1
|
Corales LG, Inada H, Owada Y, Osumi N. Fatty acid preference for beta-oxidation in mitochondria of murine cultured astrocytes. Genes Cells 2024; 29:757-768. [PMID: 38965717 PMCID: PMC11447822 DOI: 10.1111/gtc.13144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/06/2024]
Abstract
The brain utilizes glucose as a primary energy substrate but also fatty acids for the β-oxidation in mitochondria. The β-oxidation is reported to occur mainly in astrocytes, but its capacity and efficacy against different fatty acids remain unknown. Here, we show the fatty acid preference for the β-oxidation in mitochondria of murine cultured astrocytes. Fatty acid oxidation assay using an extracellular flux analyzer showed that saturated or monosaturated fatty acids, palmitic acid and oleic acid, are preferred substrates over polyunsaturated fatty acids like arachidonic acid and docosahexaenoic acid. We also report that fatty acid binding proteins expressed in the astrocytes contribute less to fatty acid transport to mitochondria for β-oxidation. Our results could give insight into understanding energy metabolism through fatty acid consumption in the brain.
Collapse
Affiliation(s)
- Laarni Grace Corales
- Department of Developmental NeuroscienceGraduate School of Medicine, Tohoku UniversitySendaiJapan
| | - Hitoshi Inada
- Department of Developmental NeuroscienceGraduate School of Medicine, Tohoku UniversitySendaiJapan
- Department of Biochemistry and Cellular BiologyNational Center of Neurology and PsychiatryTokyoJapan
| | - Yuji Owada
- Department of Organ AnatomyGraduate School of Medicine, Tohoku UniversitySendaiJapan
| | - Noriko Osumi
- Department of Developmental NeuroscienceGraduate School of Medicine, Tohoku UniversitySendaiJapan
| |
Collapse
|
2
|
Li S, Li X, Wang K, Liu L, Chen K, Shan W, Liu L, Kahiel M, Li C. Embryo thermal manipulation enhances mitochondrial function in the skeletal muscle of heat-stressed broilers by regulating transient receptor potential V2 expression. Poult Sci 2024; 103:104034. [PMID: 39003798 PMCID: PMC11298950 DOI: 10.1016/j.psj.2024.104034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/17/2024] [Accepted: 06/23/2024] [Indexed: 07/16/2024] Open
Abstract
Heat stress induces mitochondrial dysfunction, thereby impeding skeletal muscle development and significantly impacting the economic efficiency of poultry production. This study aimed to investigate the effects of embryo thermal manipulation (TM, 41.5°C, 65% RH, 3 h/d during 16-18th embryonic age) on the mitochondrial function of the pectoralis major (PM) in broiler chickens exposed to thermoneutral (24 ± 1°C, 60% RH) or cyclic heat stress (35 ± 1°C, 60% RH, 12 h/d) from day 22 to 28, and to explore potential mechanisms involving transient receptor potential V2 (TRPV2). Additionally, in vitro experiments were conducted to assess the regulatory effects of TRPV2 pharmacological activation and inhibition on mitochondrial function in primary myotubes. The results revealed that TM had no discernible effect on the body weight and feed intake of broiler chickens under heat stress conditions (P > 0.05). However, it did delay the increase in rectal temperature and accelerate the decrease in serum T3 levels (P < 0.05). Furthermore, TM promoted the development of PM muscle fibers, significantly increasing myofiber diameter and cross-sectional area (P < 0.05). Under heat stress conditions, TM significantly upregulated the expression of mitochondrial electron transport chain (ETC) genes and TRPV2 in broiler PM muscle (P < 0.05), with a clear positive correlation observed between the two (P < 0.05). In vitro, pharmacological activation of TRPV2 not only increased its own expression but also enhanced mitochondrial ETC genes expression and oxidative phosphorylation function by upregulating intracellular calcium ion levels (P < 0.05). Conversely, TRPV2 inhibition had the opposite effect. Overall, this study underscores the potential of prenatal thermal manipulation in regulating postnatal broiler skeletal muscle development and mitochondrial function through the modulation of TRPV2 expression.
Collapse
Affiliation(s)
- Sheng Li
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoqing Li
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Kai Wang
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Le Liu
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ketian Chen
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenhan Shan
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Luyao Liu
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Mohamed Kahiel
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunmei Li
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
3
|
Hyatt JPK, Lu EJ, McCall GE. Temporal expression of mitochondrial life cycle markers during acute and chronic overload of rat plantaris muscles. Front Physiol 2024; 15:1420276. [PMID: 39282091 PMCID: PMC11392739 DOI: 10.3389/fphys.2024.1420276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/06/2024] [Indexed: 09/18/2024] Open
Abstract
Skeletal muscle hypertrophy is generally associated with a fast-to-slow phenotypic adaptation in both human and rodent models. Paradoxically, this phenotypic shift is not paralleled by a concomitant increase in mitochondrial content and aerobic markers that would be expected to accompany a slow muscle phenotype. To understand the temporal response of the mitochondrial life cycle (i.e., biogenesis, oxidative phosphorylation, fission/fusion, and mitophagy/autophagy) to hypertrophic stimuli, in this study, we used the functional overload (FO) model in adult female rats and examined the plantaris muscle responses at 1 and 10 weeks. As expected, the absolute plantaris muscle mass increased by ∼12 and 26% at 1 and 10 weeks following the FO procedure, respectively. Myosin heavy-chain isoform types I and IIa significantly increased by 116% and 17%, respectively, in 10-week FO plantaris muscles. Although there was a general increase in protein markers associated with mitochondrial biogenesis in acute FO muscles, this response was unexpectedly sustained under 10-week FO conditions after muscle hypertrophy begins to plateau. Furthermore, the early increase in mito/autophagy markers observed under acute FO conditions was normalized by 10 weeks, suggesting a cellular environment favoring mitochondrial biogenesis to accommodate the aerobic demands of the plantaris muscle. We also observed a significant increase in the expression of mitochondrial-, but not nuclear-, encoded oxidative phosphorylation (OXPHOS) proteins and peptides (i.e., humanin and MOTS-c) under chronic, but not acute, FO conditions. Taken together, the temporal response of markers related to the mitochondrial life cycle indicates a pattern of promoting biogenesis and mitochondrial protein expression to support the energy demands and/or enhanced neural recruitment of chronically overloaded skeletal muscle.
Collapse
Affiliation(s)
- Jon-Philippe K Hyatt
- College of Integrative Sciences and Arts, Arizona State University, Tempe, AZ, United States
| | - Emilie J Lu
- College of Integrative Sciences and Arts, Arizona State University, Tempe, AZ, United States
| | - Gary E McCall
- Department of Exercise Science, University of Puget Sound, Tacoma, WA, United States
| |
Collapse
|
4
|
Karasawa T, Hee Choi R, Meza CA, Maschek JA, Cox JE, Funai K. Skeletal muscle PGC-1α remodels mitochondrial phospholipidome but does not alter energy efficiency for ATP synthesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.22.595374. [PMID: 38826268 PMCID: PMC11142218 DOI: 10.1101/2024.05.22.595374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Background Exercise training is thought to improve the mitochondrial energy efficiency of skeletal muscle. Some studies suggest exercise training increases the efficiency for ATP synthesis by oxidative phosphorylation (OXPHOS), but the molecular mechanisms are unclear. We have previously shown that exercise remodels the lipid composition of mitochondrial membranes, and some of these changes could contribute to improved OXPHOS efficiency (ATP produced by O2 consumed or P/O). Peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) is a transcriptional co-activator that coordinately regulates exercise-induced adaptations including mitochondria. We hypothesized that increased PGC-1α activity is sufficient to remodel mitochondrial membrane lipids and promote energy efficiency. Methods Mice with skeletal muscle-specific overexpression of PGC-1α (MCK-PGC-1α) and their wildtype littermates were used for this study. Lipid mass spectrometry and quantitative PCR were used to assess muscle mitochondrial lipid composition and their biosynthesis pathway. The abundance of OXPHOS enzymes was determined by western blot assay. High-resolution respirometry and fluorometry analysis were used to characterize mitochondrial bioenergetics (ATP production, O2 consumption, and P/O) for permeabilized fibers and isolated mitochondria. Results Lipidomic analyses of skeletal muscle mitochondria from wildtype and MCK-PGC-1α mice revealed that PGC-1α increases the concentrations of cone-shaped lipids such as phosphatidylethanolamine (PE), cardiolipin (CL), and lysophospholipids, while decreases the concentrations of phosphatidylcholine (PC), phosphatidylinositol (PI) and phosphatidic acid (PA). However, while PGC-1α overexpression increased the abundance of OXPHOS enzymes in skeletal muscle and the rate of O2 consumption (JO2), P/O values were unaffected with PGC-1α in permeabilized fibers or isolated mitochondria. Conclusions Collectively, overexpression of PGC-1α promotes the biosynthesis of mitochondrial PE and CL but neither PGC-1α nor the mitochondrial membrane lipid remodeling induced in MCK-PGC-1α mice is sufficient to increase the efficiency for mitochondrial ATP synthesis. These findings suggest that exercise training may increase OXPHOS efficiency by a PGC-1α-independent mechanism, and question the hypothesis that mitochondrial lipids directly affect OXPHOS enzymes to improve efficiency for ATP synthesis.
Collapse
Affiliation(s)
- Takuya Karasawa
- Diabetes & Metabolism Research Center, University of Utah, Utah, United States
- Department of Nutrition & Integrative Physiology, University of Utah, Utah, United States
- Research Institute for Sport Science, Nippon Sport Science University, Tokyo, Japan
| | - Ran Hee Choi
- Diabetes & Metabolism Research Center, University of Utah, Utah, United States
- Department of Nutrition & Integrative Physiology, University of Utah, Utah, United States
| | - Cesar A. Meza
- Diabetes & Metabolism Research Center, University of Utah, Utah, United States
- Department of Nutrition & Integrative Physiology, University of Utah, Utah, United States
| | - J. Alan Maschek
- Diabetes & Metabolism Research Center, University of Utah, Utah, United States
- Metabolomics Core Research Facility, University of Utah, Utah, United States
| | - James E. Cox
- Diabetes & Metabolism Research Center, University of Utah, Utah, United States
- Metabolomics Core Research Facility, University of Utah, Utah, United States
| | - Katsuhiko Funai
- Diabetes & Metabolism Research Center, University of Utah, Utah, United States
- Department of Nutrition & Integrative Physiology, University of Utah, Utah, United States
| |
Collapse
|
5
|
Furrer R, Heim B, Schmid S, Dilbaz S, Adak V, Nordström KJV, Ritz D, Steurer SA, Walter J, Handschin C. Molecular control of endurance training adaptation in male mouse skeletal muscle. Nat Metab 2023; 5:2020-2035. [PMID: 37697056 PMCID: PMC10663156 DOI: 10.1038/s42255-023-00891-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 08/11/2023] [Indexed: 09/13/2023]
Abstract
Skeletal muscle has an enormous plastic potential to adapt to various external and internal perturbations. Although morphological changes in endurance-trained muscles are well described, the molecular underpinnings of training adaptation are poorly understood. We therefore aimed to elucidate the molecular signature of muscles of trained male mice and unravel the training status-dependent responses to an acute bout of exercise. Our results reveal that, even though at baseline an unexpectedly low number of genes define the trained muscle, training status substantially affects the transcriptional response to an acute challenge, both quantitatively and qualitatively, in part associated with epigenetic modifications. Finally, transiently activated factors such as the peroxisome proliferator-activated receptor-γ coactivator 1α are indispensable for normal training adaptation. Together, these results provide a molecular framework of the temporal and training status-dependent exercise response that underpins muscle plasticity in training.
Collapse
Affiliation(s)
| | - Barbara Heim
- Biozentrum, University of Basel, Basel, Switzerland
- University Hospital Basel, Basel, Switzerland
| | - Svenia Schmid
- Biozentrum, University of Basel, Basel, Switzerland
- University Hospital Basel, Basel, Switzerland
| | - Sedat Dilbaz
- Biozentrum, University of Basel, Basel, Switzerland
| | - Volkan Adak
- Biozentrum, University of Basel, Basel, Switzerland
| | - Karl J V Nordström
- Laboratory of EpiGenetics, Saarland University, Saarbrücken, Germany
- AstraZeneca, Mölndal, Sweden
| | - Danilo Ritz
- Biozentrum, University of Basel, Basel, Switzerland
| | | | - Jörn Walter
- Laboratory of EpiGenetics, Saarland University, Saarbrücken, Germany
| | | |
Collapse
|
6
|
Liu L, Li Y, Chen G, Chen Q. Crosstalk between mitochondrial biogenesis and mitophagy to maintain mitochondrial homeostasis. J Biomed Sci 2023; 30:86. [PMID: 37821940 PMCID: PMC10568841 DOI: 10.1186/s12929-023-00975-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 09/13/2023] [Indexed: 10/13/2023] Open
Abstract
Mitochondrial mass and quality are tightly regulated by two essential and opposing mechanisms, mitochondrial biogenesis (mitobiogenesis) and mitophagy, in response to cellular energy needs and other cellular and environmental cues. Great strides have been made to uncover key regulators of these complex processes. Emerging evidence has shown that there exists a tight coordination between mitophagy and mitobiogenesis, and their defects may cause many human diseases. In this review, we will first summarize the recent advances made in the discovery of molecular regulations of mitobiogenesis and mitophagy and then focus on the mechanism and signaling pathways involved in the simultaneous regulation of mitobiogenesis and mitophagy in the response of tissue or cultured cells to energy needs, stress, or pathophysiological conditions. Further studies of the crosstalk of these two opposing processes at the molecular level will provide a better understanding of how the cell maintains optimal cellular fitness and function under physiological and pathophysiological conditions, which holds promise for fighting aging and aging-related diseases.
Collapse
Affiliation(s)
- Lei Liu
- Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regenerative Medicine, Beijing, China.
| | - Yanjun Li
- Center of Cell Response, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Guo Chen
- Center of Cell Response, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Quan Chen
- Center of Cell Response, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China.
| |
Collapse
|
7
|
Roy SD, Nagarajan S, Jalal MS, Basar MA, Duttaroy A. New mutant alleles for Spargel/dPGC-1 highlights the function of Spargel RRM domain in oogenesis and expands the role of Spargel in embryogenesis and intracellular transport. G3 (BETHESDA, MD.) 2023; 13:jkad142. [PMID: 37369430 PMCID: PMC10468312 DOI: 10.1093/g3journal/jkad142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 01/24/2023] [Accepted: 05/28/2023] [Indexed: 06/29/2023]
Abstract
Energy metabolism in vertebrates is controlled by three members of the PGC-1 (PPAR γ- coactivator 1) family, transcriptional coactivators that shape responses to physiological stimuli by interacting with the nuclear receptors and other transcription factors. Multiple evidence now supports that Spargel protein found in insects and ascidians is the ancestral form of vertebrate PGC-1's. Here, we undertook functional analysis of srl gene in Drosophila, asking about the requirement of Spargel per se during embryogenesis and its RNA binding domains. CRISPR- engineered srl gene deletion turned out to be an amorphic allele that is late embryonic/early larval lethal and Spargel protein missing its RNA binding domain (SrlΔRRM) negatively affects female fertility. Overexpression of wild-type Spargel in transgenic flies expedited the growth of egg chambers. On the other hand, oogenesis is blocked in a dominant-negative fashion in the presence of excess Spargel lacking its RRM domains. Finally, we observed aggregation of Notch proteins in egg chambers of srl mutant flies, suggesting that Spargel is involved in intracellular transport of Notch proteins. Taken together, we claim that these new mutant alleles of spargel are emerging powerful tools for revealing new biological functions for Spargel, an essential transcription coactivator in both Drosophila and mammals.
