1
|
Frith TJR, Briscoe J, Boezio GLM. From signalling to form: the coordination of neural tube patterning. Curr Top Dev Biol 2023; 159:168-231. [PMID: 38729676 DOI: 10.1016/bs.ctdb.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
The development of the vertebrate spinal cord involves the formation of the neural tube and the generation of multiple distinct cell types. The process starts during gastrulation, combining axial elongation with specification of neural cells and the formation of the neuroepithelium. Tissue movements produce the neural tube which is then exposed to signals that provide patterning information to neural progenitors. The intracellular response to these signals, via a gene regulatory network, governs the spatial and temporal differentiation of progenitors into specific cell types, facilitating the assembly of functional neuronal circuits. The interplay between the gene regulatory network, cell movement, and tissue mechanics generates the conserved neural tube pattern observed across species. In this review we offer an overview of the molecular and cellular processes governing the formation and patterning of the neural tube, highlighting how the remarkable complexity and precision of vertebrate nervous system arises. We argue that a multidisciplinary and multiscale understanding of the neural tube development, paired with the study of species-specific strategies, will be crucial to tackle the open questions.
Collapse
Affiliation(s)
| | - James Briscoe
- The Francis Crick Institute, London, United Kingdom.
| | | |
Collapse
|
2
|
Masak G, Davidson LA. Constructing the pharyngula: Connecting the primary axial tissues of the head with the posterior axial tissues of the tail. Cells Dev 2023; 176:203866. [PMID: 37394035 PMCID: PMC10756936 DOI: 10.1016/j.cdev.2023.203866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/04/2023] [Accepted: 06/29/2023] [Indexed: 07/04/2023]
Abstract
The pharyngula stage of vertebrate development is characterized by stereotypical arrangement of ectoderm, mesoderm, and neural tissues from the anterior spinal cord to the posterior, yet unformed tail. While early embryologists over-emphasized the similarity between vertebrate embryos at the pharyngula stage, there is clearly a common architecture upon which subsequent developmental programs generate diverse cranial structures and epithelial appendages such as fins, limbs, gills, and tails. The pharyngula stage is preceded by two morphogenetic events: gastrulation and neurulation, which establish common shared structures despite the occurrence of cellular processes that are distinct to each of the species. Even along the body axis of a singular organism, structures with seemingly uniform phenotypic characteristics at the pharyngula stage have been established by different processes. We focus our review on the processes underlying integration of posterior axial tissue formation with the primary axial tissues that creates the structures laid out in the pharyngula. Single cell sequencing and novel gene targeting technologies have provided us with new insights into the differences between the processes that form the anterior and posterior axis, but it is still unclear how these processes are integrated to create a seamless body. We suggest that the primary and posterior axial tissues in vertebrates form through distinct mechanisms and that the transition between these mechanisms occur at different locations along the anterior-posterior axis. Filling gaps that remain in our understanding of this transition could resolve ongoing problems in organoid culture and regeneration.
Collapse
Affiliation(s)
- Geneva Masak
- Integrative Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Lance A Davidson
- Integrative Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, USA; Department of Developmental Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA; Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
3
|
Schüle KM, Weckerle J, Probst S, Wehmeyer AE, Zissel L, Schröder CM, Tekman M, Kim GJ, Schlägl IM, Sagar, Arnold SJ. Eomes restricts Brachyury functions at the onset of mouse gastrulation. Dev Cell 2023; 58:1627-1642.e7. [PMID: 37633271 DOI: 10.1016/j.devcel.2023.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 06/12/2023] [Accepted: 07/31/2023] [Indexed: 08/28/2023]
Abstract
Mammalian specification of mesoderm and definitive endoderm (DE) is instructed by the two related Tbx transcription factors (TFs) Eomesodermin (Eomes) and Brachyury sharing partially redundant functions. Gross differences in mutant embryonic phenotypes suggest specific functions of each TF. To date, the molecular details of separated lineage-specific gene regulation by Eomes and Brachyury remain poorly understood. Here, we combine mouse embryonic and stem-cell-based analyses to delineate the non-overlapping, lineage-specific transcriptional activities. On a genome-wide scale, binding of both TFs overlaps at promoters of target genes but shows specificity for distal enhancer regions that is conferred by differences in Tbx DNA-binding motifs. The unique binding to enhancer sites instructs the specification of anterior mesoderm (AM) and DE by Eomes and caudal mesoderm by Brachyury. Remarkably, EOMES antagonizes BRACHYURY gene regulatory functions in coexpressing cells during early gastrulation to ensure the proper sequence of early AM and DE lineage specification followed by posterior mesoderm derivatives.
