1
|
Freire NH, Jaeger MDC, de Farias CB, Nör C, Souza BK, Gregianin L, Brunetto AT, Roesler R. Targeting the epigenome of cancer stem cells in pediatric nervous system tumors. Mol Cell Biochem 2023; 478:2241-2255. [PMID: 36637615 DOI: 10.1007/s11010-022-04655-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 12/30/2022] [Indexed: 01/14/2023]
Abstract
Medulloblastoma, neuroblastoma, and pediatric glioma account for almost 30% of all cases of pediatric cancers. Recent evidence indicates that pediatric nervous system tumors originate from stem or progenitor cells and present a subpopulation of cells with highly tumorigenic and stem cell-like features. These cancer stem cells play a role in initiation, progression, and resistance to treatment of pediatric nervous system tumors. Histone modification, DNA methylation, chromatin remodeling, and microRNA regulation display a range of regulatory activities involved in cancer origin and progression, and cellular identity, especially those associated with stem cell features, such as self-renewal and pluripotent differentiation potential. Here, we review the contribution of different epigenetic mechanisms in pediatric nervous system tumor cancer stem cells. The choice between a differentiated and undifferentiated state can be modulated by alterations in the epigenome through the regulation of stemness genes such as CD133, SOX2, and BMI1 and the activation neuronal of differentiation markers, RBFOX3, GFAP, and S100B. Additionally, we highlighted the stage of development of epigenetic drugs and the clinical benefits and efficacy of epigenetic modulators in pediatric nervous system tumors.
Collapse
Affiliation(s)
- Natália Hogetop Freire
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil.
- Graduate Program in Cellular and Molecular Biology, Center of Biotechnology, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500 (Setor IV - Campus do Vale), Porto Alegre, 91501-970, Brazil.
| | - Mariane da Cunha Jaeger
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
- Children's Cancer Institute, Porto Alegre, RS, Brazil
| | - Caroline Brunetto de Farias
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
- Children's Cancer Institute, Porto Alegre, RS, Brazil
| | - Carolina Nör
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | | | - Lauro Gregianin
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
- Department of Pediatrics, School of Medicine, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
- Pediatric Oncology Service, Clinical Hospital, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - André Tesainer Brunetto
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
- Children's Cancer Institute, Porto Alegre, RS, Brazil
| | - Rafael Roesler
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
- Graduate Program in Cellular and Molecular Biology, Center of Biotechnology, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500 (Setor IV - Campus do Vale), Porto Alegre, 91501-970, Brazil
- Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
2
|
Improda T, Morgera V, Vitale M, Chiariotti L, Passaro F, Feola A, Porcellini A, Cuomo M, Pezone A. Specific Methyl-CpG Configurations Define Cell Identity through Gene Expression Regulation. Int J Mol Sci 2023; 24:9951. [PMID: 37373098 DOI: 10.3390/ijms24129951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 05/31/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Cell identity is determined by the chromatin structure and profiles of gene expression, which are dependent on chromatin accessibility and DNA methylation of the regions critical for gene expression, such as enhancers and promoters. These epigenetic modifications are required for mammalian development and are essential for the establishment and maintenance of the cellular identity. DNA methylation was once thought to be a permanent repressive epigenetic mark, but systematic analyses in various genomic contexts have revealed a more dynamic regulation than previously thought. In fact, both active DNA methylation and demethylation occur during cell fate commitment and terminal differentiation. To link methylation signatures of specific genes to their expression profiles, we determined the methyl-CpG configurations of the promoters of five genes switched on and off during murine postnatal brain differentiation by bisulfite-targeted sequencing. Here, we report the structure of significant, dynamic, and stable methyl-CpG profiles associated with silencing or activation of the expression of genes during neural stem cell and brain postnatal differentiation. Strikingly, these methylation cores mark different mouse brain areas and cell types derived from the same areas during differentiation.
Collapse
Affiliation(s)
- Teresa Improda
- Dipartimento di Biologia, Complesso Universitario di Monte Sant'Angelo, Università degli Studi di Napoli "Federico II", 80126 Napoli, Italy
| | - Valentina Morgera
- Dipartimento di Biologia, Complesso Universitario di Monte Sant'Angelo, Università degli Studi di Napoli "Federico II", 80126 Napoli, Italy
| | - Maria Vitale
- Dipartimento di Biologia, Complesso Universitario di Monte Sant'Angelo, Università degli Studi di Napoli "Federico II", 80126 Napoli, Italy
| | - Lorenzo Chiariotti
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", 80131 Napoli, Italy
| | - Fabiana Passaro
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", 80131 Napoli, Italy
| | - Antonia Feola
- Dipartimento di Biologia, Complesso Universitario di Monte Sant'Angelo, Università degli Studi di Napoli "Federico II", 80126 Napoli, Italy
| | - Antonio Porcellini
- Dipartimento di Biologia, Complesso Universitario di Monte Sant'Angelo, Università degli Studi di Napoli "Federico II", 80126 Napoli, Italy
| | - Mariella Cuomo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", 80131 Napoli, Italy
| | - Antonio Pezone
- Dipartimento di Biologia, Complesso Universitario di Monte Sant'Angelo, Università degli Studi di Napoli "Federico II", 80126 Napoli, Italy
| |
Collapse
|
3
|
Kang H, Hasselbeck S, Taškova K, Wang N, Oosten LNV, Mrowka R, Utikal J, Andrade-Navarro MA, Wang J, Wölfl S, Cheng X. Development of a next-generation endogenous OCT4 inducer and its anti-aging effect in vivo. Eur J Med Chem 2023; 257:115513. [PMID: 37253308 DOI: 10.1016/j.ejmech.2023.115513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/05/2023] [Accepted: 05/23/2023] [Indexed: 06/01/2023]
Abstract
The identification of small molecules capable of replacing transcription factors has been a longstanding challenge in the generation of human chemically induced pluripotent stem cells (iPSCs). Recent studies have shown that ectopic expression of OCT4, one of the master pluripotency regulators, compromised the developmental potential of resulting iPSCs, This highlights the importance of finding endogenous OCT4 inducers for the generation of clinical-grade human iPSCs. Through a cell-based high throughput screen, we have discovered several new OCT4-inducing compounds (O4Is). In this work, we prepared metabolically stable analogues, including O4I4, which activate endogenous OCT4 and associated signaling pathways in various cell lines. By combining these with a transcription factor cocktail consisting of SOX2, KLF4, MYC, and LIN28 (referred to as "CSKML") we achieved to reprogram human fibroblasts into a stable and authentic pluripotent state without the need for exogenous OCT4. In Caenorhabditis elegans and Drosophila, O4I4 extends lifespan, suggesting the potential application of OCT4-inducing compounds in regenerative medicine and rejuvenation therapy.
Collapse
Affiliation(s)
- Han Kang
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Germany
| | - Sebastian Hasselbeck
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt am Main, Germany
| | - Katerina Taškova
- Faculty of Biology, Johannes Gutenberg University Mainz, Germany
| | - Nessa Wang
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Germany
| | - Luuk N van Oosten
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Germany
| | - Ralf Mrowka
- Experimentelle Nephrologie, KIM III, Universitätsklinikum, Jena, Germany
| | - Jochen Utikal
- Skin Cancer Unit (G300), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Jichang Wang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Stefan Wölfl
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Germany
| | - Xinlai Cheng
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Germany; Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt am Main, Germany; Frankfurt Cancer Institute, Germany.
| |
Collapse
|
4
|
Liu S, Wang X, Zhu Y, Guo D, Wang Y, Wang Y. Epigenetic changes between the active and torpid states in the greater horseshoe bat (Rhinolophus ferrumequinum). Comp Biochem Physiol B Biochem Mol Biol 2023; 265:110829. [PMID: 36634815 DOI: 10.1016/j.cbpb.2023.110829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/19/2022] [Accepted: 01/06/2023] [Indexed: 01/11/2023]
Abstract
Dynamic epigenetic changes during hibernation occur in some hibernating rodents, but these changes are poorly understood in hibernating bats. Populations of the greater horseshoe bat (Rhinolophus ferrumequinum) in north China hibernate and provide an opportunity to study how epigenetic markers and modifiers differ in the active and torpid states of a chiropteran. We used fluorescence-labeled methylation-sensitive amplified polymorphism (F-MSAP) and qRT-PCR techniques to determine changes in the global DNA methylation levels and mRNA expression levels of methylation-related proteins. These included DNA methyltransferase (DNMTs), methyl-CpG-binding proteins (MBPs, including MBDs, UHRFs, and zinc-finger protein family) in active and torpid R. ferrumequinum. In the torpid state, both the relative global methylation and the relative mRNA expression levels of some DNMTs and MBPs, including dnmt3b and zbtb4, increased significantly compared to the expression levels of these in the active state. These changes may involve methylation or assist in regulation of a particular subset of genes according to hibernation status. This indicates that epigenetic mechanisms may exist and facilitate the hibernation process of R. ferrumequinum.
Collapse
Affiliation(s)
- Sen Liu
- College of Life Sciences, Henan Normal University, Xinxiang, Henan, China.
| | - Xufan Wang
- College of Life Sciences, Henan Normal University, Xinxiang, Henan, China
| | - Yue Zhu
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin, China
| | - Dongge Guo
- College of Life Sciences, Henan Normal University, Xinxiang, Henan, China
| | - Yanmei Wang
- College of Life Sciences, Henan Normal University, Xinxiang, Henan, China
| | - Ying Wang
- College of Life Sciences, Henan Normal University, Xinxiang, Henan, China.
| |
Collapse
|
5
|
Shell DJ, Rectenwald JM, Buttery PH, Johnson RL, Foley CA, Guduru SKR, Uguen M, Rubiano JS, Zhang X, Li F, Norris-Drouin JL, Axtman M, Brian Hardy P, Vedadi M, Frye SV, James LI, Pearce KH. Discovery of hit compounds for methyl-lysine reader proteins from a target class DNA-encoded library. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2022; 27:428-439. [PMID: 36272689 DOI: 10.1016/j.slasd.2022.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 11/07/2022]
Abstract
Methyl-lysine (Kme) reader domains are prevalent in chromatin regulatory proteins which bind post-translational modification sites to recruit repressive and activating factors; therefore, these proteins play crucial roles in cellular signaling and epigenetic regulation. Proteins that contain Kme domains are implicated in various diseases, including cancer, making them attractive therapeutic targets for drug and chemical probe discovery. Herein, we report on expanding the utility of a previously reported, Kme-focused DNA-encoded library (DEL), UNCDEL003, as a screening tool for hit discovery through the specific targeting of Kme reader proteins. As an efficient method for library generation, focused DELs are designed based on structural and functional features of a specific class of proteins with the intent of novel hit discovery. To broadly assess the applicability of our library, UNCDEL003 was screened against five diverse Kme reader protein domains (53BP1 TTD, KDM7B JmjC-PHD, CDYL2 CD, CBX2 CD, and LEDGF PWWP) with varying structures and functions. From these screening efforts, we identified hit compounds which contain unique chemical scaffolds distinct from previously reported ligands. The selected hit compounds were synthesized off-DNA and confirmed using primary and secondary assays and assessed for binding selectivity. Hit compounds from these efforts can serve as starting points for additional development and optimization into chemical probes to aid in further understanding the functionality of these therapeutically relevant proteins.
Collapse
Affiliation(s)
- Devan J Shell
- UNC Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Justin M Rectenwald
- School of Medicine, Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Peter H Buttery
- UNC Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Rebecca L Johnson
- UNC Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Caroline A Foley
- UNC Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Shiva K R Guduru
- UNC Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mélanie Uguen
- UNC Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Juanita Sanchez Rubiano
- UNC Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Xindi Zhang
- UNC Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Fengling Li
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Jacqueline L Norris-Drouin
- UNC Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Matthew Axtman
- UNC Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - P Brian Hardy
- UNC Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Masoud Vedadi
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Stephen V Frye
- UNC Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Lindsey I James
- UNC Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kenneth H Pearce
- UNC Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
6
|
Janssen SM, Lorincz MC. Interplay between chromatin marks in development and disease. Nat Rev Genet 2022; 23:137-153. [PMID: 34608297 DOI: 10.1038/s41576-021-00416-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2021] [Indexed: 02/07/2023]
Abstract
DNA methylation (DNAme) and histone post-translational modifications (PTMs) have important roles in transcriptional regulation. Although many reports have characterized the functions of such chromatin marks in isolation, recent genome-wide studies reveal surprisingly complex interactions between them. Here, we focus on the interplay between DNAme and methylation of specific lysine residues on the histone H3 tail. We describe the impact of genetic perturbation of the relevant methyltransferases in the mouse on the landscape of chromatin marks as well as the transcriptome. In addition, we discuss the specific neurodevelopmental growth syndromes and cancers resulting from pathogenic mutations in the human orthologues of these genes. Integrating these observations underscores the fundamental importance of crosstalk between DNA and histone H3 methylation in development and disease.