Collapse
Affiliation(s)
- Swagota D Roy
- Biology Department, Howard University, 415 College St. NW, Washington D.C., USA 20059
| | - Sabarish Nagarajan
- Biology Department, Howard University, 415 College St. NW, Washington D.C., USA 20059
| | - Md Shah Jalal
- Biology Department, Howard University, 415 College St. NW, Washington D.C., USA 20059
| | - Md Abul Basar
- Biology Department, Howard University, 415 College St. NW, Washington D.C., USA 20059
| | - Atanu Duttaroy
- Biology Department, Howard University, 415 College St. NW, Washington D.C., USA 20059
| |
Collapse
|
8
|
Bahn YJ, Yadav H, Piaggi P, Abel BS, Gavrilova O, Springer DA, Papazoglou I, Zerfas PM, Skarulis MC, McPherron AC, Rane SG. CDK4-E2F3 signals enhance oxidative skeletal muscle fiber numbers and function to affect myogenesis and metabolism. J Clin Invest 2023; 133:e162479. [PMID: 37395281 PMCID: PMC10313363 DOI: 10.1172/jci162479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 05/19/2023] [Indexed: 07/04/2023] Open
Abstract
Understanding how skeletal muscle fiber proportions are regulated is vital to understanding muscle function. Oxidative and glycolytic skeletal muscle fibers differ in their contractile ability, mitochondrial activity, and metabolic properties. Fiber-type proportions vary in normal physiology and disease states, although the underlying mechanisms are unclear. In human skeletal muscle, we observed that markers of oxidative fibers and mitochondria correlated positively with expression levels of PPARGC1A and CDK4 and negatively with expression levels of CDKN2A, a locus significantly associated with type 2 diabetes. Mice expressing a constitutively active Cdk4 that cannot bind its inhibitor p16INK4a, a product of the CDKN2A locus, were protected from obesity and diabetes. Their muscles exhibited increased oxidative fibers, improved mitochondrial properties, and enhanced glucose uptake. In contrast, loss of Cdk4 or skeletal muscle-specific deletion of Cdk4's target, E2F3, depleted oxidative myofibers, deteriorated mitochondrial function, and reduced exercise capacity, while increasing diabetes susceptibility. E2F3 activated the mitochondrial sensor PPARGC1A in a Cdk4-dependent manner. CDK4, E2F3, and PPARGC1A levels correlated positively with exercise and fitness and negatively with adiposity, insulin resistance, and lipid accumulation in human and rodent muscle. All together, these findings provide mechanistic insight into regulation of skeletal muscle fiber-specification that is of relevance to metabolic and muscular diseases.
Collapse
Affiliation(s)
- Young Jae Bahn
- Diabetes, Endocrinology and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, USA
| | - Hariom Yadav
- Diabetes, Endocrinology and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, USA
| | - Paolo Piaggi
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Phoenix, Arizona
| | - Brent S. Abel
- Diabetes, Endocrinology and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, USA
| | - Oksana Gavrilova
- Mouse Metabolism Core Facility, National Institute of Diabetes and Digestive and Kidney Diseases
| | | | - Ioannis Papazoglou
- Diabetes, Endocrinology and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, USA
| | | | - Monica C. Skarulis
- Diabetes, Endocrinology and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, USA
| | - Alexandra C. McPherron
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, USA
| | - Sushil G. Rane
- Diabetes, Endocrinology and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, USA
| |
Collapse
|
9
|
Sopariwala DH, Hao NTT, Narkar VA. Estrogen-related Receptor Signaling in Skeletal Muscle Fitness. Int J Sports Med 2023; 44:609-617. [PMID: 36787804 PMCID: PMC11168301 DOI: 10.1055/a-2035-8192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Skeletal muscle is a highly plastic tissue that can alter its metabolic and contractile features, as well as regenerative potential in response to exercise and other conditions. Multiple signaling factors including metabolites, kinases, receptors, and transcriptional factors have been studied in the regulation of skeletal muscle plasticity. Recently, estrogen-related receptors (ERRs) have emerged as a critical transcriptional hub in control of skeletal muscle homeostasis. ERRα and ERRγ - the two highly expressed ERR sub-types in the muscle respond to various extracellular cues such as exercise, hypoxia, fasting and dietary factors, in turn regulating gene expression in the skeletal muscle. On the other hand, conditions such as diabetes and muscular dystrophy suppress expression of ERRs in the skeletal muscle, likely contributing to disease progression. We highlight key functions of ERRs in the skeletal muscle including the regulation of fiber type, mitochondrial metabolism, vascularization, and regeneration. We also describe how ERRs are regulated in the skeletal muscle, and their interaction with important muscle regulators (e. g. AMPK and PGCs). Finally, we identify critical gaps in our understanding of ERR signaling in the skeletal muscle, and suggest future areas of investigation to advance ERRs as potential targets for function promoting therapeutics in muscle diseases.
Collapse
Affiliation(s)
- Danesh H. Sopariwala
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School at The University of Texas Health Science Center (UTHealth), Houston, TX, USA
| | - Nguyen Thi Thu Hao
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School at The University of Texas Health Science Center (UTHealth), Houston, TX, USA
| | - Vihang A. Narkar
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School at The University of Texas Health Science Center (UTHealth), Houston, TX, USA
| |
Collapse
|
10
|
Benefield D, Abdelmageed Y, Fowler J, Smith S, Arias-Parbul K, Dunning C, Rowe GC. Adult skeletal muscle peroxisome proliferator-activated receptor γ -related coactivator 1 is involved in maintaining mitochondrial content. Am J Physiol Regul Integr Comp Physiol 2023; 324:R470-R479. [PMID: 36717166 PMCID: PMC10026983 DOI: 10.1152/ajpregu.00241.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/24/2023] [Accepted: 01/24/2023] [Indexed: 02/01/2023]
Abstract
The peroxisome proliferator-activated receptor γ coactivator-1 (PGC-1) family of transcriptional coactivators are regulators of mitochondrial oxidative capacity and content in skeletal muscle. Many of these conclusions are based primarily on gain-of-function studies using muscle-specific overexpression of PGC1s. We have previously reported that genetic deletion of both PGC-1α and PGC-1β in adult skeletal muscle resulted in a significant reduction in oxidative capacity with no effect on mitochondrial content. However, the contribution of PGC-1-related coactivator (PRC), the third PGC-1 family member, in regulating skeletal muscle mitochondria is unknown. Therefore, we generated an inducible skeletal muscle-specific PRC knockout mouse (iMS-PRC-KO) to assess the contribution of PRC in skeletal muscle mitochondrial function. We measured mRNA expression of electron transport chain (ETC) subunits as well as markers of mitochondrial content in the iMS-PRC-KO animals and observed an increase in ETC gene expression and mitochondrial content. Furthermore, the increase in ETC gene expression and mitochondrial content was associated with increased expression of PGC-1α and PGC-1β. We therefore generated an adult-inducible PGC-1 knockout mouse in which all PGC-1 family members are deleted (iMS-PGC-1TKO). The iMS-PGC-1TKO animals exhibited a reduction in ETC mRNA expression and mitochondrial content. These data suggest that in the absence of PRC alone, compensation occurs by increasing PGC-1α and PGC-1β to maintain mitochondrial content. Moreover, the removal of all three PGC-1s in skeletal muscle results in a reduction in both ETC mRNA expression and mitochondrial content. Taken together, these results suggest that PRC plays a role in maintaining baseline mitochondrial content in skeletal muscle.
Collapse
Affiliation(s)
- Drue Benefield
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, United States
| | - Yazeed Abdelmageed
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, United States
| | - Jahmel Fowler
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, United States
| | - Serenah Smith
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, United States
| | - Kassandra Arias-Parbul
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, United States
| | - Courtney Dunning
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, United States
| | - Glenn C Rowe
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, United States
| |
Collapse
|
11
|
Wattez JS, Eury E, Hazen BC, Wade A, Chau S, Ou SC, Russell AP, Cho Y, Kralli A. Loss of skeletal muscle estrogen-related receptors leads to severe exercise intolerance. Mol Metab 2023; 68:101670. [PMID: 36642217 PMCID: PMC9938320 DOI: 10.1016/j.molmet.2023.101670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/02/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
OBJECTIVE Skeletal muscle oxidative capacity is central to physical activity, exercise capacity and whole-body metabolism. The three estrogen-related receptors (ERRs) are regulators of oxidative metabolism in many cell types, yet their roles in skeletal muscle remain unclear. The main aim of this study was to compare the relative contributions of ERRs to oxidative capacity in glycolytic and oxidative muscle, and to determine defects associated with loss of skeletal muscle ERR function. METHODS We assessed ERR expression, generated mice lacking one or two ERRs specifically in skeletal muscle and compared the effects of ERR loss on the transcriptomes of EDL (predominantly glycolytic) and soleus (oxidative) muscles. We also determined the consequences of the loss of ERRs for exercise capacity and energy metabolism in mice with the most severe loss of ERR activity. RESULTS ERRs were induced in human skeletal muscle in response to an exercise bout. Mice lacking both ERRα and ERRγ (ERRα/γ dmKO) had the broadest and most dramatic disruption in skeletal muscle gene expression. The most affected pathway was "mitochondrial function", in particular Oxphos and TCA cycle genes, and transcriptional defects were more pronounced in the glycolytic EDL than the oxidative soleus. Mice lacking ERRβ and ERRγ, the two isoforms expressed highly in oxidative muscles, also exhibited defects in lipid and branch chain amino acid metabolism genes, specifically in the soleus. The pronounced disruption of oxidative metabolism in ERRα/γ dmKO mice led to pale muscles, decreased oxidative capacity, histochemical patterns reminiscent of minicore myopathies, and severe exercise intolerance, with the dmKO mice unable to switch to lipid utilization upon running. ERRα/γ dmKO mice showed no defects in whole-body glucose and energy homeostasis. CONCLUSIONS Our findings define gene expression programs in skeletal muscle that depend on different combinations of ERRs, and establish a central role for ERRs in skeletal muscle oxidative metabolism and exercise capacity. Our data reveal a high degree of functional redundancy among muscle ERR isoforms for the protection of oxidative capacity, and show that ERR isoform-specific phenotypes are driven in part, but not exclusively, by their relative levels in different muscles.
Collapse
Affiliation(s)
- Jean-Sébastien Wattez
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Elodie Eury
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Bethany C Hazen
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Alexa Wade
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Sarah Chau
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Shu-Ching Ou
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Aaron P Russell
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Yoshitake Cho
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA; Division of Cardiovascular Medicine, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Anastasia Kralli
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
12
|
PGC-1β maintains mitochondrial metabolism and restrains inflammatory gene expression. Sci Rep 2022; 12:16028. [PMID: 36163487 PMCID: PMC9512823 DOI: 10.1038/s41598-022-20215-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/09/2022] [Indexed: 11/08/2022] Open
Abstract
Metabolic programming of the innate immune cells known as dendritic cells (DCs) changes in response to different stimuli, influencing their function. While the mechanisms behind increased glycolytic metabolism in response to inflammatory stimuli are well-studied, less is known about the programming of mitochondrial metabolism in DCs. We used lipopolysaccharide (LPS) and interferon-β (IFN-β), which differentially stimulate the use of glycolysis and oxidative phosphorylation (OXPHOS), respectively, to identify factors important for mitochondrial metabolism. We found that the expression of peroxisome proliferator-activated receptor gamma co-activator 1β (PGC-1β), a transcriptional co-activator and known regulator of mitochondrial metabolism, decreases when DCs are activated with LPS, when OXPHOS is diminished, but not with IFN-β, when OXPHOS is maintained. We examined the role of PGC-1β in bioenergetic metabolism of DCs and found that PGC-1β deficiency indeed impairs their mitochondrial respiration. PGC-1β-deficient DCs are more glycolytic compared to controls, likely to compensate for reduced OXPHOS. PGC-1β deficiency also causes decreased capacity for ATP production at steady state and in response to IFN-β treatment. Loss of PGC-1β in DCs leads to increased expression of genes in inflammatory pathways, and reduced expression of genes encoding proteins important for mitochondrial metabolism and function. Collectively, these results demonstrate that PGC-1β is a key regulator of mitochondrial metabolism and negative regulator of inflammatory gene expression in DCs.
Collapse
|
13
|
Takahashi K, Tamura Y, Kitaoka Y, Matsunaga Y, Hatta H. Effects of Lactate Administration on Mitochondrial Respiratory Function in Mouse Skeletal Muscle. Front Physiol 2022; 13:920034. [PMID: 35845998 PMCID: PMC9280083 DOI: 10.3389/fphys.2022.920034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/09/2022] [Indexed: 11/27/2022] Open
Abstract
Recent evidence has shown that mitochondrial respiratory function contributes to exercise performance and metabolic health. Given that lactate is considered a potential signaling molecule that induces mitochondrial adaptations, we tested the hypothesis that lactate would change mitochondrial respiratory function in skeletal muscle. Male ICR mice (8 weeks old) received intraperitoneal injection of PBS or sodium lactate (1 g/kg BW) 5 days a week for 4 weeks. Mitochondria were isolated from freshly excised gastrocnemius muscle using differential centrifugation and were used for all analyses. Lactate administration significantly enhanced pyruvate + malate- and glutamate + malate-induced (complex I-driven) state 3 (maximal/ATP synthesis-coupled) respiration, but not state 2 (basal/proton conductance) respiration. In contrast, lactate administration significantly decreased succinate + rotenone-induced (complex II-driven) state 3 and 2 respiration. No significant differences were observed in malate + octanoyl-l-carnitine-induced state 3 or 2 respiration. The enzymatic activity of complex I was tended to increase and those of complexes I + III and IV were significantly increased after lactate administration. No differences were observed in the activities of complexes II or II + III. Moreover, lactate administration increased the protein content of NDUFS4, a subunit of complex I, but not those of the other components. The present findings suggest that lactate alters mitochondrial respiratory function in skeletal muscle.
