1
|
Mendes Ferreira V, Magriço M, Meira B, Barbosa R. Spinocerebellar Ataxia Type 27B (SCA27B): A Hereditary Ataxia in Portugal. ACTA MEDICA PORT 2024. [PMID: 39392764 DOI: 10.20344/amp.22232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 10/07/2024] [Indexed: 10/13/2024]
Abstract
Spinocerebellar ataxia type 27B (SCA27B) is a recently discovered hereditary disease caused by (GAA)≥250 repeat expansion in the fibroblast growth factor 14 (FGF14) gene, and multiple studies have recognized it as one of the most common causes of autosomal dominant ataxia in the European population. We present the case of a 62-year-old Portuguese patient who developed a slowly progressive gait impairment associated with wide-base ataxic gait, dysarthria, left upper limb dysmetria, and dysdiadochokinesia. This pure cerebellar phenotype had an episodic worsening induced by intense physical activity and alcohol intake. The patient had an older brother with a late-onset cerebellar ataxia of unknown cause. Genetic testing detected a heterozygotic intronic FGF14 repeat expansion with complete penetrance (> 360 repeats), confirming the diagnosis of SCA27B. To our knowledge, we present the first reported case of SCA27B in the Portuguese population.
Collapse
Affiliation(s)
- Vítor Mendes Ferreira
- Neurology Department. Hospital de Egas Moniz. Unidade Local de Saúde de Lisboa Ocidental. Lisbon. Portugal
| | - Marta Magriço
- Neurology Department. Hospital de Egas Moniz. Unidade Local de Saúde de Lisboa Ocidental. Lisbon. Portugal
| | - Bruna Meira
- Neurology Department. Hospital de Egas Moniz. Unidade Local de Saúde de Lisboa Ocidental. Lisbon. Portugal
| | - Raquel Barbosa
- Neurology Department. Centre Hospitalier Universitaire Toulouse. Toulouse. Portugal
| |
Collapse
|
2
|
Goldfarb M. Fibroblast growth factor homologous factors: canonical and non-canonical mechanisms of action. J Physiol 2024; 602:4097-4110. [PMID: 39083261 DOI: 10.1113/jp286313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/16/2024] [Indexed: 09/01/2024] Open
Abstract
Since their discovery nearly 30 years ago, fibroblast growth factor homologous factors (FHFs) are now known to control the functionality of excitable tissues through a range of mechanisms. Nervous and cardiac system dysfunctions are caused by loss- or gain-of-function mutations in FHF genes. The best understood 'canonical' targets for FHF action are voltage-gated sodium channels, and recent studies have expanded the repertoire of ways that FHFs modulate sodium channel gating. Additional 'non-canonical' functions of FHFs in excitable and non-excitable cells, including cancer cells, have been reported over the past dozen years. This review summarizes and evaluates reported canonical and non-canonical FHF functions.
Collapse
Affiliation(s)
- Mitchell Goldfarb
- Department of Biological Sciences, Hunter College of City University, New York, New York, USA
- Biology Program, The Graduate Center City University, New York, New York, USA
| |
Collapse
|
3
|
Ransdell JL, Carrasquillo Y, Bosch MK, Mellor RL, Ornitz DM, Nerbonne JM. Loss of Intracellular Fibroblast Growth Factor 14 (iFGF14) Increases the Excitability of Mature Hippocampal and Cortical Pyramidal Neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.04.592532. [PMID: 38746081 PMCID: PMC11092765 DOI: 10.1101/2024.05.04.592532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Mutations in FGF14 , which encodes intracellular fibroblast growth factor 14 (iFGF14), have been linked to spinocerebellar ataxia type 27 (SCA27), a multisystem disorder associated with progressive deficits in motor coordination and cognitive function. Mice ( Fgf14 -/- ) lacking iFGF14 display similar phenotypes, and we have previously shown that the deficits in motor coordination reflect reduced excitability of cerebellar Purkinje neurons, owing to the loss of iFGF14-mediated regulation of the voltage-dependence of inactivation of the fast transient component of the voltage-gated Na + (Nav) current, I NaT . Here, we present the results of experiments designed to test the hypothesis that loss of iFGF14 also attenuates the intrinsic excitability of mature hippocampal and cortical pyramidal neurons. Current-clamp recordings from adult mouse hippocampal CA1 pyramidal neurons in acute in vitro slices, however, revealed that repetitive firing rates were higher in Fgf14 -/- , than in wild type (WT), cells. In addition, the waveforms of individual action potentials were altered in Fgf14 -/- hippocampal CA1 pyramidal neurons, and the loss of iFGF14 reduced the time delay between the initiation of axonal and somal action potentials. Voltage-clamp recordings revealed that the loss of iFGF14 altered the voltage-dependence of activation, but not inactivation, of I NaT in CA1 pyramidal neurons. Similar effects of the loss of iFGF14 on firing properties were evident in current-clamp recordings from layer 5 visual cortical pyramidal neurons. Additional experiments demonstrated that the loss of iFGF14 does not alter the distribution of anti-Nav1.6 or anti-ankyrin G immunofluorescence labeling intensity along the axon initial segments (AIS) of mature hippocampal CA1 or layer 5 visual cortical pyramidal neurons in situ . Taken together, the results demonstrate that, in contrast with results reported for neonatal (rat) hippocampal pyramidal neurons in dissociated cell culture, the loss of iFGF14 does not disrupt AIS architecture or Nav1.6 localization/distribution along the AIS of mature hippocampal (or cortical) pyramidal neurons in situ .
Collapse
|
4
|
Tuttle AM, Miller LN, Royer LJ, Wen H, Kelly JJ, Calistri NL, Heiser LM, Nechiporuk AV. Single-Cell Analysis of Rohon-Beard Neurons Implicates Fgf Signaling in Axon Maintenance and Cell Survival. J Neurosci 2024; 44:e1600232024. [PMID: 38423763 PMCID: PMC11026351 DOI: 10.1523/jneurosci.1600-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/18/2024] [Accepted: 02/18/2024] [Indexed: 03/02/2024] Open
Abstract
Peripheral sensory neurons are a critical part of the nervous system that transmit a multitude of sensory stimuli to the central nervous system. During larval and juvenile stages in zebrafish, this function is mediated by Rohon-Beard somatosensory neurons (RBs). RBs are optically accessible and amenable to experimental manipulation, making them a powerful system for mechanistic investigation of sensory neurons. Previous studies provided evidence that RBs fall into multiple subclasses; however, the number and molecular makeup of these potential RB subtypes have not been well defined. Using a single-cell RNA sequencing (scRNA-seq) approach, we demonstrate that larval RBs in zebrafish fall into three, largely nonoverlapping classes of neurons. We also show that RBs are molecularly distinct from trigeminal neurons in zebrafish. Cross-species transcriptional analysis indicates that one RB subclass is similar to a mammalian group of A-fiber sensory neurons. Another RB subclass is predicted to sense multiple modalities, including mechanical stimulation and chemical irritants. We leveraged our scRNA-seq data to determine that the fibroblast growth factor (Fgf) pathway is active in RBs. Pharmacological and genetic inhibition of this pathway led to defects in axon maintenance and RB cell death. Moreover, this can be phenocopied by treatment with dovitinib, an FDA-approved Fgf inhibitor with a common side effect of peripheral neuropathy. Importantly, dovitinib-mediated axon loss can be suppressed by loss of Sarm1, a positive regulator of neuronal cell death and axonal injury. This offers a molecular target for future clinical intervention to fight neurotoxic effects of this drug.
Collapse
Affiliation(s)
- Adam M Tuttle
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, Oregon 97239
| | - Lauren N Miller
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, Oregon 97239
| | - Lindsey J Royer
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, Oregon 97239
| | - Hua Wen
- Vollum Institute, Oregon Health & Science University, Portland, Oregon 97239
| | - Jimmy J Kelly
- Vollum Institute, Oregon Health & Science University, Portland, Oregon 97239
| | - Nicholas L Calistri
- Biomedical Engineering, Oregon Health & Science University, Portland, Oregon 97239
| | - Laura M Heiser
- Biomedical Engineering, Oregon Health & Science University, Portland, Oregon 97239
| | - Alex V Nechiporuk
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, Oregon 97239
| |
Collapse
|
5
|
Gędaj A, Chorążewska A, Ciura K, Karelus R, Żukowska D, Biaduń M, Kalka M, Zakrzewska M, Porębska N, Opaliński Ł. The intracellular interplay between galectin-1 and FGF12 in the assembly of ribosome biogenesis complex. Cell Commun Signal 2024; 22:175. [PMID: 38468333 PMCID: PMC10926643 DOI: 10.1186/s12964-024-01558-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/04/2024] [Indexed: 03/13/2024] Open
Abstract
Galectins constitute a class of lectins that specifically interact with β-galactoside sugars in glycoconjugates and are implicated in diverse cellular processes, including transport, autophagy or signaling. Since most of the activity of galectins depends on their ability to bind sugar chains, galectins exert their functions mainly in the extracellular space or at the cell surface, which are microenvironments highly enriched in glycoconjugates. Galectins are also abundant inside cells, but their specific intracellular functions are largely unknown. Here we report that galectin-1, -3, -7 and -8 directly interact with the proteinaceous core of fibroblast growth factor 12 (FGF12) in the cytosol and in nucleus. We demonstrate that binding of galectin-1 to FGF12 in the cytosol blocks FGF12 secretion. Furthermore, we show that intracellular galectin-1 affects the assembly of FGF12-containing nuclear/nucleolar ribosome biogenesis complexes consisting of NOLC1 and TCOF1. Our data provide a new link between galectins and FGF proteins, revealing an unexpected glycosylation-independent intracellular interplay between these groups of proteins.
Collapse
Affiliation(s)
- Aleksandra Gędaj
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw, 50-383, Poland
| | - Aleksandra Chorążewska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw, 50-383, Poland
| | - Krzysztof Ciura
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw, 50-383, Poland
| | - Radosław Karelus
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw, 50-383, Poland
| | - Dominika Żukowska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw, 50-383, Poland
| | - Martyna Biaduń
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw, 50-383, Poland
| | - Marta Kalka
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw, 50-383, Poland
| | - Małgorzata Zakrzewska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw, 50-383, Poland
| | - Natalia Porębska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw, 50-383, Poland
| | - Łukasz Opaliński
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw, 50-383, Poland.
| |
Collapse
|
6
|
Tomé D, Dias MS, Correia J, Almeida RD. Fibroblast growth factor signaling in axons: from development to disease. Cell Commun Signal 2023; 21:290. [PMID: 37845690 PMCID: PMC10577959 DOI: 10.1186/s12964-023-01284-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/18/2023] [Indexed: 10/18/2023] Open
Abstract
The fibroblast growth factor (FGF) family regulates various and important aspects of nervous system development, ranging from the well-established roles in neuronal patterning to more recent and exciting functions in axonal growth and synaptogenesis. In addition, FGFs play a critical role in axonal regeneration, particularly after spinal cord injury, confirming their versatile nature in the nervous system. Due to their widespread involvement in neural development, the FGF system also underlies several human neurological disorders. While particular attention has been given to FGFs in a whole-cell context, their effects at the axonal level are in most cases undervalued. Here we discuss the endeavor of the FGF system in axons, we delve into this neuronal subcompartment to provide an original view of this multipurpose family of growth factors in nervous system (dys)function. Video Abstract.
Collapse
Affiliation(s)
- Diogo Tomé
- Institute of Biomedicine, Department of Medical Sciences - iBiMED, University of Aveiro, Aveiro, Portugal
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Marta S Dias
- Institute of Biomedicine, Department of Medical Sciences - iBiMED, University of Aveiro, Aveiro, Portugal
| | - Joana Correia
- Institute of Biomedicine, Department of Medical Sciences - iBiMED, University of Aveiro, Aveiro, Portugal
| | - Ramiro D Almeida
- Institute of Biomedicine, Department of Medical Sciences - iBiMED, University of Aveiro, Aveiro, Portugal.
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
7
|
Tuttle AM, Miller LN, Royer LJ, Wen H, Kelly JJ, Calistri NL, Heiser LM, Nechiporuk AV. Single-cell analysis of Rohon-Beard neurons implicates Fgf signaling in axon maintenance and cell survival. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.26.554953. [PMID: 37693470 PMCID: PMC10491107 DOI: 10.1101/2023.08.26.554953] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Peripheral sensory neurons are a critical part of the nervous system that transmit a multitude of sensory stimuli to the central nervous system. During larval and juvenile stages in zebrafish, this function is mediated by Rohon-Beard somatosensory neurons (RBs). RBs are optically accessible and amenable to experimental manipulation, making them a powerful system for mechanistic investigation of sensory neurons. Previous studies provided evidence that RBs fall into multiple subclasses; however, the number and molecular make up of these potential RB subtypes have not been well defined. Using a single-cell RNA sequencing (scRNA-seq) approach, we demonstrate that larval RBs in zebrafish fall into three, largely non-overlapping classes of neurons. We also show that RBs are molecularly distinct from trigeminal neurons in zebrafish. Cross-species transcriptional analysis indicates that one RB subclass is similar to a mammalian group of A-fiber sensory neurons. Another RB subclass is predicted to sense multiple modalities, including mechanical stimulation and chemical irritants. We leveraged our scRNA-seq data to determine that the fibroblast growth factor (Fgf) pathway is active in RBs. Pharmacological and genetic inhibition of this pathway led to defects in axon maintenance and RB cell death. Moreover, this can be phenocopied by treatment with dovitinib, an FDA-approved Fgf inhibitor with a common side effect of peripheral neuropathy. Importantly, dovitinib-mediated axon loss can be suppressed by loss of Sarm1, a positive regulator of neuronal cell death and axonal injury. This offers a molecular target for future clinical intervention to fight neurotoxic effects of this drug.