Collapse
Affiliation(s)
- Sanne M Janssen
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Matthew C Lorincz
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
7
|
Mensah IK, Norvil AB, AlAbdi L, McGovern S, Petell CJ, He M, Gowher H. Misregulation of the expression and activity of DNA methyltransferases in cancer. NAR Cancer 2021; 3:zcab045. [PMID: 34870206 PMCID: PMC8634572 DOI: 10.1093/narcan/zcab045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/29/2021] [Accepted: 11/10/2021] [Indexed: 12/15/2022] Open
Abstract
In mammals, DNA methyltransferases DNMT1 and DNMT3's (A, B and L) deposit and maintain DNA methylation in dividing and nondividing cells. Although these enzymes have an unremarkable DNA sequence specificity (CpG), their regional specificity is regulated by interactions with various protein factors, chromatin modifiers, and post-translational modifications of histones. Changes in the DNMT expression or interacting partners affect DNA methylation patterns. Consequently, the acquired gene expression may increase the proliferative potential of cells, often concomitant with loss of cell identity as found in cancer. Aberrant DNA methylation, including hypermethylation and hypomethylation at various genomic regions, therefore, is a hallmark of most cancers. Additionally, somatic mutations in DNMTs that affect catalytic activity were mapped in Acute Myeloid Leukemia cancer cells. Despite being very effective in some cancers, the clinically approved DNMT inhibitors lack specificity, which could result in a wide range of deleterious effects. Elucidating distinct molecular mechanisms of DNMTs will facilitate the discovery of alternative cancer therapeutic targets. This review is focused on: (i) the structure and characteristics of DNMTs, (ii) the prevalence of mutations and abnormal expression of DNMTs in cancer, (iii) factors that mediate their abnormal expression and (iv) the effect of anomalous DNMT-complexes in cancer.
Collapse
Affiliation(s)
- Isaiah K Mensah
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | | | - Lama AlAbdi
- Department of Zoology, Collage of Science, King Saud University, Riyadh, Saudi Arabia
| | - Sarah McGovern
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | | | - Ming He
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Humaira Gowher
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
8
|
Valencia-Ortega J, Saucedo R, Sánchez-Rodríguez MA, Cruz-Durán JG, Martínez EGR. Epigenetic Alterations Related to Gestational Diabetes Mellitus. Int J Mol Sci 2021; 22:ijms22179462. [PMID: 34502370 PMCID: PMC8430976 DOI: 10.3390/ijms22179462] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 02/06/2023] Open
Abstract
Gestational diabetes mellitus (GDM) is the most common metabolic complication in pregnancy, which affects the future health of both the mother and the newborn. Its pathophysiology involves nutritional, hormonal, immunological, genetic and epigenetic factors. Among the latter, it has been observed that alterations in DNA (deoxyribonucleic acid) methylation patterns and in the levels of certain micro RNAs, whether in placenta or adipose tissue, are related to well-known characteristics of the disease, such as hyperglycemia, insulin resistance, inflammation and excessive placental growth. Furthermore, epigenetic alterations of gestational diabetes mellitus are observable in maternal blood, although their pathophysiological roles are completely unknown. Despite this, it has not been possible to determine the causes of the epigenetic characteristics of GDM, highlighting the need for integral and longitudinal studies. Based on this, this article summarizes the most relevant and recent studies on epigenetic alterations in placenta, adipose tissue and maternal blood associated with GDM in order to provide the reader with a general overview of the subject and indicate future research topics.
Collapse
Affiliation(s)
- Jorge Valencia-Ortega
- Unidad de Investigación Médica en Enfermedades Endocrinas, UMAE Hospital de Especialidades, Instituto Mexicano del Seguro Social, Mexico City 06600, Mexico;
| | - Renata Saucedo
- Unidad de Investigación Médica en Enfermedades Endocrinas, UMAE Hospital de Especialidades, Instituto Mexicano del Seguro Social, Mexico City 06600, Mexico;
- Correspondence: ; Tel.: +55-55887521
| | - Martha A. Sánchez-Rodríguez
- Unidad de Investigación en Gerontología, Facultad de Estudios Superiores Zaragoza, Universidad Autónoma de México, Mexico City 04510, Mexico;
| | - José G. Cruz-Durán
- UMAE Hospital de Gineco-Obstetricia No. 3, Instituto Mexicano del Seguro Social, Mexico City 06600, Mexico;
| | - Edgar G. Ramos Martínez
- Universidad Autónoma Benito Juárez de Oaxaca and Instituto de Cómputo Aplicado en Ciencias, Oaxaca 68120, Mexico;
| |
Collapse
|
9
|
Zhu A, Hopkins KM, Friedman RA, Bernstock JD, Broustas CG, Lieberman HB. DNMT1 and DNMT3B regulate tumorigenicity of human prostate cancer cells by controlling RAD9 expression through targeted methylation. Carcinogenesis 2021; 42:220-231. [PMID: 32780107 PMCID: PMC7905840 DOI: 10.1093/carcin/bgaa088] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 07/15/2020] [Accepted: 08/05/2020] [Indexed: 12/18/2022] Open
Abstract
Prostate cancer is the second most common type of cancer and the second leading cause of cancer death in American men. RAD9 stabilizes the genome, but prostate cancer cells and tumors often have high quantities of the protein. Reduction of RAD9 level within prostate cancer cells decreases tumorigenicity of nude mouse xenographs and metastasis phenotypes in culture, indicating that RAD9 overproduction is essential for the disease. In prostate cancer DU145 cells, CpG hypermethylation in a transcription suppressor site of RAD9 intron 2 causes high-level gene expression. Herein, we demonstrate that DNA methyltransferases DNMT1 and DNMT3B are highly abundant in prostate cancer cells DU145, CWR22, LNCaP and PC-3; yet, these DNMTs bind primarily to the transcription suppressor in DU145, the only cells where methylation is critical for RAD9 regulation. For DU145 cells, DNMT1 or DNMT3B shRNA reduced RAD9 level and tumorigenicity, and RAD9 ectopic expression restored this latter activity in the DNMT knockdown cells. High levels of RAD9, DNMT1, DNMT3B and RAD9 transcription suppressor hypermethylation were significantly correlated in prostate tumors, and not in normal prostate tissues. Based on these results, we propose a novel model where RAD9 is regulated epigenetically by DNMT1 and DNMT3B, via targeted hypermethylation, and that consequent RAD9 overproduction promotes prostate tumorigenesis.
Collapse
Affiliation(s)
- Aiping Zhu
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Kevin M Hopkins
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Richard A Friedman
- Biomedical Informatics Shared Resource, Herbert Irving Comprehensive Cancer Center, New York, NY, USA
- Department of Biomedical Informatics, Columbia University, New York, NY, USA
| | - Joshua D Bernstock
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Constantinos G Broustas
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Howard B Lieberman
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| |
Collapse
|
10
|
Soltanian S, Sheikhbahaei M, Ziasistani M. Phytol Down-Regulates Expression of Some Cancer Stem Cell Markers and Decreases Side Population Proportion in Human Embryonic Carcinoma NCCIT Cells. Nutr Cancer 2020; 73:1520-1533. [PMID: 32700607 DOI: 10.1080/01635581.2020.1795695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cancer stem cells (CSCs), a subgroup of cancer cells, have self-renewal capacity and differentiation potential and drive tumor growth. CSCs are highly-resistant to conventional chemo-radio therapy. Phytochemicals were shown to be able to eliminate CSCs. Phytol is a diterpene alcohol with demonstrated anticancer effects. The current study compared the effect of phytol with retinoic acid (RA) as a well-known inducers of CSC differentiation and cisplatin, a common chemotherapy drug, on CSC markers in human embryonic carcinoma NCCIT cells. NCCIT cells were exposed to 10 mM RA for 14 day to induce differentiation. Moreover, NCCIT cells were treated with IC50 dose of cisplatin (12 µM) and phytol (40 µM) for 7 day. Real-time PCR showed that phytol was more effective that RA and cisplatin in down-regulating the CSC markers OCT4, NANOG, SOX2, ALDH1, ABCB1, CD44 and CD133. Percentage of SP (13%) and ABCB1+ (0.34%) in NCCIT cells decreased to 7% and 0.1% respectively after treatment with phytol. A very small proportion of NCCIT cells were positive for CD44 (0.2%) and CD133 (0.48%) and this fraction did not change significantly after treatment with three agents. In conclusion, phytol has the greatest inhibitory effect on CSC population and markers than RA and cisplatin.
Collapse
Affiliation(s)
- Sara Soltanian
- Department of Biology, Faculty of Science, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Mahboubeh Sheikhbahaei
- Department of Biology, Faculty of Science, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Mahsa Ziasistani
- Pathology and Stem Cell Research Center, Afzalipour Medical School, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
11
|
Linhares BM, Grembecka J, Cierpicki T. Targeting epigenetic protein-protein interactions with small-molecule inhibitors. Future Med Chem 2020; 12:1305-1326. [PMID: 32551894 PMCID: PMC7421387 DOI: 10.4155/fmc-2020-0082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 05/01/2020] [Indexed: 02/07/2023] Open
Abstract
Epigenetic protein-protein interactions (PPIs) play essential roles in regulating gene expression, and their dysregulations have been implicated in many diseases. These PPIs are comprised of reader domains recognizing post-translational modifications on histone proteins, and of scaffolding proteins that maintain integrities of epigenetic complexes. Targeting PPIs have become focuses for development of small-molecule inhibitors and anticancer therapeutics. Here we summarize efforts to develop small-molecule inhibitors targeting common epigenetic PPI domains. Potent small molecules have been reported for many domains, yet small domains that recognize methylated lysine side chains on histones are challenging in inhibitor development. We posit that the development of potent inhibitors for difficult-to-prosecute epigenetic PPIs may be achieved by interdisciplinary approaches and extensive explorations of chemical space.
Collapse
Affiliation(s)
- Brian M Linhares
- Biophysics Program, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Jolanta Grembecka
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Tomasz Cierpicki
- Biophysics Program, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
12
|
Epigenetic competition reveals density-dependent regulation and target site plasticity of phosphorothioate epigenetics in bacteria. Proc Natl Acad Sci U S A 2020; 117:14322-14330. [PMID: 32518115 DOI: 10.1073/pnas.2002933117] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Phosphorothioate (PT) DNA modifications-in which a nonbonding phosphate oxygen is replaced with sulfur-represent a widespread, horizontally transferred epigenetic system in prokaryotes and have a highly unusual property of occupying only a small fraction of available consensus sequences in a genome. Using Salmonella enterica as a model, we asked a question of fundamental importance: How do the PT-modifying DndA-E proteins select their GPSAAC/GPSTTC targets? Here, we applied innovative analytical, sequencing, and computational tools to discover a novel behavior for DNA-binding proteins: The Dnd proteins are "parked" at the G6mATC Dam methyltransferase consensus sequence instead of the expected GAAC/GTTC motif, with removal of the 6mA permitting extensive PT modification of GATC sites. This shift in modification sites further revealed a surprising constancy in the density of PT modifications across the genome. Computational analysis showed that GAAC, GTTC, and GATC share common features of DNA shape, which suggests that PT epigenetics are regulated in a density-dependent manner partly by DNA shape-driven target selection in the genome.
Collapse
|
13
|
Zeng J, Chen JY, Meng J, Chen Z. Inflammation and DNA methylation coregulate the CtBP-PCAF-c-MYC transcriptional complex to activate the expression of a long non-coding RNA CASC2 in acute pancreatitis. Int J Biol Sci 2020; 16:2116-2130. [PMID: 32549759 PMCID: PMC7294942 DOI: 10.7150/ijbs.43557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 04/20/2020] [Indexed: 02/06/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are emerging as important regulators involved in the pathogenesis of many diseases. However, it is still unknown if they contribute to the occurrence of acute pancreatitis (AP). Here, we identified a lncRNA CASC2 (Cancer Susceptibility Candidate 2) was significantly upregulated in the pancreatic tissues from AP patients. Knockdown or overexpression of CASC2 in vitro could specifically repress or induce the expression of two proinflammatory cytokines including IL6 (Interleukin 6) and IL17, respectively. Changing the expression levels of several transcription factors that were predicted to bind to the promoter of CASC2, we found c-MYC could specifically regulate the expression of CASC2. Using immunoprecipitation, mass spectrometry, and co-immunoprecipitation assays, we proved that c-MYC assembled a transcriptional complex with PCAF (p300/CBP-associated Factor) and CtBP1/2 (C-terminal Binding Protein 1 and 2), terming as the CtBP-PCAF-c-MYC (CPM) complex. Further investigation revealed that CtBPs were amplified in the pancreatic tissues from AP patients and they functioned as coactivators to induce the expression of CASC2 and thus led to the upregulation of IL6 and IL17. Moreover, we identified that decreased DNA methylation levels in the promoters of CtBPs and inflammatory stimuli coactivated the expression of CtBPs. Collectively, we identified a new signaling pathway in which DNA methylation and inflammatory stimuli coregulate the CPM complex to activate CASC2 expression, whose induction further activates the expression of IL6 and IL17, eventually aggravating inflammation response and causing the pathology of AP.
Collapse
Affiliation(s)
- Jun Zeng
- Department of Gastroenterology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi, China
| | - Jian-Yong Chen
- Department of Gastroenterology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi, China
| | - Jun Meng
- Department of Gastroenterology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi, China
| | - Zhi Chen
- Department of critical care medicine, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi, China.,Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| |
Collapse
|
14
|
Pennarossa G, Paffoni A, Ragni G, Gandolfi F, Brevini TAL. Rho Signaling-Directed YAP/TAZ Regulation Encourages 3D Spheroid Colony Formation and Boosts Plasticity of Parthenogenetic Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1237:49-60. [PMID: 31376140 DOI: 10.1007/5584_2019_423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Cell proliferation, apoptosis and differentiation are essential processes from the early phases of embryogenesis to adult tissue formation and maintenance. These mechanisms also play a key role in embryonic stem cells (ESCs) that are able to proliferate maintaining pluripotency and, at the same time, to give rise to all populations belonging to the three germ layers, in response to specific stimuli. ESCs are, therefore, considered a well-established in vitro model to study the complexity of these processes. In this perspective, we previously generated parthenogenetic embryonic stem cells (ParthESC), that showed many features and regulatory pathways common to bi-parental ESCs. However, we observed that mono-parental cells demonstrate a high ability to form outgrowths and generate 3D spheroid colonies, which are distinctive signs of high-plasticity. Furthermore, preliminary evidence obtained by WTA, revealed the presence of several differentially expressed genes belonging to the Rho and Hippo signaling pathways. In the present study, we compare bi-parental ESCs and ParthESC and analyze by Real-Time PCR the differentially expressed genes. We demonstrate up-regulation of the Rho signaling pathway and an increased expression of YAP and TAZ in ParthESC. We also show that YAP remains in a dephosphorylated form. This allows its nuclear translocation and its direct binding to TEADs and SMADs, that are up-regulated in ParthESC. Altogether, these complex regulatory interactions result in overexpression of pluripotency related genes, in a global DNA hypomethylation and a histone-dependent chromatin high permissive state that may account for ParthESC high potency, possibly related to their exclusive maternal origin.