Collapse
Affiliation(s)
- Kenya Takahashi
- Department of Sports Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuki Tamura
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan
- Research Institute for Sport Science, Nippon Sport Science University, Tokyo, Japan
| | - Yu Kitaoka
- Department of Human Sciences, Kanagawa University, Yokohama, Japan
| | - Yutaka Matsunaga
- Department of Sports Sciences, The University of Tokyo, Tokyo, Japan
| | - Hideo Hatta
- Department of Sports Sciences, The University of Tokyo, Tokyo, Japan
- *Correspondence: Hideo Hatta,
| |
Collapse
|
14
|
Kim J, Park J, Mikami T. Regular Low-Intensity Exercise Prevents Cognitive Decline and a Depressive-Like State Induced by Physical Inactivity in Mice: A New Physical Inactivity Experiment Model. Front Behav Neurosci 2022; 16:866405. [PMID: 35600989 PMCID: PMC9121131 DOI: 10.3389/fnbeh.2022.866405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/29/2022] [Indexed: 12/26/2022] Open
Abstract
Regular exercise has already been established as a vital strategy for maintaining physical health via experimental results in humans and animals. In addition, numerous human studies have reported that physical inactivity is a primary factor that causes obesity, muscle atrophy, metabolic diseases, and deterioration in cognitive function and mental health. Regardless, an established animal experimental method to examine the effect of physical inactivity on physiological, biochemical, and neuroscientific parameters is yet to be reported. In this study, we made a new housing cage, named as the physical inactivity (PI) cage, to investigate the effect of physical inactivity on cognitive function and depressive-like states in mice and obtained the following experimental results by its use. We first compared the daily physical activity of mice housed in the PI and standard cages using the nano-tag method. The mice’s physical activity levels in the PI cage decreased to approximately half of that in the mice housed in the standard cage. Second, we examined whether housing in the PI cage affected plasma corticosterone concentration. The plasma corticosterone concentration did not alter before, 1 week, or 10 weeks after housing. Third, we investigated whether housing in the PI cage for 10 weeks affected cognitive function and depressive behavior. Housing in an inactive state caused a cognitive decline and depressive state in the mice without increasing body weight and plasma corticosterone. Finally, we examined the effect of regular low-intensity exercise on cognitive function and depressive state in the mice housed in the PI cage. Physical inactivity decreased neuronal cell proliferation, blood vessel density, and gene expressions of vascular endothelial growth factors and brain-derived neurotrophic factors in the hippocampus. In addition, regular low-intensity exercise, 30 min of treadmill running at a 5–15 m/min treadmill speed 3 days per week, prevented cognitive decline and the onset of a depressive-like state caused by physical inactivity. These results showed that our novel physical inactivity model, housing the mice in the PI cage, would be an adequate and valuable experimental method for examining the effect of physical inactivity on cognitive function and a depressive-like state.
Collapse
Affiliation(s)
- Jimmy Kim
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Jonghyuk Park
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Toshio Mikami
- Department of Health and Sports Science, Nippon Medical School, Tokyo, Japan
- *Correspondence: Toshio Mikami,
| |
Collapse
|
15
|
Xu Y, Zhao Y, Gao B. Role of TRPV1 in High Temperature-Induced Mitochondrial Biogenesis in Skeletal Muscle: A Mini Review. Front Cell Dev Biol 2022; 10:882578. [PMID: 35450292 PMCID: PMC9017999 DOI: 10.3389/fcell.2022.882578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 03/22/2022] [Indexed: 12/23/2022] Open
Abstract
Transient receptor potential vanilloid 1 (TRPV1) is a protein that is susceptible to cell environment temperature. High temperatures of 40–45°C can activate the TRPV1 channel. TRPV1 is highly expressed in skeletal muscle and located on the sarcoplasmic reticulum (SR). Therefore, TRPV1 activated by high-temperature stress releases Ca2+ from the SR to the cytoplasm. Cellular Ca2+ accumulation is a key event that enhances TRPV1 activity by directly binding to the N-terminus and C-terminus. Moreover, Ca2+ is the key messenger involved in regulating mitochondrial biogenesis in skeletal muscle. Long-term activation of TRPV1 may promote mitochondrial biogenesis in skeletal muscle through the Ca2+-CaMKII-p38 MAPK-PGC-1α signaling axis. The discovery of the TRPV1 channel highlights the potential mechanism for high-temperature stress improving muscle mitochondrial biogenesis. The appropriate hot stimulus in thermal environments might be beneficial to the muscular mitochondrial adaptation for aerobic capacity. However, the investigation of TRPV1 on mitochondrial biogenesis is at an early stage. Further investigations need to examine the role of TRPV1 in response to mitochondrial biogenesis in skeletal muscle induced by different thermal environments.
Collapse
Affiliation(s)
- Yixiao Xu
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Yongcai Zhao
- College of Social Sport and Health Sciences, Tianjin University of Sport, Tianjin, China
| | - Binghong Gao
- School of Physical Education and Training, Shanghai University of Sport, Shanghai, China
- *Correspondence: Binghong Gao,
| |
Collapse
|
16
|
Jaiswal N, Gavin M, Loro E, Sostre‐Colón J, Roberson PA, Uehara K, Rivera‐Fuentes N, Neinast M, Arany Z, Kimball SR, Khurana TS, Titchenell PM. AKT controls protein synthesis and oxidative metabolism via combined mTORC1 and FOXO1 signalling to govern muscle physiology. J Cachexia Sarcopenia Muscle 2022; 13:495-514. [PMID: 34751006 PMCID: PMC8818654 DOI: 10.1002/jcsm.12846] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 09/14/2021] [Accepted: 10/05/2021] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Skeletomuscular diseases result in significant muscle loss and decreased performance, paralleled by a loss in mitochondrial and oxidative capacity. Insulin and insulin-like growth factor-1 (IGF-1) are two potent anabolic hormones that activate a host of signalling intermediates including the serine/threonine kinase AKT to influence skeletal muscle physiology. Defective AKT signalling is associated with muscle pathology, including cachexia, sarcopenia, and disuse; however, the mechanistic underpinnings remain unresolved. METHODS To elucidate the role of AKT signalling in muscle mass and physiology, we generated both congenital and inducible mouse models of skeletal muscle-specific AKT deficiency. To understand the downstream mechanisms mediating AKT's effects on muscle biology, we generated mice lacking AKT1/2 and FOXO1 (M-AKTFOXO1TKO and M-indAKTFOXO1TKO) to inhibit downstream FOXO1 signalling, AKT1/2 and TSC1 (M-AKTTSCTKO and M-indAKTTSCTKO) to activate mTORC1, and AKT1/2, FOXO1, and TSC1 (M-QKO and M-indQKO) to simultaneously activate mTORC1 and inhibit FOXO1 in AKT-deficient skeletal muscle. Muscle proteostasis and physiology were assessed using multiple assays including metabolic labelling, mitochondrial function, fibre typing, ex vivo physiology, and exercise performance. RESULTS Here, we show that genetic ablation of skeletal muscle AKT signalling resulted in decreased muscle mass and a loss of oxidative metabolism and muscle performance. Specifically, deletion of muscle AKT activity during development or in adult mice resulted in a significant reduction in muscle growth by 30-40% (P < 0.0001; n = 12-20) and 15% (P < 0.01 and P < 0.0001; n = 20-30), respectively. Interestingly, this reduction in muscle mass was primarily due to an ~40% reduction in protein synthesis in both M-AKTDKO and M-indAKTDKO muscles (P < 0.05 and P < 0.01; n = 12-20) without significant changes in proteolysis or autophagy. Moreover, a significant reduction in oxidative capacity was observed in both M-AKTDKO (P < 0.05, P < 0.01 and P < 0.001; n = 5-12) and M-indAKTDKO (P < 0.05 and P < 0.01; n = 4). Mechanistically, activation and inhibition of mTORC1/FOXO1, respectively, but neither alone, were sufficient to restore protein synthesis, muscle oxidative capacity, and muscle function in the absence of AKT in vivo. In a mouse model of disuse-induced muscle loss, simultaneous activation of mTORC1 and inhibition of FOXO1 preserved muscle mass following immobilization (~5-10% reduction in casted M-indFOXO1TSCDKO muscles vs. ~30-40% casted M-indControl muscles, P < 0.05 and P < 0.0001; n = 8-16). CONCLUSIONS Collectively, this study provides novel insights into the AKT-dependent mechanisms that underlie muscle protein homeostasis, function, and metabolism in both normal physiology and disuse-induced muscle wasting.
Collapse
Affiliation(s)
- Natasha Jaiswal
- Institute for Diabetes, Obesity, and MetabolismPerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPAUSA
| | - Matthew Gavin
- Institute for Diabetes, Obesity, and MetabolismPerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPAUSA
| | - Emanuele Loro
- Department of PhysiologyPerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPAUSA
- Penn Muscle Institute, Department of PhysiologyPerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPAUSA
| | - Jaimarie Sostre‐Colón
- Institute for Diabetes, Obesity, and MetabolismPerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPAUSA
| | - Paul A. Roberson
- Department of Cellular and Molecular PhysiologyPenn State College of MedicineHersheyPAUSA
| | - Kahealani Uehara
- Institute for Diabetes, Obesity, and MetabolismPerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPAUSA
| | - Nicole Rivera‐Fuentes
- Institute for Diabetes, Obesity, and MetabolismPerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPAUSA
| | - Michael Neinast
- Institute for Diabetes, Obesity, and MetabolismPerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPAUSA
- Cardiovascular InstitutePerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPAUSA
| | - Zoltan Arany
- Institute for Diabetes, Obesity, and MetabolismPerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPAUSA
- Cardiovascular InstitutePerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPAUSA
| | - Scot R. Kimball
- Department of Cellular and Molecular PhysiologyPenn State College of MedicineHersheyPAUSA
| | - Tejvir S. Khurana
- Department of PhysiologyPerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPAUSA
- Penn Muscle Institute, Department of PhysiologyPerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPAUSA
| | - Paul M. Titchenell
- Institute for Diabetes, Obesity, and MetabolismPerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPAUSA
- Department of PhysiologyPerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPAUSA
| |
Collapse
|
17
|
Mitochondrial Dysfunction in Cancer Cachexia: Impact on Muscle Health and Regeneration. Cells 2021; 10:cells10113150. [PMID: 34831373 PMCID: PMC8621344 DOI: 10.3390/cells10113150] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 12/17/2022] Open
Abstract
Cancer cachexia is a frequently neglected debilitating syndrome that, beyond representing a primary cause of death and cancer therapy failure, negatively impacts on patients' quality of life. Given the complexity of its multisystemic pathogenesis, affecting several organs beyond the skeletal muscle, defining an effective therapeutic approach has failed so far. Revamped attention of the scientific community working on cancer cachexia has focused on mitochondrial alterations occurring in the skeletal muscle as potential triggers of the complex metabolic derangements, eventually leading to hypercatabolism and tissue wasting. Mitochondrial dysfunction may be simplistically viewed as a cause of energy failure, thus inducing protein catabolism as a compensatory mechanism; however, other peculiar cachexia features may depend on mitochondria. On the one side, chemotherapy also impacts on muscle mitochondrial function while, on the other side, muscle-impaired regeneration may result from insufficient energy production from damaged mitochondria. Boosting mitochondrial function could thus improve the energetic status and chemotherapy tolerance, and relieve the myogenic process in cancer cachexia. In the present work, a focused review of the available literature on mitochondrial dysfunction in cancer cachexia is presented along with preliminary data dissecting the potential role of stimulating mitochondrial biogenesis via PGC-1α overexpression in distinct aspects of cancer-induced muscle wasting.
Collapse
|
18
|
Yamada T, Kimura I, Ashida Y, Tamai K, Fusagawa H, Tohse N, Westerblad H, Andersson DC, Sato T. Larger improvements in fatigue resistance and mitochondrial function with high- than with low-intensity contractions during interval training of mouse skeletal muscle. FASEB J 2021; 35:e21988. [PMID: 34665879 DOI: 10.1096/fj.202101204r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/19/2021] [Accepted: 09/28/2021] [Indexed: 12/15/2022]
Abstract
Interval training (IT) results in improved fatigue resistance in skeletal muscle mainly due to an increased aerobic capacity, which involves increased muscle mitochondrial content and/or improved mitochondrial function. We hypothesized that IT with high-intensity contractions is more effective in increasing mitochondrial function, and hence fatigue resistance, than low-intensity contractions. To study this hypothesis without interference from differences in muscle fiber recruitment obliged to occur during voluntary contractions, IT was performed with in situ supramaximal electrical stimulation where all muscle fibers are recruited. We compared the effect of IT with repeated low-intensity (20 Hz stimulation, IT20) and high-intensity (100 Hz stimulation, IT100) contractions on fatigue resistance and mitochondrial content and function in mouse plantar flexor muscles. Muscles were stimulated every other day for 4 weeks. The averaged peak torque during IT bouts was 4.2-fold higher with IT100 than with IT20. Both stimulation protocols markedly improved in situ fatigue resistance, although the improvement was larger with IT100. The citrate synthase activity, a biomarker of mitochondrial content, was similarly increased with IT20 and IT100. Conversely, increased expression of mitochondrial respiratory chain (MRC) complexes I, III, and IV was only observed with IT100 and this was accompanied by increases in MRC supercomplex formation and pyruvate-malate-driven state 3 respiration in isolated mitochondria. In conclusion, the IT-induced increase in fatigue resistance is larger with high-intensity than with low-intensity contractions and this is linked to improved mitochondrial function due to increased expression of MRC complexes and assembly of MRC supercomplexes.