Collapse
|
8
|
Biadun M, Sochacka M, Karelus R, Baran K, Czyrek A, Otlewski J, Krowarsch D, Opalinski L, Zakrzewska M. FGF homologous factors are secreted from cells to induce FGFR-mediated anti-apoptotic response. FASEB J 2023; 37:e23043. [PMID: 37342898 DOI: 10.1096/fj.202300324r] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/10/2023] [Accepted: 06/07/2023] [Indexed: 06/23/2023]
Abstract
FGF homologous factors (FHFs) are the least described group of fibroblast growth factors (FGFs). The FHF subfamily consists of four proteins: FGF11, FGF12, FGF13, and FGF14. Until recently, FHFs were thought to be intracellular, non-signaling molecules, despite sharing structural and sequence similarities with other members of FGF family that can be secreted and activate cell signaling by interacting with surface receptors. Here, we show that despite lacking a canonical signal peptide for secretion, FHFs are exported to the extracellular space. Furthermore, we propose that their secretion mechanism is similar to the unconventional secretion of FGF2. The secreted FHFs are biologically active and trigger signaling in cells expressing FGF receptors (FGFRs). Using recombinant proteins, we demonstrated their direct binding to FGFR1, resulting in the activation of downstream signaling and the internalization of the FHF-FGFR1 complex. The effect of receptor activation by FHF proteins is an anti-apoptotic response of the cell.
Collapse
Affiliation(s)
- Martyna Biadun
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
- Department of Protein Biotechnology, Faculty of Biotchnology, University of Wroclaw, Wroclaw, Poland
| | - Martyna Sochacka
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Radoslaw Karelus
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Karolina Baran
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Aleksandra Czyrek
- Department of Protein Biotechnology, Faculty of Biotchnology, University of Wroclaw, Wroclaw, Poland
| | - Jacek Otlewski
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Daniel Krowarsch
- Department of Protein Biotechnology, Faculty of Biotchnology, University of Wroclaw, Wroclaw, Poland
| | - Lukasz Opalinski
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Malgorzata Zakrzewska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| |
Collapse
|
9
|
Kapfhammer JP, Shimobayashi E. Viewpoint: spinocerebellar ataxias as diseases of Purkinje cell dysfunction rather than Purkinje cell loss. Front Mol Neurosci 2023; 16:1182431. [PMID: 37426070 PMCID: PMC10323145 DOI: 10.3389/fnmol.2023.1182431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/22/2023] [Indexed: 07/11/2023] Open
Abstract
Spinocerebellar ataxias (SCAs) are a group of hereditary neurodegenerative diseases mostly affecting cerebellar Purkinje cells caused by a wide variety of different mutations. One subtype, SCA14, is caused by mutations of Protein Kinase C gamma (PKCγ), the dominant PKC isoform present in Purkinje cells. Mutations in the pathway in which PKCγ is active, i.e., in the regulation of calcium levels and calcium signaling in Purkinje cells, are the cause of several other variants of SCA. In SCA14, many of the observed mutations in the PKCγ gene were shown to increase the basal activity of PKCγ, raising the possibility that increased activity of PKCγ might be the cause of most forms of SCA14 and might also be involved in the pathogenesis of SCA in related subtypes. In this viewpoint and review article we will discuss the evidence for and against such a major role of PKCγ basal activity and will suggest a hypothesis of how PKCγ activity and the calcium signaling pathway may be involved in the pathogenesis of SCAs despite the different and sometimes opposing effects of mutations affecting these pathways. We will then widen the scope and propose a concept of SCA pathogenesis which is not primarily driven by cell death and loss of Purkinje cells but rather by dysfunction of Purkinje cells which are still present and alive in the cerebellum.
Collapse
|
10
|
Martin HGS, Kullmann DM. Basket to Purkinje Cell Inhibitory Ephaptic Coupling Is Abolished in Episodic Ataxia Type 1. Cells 2023; 12:1382. [PMID: 37408217 PMCID: PMC10216961 DOI: 10.3390/cells12101382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/07/2023] [Accepted: 05/08/2023] [Indexed: 07/07/2023] Open
Abstract
Dominantly inherited missense mutations of the KCNA1 gene, which encodes the KV1.1 potassium channel subunit, cause Episodic Ataxia type 1 (EA1). Although the cerebellar incoordination is thought to arise from abnormal Purkinje cell output, the underlying functional deficit remains unclear. Here we examine synaptic and non-synaptic inhibition of Purkinje cells by cerebellar basket cells in an adult mouse model of EA1. The synaptic function of basket cell terminals was unaffected, despite their intense enrichment for KV1.1-containing channels. In turn, the phase response curve quantifying the influence of basket cell input on Purkine cell output was maintained. However, ultra-fast non-synaptic ephaptic coupling, which occurs in the cerebellar 'pinceau' formation surrounding the axon initial segment of Purkinje cells, was profoundly reduced in EA1 mice in comparison with their wild type littermates. The altered temporal profile of basket cell inhibition of Purkinje cells underlines the importance of Kv1.1 channels for this form of signalling, and may contribute to the clinical phenotype of EA1.
Collapse
Affiliation(s)
| | - Dimitri M. Kullmann
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK;
| |
Collapse
|
11
|
Li G, Yang X, Li J, Zhang B. Genome-Wide Analysis of lncRNA and mRNA Expression in the Uterus of Laying Hens during Aging. Genes (Basel) 2023; 14:genes14030639. [PMID: 36980911 PMCID: PMC10048286 DOI: 10.3390/genes14030639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/13/2023] [Accepted: 02/24/2023] [Indexed: 03/08/2023] Open
Abstract
Eggshell plays an essential role in preventing physical damage and microbial invasions. Therefore, the analysis of genetic regulatory mechanisms of eggshell quality deterioration during aging in laying hens is important for the biosecurity and economic performance of poultry egg production worldwide. This study aimed to compare the differences in the expression profiles of long non-coding RNAs (lncRNAs) and mRNAs between old and young laying hens by the method of high-throughput RNA sequencing to identify candidate genes associated with aging in the uterus of laying hens. Overall, we detected 176 and 383 differentially expressed (DE) lncRNAs and mRNAs, respectively. Moreover, functional annotation analysis based on the Gene Ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) databases revealed that DE-lncRNAs and DE-mRNAs were significantly enriched in “phosphate-containing compound metabolic process”, “mitochondrial proton-transporting ATP synthase complex”, “inorganic anion transport”, and other terms related to eggshell calcification and cuticularization. Through integrated analysis, we found that some important genes such as FGF14, COL25A1, GPX8, and GRXCR1 and their corresponding lncRNAs were expressed differentially between two groups, and the results of quantitative real-time polymerase chain reaction (qPCR) among these genes were also in excellent agreement with the sequencing data. In addition, our study found that TCONS_00181492, TCONS_03234147, and TCONS_03123639 in the uterus of laying hens caused deterioration of eggshell quality in the late laying period by up-regulating their corresponding target genes FGF14, COL25A1, and GRXCR1 as well as down-regulating the target gene GPX8 by TCONS_01464392. Our findings will provide a valuable reference for the development of breeding programs aimed at breeding excellent poultry with high eggshell quality or regulating dietary nutrient levels to improve eggshell quality.
Collapse
Affiliation(s)
- Guang Li
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
| | - Xinyue Yang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
| | - Junyou Li
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 319-0206, Japan
| | - Bingkun Zhang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
- Correspondence: ; Tel.: +86-010-6273-4978
| |
Collapse
|
12
|
Rousset M, Humez S, Laurent C, Buée L, Blum D, Cens T, Vignes M, Charnet P. Mammalian Brain Ca2+ Channel Activity Transplanted into Xenopus laevis Oocytes. MEMBRANES 2022; 12:membranes12050496. [PMID: 35629822 PMCID: PMC9146698 DOI: 10.3390/membranes12050496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/20/2022] [Accepted: 04/26/2022] [Indexed: 02/01/2023]
Abstract
Several mutations on neuronal voltage-gated Ca2+ channels (VGCC) have been shown to cause neurological disorders and contribute to the initiation of epileptic seizures, migraines, or cerebellar degeneration. Analysis of the functional consequences of these mutations mainly uses heterologously expressed mutated channels or transgenic mice which mimic these pathologies, since direct electrophysiological approaches on brain samples are not easily feasible. We demonstrate that mammalian voltage-gated Ca2+ channels from membrane preparation can be microtransplanted into Xenopus oocytes and can conserve their activity. This method, originally described to study the alteration of GABA receptors in human brain samples, allows the recording of the activity of membrane receptors and channels with their native post-translational processing, membrane environment, and regulatory subunits. The use of hippocampal, cerebellar, or cardiac membrane preparation displayed different efficacy for transplanted Ca2+ channel activity. This technique, now extended to the recording of Ca2+ channel activity, may therefore be useful in order to analyze the calcium signature of membrane preparations from unfixed human brain samples or normal and transgenic mice.
Collapse
Affiliation(s)
- Matthieu Rousset
- IBMM, UMR 5247 CNRS, Université de Montpellier, ENSCM, 1919 Route de Mende, 34293 Montpellier, France; (T.C.); (M.V.)
- Correspondence: (M.R.); (P.C.); Tel.: +33-467-613-666 (M.R. & P.C.)
| | - Sandrine Humez
- Lille Neuroscience & Cognition, Université de Lille, F-59000 Lille, France; (S.H.); (C.L.); (L.B.); (D.B.)
- Inserm UMR_S1172, Jean-Pierre Aubert Research Centre, F-59000 Lille, France
- Lille Neuroscience & Cognition, Alzheimer & Tauopathies, CHU-Lille, F-59000 Lille, France
| | - Cyril Laurent
- Lille Neuroscience & Cognition, Université de Lille, F-59000 Lille, France; (S.H.); (C.L.); (L.B.); (D.B.)
- Inserm UMR_S1172, Jean-Pierre Aubert Research Centre, F-59000 Lille, France
- Lille Neuroscience & Cognition, Alzheimer & Tauopathies, CHU-Lille, F-59000 Lille, France
| | - Luc Buée
- Lille Neuroscience & Cognition, Université de Lille, F-59000 Lille, France; (S.H.); (C.L.); (L.B.); (D.B.)
- Inserm UMR_S1172, Jean-Pierre Aubert Research Centre, F-59000 Lille, France
- Lille Neuroscience & Cognition, Alzheimer & Tauopathies, CHU-Lille, F-59000 Lille, France
| | - David Blum
- Lille Neuroscience & Cognition, Université de Lille, F-59000 Lille, France; (S.H.); (C.L.); (L.B.); (D.B.)
- Inserm UMR_S1172, Jean-Pierre Aubert Research Centre, F-59000 Lille, France
- Lille Neuroscience & Cognition, Alzheimer & Tauopathies, CHU-Lille, F-59000 Lille, France
| | - Thierry Cens
- IBMM, UMR 5247 CNRS, Université de Montpellier, ENSCM, 1919 Route de Mende, 34293 Montpellier, France; (T.C.); (M.V.)
| | - Michel Vignes
- IBMM, UMR 5247 CNRS, Université de Montpellier, ENSCM, 1919 Route de Mende, 34293 Montpellier, France; (T.C.); (M.V.)
| | - Pierre Charnet
- IBMM, UMR 5247 CNRS, Université de Montpellier, ENSCM, 1919 Route de Mende, 34293 Montpellier, France; (T.C.); (M.V.)
- Correspondence: (M.R.); (P.C.); Tel.: +33-467-613-666 (M.R. & P.C.)
| |
Collapse
|
13
|
Martinez-Rojas VA, Juarez-Hernandez LJ, Musio C. Ion channels and neuronal excitability in polyglutamine neurodegenerative diseases. Biomol Concepts 2022; 13:183-199. [DOI: 10.1515/bmc-2022-0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/14/2022] [Indexed: 11/15/2022] Open
Abstract
Abstract
Polyglutamine (polyQ) diseases are a family composed of nine neurodegenerative inherited disorders (NDDs) caused by pathological expansions of cytosine-adenine-guanine (CAG) trinucleotide repeats which encode a polyQ tract in the corresponding proteins. CAG polyQ repeat expansions produce neurodegeneration via multiple downstream mechanisms; among those the neuronal activity underlying the ion channels is affected directly by specific channelopathies or indirectly by secondary dysregulation. In both cases, the altered excitability underlies to gain- or loss-of-function pathological effects. Here we summarize the repertoire of ion channels in polyQ NDDs emphasizing the biophysical features of neuronal excitability and their pathogenic role. The aim of this review is to point out the value of a deeper understanding of those functional mechanisms and processes as crucial elements for the designing and targeting of novel therapeutic avenues.
