowing for the co-ordination of many cellular activities. There appear to be three different modules within ID regions responsible for their functionally promiscuous behaviour: MoRFs (molecular recognition features), SLiMs (small linear motifs) and LCRs (low complexity regions). These regions allow for functionality such as engaging in the formation of dynamic heteromeric structures which can serve to increase local activity of an enzyme or store a collection of functionally related molecules for later use. However, the use of promiscuity does not come without a cost: a number of diseases that have been associated with ID-containing proteins seem to be caused by undesirable interactions occurring upon altered expression of the ID-containing protein.
Collapse
|
45
|
Patent Highlights. Pharm Pat Anal 2013. [DOI: 10.4155/ppa.13.59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Snapshot of key developments in the patent literature accompanied by explanatory synopses
Collapse
|
46
|
Rasouly HM, Lu W. Lower urinary tract development and disease. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2013; 5:307-42. [PMID: 23408557 PMCID: PMC3627353 DOI: 10.1002/wsbm.1212] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Congenital anomalies of the lower urinary tract (CALUT) are a family of birth defects of the ureter, the bladder, and the urethra. CALUT includes ureteral anomaliesc such as congenital abnormalities of the ureteropelvic junction (UPJ) and ureterovesical junction (UVJ), and birth defects of the bladder and the urethra such as bladder-exstrophy-epispadias complex (BEEC), prune belly syndrome (PBS), and posterior urethral valves (PUVs). CALUT is one of the most common birth defects and is often associated with antenatal hydronephrosis, vesicoureteral reflux (VUR), urinary tract obstruction, urinary tract infections (UTI), chronic kidney disease, and renal failure in children. Here, we discuss the current genetic and molecular knowledge about lower urinary tract development and genetic basis of CALUT in both human and mouse models. We provide an overview of the developmental processes leading to the formation of the ureter, the bladder, and the urethra, and different genes and signaling pathways controlling these developmental processes. Human genetic disorders that affect the ureter, the bladder and the urethra and associated gene mutations are also presented. As we are entering the postgenomic era of personalized medicine, information in this article may provide useful interpretation for the genetic and genomic test results collected from patients with lower urinary tract birth defects. With evidence-based interpretations, clinicians may provide more effective personalized therapies to patients and genetic counseling for their families.
Collapse
Affiliation(s)
- Hila Milo Rasouly
- Renal Section, Department of Medicine, Boston University Medical Center, Boston, MA 02118, USA
| | - Weining Lu
- Renal Section, Department of Medicine, Boston University Medical Center, Boston, MA 02118, USA
| |
Collapse
|
47
|
Li M, Armelloni S, Edefonti A, Messa P, Rastaldi MP. Fifteen years of research on nephrin: what we still need to know. Nephrol Dial Transplant 2012; 28:767-70. [PMID: 23139403 DOI: 10.1093/ndt/gfs522] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- Min Li
- Renal Research Laboratory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico & Fondazione D'Amico per la Ricerca sulle Malattie Renali, Milano, Italy
| | | | | | | | | |
Collapse
|
48
|
Journal Club. Kidney Int 2012. [DOI: 10.1038/ki.2012.351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|