Collapse
Affiliation(s)
- Georgia Pennarossa
- Laboratory of Biomedical Embryology, Centre for Stem Cell Research, Università degli Studi di Milano, Milan, Italy
- Department of Health, Animal Science and Food Safety - VESPA, Università degli Studi di Milano, Milan, Italy
| | - Alessio Paffoni
- Infertility Unit, Department of Obstetrics, Gynaecology and Neonatology, Fondazione Ospedale Maggiore Policlinico Mangiagalli e Regina Elena, Milan, Italy
- Infertility Unit, ASST Lariana, Cantù, Italy
| | - Guido Ragni
- Infertility Unit, Department of Obstetrics, Gynaecology and Neonatology, Fondazione Ospedale Maggiore Policlinico Mangiagalli e Regina Elena, Milan, Italy
| | - Fulvio Gandolfi
- Laboratory of Biomedical Embryology, Centre for Stem Cell Research, Università degli Studi di Milano, Milan, Italy
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, Università degli Studi di Milano, Milan, Italy
| | - Tiziana A L Brevini
- Laboratory of Biomedical Embryology, Centre for Stem Cell Research, Università degli Studi di Milano, Milan, Italy.
- Department of Health, Animal Science and Food Safety - VESPA, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
15
|
Wang M, Zhang K, Ngo V, Liu C, Fan S, Whitaker JW, Chen Y, Ai R, Chen Z, Wang J, Zheng L, Wang W. Identification of DNA motifs that regulate DNA methylation. Nucleic Acids Res 2019; 47:6753-6768. [PMID: 31334813 PMCID: PMC6649826 DOI: 10.1093/nar/gkz483] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/14/2019] [Accepted: 06/20/2019] [Indexed: 01/11/2023] Open
Abstract
DNA methylation is an important epigenetic mark but how its locus-specificity is decided in relation to DNA sequence is not fully understood. Here, we have analyzed 34 diverse whole-genome bisulfite sequencing datasets in human and identified 313 motifs, including 92 and 221 associated with methylation (methylation motifs, MMs) and unmethylation (unmethylation motifs, UMs), respectively. The functionality of these motifs is supported by multiple lines of evidence. First, the methylation levels at the MM and UM motifs are respectively higher and lower than the genomic background. Second, these motifs are enriched at the binding sites of methylation modifying enzymes including DNMT3A and TET1, indicating their possible roles of recruiting these enzymes. Third, these motifs significantly overlap with "somatic QTLs" (quantitative trait loci) of methylation and expression. Fourth, disruption of these motifs by mutation is associated with significantly altered methylation level of the CpGs in the neighbor regions. Furthermore, these motifs together with somatic mutations are predictive of cancer subtypes and patient survival. We revealed some of these motifs were also associated with histone modifications, suggesting a possible interplay between the two types of epigenetic modifications. We also found some motifs form feed forward loops to contribute to DNA methylation dynamics.
Collapse
Affiliation(s)
- Mengchi Wang
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA, USA
| | - Kai Zhang
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA, USA
| | - Vu Ngo
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA, USA
| | - Chengyu Liu
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Shicai Fan
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - John W Whitaker
- Department of Genomics, Denovo Biopharma, 10240 Science Center Dr., San Diego, CA, USA
| | - Yue Chen
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Rizi Ai
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Zhao Chen
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Jun Wang
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Lina Zheng
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA, USA
| | - Wei Wang
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA, USA
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
16
|
Zeng L, Sun S, Dong L, Liu Y, Liu H, Han D, Ma Z, Wang Y, Feng H. DLX3 epigenetically regulates odontoblastic differentiation of hDPCs through H19/miR-675 axis. Arch Oral Biol 2019; 102:155-163. [PMID: 31029881 DOI: 10.1016/j.archoralbio.2019.04.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 03/17/2019] [Accepted: 04/14/2019] [Indexed: 12/12/2022]
Abstract
OBJECTIVES A novel mutation (c.533 A > G; Q178R) in DLX3 gene is responsible for Tricho-Dento-Osseous (TDO) syndrome. As one of features of TDO syndrome is dentin hypoplasia, we explored the mechanism regarding dentin defects in TDO syndrome. DESIGN hDPCs were obtained from the healthy premolars, stably expressing hDPCs were generated using recombinant lentiviruses. Quantitative methylation analysis, DNMT3B activity, CHIP, and evaluation of odonto-differentiation ability of hDPCs assays were performed. RESULTS Novel mutant DLX3 (MU-DLX3) significantly inhibited the expression of long non-coding RNA H19 and resulted in hyper-methylation of H19 in MU group, rescue studies showed that up-regulation the expression of H19 and demethylation of H19 in MU group were able to rescue the effect of MU-DLX3. Subsequently, miR-675, encoded by H19, was also able to rescue the above effects of MU-DLX3. Thus, we proposed that MU-DLX3 regulated odontoblastic differentiation of hDPCs through H19/miR-675 axis. Through CHIP and DNMT3B activity assays disclosed the underlying mechanism by which MU-DLX3 altered H19 expression and methylation status in MU group by increasing H3K9me3 enrichment and DNMT3B activity. CONCLUSIONS Our new findings, for the first time, suggest that MU-DLX3 significantly inhibits hDPCs differentiation via H19/miR-675 axis and provides a new mechanism insight into how MU-DLX3 epigenetically alters H19 methylation status and expression contributes to dentin hypoplasia in TDO syndrome.
Collapse
Affiliation(s)
- Li Zeng
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, PR China
| | - Shichen Sun
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, PR China
| | - Liying Dong
- Department of Oral & Maxillofacial Surgery, PR China
| | - Yang Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, PR China
| | - Haochen Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, PR China
| | - Dong Han
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, PR China.
| | - Zeyun Ma
- Department of VIP Service, Peking University School and Hospital of Stomatology, PR China.
| | - Yixiang Wang
- Central Laboratory, Peking University School and Hospital of Stomatology, Bejing, PR China
| | - Hailan Feng
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, PR China
| |
Collapse
|
17
|
Alex AM, Saradalekshmi KR, Shilen N, Suresh PA, Banerjee M. Genetic association of DNMT variants can play a critical role in defining the methylation patterns in autism. IUBMB Life 2019; 71:901-907. [PMID: 30786140 DOI: 10.1002/iub.2021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/29/2018] [Accepted: 01/14/2019] [Indexed: 12/15/2022]
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder with impairments in social communication, restricted, repetitive and stereotyped behaviors. Both genetic and environmental factors are known to contribute toward pathophysiology of Autism. Environmental influences on gene expression can be mediated by methylation patterns which are established and maintained by DNA methyltransferases. Several studies in the past have investigated the role of global methylations in Autism. The present study is aimed to investigate the role of genetic variations in the DNA methyltransferase which might be critical in defining the threshold for environmental factors toward susceptibility to autism. Polymorphisms in DNA methyltransferases, DNMT1, DNMT3A, DNMT3B, and DNMT3L were screened for association with ASD in 180 autistic patients and 260 healthy controls from a south Indian population. DNMT1 rs10418707 and rs10423341, and DNMT3A rs2289195 were found to be significantly associated at genotypic and allelic level with ASD. Functional prediction indicates that these SNPs have a role in transcriptional regulation and increased expression, indicating that hypermethylation might be induced by its genotype status. The study might reflect the role of genetics variants in DNMTs in defining the threshold of environmental impact in influencing the disease or phenotype variations in ASD. © 2019 IUBMB Life, 2019.
Collapse
Affiliation(s)
- Ann Mary Alex
- Human Molecular Genetics Laboratory, Rajiv Gandhi Centre for Biotechnology, Trivandrum, Kerala, India
| | | | | | - Poovathinal A Suresh
- Institute for Communicative and Cognitive Neuro-Science, Shoranur, Kerala, India
| | - Moinak Banerjee
- Human Molecular Genetics Laboratory, Rajiv Gandhi Centre for Biotechnology, Trivandrum, Kerala, India
| |
Collapse
|
18
|
Thompson JJ, Kaur R, Sosa CP, Lee JH, Kashiwagi K, Zhou D, Robertson KD. ZBTB24 is a transcriptional regulator that coordinates with DNMT3B to control DNA methylation. Nucleic Acids Res 2018; 46:10034-10051. [PMID: 30085123 PMCID: PMC6212772 DOI: 10.1093/nar/gky682] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/29/2018] [Accepted: 07/17/2018] [Indexed: 12/12/2022] Open
Abstract
The interplay between transcription factors and epigenetic writers like the DNA methyltransferases (DNMTs), and the role of this interplay in gene expression, is being increasingly appreciated. ZBTB24, a poorly characterized zinc-finger protein, or the de novo methyltransferase DNMT3B, when mutated, cause Immunodeficiency, Centromere Instability, and Facial anomalies (ICF) syndrome, suggesting an underlying mechanistic link. Chromatin immunoprecipitation coupled with loss-of-function approaches in model systems revealed common loci bound by ZBTB24 and DNMT3B, where they function to regulate gene body methylation. Genes coordinately regulated by ZBTB24 and DNMT3B are enriched for molecular mechanisms essential for cellular homeostasis, highlighting the importance of the ZBTB24-DNMT3B interplay in maintaining epigenetic patterns required for normal cellular function. We identify a ZBTB24 DNA binding motif, which is contained within the promoters of most of its transcriptional targets, including CDCA7, AXIN2, and OSTC. Direct binding of ZBTB24 at the promoters of these genes targets them for transcriptional activation. ZBTB24 binding at the promoters of RNF169 and CAMKMT, however, targets them for transcriptional repression. The involvement of ZBTB24 targets in diverse cellular programs, including the VDR/RXR and interferon regulatory pathways, suggest that ZBTB24's role as a transcriptional regulator is not restricted to immune cells.
Collapse
Affiliation(s)
- Joyce J Thompson
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First Street SW, Stabile 12-58, Rochester, MN 55905, USA
| | - Rupinder Kaur
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First Street SW, Stabile 12-58, Rochester, MN 55905, USA
| | - Carlos P Sosa
- Clinical Genome Sequencing Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Stabile12-58, Rochester, MN 55905, USA
| | - Jeong-Heon Lee
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
- Epigenomics Translational Program, Mayo Clinic, Rochester, MN 55905, USA
| | - Katsunobu Kashiwagi
- Department of Physiology II, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Dan Zhou
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Keith D Robertson
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First Street SW, Stabile 12-58, Rochester, MN 55905, USA
- Epigenomics Translational Program, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
19
|
Tissue-specific induced DNA methyltransferase 1 (Dnmt1) in endocrine pancreas by RCAS-TVA-based somatic gene transfer system promotes β-cell proliferation. Cancer Gene Ther 2018; 26:94-102. [PMID: 30190513 DOI: 10.1038/s41417-018-0046-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/31/2018] [Accepted: 08/05/2018] [Indexed: 12/13/2022]
Abstract
We reported that inactivation of menin (the protein product of MEN1) increases activity of Dnmt1 and mediates DNA hypermethylation in the development of multiple endocrine neoplasia type 1 (MEN1) syndrome. We have developed a RCAS-TVA-based somatic gene transfer system that enables tissue-specific delivery of Dnmt1 to individual β-cells of the pancreas in a RIP-TVA mouse model. In the present study, we mediated Dnmt1 expression in islet β-cells in RIP-TVA mice by utilizing the RCAS-TVA system to test if the upregulation of Dnmt1 can promote β-cell proliferation. In vitro, we demonstrated that upregulation of Dnmt1 increased β-cell proliferation. In vivo, our results showed that the levels of serum insulin were increased in the RIP-TVA mice with RCASBP-Dnmt1 infection compared with wild-type control mice with RCASBP-Dnmt1 infection. Furthermore, we confirmed that mRNA and protein expression of Dnmt1 as well as Dnmt1 enzyme activity were upregulated in the RIP-TVA mice with RCASBP-Dnmt1 infection compared with wild-type control mice with RCASBP-Dnmt1 infection. Finally, we demonstrated that upregulation of Dnmt1 resulted in hyperplasia through β-cell proliferation. We conclude that the upregulation of Dnmt1 promotes islet β-cell proliferation and targeting Dnmt1 may be a promising therapy for patients suffering from pancreatic neuroendocrine tumors.
Collapse
|
20
|
Abstract
DNA methylation is a dynamic epigenetic mark that characterizes different cellular developmental stages, including tissue-specific profiles. This CpG dinucleotide modification cooperates in the regulation of the output of the cellular genetic content, in both healthy and pathological conditions. According to endogenous and exogenous stimuli, DNA methylation is involved in gene transcription, alternative splicing, imprinting, X-chromosome inactivation, and control of transposable elements. When these dinucleotides are organized in dense regions are called CpG islands (CGIs), being commonly known as transcriptional regulatory regions frequently associated with the promoter region of several genes. In cancer, promoter DNA hypermethylation events sustained the mechanistic hypothesis of epigenetic transcriptional silencing of an increasing number of tumor suppressor genes. CGI hypomethylation-mediated reactivation of oncogenes was also documented in several cancer types. In this chapter, we aim to summarize the functional consequences of the differential DNA methylation at CpG dinucleotides in cancer, focused in CGIs. Interestingly, cancer methylome is being recently explored, looking for biomarkers for diagnosis, prognosis, and predictors of drug response.