Collapse
Affiliation(s)
- Vladimir A. Martinez-Rojas
- Institute of Biophysics (IBF), Trento Unit, National Research Council (CNR) , Via Sommarive 18 , 38123 Trento , Italy
| | - Leon J. Juarez-Hernandez
- Institute of Biophysics (IBF), Trento Unit, National Research Council (CNR) , Via Sommarive 18 , 38123 Trento , Italy
| | - Carlo Musio
- Institute of Biophysics (IBF), Trento Unit, National Research Council (CNR) , Via Sommarive 18 , 38123 Trento , Italy
| |
Collapse
|
14
|
Functional Roles of FGF Signaling in Early Development of Vertebrate Embryos. Cells 2021; 10:cells10082148. [PMID: 34440915 PMCID: PMC8391977 DOI: 10.3390/cells10082148] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/10/2021] [Accepted: 08/18/2021] [Indexed: 02/07/2023] Open
Abstract
Fibroblast growth factors (FGFs) comprise a large family of growth factors, regulating diverse biological processes including cell proliferation, migration, and differentiation. Each FGF binds to a set of FGF receptors to initiate certain intracellular signaling molecules. Accumulated evidence suggests that in early development and adult state of vertebrates, FGFs also play exclusive and context dependent roles. Although FGFs have been the focus of research for therapeutic approaches in cancer, cardiovascular disease, and metabolic syndrome, in this review, we mainly focused on their role in germ layer specification and axis patterning during early vertebrate embryogenesis. We discussed the functional roles of FGFs and their interacting partners as part of the gene regulatory network for germ layer specification, dorsal-ventral (DV), and anterior-posterior (AP) patterning. Finally, we briefly reviewed the regulatory molecules and pharmacological agents discovered that may allow modulation of FGF signaling in research.
Collapse
|
15
|
Na + leak-current channel (NALCN) at the junction of motor and neuropsychiatric symptoms in Parkinson's disease. J Neural Transm (Vienna) 2021; 128:749-762. [PMID: 33961117 DOI: 10.1007/s00702-021-02348-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/30/2021] [Indexed: 12/27/2022]
Abstract
Parkinson's disease (PD) is a debilitating movement disorder often accompanied by neuropsychiatric symptoms that stem from the loss of dopaminergic function in the basal ganglia and altered neurotransmission more generally. Akinesia, postural instability, tremors and frozen gait constitute the major motor disturbances, whereas neuropsychiatric symptoms include altered circadian rhythms, disordered sleep, depression, psychosis and cognitive impairment. Evidence is emerging that the motor and neuropsychiatric symptoms may share etiologic factors. Calcium/ion channels (CACNA1C, NALCN), synaptic proteins (SYNJ1) and neuronal RNA-binding proteins (RBFOX1) are among the risk genes that are common to PD and various psychiatric disorders. The Na+ leak-current channel (NALCN) is the focus of this review because it has been implicated in dystonia, regulation of movement, cognitive impairment, sleep and circadian rhythms. It regulates the resting membrane potential in neurons, mediates pace-making activity, participates in synaptic vesicle recycling and is functionally co-localized to the endoplasmic reticulum (ER)-several of the major processes adversely affected in PD. Here, we summarize the literature on mechanisms and pathways that connect the motor and neuropsychiatric symptoms of PD with a focus on recurring relationships to the NALCN. It is hoped that the various connections outlined here will stimulate further discussion, suggest additional areas for exploration and ultimately inspire novel treatment strategies.
Collapse
|
16
|
A Variation in FGF14 Is Associated with Downbeat Nystagmus in a Genome-Wide Association Study. THE CEREBELLUM 2021; 19:348-357. [PMID: 32157568 PMCID: PMC7198638 DOI: 10.1007/s12311-020-01113-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Downbeat nystagmus (DBN) is a frequent form of acquired persisting central fixation nystagmus, often associated with other cerebellar ocular signs, such as saccadic smooth pursuit or gaze-holding deficits. Despite its distinct clinical features, the underlying etiology of DBN often remains unclear. Therefore, a genome-wide association study (GWAS) was conducted in 106 patients and 2609 healthy controls of European ancestry to identify genetic variants associated with DBN. A genome-wide significant association (p < 5 × 10-8) with DBN was found for a variation on chromosome 13 located within the fibroblast growth factor 14 gene (FGF14). FGF14 is expressed in Purkinje cells (PCs) and a reduction leads to a decreased spontaneous firing rate and excitability of PCs, compatible with the pathophysiology of DBN. In addition, mutations in the FGF14 gene cause spinocerebellar ataxia type 27. Suggestive associations (p < 1 × 10-05) could be detected for 15 additional LD-independent loci, one of which is also located in the FGF14 gene. An association of a region containing the dihydrofolate reductase (DHFR) and MutS Homolog 3 (MSH3) genes on chromosome 5 was slightly below the genome-wide significance threshold. DHFR is relevant for neuronal regulation, and a dysfunction is known to induce cerebellar damage. Among the remaining twelve suggestive associations, four genes (MAST4, TPPP, FTMT, and IDS) seem to be involved in cerebral pathological processes. Thus, this GWAS analysis has identified a potential genetic contribution to idiopathic DBN, including suggestive associations to several genes involved in postulated pathological mechanisms of DBN (i.e., impaired function of cerebellar PCs).
Collapse
|
17
|
Sato M, Ohta T, Morikawa Y, Konno A, Hirai H, Kurauchi Y, Hisatsune A, Katsuki H, Seki T. Ataxic phenotype and neurodegeneration are triggered by the impairment of chaperone-mediated autophagy in cerebellar neurons. Neuropathol Appl Neurobiol 2021; 47:198-209. [PMID: 32722888 DOI: 10.1111/nan.12649] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 12/13/2022]
Abstract
AIMS Chaperone-mediated autophagy (CMA) is a pathway involved in the autophagy lysosome protein degradation system. CMA has attracted attention as a contributing factor to neurodegenerative diseases since it participates in the degradation of disease-causing proteins. We previously showed that CMA is generally impaired in cells expressing the proteins causing spinocerebellar ataxias (SCAs). Therefore, we investigated the effect of CMA impairment on motor function and the neural survival of cerebellar neurons using the micro RNA (miRNA)-mediated knockdown of lysosome-associated protein 2A (LAMP2A), a CMA-related protein. METHODS We injected adeno-associated virus serotype 9 vectors, which express green fluorescent protein (GFP) and miRNA (negative control miRNA or LAMP2A miRNA) under neuron-specific synapsin I promoter, into cerebellar parenchyma of 4-week-old ICR mice. Motor function of mice was evaluated by beam walking and footprint tests. Immunofluorescence experiments of cerebellar slices were conducted to evaluate histological changes in cerebella. RESULTS GFP and miRNA were expressed in interneurons (satellite cells and basket cells) in molecular layers and granule cells in the cerebellar cortices, but not in cerebellar Purkinje cells. LAMP2A knockdown in cerebellar neurons triggered progressive motor impairment, prominent loss of cerebellar Purkinje cells, interneurons, granule cells at the late stage, and astrogliosis and microgliosis from the early stage. CONCLUSIONS CMA impairment in cerebellar interneurons and granule cells triggers the progressive ataxic phenotype, gliosis and the subsequent degeneration of cerebellar neurons, including Purkinje cells. Our present findings strongly suggest that CMA impairment is related to the pathogenesis of various SCAs.
Collapse
Affiliation(s)
- Masahiro Sato
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
- Laboratory for Mechanistic Chemistry of Biomolecules, Department of Chemistry, Keio University, Yokohama, Japan
| | - Tomoko Ohta
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuri Morikawa
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Ayumu Konno
- Department of Neurophysiology & Neural Repair, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Hirokazu Hirai
- Department of Neurophysiology & Neural Repair, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yuki Kurauchi
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Akinori Hisatsune
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiroshi Katsuki
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Takahiro Seki
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
18
|
Shaikh AG, Manto M. Genome-Wide Association Study Points New Direction for Downbeat Nystagmus Research. THE CEREBELLUM 2020; 19:345-347. [PMID: 32253642 DOI: 10.1007/s12311-020-01128-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Aasef G Shaikh
- Neurological Institute, University Hospitals Cleveland, Cleveland, OH, USA. .,Department of Neurology, Case Western Reserve University, Cleveland, OH, USA. .,Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA. .,Neurology Service and Daroff-Dell'Osso Ocular Motility Laboratory, Louis Stokes Cleveland Medical Center, Cleveland, OH, USA. .,Department of Neurology, University Hospitals Cleveland Medical Center, 11100 Euclid Avenue, Cleveland, OH, 44110, USA.
| | - Mario Manto
- Department of Neurology, CHU-Charleroi, Charleroi, Belgium.,University of Mons, Mons, Belgium
| |
Collapse
|
19
|
Giunti P, Mantuano E, Frontali M. Episodic Ataxias: Faux or Real? Int J Mol Sci 2020; 21:ijms21186472. [PMID: 32899446 PMCID: PMC7555854 DOI: 10.3390/ijms21186472] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 11/22/2022] Open
Abstract
The term Episodic Ataxias (EA) was originally used for a few autosomal dominant diseases, characterized by attacks of cerebellar dysfunction of variable duration and frequency, often accompanied by other ictal and interictal signs. The original group subsequently grew to include other very rare EAs, frequently reported in single families, for some of which no responsible gene was found. The clinical spectrum of these diseases has been enormously amplified over time. In addition, episodes of ataxia have been described as phenotypic variants in the context of several different disorders. The whole group is somewhat confused, since a strong evidence linking the mutation to a given phenotype has not always been established. In this review we will collect and examine all instances of ataxia episodes reported so far, emphasizing those for which the pathophysiology and the clinical spectrum is best defined.
Collapse
Affiliation(s)
- Paola Giunti
- Laboratory of Neurogenetics, Department of Molecular Neuroscience, UCL Institute of Neurology, London WC2N 5DU, UK
- Correspondence: (P.G.); (M.F.)
| | - Elide Mantuano
- Laboratory of Neurogenetics, Institute of Translational Pharmacology, National Research Council of Italy, 00133 Rome, Italy;
| | - Marina Frontali
- Laboratory of Neurogenetics, Institute of Translational Pharmacology, National Research Council of Italy, 00133 Rome, Italy;
- Correspondence: (P.G.); (M.F.)
| |
Collapse
|
20
|
Robinson KJ, Watchon M, Laird AS. Aberrant Cerebellar Circuitry in the Spinocerebellar Ataxias. Front Neurosci 2020; 14:707. [PMID: 32765211 PMCID: PMC7378801 DOI: 10.3389/fnins.2020.00707] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/11/2020] [Indexed: 12/11/2022] Open
Abstract
The spinocerebellar ataxias (SCAs) are a heterogeneous group of neurodegenerative diseases that share convergent disease features. A common symptom of these diseases is development of ataxia, involving impaired balance and motor coordination, usually stemming from cerebellar dysfunction and neurodegeneration. For most spinocerebellar ataxias, pathology can be attributed to an underlying gene mutation and the impaired function of the encoded protein through loss or gain-of-function effects. Strikingly, despite vast heterogeneity in the structure and function of disease-causing genes across the SCAs and the cellular processes affected, the downstream effects have considerable overlap, including alterations in cerebellar circuitry. Interestingly, aberrant function and degeneration of Purkinje cells, the major output neuronal population present within the cerebellum, precedes abnormalities in other neuronal populations within many SCAs, suggesting that Purkinje cells have increased vulnerability to cellular perturbations. Factors that are known to contribute to perturbed Purkinje cell function in spinocerebellar ataxias include altered gene expression resulting in altered expression or functionality of proteins and channels that modulate membrane potential, downstream impairments in intracellular calcium homeostasis and changes in glutamatergic input received from synapsing climbing or parallel fibers. This review will explore this enhanced vulnerability and the aberrant cerebellar circuitry linked with it in many forms of SCA. It is critical to understand why Purkinje cells are vulnerable to such insults and what overlapping pathogenic mechanisms are occurring across multiple SCAs, despite different underlying genetic mutations. Enhanced understanding of disease mechanisms will facilitate the development of treatments to prevent or slow progression of the underlying neurodegenerative processes, cerebellar atrophy and ataxic symptoms.
Collapse
Affiliation(s)
| | | | - Angela S. Laird
- Centre for Motor Neuron Disease Research, Department of Biomedical Science, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
21
|
Jaworski T. Control of neuronal excitability by GSK-3beta: Epilepsy and beyond. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118745. [PMID: 32450268 DOI: 10.1016/j.bbamcr.2020.118745] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/07/2020] [Accepted: 05/09/2020] [Indexed: 12/22/2022]
Abstract
Glycogen synthase kinase 3beta (GSK-3β) is an enzyme with a variety of cellular functions in addition to the regulation of glycogen metabolism. In the central nervous system, different intracellular signaling pathways converge on GSK-3β through a cascade of phosphorylation events that ultimately control a broad range of neuronal functions in the development and adulthood. In mice, genetically removing or increasing GSK-3β cause distinct functional and structural neuronal phenotypes and consequently affect cognition. Precise control of GSK-3β activity is important for such processes as neuronal migration, development of neuronal morphology, synaptic plasticity, excitability, and gene expression. Altered GSK-3β activity contributes to aberrant plasticity within neuronal circuits leading to neurological, psychiatric disorders, and neurodegenerative diseases. Therapeutically targeting GSK-3β can restore the aberrant plasticity of neuronal networks at least in animal models of these diseases. Although the complete repertoire of GSK-3β neuronal substrates has not been defined, emerging evidence shows that different ion channels and their accessory proteins controlling excitability, neurotransmitter release, and synaptic transmission are regulated by GSK-3β, thereby supporting mechanisms of synaptic plasticity in cognition. Dysregulation of ion channel function by defective GSK-3β activity sustains abnormal excitability in the development of epilepsy and other GSK-3β-linked human diseases.