Collapse
Affiliation(s)
- Takashi Yamada
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Iori Kimura
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Yuki Ashida
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan.,Japan Society for Promotion of Science, Tokyo, Japan
| | - Katsuyuki Tamai
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Hiroyori Fusagawa
- Department of Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, Sapporo, Japan.,Department of Orthopedic Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Noritsugu Tohse
- Department of Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Håkan Westerblad
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Daniel C Andersson
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.,Heart, Vascular and Neurology Theme, Cardiology Unit, Karolinska University Hospital, Stockholm, Sweden
| | - Tatsuya Sato
- Department of Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, Sapporo, Japan.,Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
19
|
Seo BR, Payne CJ, McNamara SL, Freedman BR, Kwee BJ, Nam S, de Lázaro I, Darnell M, Alvarez JT, Dellacherie MO, Vandenburgh HH, Walsh CJ, Mooney DJ. Skeletal muscle regeneration with robotic actuation-mediated clearance of neutrophils. Sci Transl Med 2021; 13:eabe8868. [PMID: 34613813 DOI: 10.1126/scitranslmed.abe8868] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Bo Ri Seo
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Christopher J Payne
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.,Viam Inc., New York, NY 10023, USA
| | - Stephanie L McNamara
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Benjamin R Freedman
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Brian J Kwee
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Sungmin Nam
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Irene de Lázaro
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Max Darnell
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Jonathan T Alvarez
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Maxence O Dellacherie
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Herman H Vandenburgh
- Department of Pathology and Lab Medicine, Brown University, Providence, RI 02912, USA
| | - Conor J Walsh
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - David J Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| |
Collapse
|
20
|
Park J, Kim J, Mikami T. Exercise-Induced Lactate Release Mediates Mitochondrial Biogenesis in the Hippocampus of Mice via Monocarboxylate Transporters. Front Physiol 2021; 12:736905. [PMID: 34603087 PMCID: PMC8481603 DOI: 10.3389/fphys.2021.736905] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/17/2021] [Indexed: 12/25/2022] Open
Abstract
Regular exercise training induces mitochondrial biogenesis in the brain via activation of peroxisome proliferator-activated receptor gamma-coactivator 1α (PGC-1α). However, it remains unclear whether a single bout of exercise would increase mitochondrial biogenesis in the brain. Therefore, we first investigated whether mitochondrial biogenesis in the hippocampus is affected by a single bout of exercise in mice. A single bout of high-intensity exercise, but not low- or moderate-intensity, increased hippocampal PGC-1α mRNA and mitochondrial DNA (mtDNA) copy number at 12 and 48h. These results depended on exercise intensity, and blood lactate levels observed immediately after exercise. As lactate induces mitochondrial biogenesis in the brain, we examined the effects of acute lactate administration on blood and hippocampal extracellular lactate concentration by in vivo microdialysis. Intraperitoneal (I.P.) lactate injection increased hippocampal extracellular lactate concentration to the same as blood lactate level, promoting PGC-1α mRNA expression in the hippocampus. However, this was suppressed by administering UK5099, a lactate transporter inhibitor, before lactate injection. I.P. UK5099 administration did not affect running performance and blood lactate concentration immediately after exercise but attenuated exercise-induced hippocampal PGC-1α mRNA and mtDNA copy number. In addition, hippocampal monocarboxylate transporters (MCT)1, MCT2, and brain-derived neurotrophic factor (BDNF) mRNA expression, except MCT4, also increased after high-intensity exercise, which was abolished by UK5099 administration. Further, injection of 1,4-dideoxy-1,4-imino-D-arabinitol (glycogen phosphorylase inhibitor) into the hippocampus before high-intensity exercise suppressed glycogen consumption during exercise, but hippocampal lactate, PGC-1α, MCT1, and MCT2 mRNA concentrations were not altered after exercise. These results indicate that the increased blood lactate released from skeletal muscle may induce hippocampal mitochondrial biogenesis and BDNF expression by inducing MCT expression in mice, especially during short-term high-intensity exercise. Thus, a single bout of exercise above the lactate threshold could provide an effective strategy for increasing mitochondrial biogenesis in the hippocampus.
Collapse
Affiliation(s)
- Jonghyuk Park
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Jimmy Kim
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Toshio Mikami
- Department of Health and Sports Science, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
21
|
von Walden F, Vechetti IJ, Englund D, Figueiredo VC, Fernandez-Gonzalo R, Murach K, Pingel J, Mccarthy JJ, Stål P, Pontén E. Reduced mitochondrial DNA and OXPHOS protein content in skeletal muscle of children with cerebral palsy. Dev Med Child Neurol 2021; 63:1204-1212. [PMID: 34176131 DOI: 10.1111/dmcn.14964] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/20/2021] [Indexed: 02/06/2023]
Abstract
AIM To provide a detailed gene and protein expression analysis related to mitochondrial biogenesis and assess mitochondrial content in skeletal muscle of children with cerebral palsy (CP). METHOD Biceps brachii muscle samples were collected from 19 children with CP (mean [SD] age 15y 4mo [2y 6mo], range 9-18y, 16 males, three females) and 10 typically developing comparison children (mean [SD] age 15y [4y], range 7-21y, eight males, two females). Gene expression (quantitative reverse transcription polymerase chain reaction [PCR]), mitochondrial DNA (mtDNA) to genomic DNA ratio (quantitative PCR), and protein abundance (western blotting) were analyzed. Microarray data sets (CP/aging/bed rest) were analyzed with a focused query investigating metabolism- and mitochondria-related gene networks. RESULTS The mtDNA to genomic DNA ratio was lower in the children with CP compared to the typically developing group (-23%, p=0.002). Out of five investigated complexes in the mitochondrial respiratory chain, we observed lower protein levels of all complexes (I, III, IV, V, -20% to -37%; p<0.05) except complex II. Total peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) messenger RNA (p<0.004), isoforms PGC1α1 (p=0.05), and PGC1α4 (p<0.001) were reduced in CP. Transcriptional similarities were observed between CP, aging, and 90 days' bed rest. INTERPRETATION Mitochondrial biogenesis, mtDNA, and oxidative phosphorylation protein content are reduced in CP muscle compared with typically developing muscle. Transcriptional pathways shared between aging and long-term unloading suggests metabolic dysregulation in CP, which may guide therapeutic strategies for combatting CP muscle pathology. What this paper adds Cerebral palsy (CP) muscle contains fewer energy-generating organelles than typically developing muscle. Gene expression in CP muscle is similar to aging and long-term bed rest.
Collapse
Affiliation(s)
- Ferdinand von Walden
- Division of Pediatric Neurology, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Department of Physiology, University of Kentucky, Lexington, KY, USA.,Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| | - Ivan J Vechetti
- Department of Physiology, University of Kentucky, Lexington, KY, USA.,Center for Muscle Biology, University of Kentucky, Lexington, KY, USA.,Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Davis Englund
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA.,Department of Physical Therapy, University of Kentucky, Lexington, KY, USA
| | - Vandré C Figueiredo
- Department of Physiology, University of Kentucky, Lexington, KY, USA.,Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| | - Rodrigo Fernandez-Gonzalo
- Department of Laboratory Medicine, Division of Clinical Physiology, Karolinska Institutet, Stockholm, Sweden.,Unit of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
| | - Kevin Murach
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA.,Department of Physical Therapy, University of Kentucky, Lexington, KY, USA
| | - Jessica Pingel
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - John J Mccarthy
- Department of Physiology, University of Kentucky, Lexington, KY, USA.,Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| | - Per Stål
- Department of Integrative Medical Biology, Laboratory of Muscle Biology, Umeå University, Umeå, Sweden
| | - Eva Pontén
- Division of Pediatric Neurology, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
22
|
Rodriguez-Cuenca S, Lelliot CJ, Campbell M, Peddinti G, Martinez-Uña M, Ingvorsen C, Dias AR, Relat J, Mora S, Hyötyläinen T, Zorzano A, Orešič M, Bjursell M, Bohlooly-Y M, Lindén D, Vidal-Puig A. Allostatic hypermetabolic response in PGC1α/β heterozygote mouse despite mitochondrial defects. FASEB J 2021; 35:e21752. [PMID: 34369602 DOI: 10.1096/fj.202100262rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 06/05/2021] [Accepted: 06/08/2021] [Indexed: 12/25/2022]
Abstract
Aging, obesity, and insulin resistance are associated with low levels of PGC1α and PGC1β coactivators and defective mitochondrial function. We studied mice deficient for PGC1α and PGC1β [double heterozygous (DH)] to investigate their combined pathogenic contribution. Contrary to our hypothesis, DH mice were leaner, had increased energy dissipation, a pro-thermogenic profile in BAT and WAT, and improved carbohydrate metabolism compared to wild types. WAT showed upregulation of mitochondriogenesis/oxphos machinery upon allelic compensation of PGC1α4 from the remaining allele. However, DH mice had decreased mitochondrial OXPHOS and biogenesis transcriptomes in mitochondria-rich organs. Despite being metabolically healthy, mitochondrial defects in DH mice impaired muscle fiber remodeling and caused qualitative changes in the hepatic lipidome. Our data evidence first the existence of organ-specific compensatory allostatic mechanisms are robust enough to drive an unexpected phenotype. Second, optimization of adipose tissue bioenergetics is sufficient to maintain a healthy metabolic phenotype despite a broad severe mitochondrial dysfunction in other relevant metabolic organs. Third, the decrease in PGC1s in adipose tissue of obese and diabetic patients is in contrast with the robustness of the compensatory upregulation in the adipose of the DH mice.
Collapse
Affiliation(s)
| | | | - Mark Campbell
- Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Gopal Peddinti
- VTT, Technical Research Center of Finland, Espoo, Finland
| | - Maite Martinez-Uña
- Department of Physiology, University of the Basque Country UPV/EHU, Bilbao, Spain
| | - Camilla Ingvorsen
- Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Ana Rita Dias
- Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Joana Relat
- Department of Nutrition, Food Science and Gastronomy, School of Pharmacy and Food Science, Food and Nutrition Torribera Campus, University of Barcelona (UB), Santa Coloma de Gramenet, Spain
- INSA-UB, Nutrition and Food Safety Research Institute, University of Barcelona, Barcelona, Spain
| | - Silvia Mora
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, The University of Liverpool, Liverpool, UK
| | | | - Antonio Zorzano
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Dept. Biochemistry and Molecular Biomedicine, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Matej Orešič
- School of Science and Technology, Örebro University, Örebro, Sweden
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Mikael Bjursell
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | | | - Daniel Lindén
- Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
- Division of Endocrinology, Department of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Antonio Vidal-Puig
- Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| |
Collapse
|
23
|
Ketogenesis controls mitochondrial gene expression and rescues mitochondrial bioenergetics after cervical spinal cord injury in rats. Sci Rep 2021; 11:16359. [PMID: 34381166 PMCID: PMC8357839 DOI: 10.1038/s41598-021-96003-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 07/29/2021] [Indexed: 11/08/2022] Open
Abstract
A better understanding of the secondary injury mechanisms that occur after traumatic spinal cord injury (SCI) is essential for the development of novel neuroprotective strategies linked to the restoration of metabolic deficits. We and others have shown that Ketogenic diet (KD), a high fat, moderate in proteins and low in carbohydrates is neuroprotective and improves behavioural outcomes in rats with acute SCI. Ketones are alternative fuels for mitochondrial ATP generation, and can modulate signaling pathways via targeting specific receptors. Here, we demonstrate that ad libitum administration of KD for 7 days after SCI rescued mitochondrial respiratory capacity, increased parameters of mitochondrial biogenesis, affected the regulation of mitochondrial-related genes, and activated the NRF2-dependent antioxidant pathway. This study demonstrates that KD improves post-SCI metabolism by rescuing mitochondrial function and supports the potential of KD for treatment of acute SCI in humans.
Collapse
|
24
|
Zhao Y, Albrecht E, Stange K, Li Z, Schregel J, Sciascia QL, Metges CC, Maak S. Glutamine supplementation stimulates cell proliferation in skeletal muscle and cultivated myogenic cells of low birth weight piglets. Sci Rep 2021; 11:13432. [PMID: 34183762 PMCID: PMC8239033 DOI: 10.1038/s41598-021-92959-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/17/2021] [Indexed: 11/25/2022] Open
Abstract
Muscle growth of low birth weight (LBW) piglets may be improved with adapted nutrition. This study elucidated effects of glutamine (Gln) supplementation on the cellular muscle development of LBW and normal birth weight (NBW) piglets. Male piglets (n = 144) were either supplemented with 1 g Gln/kg body weight or an isonitrogeneous amount of alanine (Ala) between postnatal day 1 and 12 (dpn). Twelve piglets per group were slaughtered at 5, 12 and 26 dpn, one hour after injection with Bromodeoxyuridine (BrdU, 12 mg/kg). Muscle samples were collected and myogenic cells were isolated and cultivated. Expression of muscle growth related genes was quantified with qPCR. Proliferating, BrdU-positive cells in muscle sections were detected with immunohistochemistry indicating different cell types and decreasing proliferation with age. More proliferation was observed in muscle tissue of LBW-GLN than LBW-ALA piglets at 5 dpn, but there was no clear effect of supplementation on related gene expression. Cell culture experiments indicated that Gln could promote cell proliferation in a dose dependent manner, but expression of myogenesis regulatory genes was not altered. Overall, Gln supplementation stimulated cell proliferation in muscle tissue and in vitro in myogenic cell culture, whereas muscle growth regulatory genes were barely altered.
Collapse
Affiliation(s)
- Yaolu Zhao
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Muscle Biology and Growth, 18196, Dummerstorf, Germany
| | - Elke Albrecht
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Muscle Biology and Growth, 18196, Dummerstorf, Germany.
| | - Katja Stange
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Muscle Biology and Growth, 18196, Dummerstorf, Germany
| | - Zeyang Li
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology "Oskar Kellner", 18196, Dummerstorf, Germany
| | - Johannes Schregel
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology "Oskar Kellner", 18196, Dummerstorf, Germany
| | - Quentin L Sciascia
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology "Oskar Kellner", 18196, Dummerstorf, Germany
| | - Cornelia C Metges
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology "Oskar Kellner", 18196, Dummerstorf, Germany
| | - Steffen Maak
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Muscle Biology and Growth, 18196, Dummerstorf, Germany
| |
Collapse
|
25
|
Gherardi G, De Mario A, Mammucari C. The mitochondrial calcium homeostasis orchestra plays its symphony: Skeletal muscle is the guest of honor. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 362:209-259. [PMID: 34253296 DOI: 10.1016/bs.ircmb.2021.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Skeletal muscle mitochondria are placed in close proximity of the sarcoplasmic reticulum (SR), the main intracellular Ca2+ store. During muscle activity, excitation of sarcolemma and of T-tubule triggers the release of Ca2+ from the SR initiating myofiber contraction. The rise in cytosolic Ca2+ determines the opening of the mitochondrial calcium uniporter (MCU), the highly selective channel of the inner mitochondrial membrane (IMM), causing a robust increase in mitochondrial Ca2+ uptake. The Ca2+-dependent activation of TCA cycle enzymes increases the synthesis of ATP required for SERCA activity. Thus, Ca2+ is transported back into the SR and cytosolic [Ca2+] returns to resting levels eventually leading to muscle relaxation. In recent years, thanks to the molecular identification of MCU complex components, the role of mitochondrial Ca2+ uptake in the pathophysiology of skeletal muscle has been uncovered. In this chapter, we will introduce the reader to a general overview of mitochondrial Ca2+ accumulation. We will tackle the key molecular players and the cellular and pathophysiological consequences of mitochondrial Ca2+ dyshomeostasis. In the second part of the chapter, we will discuss novel findings on the physiological role of mitochondrial Ca2+ uptake in skeletal muscle. Finally, we will examine the involvement of mitochondrial Ca2+ signaling in muscle diseases.