Collapse
Affiliation(s)
- Humberto J Ferreira
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Catalonia, Spain
| | - Manel Esteller
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Catalonia, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain.
- Department of Physiological Sciences II, School of Medicine, University of Barcelona, Barcelona, Catalonia, Spain.
| |
Collapse
|
21
|
Yuan Z, Sánchez Claros C, Suzuki M, Maggi EC, Kaner JD, Kinstlinger N, Gorecka J, Quinn TJ, Geha R, Corn A, Pastoriza J, Jing Q, Adem A, Wu H, Alemu G, Du YC, Zheng D, Greally JM, Libutti SK. Loss of MEN1 activates DNMT1 implicating DNA hypermethylation as a driver of MEN1 tumorigenesis. Oncotarget 2017; 7:12633-50. [PMID: 26871472 PMCID: PMC4914310 DOI: 10.18632/oncotarget.7279] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 01/24/2016] [Indexed: 12/12/2022] Open
Abstract
Multiple endocrine neoplasia type 1 (MEN1) syndrome results from mutations in the MEN1 gene and causes tumor formation via largely unknown mechanisms. Using a novel genome-wide methylation analysis, we studied tissues from MEN1-parathyroid tumors, Men1 knockout (KO) mice, and Men1 null mouse embryonic fibroblast (MEF) cell lines. We demonstrated that inactivation of menin (the protein product of MEN1) increases activity of DNA (cytosine-5)-methyltransferase 1 (DNMT1) by activating retinoblastoma-binding protein 5 (Rbbp5). The increased activity of DNMT1 mediates global DNA hypermethylation, which results in aberrant activation of the Wnt/β-catenin signaling pathway through inactivation of Sox regulatory genes. Our study provides important insights into the role of menin in DNA methylation and its impact on the pathogenesis of MEN1 tumor development.
Collapse
Affiliation(s)
- Ziqiang Yuan
- Department of Surgery, Albert Einstein College of Medicine, Bronx, New York, USA
| | | | - Masako Suzuki
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Elaine C Maggi
- Department of Surgery, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Justin D Kaner
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Noah Kinstlinger
- Department of Surgery, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Jolanta Gorecka
- Department of Surgery, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Thomas J Quinn
- Department of Surgery, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Rula Geha
- Department of Surgery, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Amanda Corn
- Department of Surgery, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Jessica Pastoriza
- Department of Surgery, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Qiang Jing
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Asha Adem
- Department of Surgery, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Hao Wu
- Department of Surgery, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Girum Alemu
- Department of Surgery, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Yi-Chieh Du
- Department of Pathology and Lab Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, USA.,Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, USA.,Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, USA
| | - John M Greally
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, USA.,Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA.,Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Steven K Libutti
- Department of Surgery, Albert Einstein College of Medicine, Bronx, New York, USA.,Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
22
|
Seritrakul P, Gross JM. Tet-mediated DNA hydroxymethylation regulates retinal neurogenesis by modulating cell-extrinsic signaling pathways. PLoS Genet 2017; 13:e1006987. [PMID: 28926578 PMCID: PMC5621703 DOI: 10.1371/journal.pgen.1006987] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 09/29/2017] [Accepted: 08/18/2017] [Indexed: 12/28/2022] Open
Abstract
DNA hydroxymethylation has recently been shown to play critical roles in regulating gene expression and terminal differentiation events in a variety of developmental contexts. However, little is known about its function during eye development. Methylcytosine dioxygenases of the Tet family convert 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), an epigenetic mark thought to serve as a precursor for DNA demethylation and as a stable mark in neurons. Here, we report a requirement for Tet activity during zebrafish retinal neurogenesis. In tet2-/-;tet3-/- mutants, retinal neurons are specified but most fail to terminally differentiate. While differentiation of the first born retinal neurons, the retinal ganglion cells (RGCs), is less affected in tet2-/-;tet3-/- mutants than other retinal cell types, the majority of RGCs do not undergo terminal morphogenesis and form axons. Moreover, the few photoreceptors that differentiate in tet2-/-;tet3-/- mutants fail to form outer segments, suggesting that Tet function is also required for terminal morphogenesis of differentiated retinal neurons. Mosaic analyses revealed a surprising cell non-autonomous requirement for tet2 and tet3 activity in facilitating retinal neurogenesis. Through a combination of candidate gene analysis, transcriptomics and pharmacological manipulations, we identified the Notch and Wnt pathways as cell-extrinsic pathways regulated by tet2 and tet3 activity during RGC differentiation and morphogenesis. Transcriptome analyses also revealed the ectopic expression of non-retinal genes in tet2-/-;tet3-/- mutant retinae, and this correlated with locus-specific reduction in 5hmC. These data provide the first evidence that Tet-dependent regulation of 5hmC formation is critical for retinal neurogenesis, and highlight an additional layer of complexity in the progression from retinal progenitor cell to differentiated retinal neuron during development of the vertebrate retina.
Collapse
Affiliation(s)
- Pawat Seritrakul
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, United States of America
- Departments of Ophthalmology, and Developmental Biology, The Louis J. Fox Center for Vision Restoration, The McGowan Institute for Regenerative Medicine, The University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Jeffrey M. Gross
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, United States of America
- Departments of Ophthalmology, and Developmental Biology, The Louis J. Fox Center for Vision Restoration, The McGowan Institute for Regenerative Medicine, The University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| |
Collapse
|
23
|
Human DNA (cytosine-5)-methyltransferases: a functional and structural perspective for epigenetic cancer therapy. Biochimie 2017; 139:137-147. [DOI: 10.1016/j.biochi.2017.06.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 06/04/2017] [Indexed: 01/06/2023]
|
24
|
Singh RK, Mallela RK, Hayes A, Dunham NR, Hedden ME, Enke RA, Fariss RN, Sternberg H, West MD, Nasonkin IO. Dnmt1, Dnmt3a and Dnmt3b cooperate in photoreceptor and outer plexiform layer development in the mammalian retina. Exp Eye Res 2017; 159:132-146. [PMID: 27865785 DOI: 10.1016/j.exer.2016.11.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 10/21/2016] [Accepted: 11/14/2016] [Indexed: 11/18/2022]
Abstract
Characterizing the role of epigenetic regulation in the mammalian retina is critical for understanding fundamental mechanisms of retinal development and disease. DNA methylation, an epigenetic modifier of genomic DNA, plays an important role in modulating networks of tissue and cell-specific gene expression. However, the impact of DNA methylation on retinal development and homeostasis of retinal neurons remains unclear. Here, we have created a tissue-specific DNA methyltransferase (Dnmt) triple mutant mouse in an effort to characterize the impact of DNA methylation on retinal development and homeostasis. An Rx-Cre transgene was used to drive targeted mutation of all three murine Dnmt genes in the mouse retina encoding major DNA methylation enzymes DNMT1, DNMT3A and DNMT3B. The triple mutant mice represent a hypomorph model since Dnmt1 catalytic activity was still present and excision of Dnmt3a and Dnmt3b had only about 90% efficiency. Mutation of all three Dnmts resulted in global genomic hypomethylation and dramatic reorganization of the photoreceptor and synaptic layers within retina. Transcriptome and proteomic analyses demonstrated enrichment of dysregulated phototransduction and synaptic genes. The 5 mC signal in triple mutant retina was confined to the central heterochromatin but reduced in the peripheral heterochromatin region of photoreceptor nuclei. In addition, we found a reduction of the 5 mC signal in ganglion cell nuclei. Collectively, this data suggests cooperation of all three Dnmts in the formation and homeostasis of photoreceptors and other retinal neurons within the mammalian retina, and highlight the relevance of epigenetic regulation to sensory retinal disorders and vision loss.
Collapse
Affiliation(s)
- Ratnesh K Singh
- Department of Ophthalmology, University of Pittsburgh Medical School, USA.
| | - Ramya K Mallela
- Department of Ophthalmology, University of Pittsburgh Medical School, USA
| | - Abigail Hayes
- Department of Ophthalmology, West Virginia University, USA
| | | | | | - Raymond A Enke
- Department of Biology, James Madison University, USA; Center for Genome and Metagenome Studies, James Madison University, USA
| | - Robert N Fariss
- Biological Imaging Core, National Eye Institute, Bethesda, MD 20892, USA
| | - Hal Sternberg
- BioTime, 1010 Atlantic Avenue, Alameda, CA 94501, USA
| | | | - Igor O Nasonkin
- Department of Ophthalmology, University of Pittsburgh Medical School, USA.
| |
Collapse
|
25
|
Nawrocki MJ, Majewski D, Puszczewicz M, Jagodziński PP. Decreased mRNA expression levels of DNA methyltransferases type 1 and 3A in systemic lupus erythematosus. Rheumatol Int 2017; 37:775-783. [PMID: 28349196 PMCID: PMC5397457 DOI: 10.1007/s00296-017-3711-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 03/20/2017] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Systemic lupus erythematosus (SLE) is a chronic relapsing autoimmune disease characterized by the presence of autoantibodies directed against nuclear antigens and by chronic inflammation. Although the etiology of SLE remains unclear, the influence of environment factors, which is largely reflected by the epigenetic mechanisms, with DNA methylation changes in particular, is generally considered as main players in the pathogenesis of SLE. We studied DNA methyltransferases' (DNMTs) type 1, 3A and 3B transcript levels in peripheral blood mononuclear cells from patients diagnosed with systemic lupus erythematosus and from the healthy control subjects. Furthermore, the association of DNMT1, DNMT3A, and DNMT3B mRNA levels with gender, age, and major clinical manifestations was analyzed. METHODS Peripheral blood mononuclear cells (PBMCs) were isolated from 32 SLE patients and 40 healthy controls. Reverse transcription and real-time quantitative polymerase chain reaction (RT-qPCR) analyses were used to determine DNMT1, DNMT3A, and DNMT3B mRNA expression levels. RESULTS Significantly lower DNMT1 (p = 0.015543) and DNMT3A (p = 0.003652) transcript levels in SLE patients were observed compared with healthy controls. Nevertheless, the DNMT3B mRNA expression levels were markedly lower compared with DNMT1 and DNMT3A, both in PBMCs from affected patients and those from control subjects. Furthermore, the DNMT1 transcript levels were positively correlated with SLE disease activity index (SLEDAI) (r s = 0.4087, p = 0.020224), while the DNMT3A transcript levels were negatively correlated with patients age (r s = -0.3765, p = 0.03369). CONCLUSIONS Our analyses confirmed the importance of epigenetic alterations in SLE etiology. Moreover, our results suggest that the presence of some clinical manifestations, such as phototosensitivity and arthritis, might be associated with the dysregulation of DNA methyltransferases' mRNA expression levels.
Collapse
Affiliation(s)
- Mariusz J Nawrocki
- Department of Biochemistry and Molecular Biology, Poznań University of Medical Sciences, 6 Święcickiego St., 60-781, Poznań, Poland.
| | - Dominik Majewski
- Department of Rheumatology and Internal Diseases, Poznań University of Medical Science, 135/147 28 Czerwca 1956 r. St., 61-545, Poznań, Poland
| | - Mariusz Puszczewicz
- Department of Rheumatology and Internal Diseases, Poznań University of Medical Science, 135/147 28 Czerwca 1956 r. St., 61-545, Poznań, Poland
| | - Paweł P Jagodziński
- Department of Biochemistry and Molecular Biology, Poznań University of Medical Sciences, 6 Święcickiego St., 60-781, Poznań, Poland
| |
Collapse
|
26
|
Zhong T, Men Y, Lu L, Geng T, Zhou J, Mitsuhashi A, Shozu M, Maihle NJ, Carmichael GG, Taylor HS, Huang Y. Metformin alters DNA methylation genome-wide via the H19/SAHH axis. Oncogene 2017; 36:2345-2354. [PMID: 27775072 PMCID: PMC5415944 DOI: 10.1038/onc.2016.391] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 08/23/2016] [Accepted: 09/12/2016] [Indexed: 02/08/2023]
Abstract
The molecular mechanisms underlying the antineoplastic properties of metformin, a first-line drug for type 2 diabetes, remain elusive. Here we report that metformin induces genome-wide alterations in DNA methylation by modulating the activity of S-adenosylhomocysteine hydrolase (SAHH). Exposing cancer cells to metformin leads to hypermethylation of tumor-promoting pathway genes and concomitant inhibition of cell proliferation. Metformin acts by upregulating microRNA let-7 through AMPK activation, leading to degradation of H19 long noncoding RNA, which normally binds to and inactivates SAHH. H19 knockdown activates SAHH, enabling DNA methyltransferase 3B to methylate a subset of genes. This metformin-induced H19 repression and alteration of gene methylation are recapitulated in endometrial cancer tissue samples obtained from patients treated with antidiabetic doses of metformin. Our findings unveil a novel mechanism of action for the drug metformin with implications for the molecular basis of epigenetic dysregulation in cancer. This novel mechanism of action also may be occurring in normal cells.