Collapse
Affiliation(s)
- Tomasz Jaworski
- Laboratory of Animal Models, Nencki Institute of Experimental Biology, Warsaw, Poland.
| |
Collapse
|
22
|
Clinical and Genetic Overview of Paroxysmal Movement Disorders and Episodic Ataxias. Int J Mol Sci 2020; 21:ijms21103603. [PMID: 32443735 PMCID: PMC7279391 DOI: 10.3390/ijms21103603] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 12/15/2022] Open
Abstract
Paroxysmal movement disorders (PMDs) are rare neurological diseases typically manifesting with intermittent attacks of abnormal involuntary movements. Two main categories of PMDs are recognized based on the phenomenology: Paroxysmal dyskinesias (PxDs) are characterized by transient episodes hyperkinetic movement disorders, while attacks of cerebellar dysfunction are the hallmark of episodic ataxias (EAs). From an etiological point of view, both primary (genetic) and secondary (acquired) causes of PMDs are known. Recognition and diagnosis of PMDs is based on personal and familial medical history, physical examination, detailed reconstruction of ictal phenomenology, neuroimaging, and genetic analysis. Neurophysiological or laboratory tests are reserved for selected cases. Genetic knowledge of PMDs has been largely incremented by the advent of next generation sequencing (NGS) methodologies. The wide number of genes involved in the pathogenesis of PMDs reflects a high complexity of molecular bases of neurotransmission in cerebellar and basal ganglia circuits. In consideration of the broad genetic and phenotypic heterogeneity, a NGS approach by targeted panel for movement disorders, clinical or whole exome sequencing should be preferred, whenever possible, to a single gene approach, in order to increase diagnostic rate. This review is focused on clinical and genetic features of PMDs with the aim to (1) help clinicians to recognize, diagnose and treat patients with PMDs as well as to (2) provide an overview of genes and molecular mechanisms underlying these intriguing neurogenetic disorders.
Collapse
|
23
|
Sochacka M, Opalinski L, Szymczyk J, Zimoch MB, Czyrek A, Krowarsch D, Otlewski J, Zakrzewska M. FHF1 is a bona fide fibroblast growth factor that activates cellular signaling in FGFR-dependent manner. Cell Commun Signal 2020; 18:69. [PMID: 32357892 PMCID: PMC7193404 DOI: 10.1186/s12964-020-00573-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/01/2020] [Indexed: 12/22/2022] Open
Abstract
Abstract Fibroblast growth factors (FGFs) via their receptors (FGFRs) transduce signals from the extracellular space to the cell interior, modulating pivotal cellular processes such as cell proliferation, motility, metabolism and death. FGF superfamily includes a group of fibroblast growth factor homologous factors (FHFs), proteins whose function is still largely unknown. Since FHFs lack the signal sequence for secretion and are unable to induce FGFR-dependent cell proliferation, these proteins were considered as intracellular proteins that are not involved in signal transduction via FGFRs. Here we demonstrate for the first time that FHF1 directly interacts with all four major FGFRs. FHF1 binding causes efficient FGFR activation and initiation of receptor-dependent signaling cascades. However, the biological effect of FHF1 differs from the one elicited by canonical FGFs, as extracellular FHF1 protects cells from apoptosis, but is unable to stimulate cell division. Our data define FHF1 as a FGFR ligand, emphasizing much greater similarity between FHFs and canonical FGFs than previously indicated. Video Abstract. (MP4 38460 kb)
Graphical abstract ![]()
Collapse
Affiliation(s)
- Martyna Sochacka
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Lukasz Opalinski
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Jakub Szymczyk
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Marta B Zimoch
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Aleksandra Czyrek
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Daniel Krowarsch
- Department of Protein Biotechnology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Jacek Otlewski
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Malgorzata Zakrzewska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland.
| |
Collapse
|
24
|
Binda F, Pernaci C, Saxena S. Cerebellar Development and Circuit Maturation: A Common Framework for Spinocerebellar Ataxias. Front Neurosci 2020; 14:293. [PMID: 32300292 PMCID: PMC7145357 DOI: 10.3389/fnins.2020.00293] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 03/13/2020] [Indexed: 01/24/2023] Open
Abstract
Spinocerebellar ataxias (SCAs) affect the cerebellum and its afferent and efferent systems that degenerate during disease progression. In the cerebellum, Purkinje cells (PCs) are the most vulnerable and their prominent loss in the late phase of the pathology is the main characteristic of these neurodegenerative diseases. Despite the constant advancement in the discovery of affected molecules and cellular pathways, a comprehensive description of the events leading to the development of motor impairment and degeneration is still lacking. However, in the last years the possible causal role for altered cerebellar development and neuronal circuit wiring in SCAs has been emerging. Not only wiring and synaptic transmission deficits are a common trait of SCAs, but also preventing the expression of the mutant protein during cerebellar development seems to exert a protective role. By discussing this tight relationship between cerebellar development and SCAs, in this review, we aim to highlight the importance of cerebellar circuitry for the investigation of SCAs.
Collapse
Affiliation(s)
- Francesca Binda
- Department of Neurology, Center for Experimental Neurology, University Hospital of Bern, Bern, Switzerland.,Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Carla Pernaci
- Department of Neurology, Center for Experimental Neurology, University Hospital of Bern, Bern, Switzerland.,Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Switzerland
| | - Smita Saxena
- Department of Neurology, Center for Experimental Neurology, University Hospital of Bern, Bern, Switzerland.,Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| |
Collapse
|
25
|
Piarroux J, Riant F, Humbertclaude V, Remerand G, Hadjadj J, Rejou F, Coubes C, Pinson L, Meyer P, Roubertie A. FGF14-related episodic ataxia: delineating the phenotype of Episodic Ataxia type 9. Ann Clin Transl Neurol 2020; 7:565-572. [PMID: 32162847 PMCID: PMC7187715 DOI: 10.1002/acn3.51005] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 11/09/2022] Open
Abstract
We report four patients from two families who presented attacks of childhood-onset episodic ataxia associated with pathogenic mutations in the FGF14 gene. Attacks were triggered by fever, lasted several days, and had variable frequencies. Nystagmus and/or postural tremor and/or learning disabilities were noticed in individuals harboring FGF14 mutation with or without episodic ataxia. These cases and literature data delineate the FGF14-mutation-related episodic ataxia phenotype: wide range of age at onset (from childhood to adulthood), variable durations and frequencies, triggering factors including fever, and association to chronic symptoms. We propose to add FGF14-related episodic ataxia to the list of primary episodic ataxia as Episodic Ataxia type 9.
Collapse
Affiliation(s)
- Julie Piarroux
- Département de Neuropédiatrie, CHU Gui de Chauliac, Montpellier, France
| | - Florence Riant
- Service de Génétique Moléculaire Neurovasculaire, Groupe hospitalier Saint-Louis - Lariboisière - Fernand Widal AP-HP, Paris, France
| | - Véronique Humbertclaude
- Service de Médecine Psychologique Enfants et Adolescents, CHU Saint Eloi, Montpellier, France
| | | | - Jessica Hadjadj
- Service de Génétique Moléculaire Neurovasculaire, Groupe hospitalier Saint-Louis - Lariboisière - Fernand Widal AP-HP, Paris, France
| | - Franck Rejou
- Département de Neuropédiatrie, CHU Gui de Chauliac, Montpellier, France
| | - Christine Coubes
- Service de Génétique Clinique, Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, Hôpital Arnaud de Villeneuve, CHU de Montpellier, Montpellier, France
| | - Lucile Pinson
- Service de Génétique Clinique, Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, Hôpital Arnaud de Villeneuve, CHU de Montpellier, Montpellier, France
| | - Pierre Meyer
- Département de Neuropédiatrie, CHU Gui de Chauliac, Montpellier, France.,PhyMedExp, U1046 INSERM, UMR9214 CNRS, Montpellier, France
| | - Agathe Roubertie
- Département de Neuropédiatrie, CHU Gui de Chauliac, Montpellier, France.,INSERM U 1051, Institut des Neurosciences de Montpellier, Montpellier, France
| |
Collapse
|
26
|
Li Q, Zhai Z, Li J. Fibroblast growth factor homologous factors are potential ion channel modifiers associated with cardiac arrhythmias. Eur J Pharmacol 2020; 871:172920. [PMID: 31935396 DOI: 10.1016/j.ejphar.2020.172920] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 12/10/2019] [Accepted: 01/10/2020] [Indexed: 12/27/2022]
Abstract
Stable electrical activity in cardiac myocytes is the basis of maintaining normal myocardial systolic and diastolic function. Cardiac ionic currents and their associated regulatory proteins are crucial to myocyte excitability and heart function. Fibroblast growth factor homologous factors (FHFs) are intracellular noncanonical fibroblast growth factors (FGFs) that are incapable of activating FGF receptors. The main functions of FHFs are to regulate ion channels and influence excitability, which are processes involved in sustaining normal cardiac function. In addition to their regulatory effect on ion channels, FHFs can be regulators of cardiac hypertrophic signaling and alter signaling pathways, including the protein kinase, NF<kappa>B, and p53 pathways, which are related to the pathological processes of heart diseases. This review emphasizes FHF-mediated regulation of cardiac excitability and the association of FHFs with cardiac arrhythmias and explores the idea that abnormal FHFs may be an unrecognized cause of cardiac disorders.
Collapse
Affiliation(s)
- Qing Li
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Zhenyu Zhai
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Juxiang Li
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
27
|
Ashrafi G, de Juan-Sanz J, Farrell RJ, Ryan TA. Molecular Tuning of the Axonal Mitochondrial Ca 2+ Uniporter Ensures Metabolic Flexibility of Neurotransmission. Neuron 2019; 105:678-687.e5. [PMID: 31862210 DOI: 10.1016/j.neuron.2019.11.020] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/16/2019] [Accepted: 11/12/2019] [Indexed: 01/08/2023]
Abstract
The brain is a vulnerable metabolic organ and must adapt to different fuel conditions to sustain function. Nerve terminals are a locus of this vulnerability, but how they regulate ATP synthesis as fuel conditions vary is unknown. We show that synapses can switch from glycolytic to oxidative metabolism, but to do so, they rely on activity-driven presynaptic mitochondrial Ca2+ uptake to accelerate ATP production. We demonstrate that, whereas mitochondrial Ca2+ uptake requires elevated extramitochondrial Ca2+ in non-neuronal cells, axonal mitochondria readily take up Ca2+ in response to small changes in external Ca2+. We identified the brain-specific protein MICU3 as a critical driver of this tuning of Ca2+ sensitivity. Ablation of MICU3 renders axonal mitochondria similar to non-neuronal mitochondria, prevents acceleration of local ATP synthesis, and impairs presynaptic function under oxidative conditions. Thus, presynaptic mitochondria rely on MICU3 to facilitate mitochondrial Ca2+ uptake during activity and achieve metabolic flexibility.
Collapse
Affiliation(s)
- Ghazaleh Ashrafi
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Jaime de Juan-Sanz
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Ryan J Farrell
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA; David Rockefeller Graduate Program, Rockefeller University, New York, NY 10065, USA
| | - Timothy A Ryan
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
28
|
Szpisjak L, Zadori D, Klivenyi P, Vecsei L. Clinical Characteristics and Possible Drug Targets in Autosomal Dominant Spinocerebellar Ataxias. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2019; 18:279-293. [DOI: 10.2174/1871527318666190311155846] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/10/2018] [Accepted: 01/31/2019] [Indexed: 12/28/2022]
Abstract
Background & Objective:
The autosomal dominant spinocerebellar ataxias (SCAs) belong
to a large and expanding group of neurodegenerative disorders. SCAs comprise more than 40 subtypes
characterized by progressive ataxia as a common feature. The most prevalent diseases among SCAs
are caused by CAG repeat expansions in the coding-region of the causative gene resulting in polyglutamine
(polyQ) tract formation in the encoded protein. Unfortunately, there is no approved therapy to
treat cerebellar motor dysfunction in SCA patients. In recent years, several studies have been conducted
to recognize the clinical and pathophysiological aspects of the polyQ SCAs more accurately.
This scientific progress has provided new opportunities to develop promising gene therapies, including
RNA interference and antisense oligonucleotides.
Conclusion:
The aim of the current work is to give a brief summary of the clinical features of SCAs
and to review the cardinal points of pathomechanisms of the most common polyQ SCAs. In addition,
we review the last few year’s promising gene suppression therapies of the most frequent polyQ SCAs
in animal models, on the basis of which human trials may be initiated in the near future.