Collapse
Affiliation(s)
- Gaia Gherardi
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Agnese De Mario
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | | |
Collapse
|
26
|
Tao B, Kumar S, Gomez-Arroyo J, Fan C, Zhang A, Skinner J, Hunter E, Yamaji-Kegan K, Samad I, Hillel AT, Lin Q, Zhai W, Gao WD, Johns RA. Resistin-Like Molecule α Dysregulates Cardiac Bioenergetics in Neonatal Rat Cardiomyocytes. Front Cardiovasc Med 2021; 8:574708. [PMID: 33981729 PMCID: PMC8107692 DOI: 10.3389/fcvm.2021.574708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 03/30/2021] [Indexed: 11/13/2022] Open
Abstract
Heart (right) failure is the most frequent cause of death in patients with pulmonary arterial hypertension. Although historically, increased right ventricular afterload has been considered the main contributor to right heart failure in such patients, recent evidence has suggested a potential role of load-independent factors. Here, we tested the hypothesis that resistin-like molecule α (RELMα), which has been implicated in the pathogenesis of vascular remodeling in pulmonary artery hypertension, also contributes to cardiac metabolic remodeling, leading to heart failure. Recombinant RELMα (rRELMα) was generated via a Tet-On expression system in the T-REx 293 cell line. Cultured neonatal rat cardiomyocytes were treated with purified rRELMα for 24 h at a dose of 50 nM. Treated cardiomyocytes exhibited decreased mRNA and protein expression of peroxisome proliferator-activated receptor gamma coactivator 1α (PGC-1α) and transcription factors PPARα and ERRα, which regulate mitochondrial fatty acid metabolism, whereas genes that encode for glycolysis-related proteins were significantly upregulated. Cardiomyocytes treated with rRELMα also exhibited a decreased basal respiration, maximal respiration, spare respiratory capacity, ATP-linked OCR, and increased glycolysis, as assessed with a microplate-based cellular respirometry apparatus. Transmission electron microscopy revealed abnormal mitochondrial ultrastructure in cardiomyocytes treated with rRELMα. Our data indicate that RELMα affects cardiac energy metabolism and mitochondrial structure, biogenesis, and function by downregulating the expression of the PGC-1α/PPARα/ERRα axis.
Collapse
Affiliation(s)
- Bingdong Tao
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, United States
- Department of Anesthesiology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Santosh Kumar
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, United States
| | - Jose Gomez-Arroyo
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, United States
| | - Chunling Fan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, United States
| | - Ailan Zhang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, United States
| | - John Skinner
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, United States
| | - Elizabeth Hunter
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, United States
| | - Kazuyo Yamaji-Kegan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, United States
- Department of Anesthesiology, Maryland University, School of Medicine, Baltimore, MD, United States
| | - Idris Samad
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, MD, United States
| | - Alexander T. Hillel
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, MD, United States
| | - Qing Lin
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, United States
| | - Wenqian Zhai
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, United States
- Department of Anesthesiology, Tianjin Chest Hospital, Tianjin, China
| | - Wei Dong Gao
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, United States
| | - Roger A. Johns
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, United States
| |
Collapse
|
27
|
Specht KS, Kant S, Addington AK, McMillan RP, Hulver MW, Learnard H, Campbell M, Donnelly SR, Caliz AD, Pei Y, Reif MM, Bond JM, DeMarco A, Craige B, Keaney JF, Craige SM. Nox4 mediates skeletal muscle metabolic responses to exercise. Mol Metab 2021; 45:101160. [PMID: 33400973 PMCID: PMC7856463 DOI: 10.1016/j.molmet.2020.101160] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/15/2020] [Accepted: 12/30/2020] [Indexed: 01/26/2023] Open
Abstract
OBJECTIVE The immediate signals that couple exercise to metabolic adaptations are incompletely understood. Nicotinamide adenine dinucleotide phosphate oxidase 4 (Nox4) produces reactive oxygen species (ROS) and plays a significant role in metabolic and vascular adaptation during stress conditions. Our objective was to determine the role of Nox4 in exercise-induced skeletal muscle metabolism. METHODS Mice were subjected to acute exercise to assess their immediate responses. mRNA and protein expression responses to Nox4 and hydrogen peroxide (H2O2) were measured by qPCR and immunoblotting. Functional metabolic flux was measured via ex vivo fatty acid and glucose oxidation assays using 14C-labeled palmitate and glucose, respectively. A chronic exercise regimen was also utilized and the time to exhaustion along with key markers of exercise adaptation (skeletal muscle citrate synthase and beta-hydroxyacyl-coA-dehydrogenase activity) were measured. Endothelial-specific Nox4-deficient mice were then subjected to the same acute exercise regimen and their subsequent substrate oxidation was measured. RESULTS We identified key exercise-responsive metabolic genes that depend on H2O2 and Nox4 using catalase and Nox4-deficient mice. Nox4 was required for the expression of uncoupling protein 3 (Ucp3), hexokinase 2 (Hk2), and pyruvate dehydrogenase kinase 4 (Pdk4), but not the expression of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (Pgc-1α). Global Nox4 deletion resulted in decreased UCP3 protein expression and impaired glucose and fatty acid oxidization in response to acute exercise. Furthermore, Nox4-deficient mice demonstrated impaired adaptation to chronic exercise as measured by the time to exhaustion and activity of skeletal muscle citrate synthase and beta-hydroxyacyl-coA-dehydrogenase. Importantly, mice deficient in endothelial-Nox4 similarly demonstrated attenuated glucose and fatty acid oxidation following acute exercise. CONCLUSIONS We report that H2O2 and Nox4 promote immediate responses to exercise in skeletal muscle. Glucose and fatty acid oxidation were blunted in the Nox4-deficient mice post-exercise, potentially through regulation of UCP3 expression. Our data demonstrate that endothelial-Nox4 is required for glucose and fatty acid oxidation, suggesting inter-tissue cross-talk between the endothelium and skeletal muscle in response to exercise.
Collapse
Affiliation(s)
- Kalyn S Specht
- Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Shashi Kant
- Division of Cardiovascular Medicine, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, 01655, USA; Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Adele K Addington
- Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Ryan P McMillan
- Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, 24061, USA; Metabolism Core, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Matthew W Hulver
- Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Heather Learnard
- Division of Cardiovascular Medicine, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| | - Maura Campbell
- Division of Cardiovascular Medicine, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| | - Sarah R Donnelly
- Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Amada D Caliz
- Division of Cardiovascular Medicine, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, 01655, USA; Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Yongmei Pei
- Division of Cardiovascular Medicine, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| | - Michaella M Reif
- Division of Cardiovascular Medicine, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| | - Jacob M Bond
- Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, 24061, USA; Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Roanoke, VA, 24016, USA
| | - Anthony DeMarco
- Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Branch Craige
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, 24061, USA
| | - John F Keaney
- Division of Cardiovascular Medicine, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, 01655, USA; Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Siobhan M Craige
- Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, 24061, USA; Division of Cardiovascular Medicine, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, 01655, USA.
| |
Collapse
|
28
|
Sulaeman A, Fine J, de Vargas-Machuca A, Vitorino SA, Wagner PD, Fruttiger M, Breen EC. Synergistic effect of vascular endothelial growth factor gene inactivation in endothelial cells and skeletal myofibres on muscle enzyme activity, capillary supply and endurance exercise in mice. Exp Physiol 2020; 105:2168-2177. [PMID: 32936962 DOI: 10.1113/ep088924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/15/2020] [Indexed: 12/18/2022]
Abstract
NEW FINDINGS What is the central question of this study? Does vascular endothelial growth factor (VEGF) expressed by both endothelial cells and skeletal myofibres maintain the number of skeletal muscle capillaries and regulate endurance exercise? What is the main finding and its importance? VEGF expressed by both endothelial cells and skeletal myofibres is not essential for maintaining capillary number but does contribute to exercise performance. ABSTRACT Many chronic diseases lead to exercise intolerance, with loss of skeletal muscle capillaries. While many muscle cell types (myofibres, satellite cells, endothelial cells, macrophages and fibroblasts) express vascular endothelial growth factor (VEGF), most muscle VEGF is stored in myofibre vesicles which can release VEGF to signal VEGF receptor-expressing cells. VEGF gene ablation in myofibres or endothelial cells alone does not cause capillary regression. We hypothesized that simultaneously deleting the endothelial cell (EC) and skeletal myofibre (Skm) VEGF gene would cause capillary regression and impair exercise performance. This was tested in adult mice by simultaneous conditional deletion of the VEGF gene (Skm/EC-VEGF-/- mice) through the use of VEGFLoxP, HSA-Cre-ERT2 and PDGFb-iCre-ERT2 transgenes. These double-deletion mice were compared to three control groups - WT, EC VEGF gene deletion alone and myofibre VEGF gene deletion alone. Three weeks after initiating gene deletion, Skm/EC-VEGF-/- mice, but not SkmVEGF-/- or EC-VEGF-/- mice, reached exhaustion 40 min sooner than WT mice in treadmill tests (P = 0.002). WT, SkmVEGF-/- and EC-VEGF-/- , but not Skm/EC-VEGF-/- , mice gained weight over the 3 weeks. Capillary density, fibre area and capillary: fibre ratio in soleus, plantaris, gastrocnemius and cardiac papillary muscle were similar across the groups. Phosphofructokinase and pyruvate dehydrogenase activities increased only in Skm/EC-VEGF-/- mice. These data suggest that deletion of the VEGF gene simultaneously in endothelial cells and myofibres, while reducing treadmill endurance and despite compensatory augmentation of glycolysis, is not required for muscle capillary maintenance. Reduced endurance remains unexplained, but may possibly be related to a role for VEGF in controlling perfusion of contracting muscle.
Collapse
Affiliation(s)
- Alexis Sulaeman
- Department of Medicine, University of California, San Diego, CA, USA
| | - Janelle Fine
- Department of Medicine, University of California, San Diego, CA, USA
| | | | - Steven A Vitorino
- Department of Medicine, University of California, San Diego, CA, USA
| | - Peter D Wagner
- Department of Medicine, University of California, San Diego, CA, USA
| | - Marcus Fruttiger
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Ellen C Breen
- Department of Medicine, University of California, San Diego, CA, USA
| |
Collapse
|
29
|
Sarcolipin Signaling Promotes Mitochondrial Biogenesis and Oxidative Metabolism in Skeletal Muscle. Cell Rep 2019; 24:2919-2931. [PMID: 30208317 PMCID: PMC6481681 DOI: 10.1016/j.celrep.2018.08.036] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 04/30/2018] [Accepted: 08/13/2018] [Indexed: 12/19/2022] Open
Abstract
The major objective of this study was to understand the molecular basis of how sarcolipin uncoupling of SERCA regulates muscle oxidative metabolism. Using genetically engineered sarcolipin (SLN) mouse models and primary muscle cells, we demonstrate that SLN plays a crucial role in mitochondrial biogenesis and oxidative metabolism in muscle. Loss of SLN severely compromised muscle oxidative capacity without affecting fiber-type composition. Mice overexpressing SLN in fast-twitch glycolytic muscle reprogrammed mitochondrial phenotype, increasing fat utilization and protecting against high-fat dietinduced lipotoxicity. We show that SLN affects cytosolic Ca2+ transients and activates the Ca2+/ calmodulin-dependent protein kinase II (CamKII) and PGC1α axis to increase mitochondrial biogenesis and oxidative metabolism. These studies provide a fundamental framework for understanding the role of sarcoplasmic reticulum (SR)-Ca2+ cycling as an important factor in mitochondrial health and muscle metabolism. We propose that SLN can be targeted to enhance energy expenditure in muscle and prevent metabolic disease. Maurya et al. report that sarcolipin, a regulator of the SERCA pump, promotes mitochondrial biogenesis and oxidative phenotype in muscle. Loss of SLN decreases fat oxidation, whereas overexpression of SLN in muscle provides resistance against diet-induced lipotoxicity. By increasing cytosolic Ca2+ transients, SLN activates the CamKII-PGC1α signaling pathway to promote mitochondrial biogenesis.
Collapse
|
30
|
El-Khoury R, Traboulsi S, Hamad T, Lamaa M, Sawaya R, Ahdab-Barmada M. Divergent Features of Mitochondrial Deficiencies in LGMD2A Associated With Novel Calpain-3 Mutations. J Neuropathol Exp Neurol 2019; 78:88-98. [PMID: 30500922 DOI: 10.1093/jnen/nly113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Limb girdle muscular dystrophy type 2A (LGMD2A) is an autosomal recessive disorder characterized by progressive muscle weakness and wasting. LGMD2A is caused by mutations in the calpain-3 gene (CAPN3) that encodes a Ca2+-dependent cysteine protease predominantly expressed in the skeletal muscle. Underlying pathological mechanisms have not yet been fully elucidated. Mitochondrial abnormalities have been variably reported in human subjects with LGMD2A and were more systematically evaluated in CAPN3-knocked out mouse models. We have combined histochemical, immunohistochemical, molecular, biochemical, and ultrastructural analyses in our study in order to better outline mitochondrial features in 2 LGMD2A patients with novel CAPN3-associated mutations. Both patients underwent detailed clinical evaluations, followed by muscle biopsies from the quadriceps muscles. The diagnosis of LGMD2A in both patients was first suspected on the basis of a typical clinical localization of the muscle weakness, and confirmed by molecular investigations. Two novel homozygous mutations, c.2242C>G (p.Arg748Gly) and c.291C>A (p.Phe97Leu) were identified: c.2242C>G (p.Arg748Gly) mutation was associated with a significant mitochondrial mass depletion and myofibrillar disruption in the first patient, while c.291C>A (p.Phe97Leu) mutation was accompanied by reactive mitochondrial proliferation with ragged-red fibers in the second patient. Our results delineate CAPN3 mutation-specific patterns of mitochondrial dysfunction and their ultrastructural characteristics in LGMD2A.
Collapse
Affiliation(s)
- Riyad El-Khoury
- Neuromuscular Diagnostic Laboratory, Department of Pathology and Laboratory Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Sahar Traboulsi
- Neuromuscular Diagnostic Laboratory, Department of Pathology and Laboratory Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Tarek Hamad
- Neuromuscular Diagnostic Laboratory, Department of Pathology and Laboratory Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Maher Lamaa
- Department of Pediatrics, Al Bahman Hospital, Beirut, Lebanon
| | - Raja Sawaya
- Department of Neurology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Mamdouha Ahdab-Barmada
- Neuromuscular Diagnostic Laboratory, Department of Pathology and Laboratory Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
31
|
Trevino MB, Zhang X, Standley RA, Wang M, Han X, Reis FCG, Periasamy M, Yu G, Kelly DP, Goodpaster BH, Vega RB, Coen PM. Loss of mitochondrial energetics is associated with poor recovery of muscle function but not mass following disuse atrophy. Am J Physiol Endocrinol Metab 2019; 317:E899-E910. [PMID: 31479303 PMCID: PMC6879870 DOI: 10.1152/ajpendo.00161.2019] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 08/27/2019] [Accepted: 08/27/2019] [Indexed: 12/20/2022]
Abstract
Skeletal muscle atrophy is a clinically important outcome of disuse because of injury, immobilization, or bed rest. Disuse atrophy is accompanied by mitochondrial dysfunction, which likely contributes to activation of the muscle atrophy program. However, the linkage of muscle mass and mitochondrial energetics during disuse atrophy and its recovery is incompletely understood. Transcriptomic analysis of muscle biopsies from healthy older adults subject to complete bed rest revealed marked inhibition of mitochondrial energy metabolic pathways. To determine the temporal sequence of muscle atrophy and changes in intramyocellular lipid and mitochondrial energetics, we conducted a time course of hind limb unloading-induced atrophy in adult mice. Mitochondrial respiration and calcium retention capacity were diminished, whereas H2O2 emission was increased within 3 days of unloading before significant muscle atrophy. These changes were associated with a decrease in total cardiolipin and profound changes in remodeled cardiolipin species. Hind limb unloading performed in muscle-specific peroxisome proliferator-activated receptor-γ coactivator-1α/β knockout mice, a model of mitochondrial dysfunction, did not affect muscle atrophy but impacted muscle function. These data suggest early mitochondrial remodeling affects muscle function but not mass during disuse atrophy. Early alterations in mitochondrial energetics and lipid remodeling may represent novel targets to prevent muscle functional impairment caused by disuse and to enhance recovery from periods of muscle atrophy.