Collapse
Affiliation(s)
- T Zhong
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Y Men
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
- Department of Head and Neck Surgery, State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - L Lu
- Department of Chronic Diseases Epidemiology, Yale School of Public Health, Yale University School of Medicine, New Haven, CT, USA
| | - T Geng
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
- Department of Endocrinology, School of Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - J Zhou
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
- Department of Surgical Oncology, Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - A Mitsuhashi
- Department of Reproductive Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - M Shozu
- Department of Reproductive Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - N J Maihle
- Georgia Cancer Center, Medical College of Georgia, Augusta, GA, USA
| | - G G Carmichael
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, USA
| | - H S Taylor
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Y Huang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
27
|
Rinaldi L, Avgustinova A, Martín M, Datta D, Solanas G, Prats N, Benitah SA. Loss of Dnmt3a and Dnmt3b does not affect epidermal homeostasis but promotes squamous transformation through PPAR-γ. eLife 2017; 6:e21697. [PMID: 28425913 PMCID: PMC5429093 DOI: 10.7554/elife.21697] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 04/13/2017] [Indexed: 12/12/2022] Open
Abstract
The DNA methyltransferase Dnmt3a suppresses tumorigenesis in models of leukemia and lung cancer. Conversely, deregulation of Dnmt3b is thought to generally promote tumorigenesis. However, the role of Dnmt3a and Dnmt3b in many types of cancer remains undefined. Here, we show that Dnmt3a and Dnmt3b are dispensable for homeostasis of the murine epidermis. However, loss of Dnmt3a-but not Dnmt3b-increases the number of carcinogen-induced squamous tumors, without affecting tumor progression. Only upon combined deletion of Dnmt3a and Dnmt3b, squamous carcinomas become more aggressive and metastatic. Mechanistically, Dnmt3a promotes the expression of epidermal differentiation genes by interacting with their enhancers and inhibits the expression of lipid metabolism genes, including PPAR-γ, by directly methylating their promoters. Importantly, inhibition of PPAR-γ partially prevents the increase in tumorigenesis upon deletion of Dnmt3a. Altogether, we demonstrate that Dnmt3a and Dnmt3b protect the epidermis from tumorigenesis and that squamous carcinomas are sensitive to inhibition of PPAR-γ.
Collapse
Affiliation(s)
- Lorenzo Rinaldi
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Alexandra Avgustinova
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Mercè Martín
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Debayan Datta
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Guiomar Solanas
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Neus Prats
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Salvador Aznar Benitah
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| |
Collapse
|
28
|
Review: Regulation of the cancer epigenome by long non-coding RNAs. Cancer Lett 2017; 407:106-112. [PMID: 28400335 DOI: 10.1016/j.canlet.2017.03.040] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 03/22/2017] [Accepted: 03/29/2017] [Indexed: 12/31/2022]
Abstract
Long non-coding RNAs have emerged as highly versatile players in the regulation of gene expression in development and human disease, particularly cancer. Hundreds of lncRNAs become dysregulated across tumor types, and multiple lncRNAs have demonstrated functions as tumor-suppressors or oncogenes. Furthermore, studies have demonstrated that dysregulation of lncRNAs results in alterations of the epigenome in cancer cells, potentially providing a novel mechanism for the massive epigenomic alterations observed in many tumors. Here, we highlight and provide some illustrious examples of lncRNAs in various epigenetic regulatory processes, including coordination of chromatin dynamics, regulation of DNA methylation, modulation of other non-coding RNAs and mRNA stability, and control of epigenetic substrate availability through altered tumor metabolism. In light of all these known and emerging functions in epigenetic regulation of tumorigenesis and cancer progression, lncRNAs represent attractive targets for future therapeutic strategies in cancer.
Collapse
|
29
|
Shaping the cellular landscape with Set2/SETD2 methylation. Cell Mol Life Sci 2017; 74:3317-3334. [PMID: 28386724 DOI: 10.1007/s00018-017-2517-x] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/24/2017] [Accepted: 03/28/2017] [Indexed: 12/15/2022]
Abstract
Chromatin structure is a major barrier to gene transcription that must be disrupted and re-set during each round of transcription. Central to this process is the Set2/SETD2 methyltransferase that mediates co-transcriptional methylation to histone H3 at lysine 36 (H3K36me). Studies reveal that H3K36me not only prevents inappropriate transcriptional initiation from arising within gene bodies, but that it has other conserved functions that include the repair of damaged DNA and regulation of pre-mRNA splicing. Consistent with the importance of Set2/SETD2 in chromatin biology, mutations of SETD2, or mutations at or near H3K36 in H3.3, have recently been found to underlie cancer development. This review will summarize the latest insights into the functions of Set2/SETD2 in genome regulation and cancer development.
Collapse
|
30
|
Zhang W, Xu J. DNA methyltransferases and their roles in tumorigenesis. Biomark Res 2017; 5:1. [PMID: 28127428 PMCID: PMC5251331 DOI: 10.1186/s40364-017-0081-z] [Citation(s) in RCA: 229] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/03/2017] [Indexed: 01/13/2023] Open
Abstract
DNA methylation plays an important role in gene expression, chromatin stability, and genetic imprinting. In mammals, DNA methylation patterns are written and regulated by DNA methyltransferases (DNMTs), including DNMT1, DNMT3A and DNMT3B. Recent emerging evidence shows that defects in DNMTs are involved in tumor transformation and progression, thus indicating that epigenetic disruptions caused by DNMT abnormalities are associated with tumorigenesis. Herein, we review the latest findings related to DNMT alterations in cancer cells and discuss the contributions of these effects to oncogenic phenotypes.
Collapse
Affiliation(s)
- Wu Zhang
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology, Rui-Jin Hospital affiliated to Shanghai Jiao-Tong University School of Medicine, 197 Rui Jin Er Road, 200025 Shanghai, China
| | - Jie Xu
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology, Rui-Jin Hospital affiliated to Shanghai Jiao-Tong University School of Medicine, 197 Rui Jin Er Road, 200025 Shanghai, China
| |
Collapse
|
31
|
Dynamic reprogramming of DNA methylation in SETD2-deregulated renal cell carcinoma. Oncotarget 2016; 7:1927-46. [PMID: 26646321 PMCID: PMC4811507 DOI: 10.18632/oncotarget.6481] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 11/16/2015] [Indexed: 11/25/2022] Open
Abstract
Clear cell renal cell carcinomas (ccRCCs) harbor frequent mutations in epigenetic modifiers including SETD2, the H3K36me3 writer. We profiled DNA methylation (5mC) across the genome in cell line-based models of SETD2 inactivation and SETD2 mutant primary tumors because 5mC has been linked to H3K36me3 and is therapeutically targetable. SETD2 depleted cell line models (long-term and acute) exhibited a DNA hypermethylation phenotype coinciding with ectopic gains in H3K36me3 centered across intergenic regions adjacent to low expressing genes, which became upregulated upon dysregulation of the epigenome. Poised enhancers of developmental genes were prominent hypermethylation targets. SETD2 mutant primary ccRCCs, papillary renal cell carcinomas, and lung adenocarcinomas all demonstrated a DNA hypermethylation phenotype that segregated tumors by SETD2 genotype and advanced grade. These findings collectively demonstrate that SETD2 mutations drive tumorigenesis by coordinated disruption of the epigenome and transcriptome,and they have important implications for future therapeutic strategies targeting chromatin regulator mutant tumors.
Collapse
|
32
|
Bernhart SH, Kretzmer H, Holdt LM, Jühling F, Ammerpohl O, Bergmann AK, Northoff BH, Doose G, Siebert R, Stadler PF, Hoffmann S. Changes of bivalent chromatin coincide with increased expression of developmental genes in cancer. Sci Rep 2016; 6:37393. [PMID: 27876760 PMCID: PMC5120258 DOI: 10.1038/srep37393] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 10/27/2016] [Indexed: 02/08/2023] Open
Abstract
Bivalent (poised or paused) chromatin comprises activating and repressing histone modifications at the same location. This combination of epigenetic marks at promoter or enhancer regions keeps genes expressed at low levels but poised for rapid activation. Typically, DNA at bivalent promoters is only lowly methylated in normal cells, but frequently shows elevated methylation levels in cancer samples. Here, we developed a universal classifier built from chromatin data that can identify cancer samples solely from hypermethylation of bivalent chromatin. Tested on over 7,000 DNA methylation data sets from several cancer types, it reaches an AUC of 0.92. Although higher levels of DNA methylation are often associated with transcriptional silencing, counter-intuitive positive statistical dependencies between DNA methylation and expression levels have been recently reported for two cancer types. Here, we re-analyze combined expression and DNA methylation data sets, comprising over 5,000 samples, and demonstrate that the conjunction of hypermethylation of bivalent chromatin and up-regulation of the corresponding genes is a general phenomenon in cancer. This up-regulation affects many developmental genes and transcription factors, including dozens of homeobox genes and other genes implicated in cancer. Thus, we reason that the disturbance of bivalent chromatin may be intimately linked to tumorigenesis.
Collapse
Affiliation(s)
- Stephan H Bernhart
- Leipzig University, Chair of Bioinformatics, Leipzig, 04107, Germany.,Leipzig University, Transcriptome Bioinformatics Group - Interdisciplinary Center for Bioinformatics, Leipzig, 04107, Germany
| | - Helene Kretzmer
- Leipzig University, Chair of Bioinformatics, Leipzig, 04107, Germany.,Leipzig University, Transcriptome Bioinformatics Group - Interdisciplinary Center for Bioinformatics, Leipzig, 04107, Germany
| | - Lesca M Holdt
- Ludwig-Maximilians-University, Institute of Laboratory Medicine, Munich, 81377, Germany
| | - Frank Jühling
- Leipzig University, Chair of Bioinformatics, Leipzig, 04107, Germany.,Leipzig University, Transcriptome Bioinformatics Group - Interdisciplinary Center for Bioinformatics, Leipzig, 04107, Germany.,Inserm, U1110 - Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, 67000, France.,Université de Strasbourg, Strasbourg, 67000, France
| | - Ole Ammerpohl
- Christian Albrechts University &University Hospital Schleswig-Holstein - Campus Kiel, Institute of Human Genetics, Kiel, 24105, Germany
| | - Anke K Bergmann
- Christian Albrechts University &University Hospital Schleswig-Holstein - Campus Kiel, Institute of Human Genetics, Kiel, 24105, Germany.,Christian Albrechts University Kiel &University Hospital Schleswig-Holstein - Campus Kiel, Department of Pediatrics, Kiel, 24105, Germany
| | - Bernd H Northoff
- Ludwig-Maximilians-University, Institute of Laboratory Medicine, Munich, 81377, Germany
| | - Gero Doose
- Leipzig University, Chair of Bioinformatics, Leipzig, 04107, Germany.,Leipzig University, Transcriptome Bioinformatics Group - Interdisciplinary Center for Bioinformatics, Leipzig, 04107, Germany
| | - Reiner Siebert
- Christian Albrechts University &University Hospital Schleswig-Holstein - Campus Kiel, Institute of Human Genetics, Kiel, 24105, Germany.,Ulm University &Ulm University Medical Center, Institute for Human Genetics, Ulm, 89081, Germany
| | - Peter F Stadler
- Leipzig University, Chair of Bioinformatics, Leipzig, 04107, Germany.,Leipzig University, Transcriptome Bioinformatics Group - Interdisciplinary Center for Bioinformatics, Leipzig, 04107, Germany.,Leipzig University, LIFE - Leipzig Research Center for Civilization Diseases, Leipzig, 04107, Germany.,University of Vienna, Department of Theoretical Chemistry, Vienna, 1090, Austria.,Max-Planck-Institute for Mathematics in Sciences, Leipzig, 04103, Germany.,Santa Fe Institute, Santa Fe, NM 87501, USA
| | - Steve Hoffmann
- Leipzig University, Chair of Bioinformatics, Leipzig, 04107, Germany.,Leipzig University, Transcriptome Bioinformatics Group - Interdisciplinary Center for Bioinformatics, Leipzig, 04107, Germany.,Leipzig University, LIFE - Leipzig Research Center for Civilization Diseases, Leipzig, 04107, Germany
| |
Collapse
|
33
|
Schuyler RP, Merkel A, Raineri E, Altucci L, Vellenga E, Martens JHA, Pourfarzad F, Kuijpers TW, Burden F, Farrow S, Downes K, Ouwehand WH, Clarke L, Datta A, Lowy E, Flicek P, Frontini M, Stunnenberg HG, Martín-Subero JI, Gut I, Heath S. Distinct Trends of DNA Methylation Patterning in the Innate and Adaptive Immune Systems. Cell Rep 2016; 17:2101-2111. [PMID: 27851971 PMCID: PMC5889099 DOI: 10.1016/j.celrep.2016.10.054] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 06/17/2016] [Accepted: 09/12/2016] [Indexed: 01/15/2023] Open
Abstract
DNA methylation and the localization and post-translational modification of nucleosomes are interdependent factors that contribute to the generation of distinct phenotypes from genetically identical cells. With 112 whole-genome bisulfite sequencing datasets from the BLUEPRINT Epigenome Project, we analyzed the global development of DNA methylation patterns during lineage commitment and maturation of a range of immune system effector cells and the cancers that arise from them. We show clear trends in methylation patterns that are distinct in the innate and adaptive arms of the human immune system, both globally and in relation to consistently positioned nucleosomes. Most notable are a progressive loss of methylation in developing lymphocytes and the consistent occurrence of non-CG methylation in specific cell types. Cancer samples from the two lineages are further polarized, suggesting the involvement of distinct lineage-specific epigenetic mechanisms. We anticipate broad utility for this resource as a basis for further comparative epigenetic analyses.