Collapse
Affiliation(s)
- Laszlo Szpisjak
- Department of Neurology, University of Szeged, Szeged, Hungary
| | - Denes Zadori
- Department of Neurology, University of Szeged, Szeged, Hungary
| | - Peter Klivenyi
- Department of Neurology, University of Szeged, Szeged, Hungary
| | - Laszlo Vecsei
- Department of Neurology, University of Szeged, Szeged, Hungary
| |
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW Recent advancements in next-generation sequencing (NGS) have enabled techniques such as whole exome sequencing (WES) and whole genome sequencing (WGS) to be used to study paroxysmal movement disorders (PMDs). This review summarizes how the recent genetic advances have altered our understanding of the pathophysiology and treatment of the PMDs. Recently described disease entities are also discussed. RECENT FINDINGS With the recognition of the phenotypic and genotypic heterogeneity that occurs amongst the PMDs, an increasing number of gene mutations are now implicated to cause the disorders. PMDs can also occur as part of a complex phenotype. The increasing complexity of PMDs challenges the way we view and classify them. The identification of new causative genes and their genotype-phenotype correlation will shed more light on the underlying pathophysiology and will facilitate development of genetic testing guidelines and identification of novel drug targets for PMDs.
Collapse
Affiliation(s)
- Zheyu Xu
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
| | - Che-Kang Lim
- Department of Clinical Translational Research, Singapore General Hospital, Bukit Merah, Singapore, Singapore
- Division of Clinical Immunology and Transfusion Medicine, Department of Laboratory Medicine, Karolinska Institute, Solna, Sweden
| | - Louis C S Tan
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
- Duke-NUS Medical School, 8 College Rd, Singapore, 169857, Singapore
| | - Eng-King Tan
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore.
- Duke-NUS Medical School, 8 College Rd, Singapore, 169857, Singapore.
| |
Collapse
|
30
|
Sex-Specific Proteomic Changes Induced by Genetic Deletion of Fibroblast Growth Factor 14 (FGF14), a Regulator of Neuronal Ion Channels. Proteomes 2019; 7:proteomes7010005. [PMID: 30678040 PMCID: PMC6473632 DOI: 10.3390/proteomes7010005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/16/2019] [Accepted: 01/17/2019] [Indexed: 12/18/2022] Open
Abstract
Fibroblast growth factor 14 (FGF14) is a member of the intracellular FGFs, which is a group of proteins involved in neuronal ion channel regulation and synaptic transmission. We previously demonstrated that male Fgf14−/− mice recapitulate the salient endophenotypes of synaptic dysfunction and behaviors that are associated with schizophrenia (SZ). As the underlying etiology of SZ and its sex-specific onset remain elusive, the Fgf14−/− model may provide a valuable tool to interrogate pathways related to disease mechanisms. Here, we performed label-free quantitative proteomics to identify enriched pathways in both male and female hippocampi from Fgf14+/+ and Fgf14−/− mice. We discovered that all of the differentially expressed proteins measured in Fgf14−/− animals, relative to their same-sex wildtype counterparts, are associated with SZ based on genome-wide association data. In addition, measured changes in the proteome were predominantly sex-specific, with the male Fgf14−/− mice distinctly enriched for pathways associated with neuropsychiatric disorders. In the male Fgf14−/− mouse, we found molecular characteristics that, in part, may explain a previously described neurotransmission and behavioral phenotype. This includes decreased levels of ALDH1A1 and protein kinase A (PRKAR2B). ALDH1A1 has been shown to mediate an alternative pathway for gamma-aminobutyric acid (GABA) synthesis, while PRKAR2B is essential for dopamine 2 receptor signaling, which is the basis of current antipsychotics. Collectively, our results provide new insights in the role of FGF14 and support the use of the Fgf14−/− mouse as a useful preclinical model of SZ for generating hypotheses on disease mechanisms, sex-specific manifestation, and therapy.
Collapse
|
31
|
Hoxha E, Marcinnò A, Montarolo F, Masante L, Balbo I, Ravera F, Laezza F, Tempia F. Emerging roles of Fgf14 in behavioral control. Behav Brain Res 2018; 356:257-265. [PMID: 30189289 PMCID: PMC10082543 DOI: 10.1016/j.bbr.2018.08.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 08/03/2018] [Accepted: 08/31/2018] [Indexed: 01/19/2023]
Abstract
Sexual disturbances, and aggressivity are a major social problem. However, the molecular mechanisms involved in the control of these behaviors are largely unknown. FGF14, which is an intracellular protein controlling neuronal excitability and synaptic transmission, has been implied in neurologic and psychiatric disorders. Mice with Fgf14 deletion show blunted responses to drugs of abuse. By behavioral tests we show that male Fgf14 knockout mice have a marked reduction of several behaviors including aggressivity and sexual behavior. Other behaviors driven by spontaneous initiative like burying novel objects and spontaneous digging and climbing are also reduced in Fgf14 knockout mice. These deficits cannot be attributed to a generalized decrease of activity levels, because in the open field test Fgf14 knockout mice have the same spontaneous locomotion as wild types and increased rearing. Our results show that Fgf14 is important to preserve a set of behaviors and suggest that fine tuning of neuronal function by Fgf14 is an important mechanism of control for such behaviors.
Collapse
Affiliation(s)
- Eriola Hoxha
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole 10, 10043 Orbassano, Italy; Department of Neuroscience, University of Torino, Corso Raffaello 30, 10125, Torino, Italy.
| | - Andrea Marcinnò
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole 10, 10043 Orbassano, Italy.
| | - Francesca Montarolo
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole 10, 10043 Orbassano, Italy.
| | - Linda Masante
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole 10, 10043 Orbassano, Italy.
| | - Ilaria Balbo
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole 10, 10043 Orbassano, Italy; Department of Neuroscience, University of Torino, Corso Raffaello 30, 10125, Torino, Italy.
| | - Francesco Ravera
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole 10, 10043 Orbassano, Italy; Department of Neuroscience, University of Torino, Corso Raffaello 30, 10125, Torino, Italy.
| | - Fernanda Laezza
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA.
| | - Filippo Tempia
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole 10, 10043 Orbassano, Italy; Department of Neuroscience, University of Torino, Corso Raffaello 30, 10125, Torino, Italy; National Neuroscience Institute (Italy), Corso Massimo D'Azeglio 52, 10126 Torino, Italy.
| |
Collapse
|
32
|
Zagajewska K, Piątkowska M, Goryca K, Bałabas A, Kluska A, Paziewska A, Pośpiech E, Grabska-Liberek I, Hennig EE. GWAS links variants in neuronal development and actin remodeling related loci with pseudoexfoliation syndrome without glaucoma. Exp Eye Res 2018; 168:138-148. [DOI: 10.1016/j.exer.2017.12.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 12/05/2017] [Accepted: 12/20/2017] [Indexed: 01/13/2023]
|
33
|
Bushart DD, Shakkottai VG. Ion channel dysfunction in cerebellar ataxia. Neurosci Lett 2018; 688:41-48. [PMID: 29421541 DOI: 10.1016/j.neulet.2018.02.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 02/02/2018] [Indexed: 12/31/2022]
Abstract
Cerebellar ataxias constitute a heterogeneous group of disorders that result in impaired speech, uncoordinated limb movements, and impaired balance, often ultimately resulting in wheelchair confinement. Motor dysfunction in ataxia can be attributed to dysfunction and degeneration of neurons in the cerebellum and its associated pathways. Recent work has suggested the importance of cerebellar neuronal dysfunction resulting from mutations in specific ion-channels that regulate membrane excitability in the pathogenesis of cerebellar ataxia in humans. Importantly, even in ataxias not directly due to ion-channel mutations, transcriptional changes resulting in ion-channel dysfunction are tied to motor dysfunction and degeneration in models of disease. In this review, we describe the role that ion-channel dysfunction plays in a variety of cerebellar ataxias, and postulate that a potential therapeutic strategy that targets specific ion-channels exists for cerebellar ataxia.
Collapse
Affiliation(s)
- David D Bushart
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor MI, USA
| | - Vikram G Shakkottai
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor MI, USA; Department of Neurology, University of Michigan, 4009 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
34
|
Li Q, Zhao Y, Wu G, Chen S, Zhou Y, Li S, Zhou M, Fan Q, Pu J, Hong K, Cheng X, Kenneth Wang Q, Tu X. De Novo FGF12 (Fibroblast Growth Factor 12) Functional Variation Is Potentially Associated With Idiopathic Ventricular Tachycardia. J Am Heart Assoc 2017; 6:JAHA.117.006130. [PMID: 28775062 PMCID: PMC5586455 DOI: 10.1161/jaha.117.006130] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Background Idiopathic ventricular tachycardia (VT) is a type of cardiac arrhythmia occurring in structurally normal hearts. The heritability of idiopathic VT remains to be clarified, and numerous genetic factors responsible for development of idiopathic VT are as yet unclear. Variations in FGF12 (fibroblast growth factor 12), which is expressed in the human ventricle and modulates the cardiac Na+ channel NaV1.5, may play an important role in the genetic pathogenesis of VT. Methods and Results We tested the hypothesis that genetic variations in FGF12 are associated with VT in 2 independent Chinese cohorts and resequenced all the exons and exon–intron boundaries and the 5′ and 3′ untranslated regions of FGF12 in 320 unrelated participants with idiopathic VT. For population‐based case–control association studies, we chose 3 single‐nucleotide polymorphisms—rs1460922, rs4687326, and rs2686464—which included all the exons of FGF12. The results showed that the single‐nucleotide polymorphism rs1460922 in FGF12 was significantly associated with VT after adjusting for covariates of sex and age in 2 independent Chinese populations: adjusted P=0.015 (odds ratio: 1.54 [95% CI, 1.09–2.19]) in the discovery sample, adjusted P=0.018 (odds ratio: 1.64 [95% CI, 1.09–2.48]) in the replication sample, and adjusted P=2.52E‐04 (odds ratio: 1.59 [95% CI, 1.24–2.03]) in the combined sample. After resequencing all amino acid coding regions and untranslated regions of FGF12, 5 rare variations were identified. The result of western blotting revealed that a de novo functional variation, p.P211Q (1.84% of 163 patients with right ventricular outflow tract VT), could downregulate FGF12 expression significantly. Conclusions In this study, we observed that rs1460922 of FGF12 was significantly associated with VT and identified that a de novo variation of FGF12 may be an important genetic risk factor for the pathogenesis of VT.
Collapse
Affiliation(s)
- Qianqian Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanyuan Zhao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Ministry of Education and Ministry of Health, Wuhan, China
| | - Gang Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shanshan Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingchao Zhou
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, China
| | - Sisi Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, China
| | - Mengchen Zhou
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Fan
- The Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Jielin Pu
- State Key Laboratory of Cardiovascular Disease, Physiology and Pathophysiology Laboratory, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kui Hong
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University and Jiangxi Key Laboratory of Molecular Medicine, Jiangxi, China
| | - Xiang Cheng
- The Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Qing Kenneth Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, China .,Department of Molecular Cardiology, Cleveland Clinic, Cleveland, Ohio, USA
| | - Xin Tu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
35
|
Wei EQ, Sinden DS, Mao L, Zhang H, Wang C, Pitt GS. Inducible Fgf13 ablation enhances caveolae-mediated cardioprotection during cardiac pressure overload. Proc Natl Acad Sci U S A 2017; 114:E4010-E4019. [PMID: 28461495 PMCID: PMC5441822 DOI: 10.1073/pnas.1616393114] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The fibroblast growth factor (FGF) homologous factor FGF13, a noncanonical FGF, has been best characterized as a voltage-gated Na+ channel auxiliary subunit. Other cellular functions have been suggested, but not explored. In inducible, cardiac-specific Fgf13 knockout mice, we found-even in the context of the expected reduction in Na+ channel current-an unanticipated protection from the maladaptive hypertrophic response to pressure overload. To uncover the underlying mechanisms, we searched for components of the FGF13 interactome in cardiomyocytes and discovered the complete set of the cavin family of caveolar coat proteins. Detailed biochemical investigations showed that FGF13 acts as a negative regulator of caveolae abundance in cardiomyocytes by controlling the relative distribution of cavin 1 between the sarcolemma and cytosol. In cardiac-specific Fgf13 knockout mice, cavin 1 redistribution to the sarcolemma stabilized the caveolar structural protein caveolin 3. The consequent increase in caveolae density afforded protection against pressure overload-induced cardiac dysfunction by two mechanisms: (i) enhancing cardioprotective signaling pathways enriched in caveolae, and (ii) increasing the caveolar membrane reserve available to buffer membrane tension. Thus, our results uncover unexpected roles for a FGF homologous factor and establish FGF13 as a regulator of caveolae-mediated mechanoprotection and adaptive hypertrophic signaling.