Collapse
Affiliation(s)
- Michelle B Trevino
- Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, Florida
| | - Xiaolei Zhang
- Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, Florida
- Translational Research Institute for Metabolism and Diabetes, AdventHealth, Orlando, Florida
| | - Robert A Standley
- Translational Research Institute for Metabolism and Diabetes, AdventHealth, Orlando, Florida
| | - Miao Wang
- Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, Florida
| | - Xianlin Han
- Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, Florida
| | - Felipe C G Reis
- Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, Florida
| | - Muthu Periasamy
- Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, Florida
| | - Gongxin Yu
- Translational Research Institute for Metabolism and Diabetes, AdventHealth, Orlando, Florida
| | - Daniel P Kelly
- Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, Florida
- Cardiovascular Research Institute and Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Bret H Goodpaster
- Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, Florida
- Translational Research Institute for Metabolism and Diabetes, AdventHealth, Orlando, Florida
| | - Rick B Vega
- Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, Florida
- Translational Research Institute for Metabolism and Diabetes, AdventHealth, Orlando, Florida
| | - Paul M Coen
- Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, Florida
- Translational Research Institute for Metabolism and Diabetes, AdventHealth, Orlando, Florida
| |
Collapse
|
32
|
Yuan D, Xiao D, Gao Q, Zeng L. PGC-1α activation: a therapeutic target for type 2 diabetes? Eat Weight Disord 2019; 24:385-395. [PMID: 30498989 DOI: 10.1007/s40519-018-0622-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 11/24/2018] [Indexed: 12/19/2022] Open
Abstract
Peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) has gained popularity as a very attractive target for diabetic therapies due to its role in lipid and glucose metabolism. Pharmacological activation of PGC-1α is thought to elicit health benefits. However, this notion has been questioned by increasing evidence, which suggests that insulin resistant is exacerbated when PGC-1α expression is far beyond normal physiological limits and is prevented under the condition of PGC-1α deficiency. This narrative review suggests that PGC-1α, as a master metabolic regulator, exerts roles in insulin sensitivity in a tissue-specific manner and in a physical activity/age-dependent fashion. When using PGC-1α as a target for therapeutic strategies against insulin resistance and T2DM, we should take these factors into consideration.Level of evidence: Level V, narrative review.
Collapse
Affiliation(s)
- Daixiu Yuan
- Department of Medicine, Jishou University, Jishou, 41600, Hunan, China
| | - Dingfu Xiao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Qian Gao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Liming Zeng
- Science College of Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China.
| |
Collapse
|
33
|
Fiorenza M, Lemminger AK, Marker M, Eibye K, Iaia FM, Bangsbo J, Hostrup M. High-intensity exercise training enhances mitochondrial oxidative phosphorylation efficiency in a temperature-dependent manner in human skeletal muscle: implications for exercise performance. FASEB J 2019; 33:8976-8989. [PMID: 31136218 DOI: 10.1096/fj.201900106rrr] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The purpose of the present study was to investigate whether exercise training-induced adaptations in human skeletal muscle mitochondrial bioenergetics are magnified under thermal conditions resembling sustained intense contractile activity and whether training-induced changes in mitochondrial oxidative phosphorylation (OXPHOS) efficiency influence exercise efficiency. Twenty healthy men performed 6 wk of high-intensity exercise training [i.e., speed endurance training (SET; n = 10)], or maintained their usual lifestyle (n = 10). Before and after the intervention, mitochondrial respiratory function was determined ex vivo in permeabilized muscle fibers under experimentally-induced normothermia (35°C) and hyperthermia (40°C) mimicking in vivo muscle temperature at rest and during intense exercise, respectively. In addition, activity and content of muscle mitochondrial enzymes and proteins were quantified. Exercising muscle efficiency was determined in vivo by measurements of leg hemodynamics and blood parameters during one-legged knee-extensor exercise. SET enhanced maximal OXPHOS capacity and OXPHOS efficiency at 40°C, but not at 35°C, and attenuated hyperthermia-induced decline in OXPHOS efficiency. Furthermore, SET increased expression of markers of mitochondrial content and up-regulated content of MFN2, DRP1, and ANT1. Also, SET improved exercise efficiency and capacity. These findings indicate that muscle mitochondrial bioenergetics adapts to high-intensity exercise training in a temperature-dependent manner and that enhancements in mitochondrial OXPHOS efficiency may contribute to improving exercise performance.-Fiorenza, M., Lemminger, A. K., Marker, M., Eibye, K., Iaia, F. M., Bangsbo, J., Hostrup, M. High-intensity exercise training enhances mitochondrial oxidative phosphorylation efficiency in a temperature-dependent manner in human skeletal muscle: implications for exercise performance.
Collapse
Affiliation(s)
- Matteo Fiorenza
- Section of Integrative Physiology, Department of Nutrition, Exercise, and Sports, University of Copenhagen, Copenhagen, Denmark.,Department of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, Verona, Italy
| | - Anders K Lemminger
- Section of Integrative Physiology, Department of Nutrition, Exercise, and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Mathias Marker
- Section of Integrative Physiology, Department of Nutrition, Exercise, and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Kasper Eibye
- Section of Integrative Physiology, Department of Nutrition, Exercise, and Sports, University of Copenhagen, Copenhagen, Denmark
| | - F Marcello Iaia
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Jens Bangsbo
- Section of Integrative Physiology, Department of Nutrition, Exercise, and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Morten Hostrup
- Section of Integrative Physiology, Department of Nutrition, Exercise, and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
34
|
Rosales MAB, Shu DY, Iacovelli J, Saint-Geniez M. Loss of PGC-1α in RPE induces mesenchymal transition and promotes retinal degeneration. Life Sci Alliance 2019; 2:2/3/e201800212. [PMID: 31101737 PMCID: PMC6526284 DOI: 10.26508/lsa.201800212] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 05/07/2019] [Accepted: 05/09/2019] [Indexed: 01/07/2023] Open
Abstract
Sustained loss of PGC-1α in RPE cells triggers mitochondrial/autophagic dysfunction and oxidative damage resulting in epithelial dedifferentiation and mesenchymal transition. RPE dysfunction caused by deletion of the PGC-1 coactivators in vivo causes retinal degeneration. The retinal pigment epithelium (RPE) supports visual processing and photoreceptor homeostasis via energetically demanding cellular functions. Here, we describe the consequences of repressing peroxisome proliferator-activated receptor γ coactivator-1 α (PGC-1α), a master regulator of mitochondrial function and biogenesis, on RPE epithelial integrity. The sustained silencing of PGC-1α in differentiating human RPE cells affected mitochondria/autophagy function, redox state, and impaired energy sensor activity ultimately inducing epithelial to mesenchymal transition (EMT). Adult conditional knockout of PGC-1 coactivators in mice resulted in rapid RPE dysfunction and transdifferentiation associated with severe photoreceptor degeneration. RPE anomalies were characteristic of autophagic defect and mesenchymal transition comparable with the ones observed in age-related macular degeneration. These findings demonstrate that PGC-1α is required to maintain the functional and phenotypic status of RPE by supporting the cells’ oxidative metabolism and autophagy-mediated repression of EMT.
Collapse
Affiliation(s)
- Mariana Aparecida Brunini Rosales
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA.,Department of Ophthalmology, Harvard Medical School, Boston, MA
| | - Daisy Y Shu
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA.,Department of Ophthalmology, Harvard Medical School, Boston, MA
| | - Jared Iacovelli
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA.,Department of Ophthalmology, Harvard Medical School, Boston, MA
| | - Magali Saint-Geniez
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA .,Department of Ophthalmology, Harvard Medical School, Boston, MA
| |
Collapse
|
35
|
Principles of Exercise Prescription, and How They Influence Exercise-Induced Changes of Transcription Factors and Other Regulators of Mitochondrial Biogenesis. Sports Med 2019; 48:1541-1559. [PMID: 29675670 DOI: 10.1007/s40279-018-0894-4] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Physical inactivity represents the fourth leading risk factor for mortality, and it has been linked with a series of chronic disorders, the treatment of which absorbs ~ 85% of healthcare costs in developed countries. Conversely, physical activity promotes many health benefits; endurance exercise in particular represents a powerful stimulus to induce mitochondrial biogenesis, and it is routinely used to prevent and treat chronic metabolic disorders linked with sub-optimal mitochondrial characteristics. Given the importance of maintaining a healthy mitochondrial pool, it is vital to better characterize how manipulating the endurance exercise dose affects cellular mechanisms of exercise-induced mitochondrial biogenesis. Herein, we propose a definition of mitochondrial biogenesis and the techniques available to assess it, and we emphasize the importance of standardizing biopsy timing and the determination of relative exercise intensity when comparing different studies. We report an intensity-dependent regulation of exercise-induced increases in nuclear peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) protein content, nuclear phosphorylation of p53 (serine 15), and PGC-1α messenger RNA (mRNA), as well as training-induced increases in PGC-1α and p53 protein content. Despite evidence that PGC-1α protein content plateaus within a few exercise sessions, we demonstrate that greater training volumes induce further increases in PGC-1α (and p53) protein content, and that short-term reductions in training volume decrease the content of both proteins, suggesting training volume is still a factor affecting training-induced mitochondrial biogenesis. Finally, training-induced changes in mitochondrial transcription factor A (TFAM) protein content are regulated in a training volume-dependent manner and have been linked with training-induced changes in mitochondrial content.
Collapse
|
36
|
PGC-1β modulates statin-associated myotoxicity in mice. Arch Toxicol 2018; 93:487-504. [PMID: 30511338 DOI: 10.1007/s00204-018-2369-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 11/29/2018] [Indexed: 01/07/2023]
Abstract
Statins inhibit cholesterol biosynthesis and lower serum LDL-cholesterol levels. Statins are generally well tolerated, but can be associated with potentially life-threatening myopathy of unknown mechanism. We have shown previously that statins impair PGC-1β expression in human and rat skeletal muscle, suggesting that PGC-1β may play a role in statin-induced myopathy. PGC-1β is a transcriptional co-regulator controlling the expression of important genes in mitochondrial biogenesis, antioxidative capacity and energy metabolism. The principle aim of the current study was to investigate the interaction between atorvastatin and PGC-1β in more detail. We therefore treated wild-type mice and mice with selective skeletal muscle knockout of PGC-1β (PGC-1β(i)skm-/- mice) with oral atorvastatin (5 mg/kg/day) for 2 weeks. At the end of treatment, we determined body parameters, muscle function, structure, and composition as well as the function of muscle mitochondria, mitochondrial biogenesis and activation of apoptotic pathways. In wild-type mice, atorvastatin selectively impaired mitochondrial function in glycolytic muscle and caused a conversion of oxidative type IIA to glycolytic type IIB myofibers. Conversely, in oxidative muscle of wild-type mice, atorvastatin enhanced mitochondrial function via activation of mitochondrial biogenesis pathways and decreased apoptosis. In PGC-1β(i)skm-/- mice, atorvastatin induced a switch towards glycolytic fibers, caused mitochondrial dysfunction, increased mitochondrial ROS production, impaired mitochondrial proliferation and induced apoptosis in both glycolytic and oxidative skeletal muscle. Our work reveals that atorvastatin mainly affects glycolytic muscle in wild-type mice and demonstrates the importance of PGC-1β for oxidative muscle integrity during long-term exposure to a myotoxic agent.
Collapse
|
37
|
Training-Induced Changes in Mitochondrial Content and Respiratory Function in Human Skeletal Muscle. Sports Med 2018; 48:1809-1828. [PMID: 29934848 DOI: 10.1007/s40279-018-0936-y] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A sedentary lifestyle has been linked to a number of metabolic disorders that have been associated with sub-optimal mitochondrial characteristics and an increased risk of premature death. Endurance training can induce an increase in mitochondrial content and/or mitochondrial functional qualities, which are associated with improved health and well-being and longer life expectancy. It is therefore important to better define how manipulating key parameters of an endurance training intervention can influence the content and functionality of the mitochondrial pool. This review focuses on mitochondrial changes taking place following a series of exercise sessions (training-induced mitochondrial adaptations), providing an in-depth analysis of the effects of exercise intensity and training volume on changes in mitochondrial protein synthesis, mitochondrial content and mitochondrial respiratory function. We provide evidence that manipulation of different exercise training variables promotes specific and diverse mitochondrial adaptations. Specifically, we report that training volume may be a critical factor affecting changes in mitochondrial content, whereas relative exercise intensity is an important determinant of changes in mitochondrial respiratory function. As a consequence, a dissociation between training-induced changes in mitochondrial content and mitochondrial respiratory function is often observed. We also provide evidence that exercise-induced changes are not necessarily predictive of training-induced adaptations, we propose possible explanations for the above discrepancies and suggestions for future research.
Collapse
|
38
|
Gan Z, Fu T, Kelly DP, Vega RB. Skeletal muscle mitochondrial remodeling in exercise and diseases. Cell Res 2018; 28:969-980. [PMID: 30108290 DOI: 10.1038/s41422-018-0078-7] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 07/27/2018] [Indexed: 12/18/2022] Open
Abstract
Skeletal muscle fitness and plasticity is an important determinant of human health and disease. Mitochondria are essential for maintaining skeletal muscle energy homeostasis by adaptive re-programming to meet the demands imposed by a myriad of physiologic or pathophysiological stresses. Skeletal muscle mitochondrial dysfunction has been implicated in the pathogenesis of many diseases, including muscular dystrophy, atrophy, type 2 diabetes, and aging-related sarcopenia. Notably, exercise counteracts the effects of many chronic diseases on skeletal muscle mitochondrial function. Recent studies have revealed a finely tuned regulatory network that orchestrates skeletal muscle mitochondrial biogenesis and function in response to exercise and in disease states. In addition, increasing evidence suggests that mitochondria also serve to "communicate" with the nucleus and mediate adaptive genomic re-programming. Here we review the current state of knowledge relevant to the dynamic remodeling of skeletal muscle mitochondria in response to exercise and in disease states.