Collapse
Affiliation(s)
- Ronald P Schuyler
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, Barcelona 08028, Spain; Universitat Pompeu Fabra (UPF), Barcelona 08002, Spain
| | - Angelika Merkel
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, Barcelona 08028, Spain; Universitat Pompeu Fabra (UPF), Barcelona 08002, Spain
| | - Emanuele Raineri
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, Barcelona 08028, Spain; Universitat Pompeu Fabra (UPF), Barcelona 08002, Spain
| | - Lucia Altucci
- Dipartimento di Biochimica Biofisica e Patologia Generale, Seconda Università degli Studi di Napoli, Vico Luigi de Crecchio 7, Napoli 80138, Italy
| | - Edo Vellenga
- Department of Hematology, University of Groningen and University Medical Center Groningen, PO Box 30001, 9700 RB Groningen, the Netherlands
| | - Joost H A Martens
- Department of Molecular Biology, Radboud University, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, 6500 HB Nijmegen, the Netherlands
| | - Farzin Pourfarzad
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Plesmanlaan 125, 1066 CX Amsterdam, the Netherlands
| | - Taco W Kuijpers
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Plesmanlaan 125, 1066 CX Amsterdam, the Netherlands; Emma Children's Hospital, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Frances Burden
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Long Road, CB2 0PT Cambridge, UK; National Health Service (NHS) Blood and Transplant, Cambridge Biomedical Campus, Long Road, CB2 0PT Cambridge, UK
| | - Samantha Farrow
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Long Road, CB2 0PT Cambridge, UK; National Health Service (NHS) Blood and Transplant, Cambridge Biomedical Campus, Long Road, CB2 0PT Cambridge, UK
| | - Kate Downes
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Long Road, CB2 0PT Cambridge, UK; National Health Service (NHS) Blood and Transplant, Cambridge Biomedical Campus, Long Road, CB2 0PT Cambridge, UK
| | - Willem H Ouwehand
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Long Road, CB2 0PT Cambridge, UK; National Health Service (NHS) Blood and Transplant, Cambridge Biomedical Campus, Long Road, CB2 0PT Cambridge, UK; British Heart Foundation Centre of Excellence, University of Cambridge, Cambridge Biomedical Campus, Long Road, CB2 0QQ Cambridge, UK; Department of Human Genetics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, CB10 1HH Cambridge, UK
| | - Laura Clarke
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, CB10 1SD Cambridge, UK
| | - Avik Datta
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, CB10 1SD Cambridge, UK
| | - Ernesto Lowy
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, CB10 1SD Cambridge, UK
| | - Paul Flicek
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, CB10 1SD Cambridge, UK
| | - Mattia Frontini
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Long Road, CB2 0PT Cambridge, UK; National Health Service (NHS) Blood and Transplant, Cambridge Biomedical Campus, Long Road, CB2 0PT Cambridge, UK; British Heart Foundation Centre of Excellence, University of Cambridge, Cambridge Biomedical Campus, Long Road, CB2 0QQ Cambridge, UK
| | - Hendrik G Stunnenberg
- Department of Molecular Biology, Radboud University, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, 6500 HB Nijmegen, the Netherlands
| | - José I Martín-Subero
- Department of Anatomic Pathology, Pharmacology and Microbiology, University of Barcelona, Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain
| | - Ivo Gut
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, Barcelona 08028, Spain; Universitat Pompeu Fabra (UPF), Barcelona 08002, Spain
| | - Simon Heath
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, Barcelona 08028, Spain; Universitat Pompeu Fabra (UPF), Barcelona 08002, Spain.
| |
Collapse
|
34
|
Sen S, Block KF, Pasini A, Baylin SB, Easwaran H. Genome-wide positioning of bivalent mononucleosomes. BMC Med Genomics 2016; 9:60. [PMID: 27634286 PMCID: PMC5025636 DOI: 10.1186/s12920-016-0221-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 09/07/2016] [Indexed: 01/01/2023] Open
Abstract
Background Bivalent chromatin refers to overlapping regions containing activating histone H3 Lys4 trimethylation (H3K4me3) and inactivating H3K27me3 marks. Existence of such bivalent marks on the same nucleosome has only recently been suggested. Previous genome-wide efforts to characterize bivalent chromatin have focused primarily on individual marks to define overlapping zones of bivalency rather than mapping positions of truly bivalent mononucleosomes. Results Here, we developed an efficacious sequential ChIP technique for examining global positioning of individual bivalent nucleosomes. Using next generation sequencing approaches we show that although individual H3K4me3 and H3K27me3 marks overlap in broad zones, bivalent nucleosomes are focally enriched in the vicinity of the transcription start site (TSS). These seem to occupy the H2A.Z nucleosome positions previously described as salt-labile nucleosomes, and are correlated with low gene expression. Although the enrichment profiles of bivalent nucleosomes show a clear dependency on CpG island content, they demonstrate a stark anti-correlation with methylation status. Conclusions We show that regional overlap of H3K4me3 and H3K27me3 chromatin tend to be upstream to the TSS, while bivalent nucleosomes with both marks are mainly promoter proximal near the TSS of CpG island-containing genes with poised/low expression. We discuss the implications of the focal enrichment of bivalent nucleosomes around the TSS on the poised chromatin state of promoters in stem cells. Electronic supplementary material The online version of this article (doi:10.1186/s12920-016-0221-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Subhojit Sen
- CRB1, Room 530, Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Baltimore, 21287, MD, USA.,UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Kalina Campus, Santacruz (East), Mumbai, 400098, India
| | - Kirsten F Block
- CRB1, Room 530, Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Baltimore, 21287, MD, USA
| | - Alice Pasini
- Division of Respiratory Medicine and Nottingham Respiratory Biomedical Research Unit, University of Nottingham, City Hospital, Nottingham, NG5 1BP, UK
| | - Stephen B Baylin
- CRB1, Room 530, Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Baltimore, 21287, MD, USA.
| | - Hariharan Easwaran
- CRB1, Room 530, Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Baltimore, 21287, MD, USA.
| |
Collapse
|
35
|
Parent-of-origin effects of A1CF and AGO2 on testicular germ-cell tumors, testicular abnormalities, and fertilization bias. Proc Natl Acad Sci U S A 2016; 113:E5425-33. [PMID: 27582469 DOI: 10.1073/pnas.1604773113] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Testicular tumors, the most common cancer in young men, arise from abnormalities in germ cells during fetal development. Unconventional inheritance for testicular germ cell tumor (TGCT) risk both in humans and mice implicates epigenetic mechanisms. Apolipoprotein B mRNA-editing enzyme complex 1 (APOBEC1) cytidine deaminase and Deadend-1, which are involved in C-to-U RNA editing and microRNA-dependent mRNA silencing, respectively, are potent epigenetic modifiers of TGCT susceptibility in the genetically predisposed 129/Sv inbred mouse strain. Here, we show that partial loss of either APOBEC1 complementation factor (A1CF), the RNA-binding cofactor of APOBEC1 in RNA editing, or Argonaute 2 (AGO2), a key factor in the biogenesis of certain noncoding RNAs, modulates risk for TGCTs and testicular abnormalities in both parent-of-origin and conventional genetic manners. In addition, non-Mendelian inheritance was found among progeny of A1cf and Ago2 mutant intercrosses but not in backcrosses and without fetal loss. Together these findings suggest nonrandom union of gametes rather than meiotic drive or preferential lethality. Finally, this survey also suggested that A1CF contributes to long-term reproductive performance. These results directly implicate the RNA-binding proteins A1CF and AGO2 in the epigenetic control of germ-cell fate, urogenital development, and gamete functions.
Collapse
|
36
|
Dnmt3a Regulates Proliferation of Muscle Satellite Cells via p57Kip2. PLoS Genet 2016; 12:e1006167. [PMID: 27415617 PMCID: PMC4944932 DOI: 10.1371/journal.pgen.1006167] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 06/13/2016] [Indexed: 11/18/2022] Open
Abstract
Cell differentiation status is defined by the gene expression profile, which is coordinately controlled by epigenetic mechanisms. Cell type-specific DNA methylation patterns are established by chromatin modifiers including de novo DNA methyltransferases, such as Dnmt3a and Dnmt3b. Since the discovery of the myogenic master gene MyoD, myogenic differentiation has been utilized as a model system to study tissue differentiation. Although knowledge about myogenic gene networks is accumulating, there is only a limited understanding of how DNA methylation controls the myogenic gene program. With an aim to elucidate the role of DNA methylation in muscle development and regeneration, we investigate the consequences of mutating Dnmt3a in muscle precursor cells in mice. Pax3 promoter-driven Dnmt3a-conditional knockout (cKO) mice exhibit decreased organ mass in the skeletal muscles, and attenuated regeneration after cardiotoxin-induced muscle injury. In addition, Dnmt3a-null satellite cells (SCs) exhibit a striking loss of proliferation in culture. Transcriptome analysis reveals dysregulated expression of p57Kip2, a member of the Cip/Kip family of cyclin-dependent kinase inhibitors (CDKIs), in the Dnmt3a-KO SCs. Moreover, RNAi-mediated depletion of p57Kip2 replenishes the proliferation activity of the SCs, thus establishing a role for the Dnmt3a-p57Kip2 axis in the regulation of SC proliferation. Consistent with these findings, Dnmt3a-cKO muscles exhibit fewer Pax7+ SCs, which show increased expression of p57Kip2 protein. Thus, Dnmt3a is found to maintain muscle homeostasis by epigenetically regulating the proliferation of SCs through p57Kip2. How muscle homeostasis is maintained is not completely elucidated yet. Epigenetic disorders such as Beckwith-Wiedemann syndrome, which causes hypergrowth of skeletal muscles and rhabdomyosarcoma, indicate that epigenetic regulations such as DNA methylation, contribute to this homeostasis control. DNA methylation is mediated by DNA methyltransferases, such as Dnmt3a and Dnmt3b, which are de novo DNA methyltransferases. The role of DNA methylation in somatic stem cells is not completely understood, although it has been shown to be indispensable in differentiation of primordial germ cells and embryonic stem cells. In this report, we investigated the role of Dnmt3a in muscle satellite cells by analyzing Dnmt3a-conditional knockout (cKO) mice in which Dnmt3a loci are deleted utilizing Cre-recombinase driven by Pax7 or Pax3 promoters that are specifically activated in the muscle precursor lineage. The loss of Dnmt3a in cKO mice causes decreased muscle mass and significantly impaired muscle regeneration. Moreover, Dnmt3a loss also results in a striking loss of proliferation of SCs, which is caused by mis-expression of a cyclin-dependent kinase inhibitor, p57Kip2. Therefore, our findings suggest that DNA methylation plays an essential role in muscle homeostasis.
Collapse
|
37
|
Rondelet G, Dal Maso T, Willems L, Wouters J. Structural basis for recognition of histone H3K36me3 nucleosome by human de novo DNA methyltransferases 3A and 3B. J Struct Biol 2016; 194:357-67. [PMID: 26993463 DOI: 10.1016/j.jsb.2016.03.013] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 03/14/2016] [Accepted: 03/15/2016] [Indexed: 01/01/2023]
Abstract
DNA methylation is an important epigenetic modification involved in chromatin organization and gene expression. The function of DNA methylation depends on cell context and is correlated with histone modification patterns. In particular, trimethylation of Lys36 on histone H3 tail (H3K36me3) is associated with DNA methylation and elongation phase of transcription. PWWP domains of the de novo DNA methyltransferases DNMT3A and DNMT3B read this epigenetic mark to guide DNA methylation. Here we report the first crystal structure of the DNMT3B PWWP domain-H3K36me3 complex. Based on this structure, we propose a model of the DNMT3A PWWP domain-H3K36me3 complex and build a model of DNMT3A (PWWP-ADD-CD) in a nucleosomal context. The trimethylated side chain of Lys36 (H3K36me3) is inserted into an aromatic cage similar to the "Royal" superfamily domains known to bind methylated histones. A key interaction between trimethylated Lys36 and a conserved water molecule stabilized by Ser270 explains the lack of affinity of mutated DNMT3B (S270P) for the H3K36me3 epigenetic mark in the ICF (Immunodeficiency, Centromeric instability and Facial abnormalities) syndrome. The model of the DNMT3A-DNMT3L heterotetramer in complex with a dinucleosome highlights the mechanism for recognition of nucleosome by DNMT3s and explains the periodicity of de novo DNA methylation.
Collapse
Affiliation(s)
- Grégoire Rondelet
- Department of Chemistry, University of Namur, 61 rue de Bruxelles, B-5000 Namur, Belgium.
| | - Thomas Dal Maso
- Department of Chemistry, University of Namur, 61 rue de Bruxelles, B-5000 Namur, Belgium
| | - Luc Willems
- Molecular and Cellular Epigenetics (GIGA) and Molecular Biology (Gembloux Agro-Bio Tech), University of Liège (ULg), 4000 Liège, Belgium
| | - Johan Wouters
- Department of Chemistry, University of Namur, 61 rue de Bruxelles, B-5000 Namur, Belgium
| |
Collapse
|
38
|
Kazanets A, Shorstova T, Hilmi K, Marques M, Witcher M. Epigenetic silencing of tumor suppressor genes: Paradigms, puzzles, and potential. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1865:275-88. [PMID: 27085853 DOI: 10.1016/j.bbcan.2016.04.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 04/08/2016] [Indexed: 12/20/2022]
Abstract
Cancer constitutes a set of diseases with heterogeneous molecular pathologies. However, there are a number of universal aberrations common to all cancers, one of these being the epigenetic silencing of tumor suppressor genes (TSGs). The silencing of TSGs is thought to be an early, driving event in the oncogenic process. With this in consideration, great efforts have been made to develop small molecules aimed at the restoration of TSGs in order to limit tumor cell proliferation and survival. However, the molecular forces that drive the broad epigenetic reprogramming and transcriptional repression of these genes remain ill-defined. Undoubtedly, understanding the molecular underpinnings of transcriptionally silenced TSGs will aid us in our ability to reactivate these key anti-cancer targets. Here, we describe what we consider to be the five most logical molecular mechanisms that may account for this widely observed phenomenon: 1) ablation of transcription factor binding, 2) overexpression of DNA methyltransferases, 3) disruption of CTCF binding, 4) elevation of EZH2 activity, 5) aberrant expression of long non-coding RNAs. The strengths and weaknesses of each proposed mechanism is highlighted, followed by an overview of clinical efforts to target these processes.