Collapse
Affiliation(s)
- Eric Q Wei
- Department of Medicine, Duke University Medical Center, Durham, NC 27710
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710
| | - Daniel S Sinden
- Department of Medicine, Duke University Medical Center, Durham, NC 27710
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710
| | - Lan Mao
- Department of Medicine, Duke University Medical Center, Durham, NC 27710
| | - Hailin Zhang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang 050017, China
| | - Chuan Wang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang 050017, China
| | - Geoffrey S Pitt
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY 10021
| |
Collapse
|
36
|
Di Re J, Wadsworth PA, Laezza F. Intracellular Fibroblast Growth Factor 14: Emerging Risk Factor for Brain Disorders. Front Cell Neurosci 2017; 11:103. [PMID: 28469558 PMCID: PMC5396478 DOI: 10.3389/fncel.2017.00103] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/28/2017] [Indexed: 01/31/2023] Open
Abstract
The finely tuned regulation of neuronal firing relies on the integrity of ion channel macromolecular complexes. Minimal disturbances of these tightly regulated networks can lead to persistent maladaptive plasticity of brain circuitry. The intracellular fibroblast growth factor 14 (FGF14) belongs to the nexus of proteins interacting with voltage-gated Na+ (Nav) channels at the axonal initial segment. Through isoform-specific interactions with the intracellular C-terminal tail of neuronal Nav channels (Nav1.1, Nav1.2, Nav1.6), FGF14 controls channel gating, axonal targeting and phosphorylation in neurons effecting excitability. FGF14 has been also involved in synaptic transmission, plasticity and neurogenesis in the cortico-mesolimbic circuit with cognitive and affective behavioral outcomes. In translational studies, interest in FGF14 continues to rise with a growing list of associative links to diseases of the cognitive and affective domains such as neurodegeneration, depression, anxiety, addictive behaviors and recently schizophrenia, suggesting its role as a converging node in the etiology of complex brain disorders. Yet, a full understanding of FGF14 function in neurons is far from being complete and likely to involve other functions unrelated to the direct regulation of Nav channels. The goal of this Mini Review article is to provide a summary of studies on the emerging role of FGF14 in complex brain disorders.
Collapse
Affiliation(s)
- Jessica Di Re
- Neuroscience Graduate Program, University of Texas Medical BranchGalveston, TX, USA.,Department of Pharmacology and Toxicology, University of Texas Medical BranchGalveston, TX, USA
| | - Paul A Wadsworth
- Biochemistry and Molecular Biology Graduate Program, The University of Texas Medical BranchGalveston, TX, USA
| | - Fernanda Laezza
- Department of Pharmacology and Toxicology, University of Texas Medical BranchGalveston, TX, USA.,Mitchell Center for Neurodegenerative Diseases, The University of Texas Medical BranchGalveston, TX, USA.,Center for Addiction Research, The University of Texas Medical BranchGalveston, TX, USA
| |
Collapse
|
37
|
Wang X, Tang H, Wei EQ, Wang Z, Yang J, Yang R, Wang S, Zhang Y, Pitt GS, Zhang H, Wang C. Conditional knockout of Fgf13 in murine hearts increases arrhythmia susceptibility and reveals novel ion channel modulatory roles. J Mol Cell Cardiol 2017; 104:63-74. [PMID: 28119060 DOI: 10.1016/j.yjmcc.2017.01.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 01/13/2017] [Accepted: 01/17/2017] [Indexed: 01/06/2023]
Abstract
The intracellular fibroblast growth factors (iFGF/FHFs) bind directly to cardiac voltage gated Na+ channels, and modulate their function. Mutations that affect iFGF/FHF-Na+ channel interaction are associated with arrhythmia syndromes. Although suspected to modulate other ionic currents, such as Ca2+ channels based on acute knockdown experiments in isolated cardiomyocytes, the in vivo consequences of iFGF/FHF gene ablation on cardiac electrical activity are still unknown. We generated inducible, cardiomyocyte-restricted Fgf13 knockout mice to determine the resultant effects of Fgf13 gene ablation. Patch clamp recordings from ventricular myocytes isolated from Fgf13 knockout mice showed a ~25% reduction in peak Na+ channel current density and a hyperpolarizing shift in steady-state inactivation. Electrocardiograms on Fgf13 knockout mice showed a prolonged QRS duration. The Na+ channel blocker flecainide further prolonged QRS duration and triggered ventricular tachyarrhythmias only in Fgf13 knockout mice, suggesting that arrhythmia vulnerability resulted, at least in part, from a loss of functioning Na+ channels. Consistent with these effects on Na+ channels, action potentials in Fgf13 knockout mice, compared to Cre control mice, exhibited slower upstrokes and reduced amplitude, but unexpectedly had longer durations. We investigated candidate sources of the prolonged action potential durations in myocytes from Fgf13 knockout mice and found a reduction of the transient outward K+ current (Ito). Fgf13 knockout did not alter whole-cell protein levels of Kv4.2 and Kv4.3, the Ito pore-forming subunits, but did decrease Kv4.2 and Kv4.3 at the sarcolemma. No changes were seen in the sustained outward K+ current or voltage-gated Ca2+ current, other candidate contributors to the increased action potential duration. These results implicate that FGF13 is a critical cardiac Na+ channel modulator and Fgf13 knockout mice have increased arrhythmia susceptibility in the setting of Na+ channel blockade. The unanticipated effect on Ito revealed new FGF13 properties and the unexpected lack of an effect on voltage-gated Ca2+ channels highlight potential compensatory changes in vivo not readily revealed with acute Fgf13 knockdown in cultured cardiomyocytes.
Collapse
Affiliation(s)
- Xiangchong Wang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang 050017, China; The Key Laboratory of Neural and Vascular Biology, Ministry of Education, China, Shijiazhuang, 050017, China; The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Province, Shijiazhuang 050017, China
| | - He Tang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang 050017, China; The Key Laboratory of Neural and Vascular Biology, Ministry of Education, China, Shijiazhuang, 050017, China; The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Province, Shijiazhuang 050017, China
| | - Eric Q Wei
- Ion Channel Research Unit, Department of Medicine/Cardiology and Pharmacology, Duke University Medical Center, Durham, NC 27710, USA
| | - Zhihua Wang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang 050017, China; The Key Laboratory of Neural and Vascular Biology, Ministry of Education, China, Shijiazhuang, 050017, China; The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Province, Shijiazhuang 050017, China
| | - Jing Yang
- Department of Physiology, Hebei Medical University, Shijiazhuang 050017, China
| | - Rong Yang
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Sheng Wang
- Department of Physiology, Hebei Medical University, Shijiazhuang 050017, China
| | - Yongjian Zhang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang 050017, China; The Key Laboratory of Neural and Vascular Biology, Ministry of Education, China, Shijiazhuang, 050017, China; The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Province, Shijiazhuang 050017, China
| | - Geoffrey S Pitt
- Ion Channel Research Unit, Department of Medicine/Cardiology and Pharmacology, Duke University Medical Center, Durham, NC 27710, USA
| | - Hailin Zhang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang 050017, China; The Key Laboratory of Neural and Vascular Biology, Ministry of Education, China, Shijiazhuang, 050017, China; The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Province, Shijiazhuang 050017, China.
| | - Chuan Wang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang 050017, China; The Key Laboratory of Neural and Vascular Biology, Ministry of Education, China, Shijiazhuang, 050017, China; The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Province, Shijiazhuang 050017, China.
| |
Collapse
|
38
|
Yan H, Wang C, Marx SO, Pitt GS. Calmodulin limits pathogenic Na+ channel persistent current. J Gen Physiol 2017; 149:277-293. [PMID: 28087622 PMCID: PMC5299624 DOI: 10.1085/jgp.201611721] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/13/2016] [Accepted: 12/19/2016] [Indexed: 01/29/2023] Open
Abstract
The molecular mechanisms controlling “persistent” current through voltage-gated Na+ channels are poorly understood. Yan et al. show that apocalmodulin binding to the intracellular C-terminal domain limits persistent Na+ flux and accelerates inactivation across the voltage-gated Na+ channel family. Increased “persistent” current, caused by delayed inactivation, through voltage-gated Na+ (NaV) channels leads to cardiac arrhythmias or epilepsy. The underlying molecular contributors to these inactivation defects are poorly understood. Here, we show that calmodulin (CaM) binding to multiple sites within NaV channel intracellular C-terminal domains (CTDs) limits persistent Na+ current and accelerates inactivation across the NaV family. Arrhythmia or epilepsy mutations located in NaV1.5 or NaV1.2 channel CTDs, respectively, reduce CaM binding either directly or by interfering with CTD–CTD interchannel interactions. Boosting the availability of CaM, thus shifting its binding equilibrium, restores wild-type (WT)–like inactivation in mutant NaV1.5 and NaV1.2 channels and likewise diminishes the comparatively large persistent Na+ current through WT NaV1.6, whose CTD displays relatively low CaM affinity. In cerebellar Purkinje neurons, in which NaV1.6 promotes a large physiological persistent Na+ current, increased CaM diminishes the persistent Na+ current, suggesting that the endogenous, comparatively weak affinity of NaV1.6 for apoCaM is important for physiological persistent current.
Collapse
Affiliation(s)
- Haidun Yan
- Ion Channel Research Unit, Duke University Medical Center, Durham, NC 27710
| | - Chaojian Wang
- Ion Channel Research Unit, Duke University Medical Center, Durham, NC 27710
| | - Steven O Marx
- Division of Cardiology, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY 10032.,Department of Pharmacology, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Geoffrey S Pitt
- Ion Channel Research Unit, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
39
|
Barbosa C, Xiao Y, Johnson AJ, Xie W, Strong JA, Zhang JM, Cummins TR. FHF2 isoforms differentially regulate Nav1.6-mediated resurgent sodium currents in dorsal root ganglion neurons. Pflugers Arch 2016; 469:195-212. [PMID: 27999940 DOI: 10.1007/s00424-016-1911-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 10/19/2016] [Accepted: 11/20/2016] [Indexed: 10/20/2022]
Abstract
Nav1.6 and Nav1.6-mediated resurgent currents have been implicated in several pain pathologies. However, our knowledge of how fast resurgent currents are modulated in neurons is limited. Our study explored the potential regulation of Nav1.6-mediated resurgent currents by isoforms of fibroblast growth factor homologous factor 2 (FHF2) in an effort to address the gap in our knowledge. FHF2 isoforms colocalize with Nav1.6 in peripheral sensory neurons. Cell line studies suggest that these proteins differentially regulate inactivation. In particular, FHF2A mediates long-term inactivation, a mechanism proposed to compete with the open-channel blocker mechanism that mediates resurgent currents. On the other hand, FHF2B lacks the ability to mediate long-term inactivation and may delay inactivation favoring open-channel block. Based on these observations, we hypothesized that FHF2A limits resurgent currents, whereas FHF2B enhances resurgent currents. Overall, our results suggest that FHF2A negatively regulates fast resurgent current by enhancing long-term inactivation and delaying recovery. In contrast, FHF2B positively regulated resurgent current and did not alter long-term inactivation. Chimeric constructs of FHF2A and Navβ4 (likely the endogenous open channel blocker in sensory neurons) exhibited differential effects on resurgent currents, suggesting that specific regions within FHF2A and Navβ4 have important regulatory functions. Our data also indicate that FHFAs and FHF2B isoform expression are differentially regulated in a radicular pain model and that associated neuronal hyperexcitability is substantially attenuated by a FHFA peptide. As such, these findings suggest that FHF2A and FHF2B regulate resurgent current in sensory neurons and may contribute to hyperexcitability associated with some pain pathologies.
Collapse
Affiliation(s)
- Cindy Barbosa
- Department of Pharmacology and Toxicology, Indiana University, Indianapolis, IN, USA.,Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yucheng Xiao
- Department of Pharmacology and Toxicology, Indiana University, Indianapolis, IN, USA.,Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Andrew J Johnson
- Department of Pharmacology and Toxicology, Indiana University, Indianapolis, IN, USA.,Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Wenrui Xie
- Department of Anesthesiology, University of Cincinnati, Cincinnati, OH, USA
| | - Judith A Strong
- Department of Anesthesiology, University of Cincinnati, Cincinnati, OH, USA
| | - Jun-Ming Zhang
- Department of Anesthesiology, University of Cincinnati, Cincinnati, OH, USA
| | - Theodore R Cummins
- Department of Pharmacology and Toxicology, Indiana University, Indianapolis, IN, USA. .,Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA. .,Department of Biology, Indiana University - Purdue University Indianapolis, Indianapolis, IN, USA.
| |
Collapse
|
40
|
Abstract
KCNQ2/3 (Kv7.2/7.3) channels and voltage-gated sodium channels (VGSCs) are enriched in the axon initial segment (AIS) where they bind to ankyrin-G and coregulate membrane potential in central nervous system neurons. The molecular mechanisms supporting coordinated regulation of KCNQ and VGSCs and the cellular mechanisms governing KCNQ trafficking to the AIS are incompletely understood. Here, we show that fibroblast growth factor 14 (FGF14), previously described as a VGSC regulator, also affects KCNQ function and localization. FGF14 knockdown leads to a reduction of KCNQ2 in the AIS and a reduction in whole-cell KCNQ currents. FGF14 positively regulates KCNQ2/3 channels in a simplified expression system. FGF14 interacts with KCNQ2 at a site distinct from the FGF14-VGSC interaction surface, thus enabling the bridging of NaV1.6 and KCNQ2. These data implicate FGF14 as an organizer of channel localization in the AIS and provide insight into the coordination of KCNQ and VGSC conductances in the regulation of membrane potential.