Collapse
Affiliation(s)
- Zhenji Gan
- The State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center of Nanjing University, 210061, Nanjing, China.
| | - Tingting Fu
- The State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Department of Spine Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center of Nanjing University, 210061, Nanjing, China
| | - Daniel P Kelly
- Cardiovascular Institute and Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Rick B Vega
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, FL, 32804, USA.
| |
Collapse
|
39
|
Smith RL, Soeters MR, Wüst RCI, Houtkooper RH. Metabolic Flexibility as an Adaptation to Energy Resources and Requirements in Health and Disease. Endocr Rev 2018; 39:489-517. [PMID: 29697773 PMCID: PMC6093334 DOI: 10.1210/er.2017-00211] [Citation(s) in RCA: 346] [Impact Index Per Article: 57.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 04/19/2018] [Indexed: 12/15/2022]
Abstract
The ability to efficiently adapt metabolism by substrate sensing, trafficking, storage, and utilization, dependent on availability and requirement, is known as metabolic flexibility. In this review, we discuss the breadth and depth of metabolic flexibility and its impact on health and disease. Metabolic flexibility is essential to maintain energy homeostasis in times of either caloric excess or caloric restriction, and in times of either low or high energy demand, such as during exercise. The liver, adipose tissue, and muscle govern systemic metabolic flexibility and manage nutrient sensing, uptake, transport, storage, and expenditure by communication via endocrine cues. At a molecular level, metabolic flexibility relies on the configuration of metabolic pathways, which are regulated by key metabolic enzymes and transcription factors, many of which interact closely with the mitochondria. Disrupted metabolic flexibility, or metabolic inflexibility, however, is associated with many pathological conditions including metabolic syndrome, type 2 diabetes mellitus, and cancer. Multiple factors such as dietary composition and feeding frequency, exercise training, and use of pharmacological compounds, influence metabolic flexibility and will be discussed here. Last, we outline important advances in metabolic flexibility research and discuss medical horizons and translational aspects.
Collapse
Affiliation(s)
- Reuben L Smith
- Laboratory of Genetic Metabolic Diseases, Academic Medical Center, AZ Amsterdam, Netherlands.,Amsterdam Gastroenterology and Metabolism, Academic Medical Center, AZ Amsterdam, Netherlands
| | - Maarten R Soeters
- Amsterdam Gastroenterology and Metabolism, Academic Medical Center, AZ Amsterdam, Netherlands.,Department of Endocrinology and Metabolism, Internal Medicine, Academic Medical Center, AZ Amsterdam, Netherlands
| | - Rob C I Wüst
- Laboratory of Genetic Metabolic Diseases, Academic Medical Center, AZ Amsterdam, Netherlands.,Amsterdam Cardiovascular Sciences, Academic Medical Center, AZ Amsterdam, Netherlands.,Amsterdam Movement Sciences, Academic Medical Center, AZ Amsterdam, Netherlands
| | - Riekelt H Houtkooper
- Laboratory of Genetic Metabolic Diseases, Academic Medical Center, AZ Amsterdam, Netherlands.,Amsterdam Gastroenterology and Metabolism, Academic Medical Center, AZ Amsterdam, Netherlands.,Amsterdam Cardiovascular Sciences, Academic Medical Center, AZ Amsterdam, Netherlands
| |
Collapse
|
40
|
Ferri A, Panariti A, Miserocchi G, Rocchetti M, Buoli Comani G, Rivolta I, Bishop DJ. Tissue specificity of mitochondrial adaptations in rats after 4 weeks of normobaric hypoxia. Eur J Appl Physiol 2018; 118:1641-1652. [PMID: 29855791 DOI: 10.1007/s00421-018-3897-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 05/17/2018] [Indexed: 12/23/2022]
Abstract
PURPOSE Exposure to hypoxia has been suggested to activate multiple adaptive pathways so that muscles are better able to maintain cellular energy homeostasis. However, there is limited research regarding the tissue specificity of this response. The aim of this study was to investigate the influence of tissue specificity on mitochondrial adaptations of rat skeletal and heart muscles after 4 weeks of normobaric hypoxia (FiO2: 0.10). METHODS Twenty male Wistar rats were randomly assigned to either normobaric hypoxia or normoxia. Mitochondrial respiration was determined in permeabilised muscle fibres from left and right ventricles, soleus and extensorum digitorum longus (EDL). Citrate synthase activity and the relative abundance of proteins associated with mitochondrial biogenesis were also analysed. RESULTS After hypoxia exposure, only the soleus and left ventricle (both predominantly oxidative) presented a greater maximal mass-specific respiration (+48 and +25%, p < 0.05) and mitochondrial-specific respiration (+75 and +28%, p < 0.05). Citrate synthase activity was higher in the EDL (0.63 ± 0.08 vs 0.41 ± 0.10 µmol min- 1 µg- 1) and lower in the soleus (0.65 ± 0.17 vs 0.87 ± 0.20 µmol min- 1 µg- 1) in hypoxia with respect to normoxia. There was a lower relative protein abundance of PGC-1α (-25%, p < 0.05) in the right ventricle and a higher relative protein abundance of PGC-1β (+43%, p < 0.05) in the left ventricle of rats exposed to hypoxia, with few differences for protein abundance in the other muscles. CONCLUSION Our results show a muscle-specific response to 4 weeks of normobaric hypoxia. Depending on fibre type, and the presence of ventricular hypertrophy, muscles respond differently to the same degree of environmental hypoxia.
Collapse
Affiliation(s)
- Alessandra Ferri
- Institute for Health and Sport, Victoria University, Melbourne, Australia.,School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Alice Panariti
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | | | - Marcella Rocchetti
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, Milan, Italy
| | - Gaia Buoli Comani
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Ilaria Rivolta
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.
| | - David J Bishop
- Institute for Health and Sport, Victoria University, Melbourne, Australia. .,School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia.
| |
Collapse
|
41
|
Fujita R, Yoshioka K, Seko D, Suematsu T, Mitsuhashi S, Senoo N, Miura S, Nishino I, Ono Y. Zmynd17 controls muscle mitochondrial quality and whole-body metabolism. FASEB J 2018; 32:5012-5025. [PMID: 29913553 DOI: 10.1096/fj.201701264r] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Muscle mitochondria are crucial for systemic metabolic function, yet their regulation remains unclear. The zinc finger MYND domain-containing protein 17 (Zmynd17) was recently identified as a muscle-specific gene in mammals. Here, we investigated the role of Zmynd17 in mice. We found Zmynd17 predominantly expressed in skeletal muscle, especially in fast glycolytic muscle. Genetic Zmynd17 inactivation led to morphologic and functional abnormalities in muscle mitochondria, resulting in decreased respiratory function. Metabolic stress induced by a high-fat diet upregulated Zmynd17 expression and further exacerbated muscle mitochondrial morphology in Zmynd17-deficient mice. Strikingly, Zmynd17 deficiency significantly aggravated metabolic stress-induced hepatic steatosis, glucose intolerance, and insulin resistance. Furthermore, middle-aged mice lacking Zmynd17 exhibited impaired aerobic exercise performance, glucose intolerance, and insulin resistance. Thus, our results indicate that Zmynd17 is a metabolic stress-inducible factor that maintains muscle mitochondrial integrity, with its deficiency profoundly affecting whole-body glucose metabolism.-Fujita, R., Yoshioka, K., Seko, D., Suematsu, T., Mitsuhashi, S., Senoo, N., Miura, S., Nishino, I., Ono, Y. Zmynd17 controls muscle mitochondrial quality and whole-body metabolism.
Collapse
Affiliation(s)
- Ryo Fujita
- Musculoskeletal Molecular Biology Research Group, Basic and Translational Research Center for Hard Tissue Disease, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kiyoshi Yoshioka
- Musculoskeletal Molecular Biology Research Group, Basic and Translational Research Center for Hard Tissue Disease, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Daiki Seko
- Musculoskeletal Molecular Biology Research Group, Basic and Translational Research Center for Hard Tissue Disease, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Takashi Suematsu
- Central Electron Microscope Laboratory, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Satomi Mitsuhashi
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Nanami Senoo
- Laboratory of Nutritional Biochemistry, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan; and
| | - Shinji Miura
- Laboratory of Nutritional Biochemistry, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan; and
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Yusuke Ono
- Musculoskeletal Molecular Biology Research Group, Basic and Translational Research Center for Hard Tissue Disease, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Agency for Medical Research and Development, Tokyo, Japan
| |
Collapse
|
42
|
Fan W, He N, Lin CS, Wei Z, Hah N, Waizenegger W, He MX, Liddle C, Yu RT, Atkins AR, Downes M, Evans RM. ERRγ Promotes Angiogenesis, Mitochondrial Biogenesis, and Oxidative Remodeling in PGC1α/β-Deficient Muscle. Cell Rep 2018; 22:2521-2529. [PMID: 29514081 PMCID: PMC5860878 DOI: 10.1016/j.celrep.2018.02.047] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/06/2017] [Accepted: 02/08/2018] [Indexed: 11/24/2022] Open
Abstract
PGC1α is a pleiotropic co-factor that affects angiogenesis, mitochondrial biogenesis, and oxidative muscle remodeling via its association with multiple transcription factors, including the master oxidative nuclear receptor ERRγ. To decipher their epistatic relationship, we explored ERRγ gain of function in muscle-specific PGC1α/β double-knockout (PKO) mice. ERRγ-driven transcriptional reprogramming largely rescues muscle damage and improves muscle function in PKO mice, inducing mitochondrial biogenesis, antioxidant defense, angiogenesis, and a glycolytic-to-oxidative fiber-type transformation independent of PGC1α/β. Furthermore, in combination with voluntary exercise, ERRγ gain of function largely restores mitochondrial energetic deficits in PKO muscle, resulting in a 5-fold increase in running performance. Thus, while PGC1s can interact with multiple transcription factors, these findings implicate ERRs as the major molecular target through which PGC1α/β regulates both innate and adaptive energy metabolism.
Collapse
Affiliation(s)
- Weiwei Fan
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Nanhai He
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Chun Shi Lin
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Zong Wei
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Nasun Hah
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Wanda Waizenegger
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Ming-Xiao He
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Christopher Liddle
- Storr Liver Centre, Westmead Institute for Medical Research and Sydney Medical School, University of Sydney, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Ruth T Yu
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Annette R Atkins
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Michael Downes
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA.
| | - Ronald M Evans
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA; Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA, USA.
| |
Collapse
|
43
|
Abstract
Mitochondrial DNA (mtDNA), which is essential for mitochondrial and cell function, is replicated and transcribed in the organelle by proteins that are entirely coded in the nucleus. Replication of mtDNA is challenged not only by threats related to the replication machinery and orchestration of DNA synthesis, but also by factors linked to the peculiarity of this genome. Indeed the architecture, organization, copy number, and location of mtDNA, which are markedly distinct from the nuclear genome, require ad hoc and complex regulation to ensure coordinated replication. As a consequence sub-optimal mtDNA replication, which results from compromised regulation of these factors, is generally associated with mitochondrial dysfunction and disease. Mitochondrial DNA replication should be considered in the context of the organelle and the whole cell, and not just a single genome or a single replication event. Major threats to mtDNA replication are linked to its dependence on both mitochondrial and nuclear factors, which require exquisite coordination of these crucial subcellular compartments. Moreover, regulation of replication events deals with a dynamic population of multiple mtDNA molecules rather than with a fixed number of genome copies, as it is the case for nuclear DNA. Importantly, the mechanistic aspects of mtDNA replication are still debated. We describe here major challenges for human mtDNA replication, the mechanistic aspects of the process that are to a large extent original, and their consequences on disease.
Collapse
Affiliation(s)
- Miria Ricchetti
- Institut Pasteur, Department of Developmental and Stem Cell Biology, Stem Cells and Development, 75724 Cedex15, Paris, France; Team Stability of Nuclear and Mitochondrial DNA, CNRS UMR 3738, 75724, Cedex15, Paris, France.
| |
Collapse
|
44
|
Sato Y, Ohtsubo H, Nihei N, Kaneko T, Sato Y, Adachi SI, Kondo S, Nakamura M, Mizunoya W, Iida H, Tatsumi R, Rada C, Yoshizawa F. Apobec2 deficiency causes mitochondrial defects and mitophagy in skeletal muscle. FASEB J 2018; 32:1428-1439. [PMID: 29127187 PMCID: PMC5892721 DOI: 10.1096/fj.201700493r] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Apobec2 is a member of the activation-induced deaminase/apolipoprotein B mRNA editing enzyme catalytic polypeptide cytidine deaminase family expressed in differentiated skeletal and cardiac muscle. We previously reported that Apobec2 deficiency in mice leads to a shift in muscle fiber type, myopathy, and diminished muscle mass. However, the mechanisms of myopathy caused by Apobec2 deficiency and its physiologic functions are unclear. Here we show that, although Apobec2 localizes to the sarcomeric Z-lines in mouse tissue and cultured myotubes, the sarcomeric structure is not affected in Apobec2-deficient muscle. In contrast, electron microscopy reveals enlarged mitochondria and mitochondria engulfed by autophagic vacuoles, suggesting that Apobec2 deficiency causes mitochondrial defects leading to increased mitophagy in skeletal muscle. Indeed, Apobec2 deficiency results in increased reactive oxygen species generation and depolarized mitochondria, leading to mitophagy as a defensive response. Furthermore, the exercise capacity of Apobec2-/- mice is impaired, implying Apobec2 deficiency results in ongoing muscle dysfunction. The presence of rimmed vacuoles in myofibers from 10-mo-old mice suggests that the chronic muscle damage impairs normal autophagy. We conclude that Apobec2 deficiency causes mitochondrial defects that increase muscle mitophagy, leading to myopathy and atrophy. Our findings demonstrate that Apobec2 is required for mitochondrial homeostasis to maintain normal skeletal muscle function.-Sato, Y., Ohtsubo, H., Nihei, N., Kaneko, T., Sato, Y., Adachi, S.-I., Kondo, S., Nakamura, M., Mizunoya, W., Iida, H., Tatsumi, R., Rada, C., Yoshizawa, F. Apobec2 deficiency causes mitochondrial defects and mitophagy in skeletal muscle.