Collapse
Affiliation(s)
- Anna Kazanets
- The Lady Davis Institute of the Jewish General Hospital, Department of Oncology, McGill University, Montreal, Canada.
| | - Tatiana Shorstova
- The Lady Davis Institute of the Jewish General Hospital, Department of Oncology, McGill University, Montreal, Canada.
| | - Khalid Hilmi
- The Lady Davis Institute of the Jewish General Hospital, Department of Oncology, McGill University, Montreal, Canada.
| | - Maud Marques
- The Lady Davis Institute of the Jewish General Hospital, Department of Oncology, McGill University, Montreal, Canada.
| | - Michael Witcher
- The Lady Davis Institute of the Jewish General Hospital, Department of Oncology, McGill University, Montreal, Canada.
| |
Collapse
|
39
|
Schulze I, Rohde C, Scheller-Wendorff M, Bäumer N, Krause A, Herbst F, Riemke P, Hebestreit K, Tschanter P, Lin Q, Linhart H, Godley LA, Glimm H, Dugas M, Wagner W, Berdel WE, Rosenbauer F, Müller-Tidow C. Increased DNA methylation of Dnmt3b targets impairs leukemogenesis. Blood 2016; 127:1575-86. [PMID: 26729896 DOI: 10.1182/blood-2015-07-655928] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 12/15/2015] [Indexed: 12/28/2022] Open
Abstract
The de novo DNA methyltransferases Dnmt3a and Dnmt3b are of crucial importance in hematopoietic stem cells. Dnmt3b has recently been shown to play a role in genic methylation. To investigate how Dnmt3b-mediated DNA methylation affects leukemogenesis, we analyzed leukemia development under conditions of high and physiological methylation levels in a tetracycline-inducible knock-in mouse model. High expression of Dnmt3b slowed leukemia development in serial transplantations and impaired leukemia stem cell (LSC) function. Forced Dnmt3b expression induced widespread DNA hypermethylation inMyc-Bcl2-induced leukemias, preferentially at gene bodies.MLL-AF9-induced leukemogenesis showed much less pronounced DNA hypermethylation upon Dnmt3b expression. Nonetheless, leukemogenesis was delayed in both models with a shared core set of DNA hypermethylated regions and suppression of stem cell-related genes. Acute myeloid leukemia patients with high expression of Dnmt3b target genes showed inferior survival. Together, these findings indicate a critical role for Dnmt3b-mediated DNA methylation in leukemia development and maintenance of LSC function.
Collapse
Affiliation(s)
- Isabell Schulze
- Department of Hematology and Oncology, University of Halle, Halle, Germany
| | - Christian Rohde
- Department of Hematology and Oncology, University of Halle, Halle, Germany
| | | | - Nicole Bäumer
- Department of Medicine A, Hematology and Oncology, University of Münster, Münster, Germany
| | - Annika Krause
- Department of Medicine A, Hematology and Oncology, University of Münster, Münster, Germany
| | - Friederike Herbst
- National Center for Tumor Diseases, German Cancer Research Center Heidelberg, Heidelberg, Germany
| | - Pia Riemke
- Institute of Molecular Tumor Biology and
| | - Katja Hebestreit
- Institute of Medical Informatics, University of Münster, Münster, Germany
| | - Petra Tschanter
- Department of Hematology and Oncology, University of Halle, Halle, Germany
| | - Qiong Lin
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany; and
| | - Heinz Linhart
- National Center for Tumor Diseases, German Cancer Research Center Heidelberg, Heidelberg, Germany
| | - Lucy A Godley
- Department of Medicine and Comprehensive Cancer Center, The University of Chicago, Chicago, IL
| | - Hanno Glimm
- National Center for Tumor Diseases, German Cancer Research Center Heidelberg, Heidelberg, Germany
| | - Martin Dugas
- Institute of Medical Informatics, University of Münster, Münster, Germany
| | - Wolfgang Wagner
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany; and
| | - Wolfgang E Berdel
- Department of Medicine A, Hematology and Oncology, University of Münster, Münster, Germany
| | | | | |
Collapse
|
40
|
Stuckey JI, Dickson BM, Cheng N, Liu Y, Norris JL, Cholensky SH, Tempel W, Qin S, Huber KG, Sagum C, Black K, Li F, Huang XP, Roth BL, Baughman BM, Senisterra G, Pattenden SG, Vedadi M, Brown PJ, Bedford MT, Min J, Arrowsmith CH, James LI, Frye SV. A cellular chemical probe targeting the chromodomains of Polycomb repressive complex 1. Nat Chem Biol 2016; 12:180-7. [PMID: 26807715 PMCID: PMC4755828 DOI: 10.1038/nchembio.2007] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 11/25/2015] [Indexed: 12/29/2022]
Abstract
We report the design and characterization of UNC3866, a potent antagonist of the methyllysine (Kme) reading function of the Polycomb CBX and CDY families of chromodomains. Polycomb CBX proteins regulate gene expression by targeting Polycomb repressive complex 1 (PRC1) to sites of H3K27me3 via their chromodomains. UNC3866 binds the chromodomains of CBX4 and CBX7 most potently, with a K(d) of ∼100 nM for each, and is 6- to 18-fold selective as compared to seven other CBX and CDY chromodomains while being highly selective over >250 other protein targets. X-ray crystallography revealed that UNC3866's interactions with the CBX chromodomains closely mimic those of the methylated H3 tail. UNC4195, a biotinylated derivative of UNC3866, was used to demonstrate that UNC3866 engages intact PRC1 and that EED incorporation into PRC1 is isoform dependent in PC3 prostate cancer cells. Finally, UNC3866 inhibits PC3 cell proliferation, consistent with the known ability of CBX7 overexpression to confer a growth advantage, whereas UNC4219, a methylated negative control compound, has negligible effects.
Collapse
Affiliation(s)
- Jacob I Stuckey
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Bradley M Dickson
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Nancy Cheng
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Yanli Liu
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Jacqueline L Norris
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Stephanie H Cholensky
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Wolfram Tempel
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Su Qin
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Katherine G Huber
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Cari Sagum
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, Texas, USA
| | - Karynne Black
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, Texas, USA
| | - Fengling Li
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Xi-Ping Huang
- National Institute of Mental Health Psychoactive Drug Screening Program, University of North Carolina at Chapel Hill Medical School, Chapel Hill, North Carolina, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill Medical School, Chapel Hill, North Carolina, USA
| | - Bryan L Roth
- National Institute of Mental Health Psychoactive Drug Screening Program, University of North Carolina at Chapel Hill Medical School, Chapel Hill, North Carolina, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill Medical School, Chapel Hill, North Carolina, USA
| | - Brandi M Baughman
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | - Samantha G Pattenden
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Masoud Vedadi
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Peter J Brown
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Mark T Bedford
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, Texas, USA
| | - Jinrong Min
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Cheryl H Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Lindsey I James
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Stephen V Frye
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
41
|
Vilahur N, Vahter M, Broberg K. The Epigenetic Effects of Prenatal Cadmium Exposure. Curr Environ Health Rep 2016; 2:195-203. [PMID: 25960943 PMCID: PMC4417128 DOI: 10.1007/s40572-015-0049-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Prenatal exposure to the highly toxic and common pollutant cadmium has been associated with adverse effects on child health and development. However, the underlying biological mechanisms of cadmium toxicity remain partially unsolved. Epigenetic disruption due to early cadmium exposure has gained attention as a plausible mode of action, since epigenetic signatures respond to environmental stimuli and the fetus undergoes drastic epigenomic rearrangements during embryogenesis. In the current review, we provide a critical examination of the literature addressing prenatal cadmium exposure and epigenetic effects in human, animal, and in vitro studies. We conducted a PubMed search and obtained eight recent studies addressing this topic, focusing almost exclusively on DNA methylation. These studies provide evidence that cadmium alters epigenetic signatures in the DNA of the placenta and of the newborns, and some studies indicated marked sexual differences for cadmium-related DNA methylation changes. Associations between early cadmium exposure and DNA methylation might reflect interference with de novo DNA methyltransferases. More studies, especially those including environmentally relevant doses, are needed to confirm the toxicoepigenomic effects of prenatal cadmium exposure and how that relates to the observed health effects of cadmium in childhood and later life.
Collapse
Affiliation(s)
- Nadia Vilahur
- Institute of Environmental Medicine, Unit of Metals and Health, Karolinska Institutet, Nobels väg 13, Box 210, SE-171 77 Stockholm, Sweden
| | - Marie Vahter
- Institute of Environmental Medicine, Unit of Metals and Health, Karolinska Institutet, Nobels väg 13, Box 210, SE-171 77 Stockholm, Sweden
| | - Karin Broberg
- Institute of Environmental Medicine, Unit of Metals and Health, Karolinska Institutet, Nobels väg 13, Box 210, SE-171 77 Stockholm, Sweden
| |
Collapse
|
42
|
Felts SJ, Van Keulen VP, Hansen MJ, Bell MP, Allen K, Belachew AA, Vile RG, Cunningham JM, Hoskin TL, Pankratz VS, Pease LR. Widespread Non-Canonical Epigenetic Modifications in MMTV-NeuT Breast Cancer. Neoplasia 2016; 17:348-57. [PMID: 25925377 PMCID: PMC4415121 DOI: 10.1016/j.neo.2015.02.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 02/13/2015] [Accepted: 02/27/2015] [Indexed: 11/26/2022] Open
Abstract
Breast tumors in (FVB × BALB-NeuT) F1 mice have characteristic loss of chromosome 4 and sporadic loss or gain of other chromosomes. We employed the Illumina GoldenGate genotyping platform to quantitate loss of heterozygosity (LOH) across the genome of primary tumors, revealing strong biases favoring chromosome 4 alleles from the FVB parent. While allelic bias was not observed on other chromosomes, many tumors showed concerted LOH (C-LOH) of all alleles of one or the other parent on sporadic chromosomes, a pattern consistent with cytogenetic observations. Surprisingly, comparison of LOH in tumor samples relative to normal unaffected tissues from these animals revealed significant variegated (stochastic) deviations from heterozygosity (V-LOH) in every tumor genome. Sequence analysis showed expected changes in the allelic frequency of single nucleotide polymorphisms (SNPs) in cases of C-LOH. However, no evidence of LOH due to mutations, small deletions, or gene conversion at the affected SNPs or surrounding DNA was found at loci with V-LOH. Postulating an epigenetic mechanism contributing to V-LOH, we tested whether methylation of template DNA impacts allele detection efficiency using synthetic oligonucleotide templates in an assay mimicking the GoldenGate genotyping format. Methylated templates were systematically over-scored, suggesting that the observed patterns of V-LOH may represent extensive epigenetic DNA modifications across the tumor genomes. As most of the SNPs queried do not contain standard (CpG) methylation targets, we propose that widespread, non-canonical DNA modifications occur during Her2/neuT-driven tumorigenesis.
Collapse
Affiliation(s)
- Sara J Felts
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | | | - Michael J Hansen
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Michael P Bell
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Kathleen Allen
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Alem A Belachew
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Richard G Vile
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA; Department of Molecular Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Julie M Cunningham
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Tanya L Hoskin
- Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - V Shane Pankratz
- Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Larry R Pease
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA.
| |
Collapse
|
43
|
Bozorgi A, Khazaei M, Khazaei MR. New Findings on Breast Cancer Stem Cells: A Review. J Breast Cancer 2015; 18:303-12. [PMID: 26770236 PMCID: PMC4705081 DOI: 10.4048/jbc.2015.18.4.303] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 08/26/2015] [Indexed: 12/13/2022] Open
Abstract
Since the introduction of the "cancer stem cell" theory, significant developments have been made in the understanding of cancer and the heterogenic structure of tumors. In 2003, with the isolation of cancer stem cells from the first solid tumor, breast cancer, and recognition of the tumorigenicity of these cells, this theory suggested that the main reason for therapy failure might be the presence of cancer stem cells. This review article describes breast cancer stem cell origin, the related cellular and molecular characteristics, signaling pathways, and therapy resistance mechanisms. The databases PubMed, SCOPUS, and Embase were explored, and articles published on these topics between 1992 and 2015 were investigated. It appears that this small subpopulation of cells, with the capacity for self-renewal and a high proliferation rate, originate from normal stem cells, are identified by specific markers such as CD44(+)/CD24(-/low), and enhance a tumor's capacity for metastasis, invasion, and therapy resistance. Cancer stem cell characteristics depend on their interactions with their microenvironment as well as on the inducing factors and elements. Although uncertainties about breast cancer stem cells exist, many of researchers believe that cancer stem cells should be considered as possible therapeutic targets.