Collapse
|
41
|
Hoxha E, Tempia F, Lippiello P, Miniaci MC. Modulation, Plasticity and Pathophysiology of the Parallel Fiber-Purkinje Cell Synapse. Front Synaptic Neurosci 2016; 8:35. [PMID: 27857688 PMCID: PMC5093118 DOI: 10.3389/fnsyn.2016.00035] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 10/19/2016] [Indexed: 12/24/2022] Open
Abstract
The parallel fiber-Purkinje cell (PF-PC) synapse represents the point of maximal signal divergence in the cerebellar cortex with an estimated number of about 60 billion synaptic contacts in the rat and 100,000 billions in humans. At the same time, the Purkinje cell dendritic tree is a site of remarkable convergence of more than 100,000 parallel fiber synapses. Parallel fiber activity generates fast postsynaptic currents via α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, and slower signals, mediated by mGlu1 receptors, resulting in Purkinje cell depolarization accompanied by sharp calcium elevation within dendritic regions. Long-term depression (LTD) and long-term potentiation (LTP) have been widely described for the PF-PC synapse and have been proposed as mechanisms for motor learning. The mechanisms of induction for LTP and LTD involve different signaling mechanisms within the presynaptic terminal and/or at the postsynaptic site, promoting enduring modification in the neurotransmitter release and change in responsiveness to the neurotransmitter. The PF-PC synapse is finely modulated by several neurotransmitters, including serotonin, noradrenaline and acetylcholine. The ability of these neuromodulators to gate LTP and LTD at the PF-PC synapse could, at least in part, explain their effect on cerebellar-dependent learning and memory paradigms. Overall, these findings have important implications for understanding the cerebellar involvement in a series of pathological conditions, ranging from ataxia to autism. For example, PF-PC synapse dysfunctions have been identified in several murine models of spino-cerebellar ataxia (SCA) types 1, 3, 5 and 27. In some cases, the defect is specific for the AMPA receptor signaling (SCA27), while in others the mGlu1 pathway is affected (SCA1, 3, 5). Interestingly, the PF-PC synapse has been shown to be hyper-functional in a mutant mouse model of autism spectrum disorder, with a selective deletion of Pten in Purkinje cells. However, the full range of methodological approaches, that allowed the discovery of the physiological principles of PF-PC synapse function, has not yet been completely exploited to investigate the pathophysiological mechanisms of diseases involving the cerebellum. We, therefore, propose to extend the spectrum of experimental investigations to tackle this problem.
Collapse
Affiliation(s)
- Eriola Hoxha
- Neuroscience Institute Cavalieri Ottolenghi (NICO) and Department of Neuroscience, University of TorinoTorino, Italy
| | - Filippo Tempia
- Neuroscience Institute Cavalieri Ottolenghi (NICO) and Department of Neuroscience, University of TorinoTorino, Italy
| | | | | |
Collapse
|
42
|
Mark MD, Schwitalla JC, Groemmke M, Herlitze S. Keeping Our Calcium in Balance to Maintain Our Balance. Biochem Biophys Res Commun 2016; 483:1040-1050. [PMID: 27392710 DOI: 10.1016/j.bbrc.2016.07.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 07/04/2016] [Indexed: 01/13/2023]
Abstract
Calcium is a key signaling molecule and ion involved in a variety of diverse processes in our central nervous system (CNS) which include gene expression, synaptic transmission and plasticity, neuronal excitability and cell maintenance. Proper control of calcium signaling is not only vital for neuronal physiology but also cell survival. Mutations in fundamental channels, transporters and second messenger proteins involved in orchestrating the balance of our calcium homeostasis can lead to severe neurodegenerative disorders, such as Spinocerebellar (SCA) and Episodic (EA) ataxias. Hereditary ataxias make up a remarkably diverse group of neurological disorders clinically characterized by gait ataxia, nystagmus, dysarthria, trunk and limb ataxia and often atrophy of the cerebellum. The largest family of hereditary ataxias is SCAs which consists of a growing family of 42 members. A relatively smaller family of 8 members compose the EAs. The gene mutations responsible for half of the EA members and over 35 of the SCA subtypes have been identified, and several have been found to be responsible for cerebellar atrophy, abnormal intracellular calcium levels, dysregulation of Purkinje cell pacemaking, altered cerebellar synaptic transmission and/or ataxia in mouse models. Although the genetic diversity and affected cellular pathways of hereditary ataxias are broad, one common theme amongst these genes is their effects on maintaining calcium balance in primarily the cerebellum. There is emerging evidence that the pathogenesis of hereditary ataxias may be caused by imbalances in intracellular calcium due to genetic mutations in calcium-mediating proteins. In this review we will discuss the current evidence supporting the role of deranged calcium as the culprit to neurodegenerative diseases with a primary focus on SCAs and EAs.
Collapse
Affiliation(s)
- Melanie D Mark
- Department of Zoology and Neurobiology, ND7/31, Ruhr University Bochum, Universitätsstr. 150, D-44780 Bochum, Germany.
| | - Jan Claudius Schwitalla
- Department of Zoology and Neurobiology, ND7/31, Ruhr University Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Michelle Groemmke
- Department of Zoology and Neurobiology, ND7/31, Ruhr University Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Stefan Herlitze
- Department of Zoology and Neurobiology, ND7/31, Ruhr University Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| |
Collapse
|
43
|
Pablo JL, Wang C, Presby MM, Pitt GS. Polarized localization of voltage-gated Na+ channels is regulated by concerted FGF13 and FGF14 action. Proc Natl Acad Sci U S A 2016; 113:E2665-74. [PMID: 27044086 PMCID: PMC4868475 DOI: 10.1073/pnas.1521194113] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Clustering of voltage-gated sodium channels (VGSCs) within the neuronal axon initial segment (AIS) is critical for efficient action potential initiation. Although initially inserted into both somatodendritic and axonal membranes, VGSCs are concentrated within the axon through mechanisms that include preferential axonal targeting and selective somatodendritic endocytosis. How the endocytic machinery specifically targets somatic VGSCs is unknown. Here, using knockdown strategies, we show that noncanonical FGF13 binds directly to VGSCs in hippocampal neurons to limit their somatodendritic surface expression, although exerting little effect on VGSCs within the AIS. In contrast, homologous FGF14, which is highly concentrated in the proximal axon, binds directly to VGSCs to promote their axonal localization. Single-point mutations in FGF13 or FGF14 abrogating VGSC interaction in vitro cannot support these specific functions in neurons. Thus, our data show how the concerted actions of FGF13 and FGF14 regulate the polarized localization of VGSCs that supports efficient action potential initiation.
Collapse
Affiliation(s)
- Juan Lorenzo Pablo
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710; Ion Channel Research Unit, Duke University Medical Center, Durham, NC 27710
| | - Chaojian Wang
- Ion Channel Research Unit, Duke University Medical Center, Durham, NC 27710; Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC 27710
| | - Matthew M Presby
- Ion Channel Research Unit, Duke University Medical Center, Durham, NC 27710; Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC 27710
| | - Geoffrey S Pitt
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710; Ion Channel Research Unit, Duke University Medical Center, Durham, NC 27710; Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
44
|
Alshammari TK, Alshammari MA, Nenov MN, Hoxha E, Cambiaghi M, Marcinno A, James TF, Singh P, Labate D, Li J, Meltzer HY, Sacchetti B, Tempia F, Laezza F. Genetic deletion of fibroblast growth factor 14 recapitulates phenotypic alterations underlying cognitive impairment associated with schizophrenia. Transl Psychiatry 2016; 6:e806. [PMID: 27163207 PMCID: PMC5070049 DOI: 10.1038/tp.2016.66] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 02/25/2016] [Accepted: 03/05/2016] [Indexed: 12/14/2022] Open
Abstract
Cognitive processing is highly dependent on the functional integrity of gamma-amino-butyric acid (GABA) interneurons in the brain. These cells regulate excitability and synaptic plasticity of principal neurons balancing the excitatory/inhibitory tone of cortical networks. Reduced function of parvalbumin (PV) interneurons and disruption of GABAergic synapses in the cortical circuitry result in desynchronized network activity associated with cognitive impairment across many psychiatric disorders, including schizophrenia. However, the mechanisms underlying these complex phenotypes are still poorly understood. Here we show that in animal models, genetic deletion of fibroblast growth factor 14 (Fgf14), a regulator of neuronal excitability and synaptic transmission, leads to loss of PV interneurons in the CA1 hippocampal region, a critical area for cognitive function. Strikingly, this cellular phenotype associates with decreased expression of glutamic acid decarboxylase 67 (GAD67) and vesicular GABA transporter (VGAT) and also coincides with disrupted CA1 inhibitory circuitry, reduced in vivo gamma frequency oscillations and impaired working memory. Bioinformatics analysis of schizophrenia transcriptomics revealed functional co-clustering of FGF14 and genes enriched within the GABAergic pathway along with correlatively decreased expression of FGF14, PVALB, GAD67 and VGAT in the disease context. These results indicate that Fgf14(-/-) mice recapitulate salient molecular, cellular, functional and behavioral features associated with human cognitive impairment, and FGF14 loss of function might be associated with the biology of complex brain disorders such as schizophrenia.
Collapse
Affiliation(s)
- T K Alshammari
- Pharmacology and Toxicology Graduate Program, University of Texas Medical Branch, Galveston, TX, USA
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
- King Saud University Graduate Studies Abroad Program, King Saud University, Riyadh, Saudi Arabia
| | - M A Alshammari
- Pharmacology and Toxicology Graduate Program, University of Texas Medical Branch, Galveston, TX, USA
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
- King Saud University Graduate Studies Abroad Program, King Saud University, Riyadh, Saudi Arabia
| | - M N Nenov
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - E Hoxha
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy
- Department of Neuroscience, University of Torino, Turin, Italy
| | - M Cambiaghi
- Department of Neuroscience, University of Torino, Turin, Italy
| | - A Marcinno
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy
| | - T F James
- Department of Neuroscience, University of Torino, Turin, Italy
| | - P Singh
- Department of Mathematics, University of Houston, Houston, TX, USA
| | - D Labate
- Department of Mathematics, University of Houston, Houston, TX, USA
| | - J Li
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Mitchell Center for Neurodegenerative Diseases, The University of Texas Medical Branch, Galveston, TX, USA
| | - H Y Meltzer
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - B Sacchetti
- Department of Neuroscience, University of Torino, Turin, Italy
| | - F Tempia
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy
- Department of Neuroscience, University of Torino, Turin, Italy
| | - F Laezza
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
- Mitchell Center for Neurodegenerative Diseases, The University of Texas Medical Branch, Galveston, TX, USA
- Center for Addiction Research, The University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
45
|
Bosch MK, Nerbonne JM, Townsend RR, Miyazaki H, Nukina N, Ornitz DM, Marionneau C. Proteomic analysis of native cerebellar iFGF14 complexes. Channels (Austin) 2016; 10:297-312. [PMID: 26889602 DOI: 10.1080/19336950.2016.1153203] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Intracellular Fibroblast Growth Factor 14 (iFGF14) and the other intracellular FGFs (iFGF11-13) regulate the properties and densities of voltage-gated neuronal and cardiac Na(+) (Nav) channels. Recent studies have demonstrated that the iFGFs can also regulate native voltage-gated Ca(2+) (Cav) channels. In the present study, a mass spectrometry (MS)-based proteomic approach was used to identify the components of native cerebellar iFGF14 complexes. Using an anti-iFGF14 antibody, native iFGF14 complexes were immunoprecipitated from wild type adult mouse cerebellum. Parallel control experiments were performed on cerebellar proteins isolated from mice (Fgf14(-/-)) harboring a targeted disruption of the Fgf14 locus. MS analyses of immunoprecipitated proteins demonstrated that the vast majority of proteins identified in native cerebellar iFGF14 complexes are Nav channel pore-forming (α) subunits or proteins previously reported to interact with Nav α subunits. In contrast, no Cav channel α or accessory subunits were revealed in cerebellar iFGF14 immunoprecipitates. Additional experiments were completed using an anti-PanNav antibody to immunoprecipitate Nav channel complexes from wild type and Fgf14(-/-) mouse cerebellum. Western blot and MS analyses revealed that the loss of iFGF14 does not measurably affect the protein composition or the relative abundance of Nav channel interacting proteins in native adult mouse cerebellar Nav channel complexes.