Collapse
Affiliation(s)
- Yusuke Sato
- Department of Agrobiology and Bioresources, Utsunomiya University, Tochigi, Japan
| | - Hideaki Ohtsubo
- Department of Animal and Marine Bioresource Sciences, Kyushu University, Fukuoka, Japan
| | - Naohiro Nihei
- Department of Agrobiology and Bioresources, Utsunomiya University, Tochigi, Japan
| | - Takane Kaneko
- Department of Animal and Marine Bioresource Sciences, Kyushu University, Fukuoka, Japan
| | - Yoriko Sato
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Shin-Ichi Adachi
- Department of Agrobiology and Bioresources, Utsunomiya University, Tochigi, Japan
| | - Shinji Kondo
- Department of Agrobiology and Bioresources, Utsunomiya University, Tochigi, Japan
| | - Mako Nakamura
- Department of Animal and Marine Bioresource Sciences, Kyushu University, Fukuoka, Japan
| | - Wataru Mizunoya
- Department of Animal and Marine Bioresource Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroshi Iida
- Department of Animal and Marine Bioresource Sciences, Kyushu University, Fukuoka, Japan
| | - Ryuichi Tatsumi
- Department of Animal and Marine Bioresource Sciences, Kyushu University, Fukuoka, Japan
| | - Cristina Rada
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Fumiaki Yoshizawa
- Department of Agrobiology and Bioresources, Utsunomiya University, Tochigi, Japan.,United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| |
Collapse
|
45
|
Gonçalves NG, Cavaletti SH, Pasqualucci CA, Arruda Martins M, Lin CJ. Fructose ingestion impairs expression of genes involved in skeletal muscle's adaptive response to aerobic exercise. GENES AND NUTRITION 2017; 12:33. [PMID: 29234478 PMCID: PMC5721527 DOI: 10.1186/s12263-017-0588-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 11/20/2017] [Indexed: 12/16/2022]
Abstract
Background The inverse relationship between exercise capacity and its variation over time and both cardiovascular and all-cause mortality suggests the existence of an etiological nexus between cardiometabolic diseases and the molecular regulators of exercise capacity. Coordinated adaptive responses elicited by physical training enhance exercise performance and metabolic efficiency and possibly mediate the health benefits of physical exercise. In contrast, impaired expression of genes involved in mitochondrial biogenesis or protein turnover in skeletal muscle—key biological processes involved in adaptation to physical training—leads to insulin resistance and obesity. Ingestion of fructose has been shown to suppress the exercise-induced GLUT4 response in rat skeletal muscle. To evaluate in greater detail how fructose ingestion might blunt the benefits of physical training, we investigated the effects of fructose ingestion on exercise induction of genes that participate in regulation of mitochondrial biogenesis and protein turnover in rat’s skeletal muscle. Methods Eight-week-old Wistar rats were randomly assigned to sedentary (C), exercise (treadmill running)-only (E), fructose-only (F), and fructose + exercise (FE) groups and treated accordingly for 8 weeks. Blood and quadriceps femoris were collected for biochemistry, serum insulin, and gene expression analysis. Expression of genes involved in regulation of mitochondrial biogenesis and autophagy, GLUT4, and ubiquitin E3 ligases MuRF-1, and MAFbx/Atrogin-1 were assayed with quantitative real-time polymerase chain reaction. Results Aerobic training improved exercise capacity in both E and FE groups. A main effect of fructose ingestion on body weight and fasting serum triglyceride concentration was detected. Fructose ingestion impaired the expression of PGC-1α, FNDC5, NR4A3, GLUT4, Atg9, Lamp2, Ctsl, Murf-1, and MAFBx/Atrogin-1 in skeletal muscle of both sedentary and exercised animals while expression of Errα and Pparδ was impaired only in exercised rats. Conclusions Our results show that fructose ingestion impairs the expression of genes involved in biological processes relevant to exercise-induced remodeling of skeletal muscle. This might provide novel insight on how a dietary factor contributes to the genesis of disorders of glucose metabolism.
Collapse
Affiliation(s)
| | | | | | - Milton Arruda Martins
- Department of Internal Medicine, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Chin Jia Lin
- Department of Pathology, School of Medicine, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
46
|
Zsengellér ZK, Rosen S. The Use of Cytochrome C Oxidase Enzyme Activity and Immunohistochemistry in Defining Mitochondrial Injury in Kidney Disease. J Histochem Cytochem 2017; 64:546-55. [PMID: 27578326 DOI: 10.1369/0022155416660291] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 06/23/2016] [Indexed: 11/22/2022] Open
Abstract
The renal biopsy is a dynamic way of looking at renal disease, and tubular elements are an important part of this analysis. The mitochondria in 20 renal biopsies were examined by immunohistochemical (electron transport chain enzyme: cytochrome C oxidase IV [COX IV]) and enzyme histochemical methods (COX), both by light and electron microscopy. The distal convoluted tubules and thick ascending limbs showed the greatest intensity in the COX immunostains and enzyme activity in controls. The degree of mitochondrial COX protein and enzyme activity diminished as the tubules became atrophic. With proximal hypertrophic changes, there was great variation in both COX activity and protein expression. In contrast, in three cases of systemic lupus erythematosus, biopsied for high-grade proteinuria, the activity was consistently upregulated, whereas protein expression remained normal. These unexpected findings of heterogeneous upregulation in hypertrophy and the dyssynchrony of protein expression and activity may indicate mitochondrial dysregulation. Functional electron microscopy showed COX activity delineated by the intense mitochondrial staining in normal or hypertrophic proximal tubules. With atrophic changes, residual small mitochondria with diminished activity could be seen. With mitochondrial size abnormalities (enlargement and irregularity, adefovir toxicity), activity persisted. In the renal biopsy, mitochondrial analysis is feasible utilizing immunohistochemical and enzyme histochemical techniques.
Collapse
Affiliation(s)
- Zsuzsanna K Zsengellér
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts (ZKZ),Harvard Medical School, Boston, Massachusetts (ZKZ, SR)
| | - Seymour Rosen
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts (SR),Children's Hospital Boston, Boston, Massachusetts (SR),Harvard Medical School, Boston, Massachusetts (ZKZ, SR)
| |
Collapse
|
47
|
Simonson B, Subramanya V, Chan MC, Zhang A, Franchino H, Ottaviano F, Mishra MK, Knight AC, Hunt D, Ghiran I, Khurana TS, Kontaridis MI, Rosenzweig A, Das S. DDiT4L promotes autophagy and inhibits pathological cardiac hypertrophy in response to stress. Sci Signal 2017; 10:10/468/eaaf5967. [PMID: 28246202 DOI: 10.1126/scisignal.aaf5967] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Physiological cardiac hypertrophy, in response to stimuli such as exercise, is considered adaptive and beneficial. In contrast, pathological cardiac hypertrophy that arises in response to pathological stimuli such as unrestrained high blood pressure and oxidative or metabolic stress is maladaptive and may precede heart failure. We found that the transcript encoding DNA damage-inducible transcript 4-like (DDiT4L) was expressed in murine models of pathological cardiac hypertrophy but not in those of physiological cardiac hypertrophy. In cardiomyocytes, DDiT4L localized to early endosomes and promoted stress-induced autophagy through a process involving mechanistic target of rapamycin complex 1 (mTORC1). Exposing cardiomyocytes to various types of pathological stress increased the abundance of DDiT4L, which inhibited mTORC1 but activated mTORC2 signaling. Mice with conditional cardiac-specific overexpression of DDiT4L had mild systolic dysfunction, increased baseline autophagy, reduced mTORC1 activity, and increased mTORC2 activity, all of which were reversed by suppression of transgene expression. Genetic suppression of autophagy also reversed cardiac dysfunction in these mice. Our data showed that DDiT4L may be an important transducer of pathological stress to autophagy through mTOR signaling in the heart and that DDiT4L could be therapeutically targeted in cardiovascular diseases in which autophagy and mTOR signaling play a major role.
Collapse
Affiliation(s)
- Bridget Simonson
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Vinita Subramanya
- Cardiovascular Research Institute, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Mun Chun Chan
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Aifeng Zhang
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Hannabeth Franchino
- Cardiovascular Research Institute, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Filomena Ottaviano
- Cardiovascular Research Institute, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Manoj K Mishra
- Department of Physiology, Pennsylvania Muscle Institute, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Ashley C Knight
- Cardiovascular Research Institute, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Danielle Hunt
- Cardiovascular Research Institute, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Ionita Ghiran
- Cardiovascular Research Institute, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Tejvir S Khurana
- Department of Physiology, Pennsylvania Muscle Institute, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Maria I Kontaridis
- Cardiovascular Research Institute, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Anthony Rosenzweig
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Saumya Das
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA. .,Cardiovascular Research Institute, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| |
Collapse
|
48
|
Qiao A, Jin X, Pang J, Moskophidis D, Mivechi NF. The transcriptional regulator of the chaperone response HSF1 controls hepatic bioenergetics and protein homeostasis. J Cell Biol 2017; 216:723-741. [PMID: 28183717 PMCID: PMC5350514 DOI: 10.1083/jcb.201607091] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 11/20/2016] [Accepted: 12/30/2016] [Indexed: 02/06/2023] Open
Abstract
How cells sense energetic demands and regulate their bioenergetic networks to balance anabolism and catabolism is unclear. Qiao et al show that HSF1, a regulator of the chaperone response, has a central role in systemic energy sensing and is required for metabolic adaptation to nutrient availability. Metabolic energy reprogramming facilitates adaptations to a variety of stress conditions and cellular dysfunction, but how the energetic demands are monitored and met in response to physiological stimuli remains elusive. Our data support a model demonstrating that heat shock factor 1 (HSF1), a master transcriptional regulator of the chaperone response, has been coopted from its role as a critical protein quality-control regulator to having a central role in systemic energy sensing and for metabolic adaptation to nutrient availability. We found that in the absence of HSF1, levels of NAD+ and ATP are not efficiently sustained in hepatic cells, largely because of transcriptional repression of nicotinamide phosphoribosyltransferase in the NAD+ salvage pathway. Mechanistically, the defect in NAD+ and ATP synthesis linked to a loss of NAD+-dependent deacetylase activity, increased protein acetylation, and impaired mitochondrial integrity. Remarkably, the drop in ATP level caused by HSF1 loss invoked an adaptive response featuring the inhibition of energetically demanding processes, including gluconeogenesis, translation, and lipid synthesis. Our work identifies HSF1 as a central regulator of cellular bioenergetics and protein homeostasis that benefits malignant cell progression and exacerbates development of metabolic diseases.
Collapse
Affiliation(s)
- Aijun Qiao
- Molecular Chaperone Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912.,Georgia Cancer Center, Augusta University, Augusta, GA 30912
| | - Xiongjie Jin
- Molecular Chaperone Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912.,Georgia Cancer Center, Augusta University, Augusta, GA 30912
| | - Junfeng Pang
- Molecular Chaperone Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912.,Georgia Cancer Center, Augusta University, Augusta, GA 30912
| | - Demetrius Moskophidis
- Molecular Chaperone Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912 .,Georgia Cancer Center, Augusta University, Augusta, GA 30912.,Department of Medicine, Augusta University, Augusta, GA 30912
| | - Nahid F Mivechi
- Molecular Chaperone Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912 .,Georgia Cancer Center, Augusta University, Augusta, GA 30912.,Department of Radiology, Augusta University, Augusta, GA 30912
| |
Collapse
|
49
|
McDermott-Roe C, Leleu M, Rowe GC, Palygin O, Bukowy JD, Kuo J, Rech M, Hermans-Beijnsberger S, Schaefer S, Adami E, Creemers EE, Heinig M, Schroen B, Arany Z, Petretto E, Geurts AM. Transcriptome-wide co-expression analysis identifies LRRC2 as a novel mediator of mitochondrial and cardiac function. PLoS One 2017; 12:e0170458. [PMID: 28158196 PMCID: PMC5291451 DOI: 10.1371/journal.pone.0170458] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 01/05/2017] [Indexed: 11/19/2022] Open
Abstract
Mitochondrial dysfunction contributes to myriad monogenic and complex pathologies. To understand the underlying mechanisms, it is essential to define the full complement of proteins that modulate mitochondrial function. To identify such proteins, we performed a meta-analysis of publicly available gene expression data. Gene co-expression analysis of a large and heterogeneous compendium of microarray data nominated a sub-population of transcripts that whilst highly correlated with known mitochondrial protein-encoding transcripts (MPETs), are not themselves recognized as generating proteins either localized to the mitochondrion or pertinent to functions therein. To focus the analysis on a medically-important condition with a strong yet incompletely understood mitochondrial component, candidates were cross-referenced with an MPET-enriched module independently generated via genome-wide co-expression network analysis of a human heart failure gene expression dataset. The strongest uncharacterized candidate in the analysis was Leucine Rich Repeat Containing 2 (LRRC2). LRRC2 was found to be localized to the mitochondria in human cells and transcriptionally-regulated by the mitochondrial master regulator Pgc-1α. We report that Lrrc2 transcript abundance correlates with that of β-MHC, a canonical marker of cardiac hypertrophy in humans and experimentally demonstrated an elevation in Lrrc2 transcript in in vitro and in vivo rodent models of cardiac hypertrophy as well as in patients with dilated cardiomyopathy. RNAi-mediated Lrrc2 knockdown in a rat-derived cardiomyocyte cell line resulted in enhanced expression of canonical hypertrophic biomarkers as well as increased mitochondrial mass in the context of increased Pgc-1α expression. In conclusion, our meta-analysis represents a simple yet powerful springboard for the nomination of putative mitochondrially-pertinent proteins relevant to cardiac function and enabled the identification of LRRC2 as a novel mitochondrially-relevant protein and regulator of the hypertrophic response.
Collapse
Affiliation(s)
- Chris McDermott-Roe
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States of America
| | - Marion Leleu
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Glenn C. Rowe
- Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Oleg Palygin
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States of America
| | - John D. Bukowy
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States of America
| | - Judy Kuo
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States of America
| | - Monika Rech
- Center for Heart Failure Research, Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | - Steffie Hermans-Beijnsberger
- Center for Heart Failure Research, Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | - Sebastian Schaefer
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
| | - Eleonora Adami
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Esther E. Creemers
- Experimental Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Matthias Heinig
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Blanche Schroen
- Center for Heart Failure Research, Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | - Zoltan Arany
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Enrico Petretto
- MRC Clinical Sciences Centre, Imperial College London, London, UK, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Aron M. Geurts
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States of America
| |
Collapse
|
50
|
Abstract
Mitochondria were first postulated to contribute to aging more than 40 years ago. During the following decades, multiple lines of evidence in model organisms and humans showed that impaired mitochondrial function can contribute to age-associated disease phenotypes and aging. However, in contrast to the original theory favoring oxidative damage as a cause for mtDNA mutations, there are now strong data arguing that most mammalian mtDNA mutations originate as replication errors made by the mtDNA polymerase. Currently, a substantial amount of mitochondrial research is focused on finding ways to either remove or counteract the effects of mtDNA mutations with the hope of extending the human health- and lifespan. This review summarizes the current knowledge regarding the formation of mtDNA mutations and their impact on mitochondrial function. We also critically discuss proposed pathways interlinked with mammalian mtDNA mutations and suggest future research strategies to elucidate the role of mtDNA mutations in aging.
Collapse
Affiliation(s)
- Timo E S Kauppila
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, D-50931 Cologne, Germany
| | - Johanna H K Kauppila
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, D-50931 Cologne, Germany
| | - Nils-Göran Larsson
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, D-50931 Cologne, Germany; Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden.
| |
Collapse
|