Collapse
Affiliation(s)
- Azam Bozorgi
- Fertility and Infertility Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mozafar Khazaei
- Fertility and Infertility Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Rasool Khazaei
- Fertility and Infertility Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
44
|
Zhou J, Yang L, Zhong T, Mueller M, Men Y, Zhang N, Xie J, Giang K, Chung H, Sun X, Lu L, Carmichael GG, Taylor HS, Huang Y. H19 lncRNA alters DNA methylation genome wide by regulating S-adenosylhomocysteine hydrolase. Nat Commun 2015; 6:10221. [PMID: 26687445 PMCID: PMC4703905 DOI: 10.1038/ncomms10221] [Citation(s) in RCA: 185] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 11/16/2015] [Indexed: 02/05/2023] Open
Abstract
DNA methylation is essential for mammalian development and physiology. Here we report that the developmentally regulated H19 lncRNA binds to and inhibits S-adenosylhomocysteine hydrolase (SAHH), the only mammalian enzyme capable of hydrolysing S-adenosylhomocysteine (SAH). SAH is a potent feedback inhibitor of S-adenosylmethionine (SAM)-dependent methyltransferases that methylate diverse cellular components, including DNA, RNA, proteins, lipids and neurotransmitters. We show that H19 knockdown activates SAHH, leading to increased DNMT3B-mediated methylation of an lncRNA-encoding gene Nctc1 within the Igf2-H19-Nctc1 locus. Genome-wide methylation profiling reveals methylation changes at numerous gene loci consistent with SAHH modulation by H19. Our results uncover an unanticipated regulatory circuit involving broad epigenetic alterations by a single abundantly expressed lncRNA that may underlie gene methylation dynamics of development and diseases and suggest that this mode of regulation may extend to other cellular components.
Collapse
Affiliation(s)
- Jichun Zhou
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut 06510, USA
- Department of Surgical Oncology, Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China
| | - Lihua Yang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut 06510, USA
- Department of Obstetrics and Gynecology, Tianjin Renmin Hospital, Tianjin 300000, China
| | - Tianyu Zhong
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut 06510, USA
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, China
| | - Martin Mueller
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut 06510, USA
- Department of Obstetrics and Gynecology, University Hospital, Bern 3012, Switzerland
| | - Yi Men
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut 06510, USA
- Department of Head and Neck Surgery, State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Na Zhang
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | - Juanke Xie
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut 06510, USA
- Reproductive Medical Center, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China
| | - Karolyn Giang
- Zymo Research Corporation, Irvine, California 92614, USA
| | - Hunter Chung
- Zymo Research Corporation, Irvine, California 92614, USA
| | - Xueguang Sun
- Zymo Research Corporation, Irvine, California 92614, USA
| | - Lingeng Lu
- Department of Chronic Diseases Epidemiology, Yale School of Public Health, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Gordon G Carmichael
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | - Hugh S Taylor
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut 06510, USA
| | - Yingqun Huang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut 06510, USA
| |
Collapse
|
45
|
Putiri EL, Tiedemann RL, Liu C, Choi JH, Robertson KD. Impact of human MLL/COMPASS and polycomb complexes on the DNA methylome. Oncotarget 2015; 5:6338-52. [PMID: 25071008 PMCID: PMC4171634 DOI: 10.18632/oncotarget.2215] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The correlation between DNA methylation and a subset of histone post-translational modifications (positive and negative) has hinted at an underlying regulatory crosstalk between histone marks and DNA methylation in patterning the human DNA methylome, an idea further supported by corresponding alterations to both histone marks and DNA methylation during malignant transformation. This study investigated the framework by which histone marks influence DNA methylation at a genome-wide level. Using RNAi in a pluripotent human embryonic carcinoma cell line we depleted essential components of the MLL/COMPASS, polycomb repressive complex 2 (PRC2), and PRC1 histone modifying complexes that establish, respectively, the post-translational modifications H3K4me3, H3K27me3, and H2AK119ub, and assayed the impact of the subsequent depletion of these marks on the DNA methylome. Absence of H2AK119ub resulted predominantly in hypomethylation across the genome. Depletion of H3K4me3 and, surprisingly, H3K27me3 caused CpG island hypermethylation at a subset of loci. Intriguingly, many promoters were co-regulated by all three histone marks, becoming hypermethylated with loss of H3K4me3 or H3K27me3 and hypomethylated with depletion of H2AK119ub, and many of these co-regulated loci were among those commonly targeted for aberrant hypermethylation in cancer. Taken together, our results elucidate novel roles for polycomb and MLL/COMPASS in regulating DNA methylation and define targets of this regulation.
Collapse
Affiliation(s)
- Emily L Putiri
- Department of Molecular Pharmacology and Experimental Therapeutics and Center for Individualized Medicine, Mayo Clinic, Rochester, MN
| | - Rochelle L Tiedemann
- Department of Molecular Pharmacology and Experimental Therapeutics and Center for Individualized Medicine, Mayo Clinic, Rochester, MN; Cancer Center, Georgia Regents University, Augusta, GA
| | - Chunsheng Liu
- Department of Molecular Pharmacology and Experimental Therapeutics and Center for Individualized Medicine, Mayo Clinic, Rochester, MN
| | - Jeong-Hyeon Choi
- Department of Molecular Pharmacology and Experimental Therapeutics and Center for Individualized Medicine, Mayo Clinic, Rochester, MN; Cancer Center, Georgia Regents University, Augusta, GA
| | - Keith D Robertson
- Department of Molecular Pharmacology and Experimental Therapeutics and Center for Individualized Medicine, Mayo Clinic, Rochester, MN
| |
Collapse
|
46
|
Cole CB, Verdoni AM, Ketkar S, Leight ER, Russler-Germain DA, Lamprecht TL, Demeter RT, Magrini V, Ley TJ. PML-RARA requires DNA methyltransferase 3A to initiate acute promyelocytic leukemia. J Clin Invest 2015; 126:85-98. [PMID: 26595813 DOI: 10.1172/jci82897] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 10/14/2015] [Indexed: 12/27/2022] Open
Abstract
The DNA methyltransferases DNMT3A and DNMT3B are primarily responsible for de novo methylation of specific cytosine residues in CpG dinucleotides during mammalian development. While loss-of-function mutations in DNMT3A are highly recurrent in acute myeloid leukemia (AML), DNMT3A mutations are almost never found in AML patients with translocations that create oncogenic fusion genes such as PML-RARA, RUNX1-RUNX1T1, and MLL-AF9. Here, we explored how DNMT3A is involved in the function of these fusion genes. We used retroviral vectors to express PML-RARA, RUNX1-RUNX1T1, or MLL-AF9 in bone marrow cells derived from WT or DNMT3A-deficient mice. Additionally, we examined the phenotypes of hematopoietic cells from Ctsg-PML-RARA mice, which express PML-RARA in early hematopoietic progenitors and myeloid precursors, with or without DNMT3A. We determined that the methyltransferase activity of DNMT3A, but not DNMT3B, is required for aberrant PML-RARA-driven self-renewal ex vivo and that DNMT3A is dispensable for RUNX1-RUNX1T1- and MLL-AF9-driven self-renewal. Furthermore, both the PML-RARA-driven competitive transplantation advantage and development of acute promyelocytic leukemia (APL) required DNMT3A. Together, these findings suggest that PML-RARA requires DNMT3A to initiate APL in mice.
Collapse
|
47
|
Grayson DR, Guidotti A. Merging data from genetic and epigenetic approaches to better understand autistic spectrum disorder. Epigenomics 2015; 8:85-104. [PMID: 26551091 PMCID: PMC4864049 DOI: 10.2217/epi.15.92] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder that is characterized by a wide range of cognitive and behavioral abnormalities. Genetic research has identified large numbers of genes that contribute to ASD phenotypes. There is compelling evidence that environmental factors contribute to ASD through influences that differentially impact the brain through epigenetic mechanisms. Both genetic mutations and epigenetic influences alter gene expression in different cell types of the brain. Mutations impact the expression of large numbers of genes and also have downstream consequences depending on specific pathways associated with the mutation. Environmental factors impact the expression of sets of genes by altering methylation/hydroxymethylation patterns, local histone modification patterns and chromatin remodeling. Herein, we discuss recent developments in the research of ASD with a focus on epigenetic pathways as a complement to current genetic screening.
Collapse
Affiliation(s)
- Dennis R Grayson
- Department of Psychiatry, The Psychiatric Institute, University of Illinois at Chicago, 1601 W. Taylor St., Chicago, IL 60607, USA
| | - Alessandro Guidotti
- Department of Psychiatry, The Psychiatric Institute, University of Illinois at Chicago, 1601 W. Taylor St., Chicago, IL 60607, USA
| |
Collapse
|
48
|
Zhang RL, Peng LX, Yang JP, Zheng LS, Xie P, Wang MY, Huang BJ, Zhao HR, Bao YX, Qian CN. IL-8 suppresses E-cadherin expression in nasopharyngeal carcinoma cells by enhancing E-cadherin promoter DNA methylation. Int J Oncol 2015; 48:207-14. [PMID: 26530812 DOI: 10.3892/ijo.2015.3226] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 10/13/2015] [Indexed: 11/06/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) has the highest metastasis potential among head and neck cancers. Distant metastasis is the major cause of treatment failure. Recent studies from our laboratory have revealed that IL-8 promotes NPC metastasis via activation of AKT signaling and induction of epithelial-mesenchymal transition (EMT) in the cells. In the present study, we found that IL-8 treatment for NPC cells resulted in an accumulation of DNMT1 protein through activating AKT1 pathway and consequent DNMT1 protein stabilization. Then DNMT1 suppressed E-cadherin expression by increasing the methylation of its promoter region. LY-294002 blocked IL-8-induced p-AKT1 activation resulting in reduction of DNMT1 and increase of E-cadherin expression, whereas forced demethylation using 5-aza-2'-deoxycytidine restored E-cadherin expression. In conclusion, our study, for the first time, shows that the IL-8/AKT1 signaling pathway stabilizes DNMT1 protein, consequently enhancing hypermethylation of E-cadherin promoter regions and downregulating E-cadherin protein level in NPC cells. Upon blockage of the IL-8/AKT pathway and inhibition of DNMT1, E-cadherin expression can be reversed. These data suggest that targeting the IL-8/AKT1 signaling pathway and DNMT1 may provide a potential therapeutic approach for blocking NPC metastasis.
Collapse
Affiliation(s)
- Rui-Li Zhang
- Cancer Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, P.R. China
| | - Li-Xia Peng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, P.R. China
| | - Jun-Ping Yang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, P.R. China
| | - Li-Sheng Zheng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, P.R. China
| | - Ping Xie
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, P.R. China
| | - Meng-Yao Wang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, P.R. China
| | - Bi-Jun Huang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, P.R. China
| | - Hua-Rong Zhao
- Cancer Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, P.R. China
| | - Yong-Xing Bao
- Cancer Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, P.R. China
| | - Chao-Nan Qian
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, P.R. China
| |
Collapse
|
49
|
Schrader A, Gross T, Thalhammer V, Längst G. Characterization of Dnmt1 Binding and DNA Methylation on Nucleosomes and Nucleosomal Arrays. PLoS One 2015; 10:e0140076. [PMID: 26496704 PMCID: PMC4619679 DOI: 10.1371/journal.pone.0140076] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 09/21/2015] [Indexed: 12/31/2022] Open
Abstract
The packaging of DNA into nucleosomes and the organisation into higher order structures of chromatin limits the access of sequence specific DNA binding factors to DNA. In cells, DNA methylation is preferentially occuring in the linker region of nucleosomes, suggesting a structural impact of chromatin on DNA methylation. These observations raise the question whether DNA methyltransferases are capable to recognize the nucleosomal substrates and to modify the packaged DNA. Here, we performed a detailed analysis of nucleosome binding and nucleosomal DNA methylation by the maintenance DNA methyltransferase Dnmt1. Our binding studies show that Dnmt1 has a DNA length sensing activity, binding cooperatively to DNA, and requiring a minimal DNA length of 20 bp. Dnmt1 needs linker DNA to bind to nucleosomes and most efficiently recognizes nucleosomes with symmetric DNA linkers. Footprinting experiments reveal that Dnmt1 binds to both DNA linkers exiting the nucleosome core. The binding pattern correlates with the efficient methylation of DNA linkers. However, the enzyme lacks the ability to methylate nucleosomal CpG sites on mononucleosomes and nucleosomal arrays, unless chromatin remodeling enzymes create a dynamic chromatin state. In addition, our results show that Dnmt1 functionally interacts with specific chromatin remodeling enzymes to enable complete methylation of hemi-methylated DNA in chromatin.
Collapse
Affiliation(s)
- Anna Schrader
- Institute of Biochemistry III, University of Regensburg, Regensburg, Germany
| | - Thomas Gross
- Institute of Biochemistry III, University of Regensburg, Regensburg, Germany
| | - Verena Thalhammer
- Institute of Biochemistry III, University of Regensburg, Regensburg, Germany
| | - Gernot Längst
- Institute of Biochemistry III, University of Regensburg, Regensburg, Germany
- * E-mail:
| |
Collapse
|
50
|
Epigenetic Heterogeneity of B-Cell Lymphoma: Chromatin Modifiers. Genes (Basel) 2015; 6:1076-112. [PMID: 26506391 PMCID: PMC4690029 DOI: 10.3390/genes6041076] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 09/30/2015] [Accepted: 10/07/2015] [Indexed: 12/21/2022] Open
Abstract
We systematically studied the expression of more than fifty histone and DNA (de)methylating enzymes in lymphoma and healthy controls. As a main result, we found that the expression levels of nearly all enzymes become markedly disturbed in lymphoma, suggesting deregulation of large parts of the epigenetic machinery. We discuss the effect of DNA promoter methylation and of transcriptional activity in the context of mutated epigenetic modifiers such as EZH2 and MLL2. As another mechanism, we studied the coupling between the energy metabolism and epigenetics via metabolites that act as cofactors of JmjC-type demethylases. Our study results suggest that Burkitt’s lymphoma and diffuse large B-cell Lymphoma differ by an imbalance of repressive and poised promoters, which is governed predominantly by the activity of methyltransferases and the underrepresentation of demethylases in this regulation. The data further suggest that coupling of epigenetics with the energy metabolism can also be an important factor in lymphomagenesis in the absence of direct mutations of genes in metabolic pathways. Understanding of epigenetic deregulation in lymphoma and possibly in cancers in general must go beyond simple schemes using only a few modes of regulation.
Collapse
|