Collapse
Affiliation(s)
- Marie K Bosch
- a Department of Developmental Biology , Washington University School of Medicine , St. Louis , MO , USA
| | - Jeanne M Nerbonne
- a Department of Developmental Biology , Washington University School of Medicine , St. Louis , MO , USA.,b Internal Medicine, Washington University School of Medicine , St. Louis , MO , USA
| | - R Reid Townsend
- b Internal Medicine, Washington University School of Medicine , St. Louis , MO , USA.,c Cell Biology & Physiology, Washington University School of Medicine , St. Louis , MO , USA
| | - Haruko Miyazaki
- d Laboratory of Structural Pathology, Doshisha University, Kyotanabe-shi, Kyoto , Japan
| | - Nobuyuki Nukina
- d Laboratory of Structural Pathology, Doshisha University, Kyotanabe-shi, Kyoto , Japan
| | - David M Ornitz
- a Department of Developmental Biology , Washington University School of Medicine , St. Louis , MO , USA
| | - Céline Marionneau
- e L'Institut du Thorax, INSERM UMR1087, CNRS UMR6291, Université de Nantes , Nantes , France
| |
Collapse
|
46
|
Alshammari MA, Alshammari TK, Nenov MN, Scala F, Laezza F. Fibroblast Growth Factor 14 Modulates the Neurogenesis of Granule Neurons in the Adult Dentate Gyrus. Mol Neurobiol 2015; 53:7254-7270. [PMID: 26687232 DOI: 10.1007/s12035-015-9568-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/29/2015] [Indexed: 11/25/2022]
Abstract
Adult neurogenesis, the production of mature neurons from progenitor cells in the adult mammalian brain, is linked to the etiology of neurodegenerative and psychiatric disorders. However, a thorough understanding of the molecular elements at the base of adult neurogenesis remains elusive. Here, we provide evidence for a previously undescribed function of fibroblast growth factor 14 (FGF14), a brain disease-associated factor that controls neuronal excitability and synaptic plasticity, in regulating adult neurogenesis in the dentate gyrus (DG). We found that FGF14 is dynamically expressed in restricted subtypes of sex determining region Y-box 2 (Sox2)-positive and doublecortin (DCX)-positive neural progenitors in the DG. Bromodeoxyuridine (BrdU) incorporation studies and confocal imaging revealed that genetic deletion of Fgf14 in Fgf14 -/- mice leads to a significant change in the proportion of proliferating and immature and mature newly born adult granule cells. This results in an increase in the late immature and early mature population of DCX and calretinin (CR)-positive neurons. Electrophysiological extracellular field recordings showed reduced minimal threshold response and impaired paired-pulse facilitation at the perforant path to DG inputs in Fgf14 -/- compared to Fgf14 +/+ mice, supporting disrupted synaptic connectivity as a correlative read-out to impaired neurogenesis. These new insights into the biology of FGF14 in neurogenesis shed light into the signaling pathways associated with disrupted functions in complex brain diseases.
Collapse
Affiliation(s)
- Musaad A Alshammari
- Pharmacology and Toxicology Graduate Program, The University of Texas Medical Branch, Galveston, TX, USA
- Graduate Studies Abroad Program, King Saud University, Riyadh, Saudi Arabia
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Medical Research Building 7.102B, 301 University Boulevard, Galveston, TX, 77555, USA
| | - Tahani K Alshammari
- Pharmacology and Toxicology Graduate Program, The University of Texas Medical Branch, Galveston, TX, USA
- Graduate Studies Abroad Program, King Saud University, Riyadh, Saudi Arabia
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Medical Research Building 7.102B, 301 University Boulevard, Galveston, TX, 77555, USA
| | - Miroslav N Nenov
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Medical Research Building 7.102B, 301 University Boulevard, Galveston, TX, 77555, USA
| | - Federico Scala
- Biophysics Graduate Program, Institute of Human Physiology, Università Cattolica, Rome, Italy
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Medical Research Building 7.102B, 301 University Boulevard, Galveston, TX, 77555, USA
| | - Fernanda Laezza
- Mitchell Center for Neurodegenerative Diseases, The University of Texas Medical Branch, Galveston, TX, USA.
- Center for Addiction Research, The University of Texas Medical Branch, Galveston, TX, USA.
- Center for Biomedical Engineering, The University of Texas Medical Branch, Galveston, TX, USA.
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Medical Research Building 7.102B, 301 University Boulevard, Galveston, TX, 77555, USA.
| |
Collapse
|
47
|
Coutelier M, Blesneac I, Monteil A, Monin ML, Ando K, Mundwiller E, Brusco A, Le Ber I, Anheim M, Castrioto A, Duyckaerts C, Brice A, Durr A, Lory P, Stevanin G. A Recurrent Mutation in CACNA1G Alters Cav3.1 T-Type Calcium-Channel Conduction and Causes Autosomal-Dominant Cerebellar Ataxia. Am J Hum Genet 2015; 97:726-37. [PMID: 26456284 DOI: 10.1016/j.ajhg.2015.09.007] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 09/18/2015] [Indexed: 12/20/2022] Open
Abstract
Hereditary cerebellar ataxias (CAs) are neurodegenerative disorders clinically characterized by a cerebellar syndrome, often accompanied by other neurological or non-neurological signs. All transmission modes have been described. In autosomal-dominant CA (ADCA), mutations in more than 30 genes are implicated, but the molecular diagnosis remains unknown in about 40% of cases. Implication of ion channels has long been an ongoing topic in the genetics of CA, and mutations in several channel genes have been recently connected to ADCA. In a large family affected by ADCA and mild pyramidal signs, we searched for the causative variant by combining linkage analysis and whole-exome sequencing. In CACNA1G, we identified a c.5144G>A mutation, causing an arginine-to-histidine (p.Arg1715His) change in the voltage sensor S4 segment of the T-type channel protein Cav3.1. Two out of 479 index subjects screened subsequently harbored the same mutation. We performed electrophysiological experiments in HEK293T cells to compare the properties of the p.Arg1715His and wild-type Cav3.1 channels. The current-voltage and the steady-state activation curves of the p.Arg1715His channel were shifted positively, whereas the inactivation curve had a higher slope factor. Computer modeling in deep cerebellar nuclei (DCN) neurons suggested that the mutation results in decreased neuronal excitability. Taken together, these data establish CACNA1G, which is highly expressed in the cerebellum, as a gene whose mutations can cause ADCA. This is consistent with the neuropathological examination, which showed severe Purkinje cell loss. Our study further extends our knowledge of the link between calcium channelopathies and CAs.
Collapse
|
48
|
Disruption of Fgf13 causes synaptic excitatory-inhibitory imbalance and genetic epilepsy and febrile seizures plus. J Neurosci 2015; 35:8866-81. [PMID: 26063919 DOI: 10.1523/jneurosci.3470-14.2015] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We identified a family in which a translocation between chromosomes X and 14 was associated with cognitive impairment and a complex genetic disorder termed "Genetic Epilepsy and Febrile Seizures Plus" (GEFS(+)). We demonstrate that the breakpoint on the X chromosome disrupted a gene that encodes an auxiliary protein of voltage-gated Na(+) channels, fibroblast growth factor 13 (Fgf13). Female mice in which one Fgf13 allele was deleted exhibited hyperthermia-induced seizures and epilepsy. Anatomic studies revealed expression of Fgf13 mRNA in both excitatory and inhibitory neurons of hippocampus. Electrophysiological recordings revealed decreased inhibitory and increased excitatory synaptic inputs in hippocampal neurons of Fgf13 mutants. We speculate that reduced expression of Fgf13 impairs excitability of inhibitory interneurons, resulting in enhanced excitability within local circuits of hippocampus and the clinical phenotype of epilepsy. These findings reveal a novel cause of this syndrome and underscore the powerful role of FGF13 in control of neuronal excitability.
Collapse
|
49
|
Intracellular FGF14 (iFGF14) Is Required for Spontaneous and Evoked Firing in Cerebellar Purkinje Neurons and for Motor Coordination and Balance. J Neurosci 2015; 35:6752-69. [PMID: 25926453 DOI: 10.1523/jneurosci.2663-14.2015] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Mutations in FGF14, which encodes intracellular fibroblast growth factor 14 (iFGF14), have been linked to spinocerebellar ataxia (SCA27). In addition, mice lacking Fgf14 (Fgf14(-/-)) exhibit an ataxia phenotype resembling SCA27, accompanied by marked changes in the excitability of cerebellar granule and Purkinje neurons. It is not known, however, whether these phenotypes result from defects in neuronal development or if they reflect a physiological requirement for iFGF14 in the adult cerebellum. Here, we demonstrate that the acute and selective Fgf14-targeted short hairpin RNA (shRNA)-mediated in vivo "knock-down" of iFGF14 in adult Purkinje neurons attenuates spontaneous and evoked action potential firing without measurably affecting the expression or localization of voltage-gated Na(+) (Nav) channels at Purkinje neuron axon initial segments. The selective shRNA-mediated in vivo "knock-down" of iFGF14 in adult Purkinje neurons also impairs motor coordination and balance. Repetitive firing can be restored in Fgf14-targeted shRNA-expressing Purkinje neurons, as well as in Fgf14(-/-) Purkinje neurons, by prior membrane hyperpolarization, suggesting that the iFGF14-mediated regulation of the excitability of mature Purkinje neurons depends on membrane potential. Further experiments revealed that the loss of iFGF14 results in a marked hyperpolarizing shift in the voltage dependence of steady-state inactivation of the Nav currents in adult Purkinje neurons. We also show here that expressing iFGF14 selectively in adult Fgf14(-/-) Purkinje neurons rescues spontaneous firing and improves motor performance. Together, these results demonstrate that iFGF14 is required for spontaneous and evoked action potential firing in adult Purkinje neurons, thereby controlling the output of these cells and the regulation of motor coordination and balance.
Collapse
|
50
|
Tempia F, Hoxha E, Negro G, Alshammari MA, Alshammari TK, Panova-Elektronova N, Laezza F. Parallel fiber to Purkinje cell synaptic impairment in a mouse model of spinocerebellar ataxia type 27. Front Cell Neurosci 2015; 9:205. [PMID: 26089778 PMCID: PMC4455242 DOI: 10.3389/fncel.2015.00205] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 05/11/2015] [Indexed: 11/13/2022] Open
Abstract
Genetically inherited mutations in the fibroblast growth factor 14 (FGF14) gene lead to spinocerebellar ataxia type 27 (SCA27), an autosomal dominant disorder characterized by heterogeneous motor and cognitive impairments. Consistently, genetic deletion of Fgf14 in Fgf14 (-/-) mice recapitulates salient features of the SCA27 human disease. In vitro molecular studies in cultured neurons indicate that the FGF14 (F145S) SCA27 allele acts as a dominant negative mutant suppressing the FGF14 wild type function and resulting in inhibition of voltage-gated Na(+) and Ca(2+) channels. To gain insights in the cerebellar deficits in the animal model of the human disease, we applied whole-cell voltage-clamp in the acute cerebellar slice preparation to examine the properties of parallel fibers (PF) to Purkinje neuron synapses in Fgf14 (-/-) mice and wild type littermates. We found that the AMPA receptor-mediated excitatory postsynaptic currents evoked by PF stimulation (PF-EPSCs) were significantly reduced in Fgf14 (-/-) animals, while short-term plasticity, measured as paired-pulse facilitation (PPF), was enhanced. Measuring Sr(2+)-induced release of quanta from stimulated synapses, we found that the size of the PF-EPSCs was unchanged, ruling out a postsynaptic deficit. This phenotype was corroborated by decreased expression of VGLUT1, a specific presynaptic marker at PF-Purkinje neuron synapses. We next examined the mGluR1 receptor-induced response (mGluR1-EPSC) that under normal conditions requires a gradual build-up of glutamate concentration in the synaptic cleft, and found no changes in these responses in Fgf14 (-/-) mice. These results provide evidence of a critical role of FGF14 in maintaining presynaptic function at PF-Purkinje neuron synapses highlighting critical target mechanisms to recapitulate the complexity of the SCA27 disease.
Collapse
Affiliation(s)
- Filippo Tempia
- Department of Pharmacology and Toxicology, University of Texas Medical Branch Galveston, TX, USA ; Department of Neuroscience, University of Torino Torino, Italy ; Neuroscience Institute Cavalieri Ottolenghi Torino, Italy ; National Institute of Neuroscience-Torino Italy
| | - Eriola Hoxha
- Department of Neuroscience, University of Torino Torino, Italy ; Neuroscience Institute Cavalieri Ottolenghi Torino, Italy
| | - Giulia Negro
- Neuroscience Institute Cavalieri Ottolenghi Torino, Italy
| | - Musaad A Alshammari
- Department of Pharmacology and Toxicology, University of Texas Medical Branch Galveston, TX, USA ; Pharmacology and Toxicology Graduate Program, University of Texas Medical Branch Galveston, Texas, USA ; King Saud University Graduate Studies Abroad Program Riyadh, Saudi Arabia
| | - Tahani K Alshammari
- Department of Pharmacology and Toxicology, University of Texas Medical Branch Galveston, TX, USA ; Pharmacology and Toxicology Graduate Program, University of Texas Medical Branch Galveston, Texas, USA ; King Saud University Graduate Studies Abroad Program Riyadh, Saudi Arabia
| | - Neli Panova-Elektronova
- Department of Pharmacology and Toxicology, University of Texas Medical Branch Galveston, TX, USA
| | - Fernanda Laezza
- Department of Pharmacology and Toxicology, University of Texas Medical Branch Galveston, TX, USA ; Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch Galveston, TX, USA ; Center for Addiction Research, University of Texas Medical Branch Galveston, TX, USA ; Center for Biomedical Engineering, University of Texas Medical Branch Galveston, TX, USA
| |
Collapse
|