Collapse
Affiliation(s)
- Katrin M Schüle
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Albertstrasse 25, 79104 Freiburg, Germany.
| | - Jelena Weckerle
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Albertstrasse 25, 79104 Freiburg, Germany
| | - Simone Probst
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Albertstrasse 25, 79104 Freiburg, Germany
| | - Alexandra E Wehmeyer
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Albertstrasse 25, 79104 Freiburg, Germany
| | - Lea Zissel
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Albertstrasse 25, 79104 Freiburg, Germany; Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | - Chiara M Schröder
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Albertstrasse 25, 79104 Freiburg, Germany; Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Albertstrasse 19a, 79104 Freiburg, Germany; Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany; Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Schänzlestrasse18, 79104 Freiburg, Germany
| | - Mehmet Tekman
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Albertstrasse 25, 79104 Freiburg, Germany
| | - Gwang-Jin Kim
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Albertstrasse 25, 79104 Freiburg, Germany
| | - Inga-Marie Schlägl
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Albertstrasse 25, 79104 Freiburg, Germany
| | - Sagar
- Department of Medicine II, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Sebastian J Arnold
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Albertstrasse 25, 79104 Freiburg, Germany; Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Schänzlestrasse18, 79104 Freiburg, Germany.
| |
Collapse
|
4
|
Favarolo MB, Revinski DR, Garavaglia MJ, López SL. Nodal and churchill1 position the expression of a notch ligand during Xenopus germ layer segregation. Life Sci Alliance 2022; 5:5/12/e202201693. [PMID: 36180230 PMCID: PMC9604498 DOI: 10.26508/lsa.202201693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/24/2022] Open
Abstract
Churchill and Nodal signaling, which participate in vertebrates’ germ layer induction, position a domain of Delta/Notch activity, which refines germ layer boundaries during frog gastrulation. In vertebrates, Nodal signaling plays a major role in endomesoderm induction, but germ layer delimitation is poorly understood. In avian embryos, the neural/mesoderm boundary is controlled by the transcription factor CHURCHILL1, presumably through the repressor ZEB2, but there is scarce knowledge about its role in other vertebrates. During amphibian gastrulation, Delta/Notch signaling refines germ layer boundaries in the marginal zone, but it is unknown the place this pathway occupies in the network comprising Churchill1 and Nodal. Here, we show that Xenopus churchill1 is expressed in the presumptive neuroectoderm at mid-blastula transition and during gastrulation, upregulates zeb2, prevents dll1 expression in the neuroectoderm, and favors neuroectoderm over endomesoderm development. Nodal signaling prevents dll1 expression in the endoderm but induces it in the presumptive mesoderm, from where it activates Notch1 and its target gene hes4 in the non-involuting marginal zone. We propose a model where Nodal and Churchill1 position Dll1/Notch1/Hes4 domains in the marginal zone, ensuring the delimitation between mesoderm and neuroectoderm.
Collapse
Affiliation(s)
- María Belén Favarolo
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Biología Celular e Histología/1° U.A. Departamento de Histología, Embriología, Biología Celular y Genética, Buenos Aires, Argentina.,CONICET-Universidad de Buenos Aires, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), Laboratorio de Embriología Molecular "Prof. Dr. Andrés E. Carrasco", Buenos Aires, Argentina
| | - Diego R Revinski
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Biología Celular e Histología/1° U.A. Departamento de Histología, Embriología, Biología Celular y Genética, Buenos Aires, Argentina.,CONICET-Universidad de Buenos Aires, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), Laboratorio de Embriología Molecular "Prof. Dr. Andrés E. Carrasco", Buenos Aires, Argentina
| | - Matías J Garavaglia
- Laboratorio de Bioinsumos, Instituto de Biotecnología, Universidad Nacional de Hurlingham, Buenos Aires, Argentina
| | - Silvia L López
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Biología Celular e Histología/1° U.A. Departamento de Histología, Embriología, Biología Celular y Genética, Buenos Aires, Argentina .,CONICET-Universidad de Buenos Aires, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), Laboratorio de Embriología Molecular "Prof. Dr. Andrés E. Carrasco", Buenos Aires, Argentina
| |
Collapse
|
5
|
Schwaiger M, Andrikou C, Dnyansagar R, Murguia PF, Paganos P, Voronov D, Zimmermann B, Lebedeva T, Schmidt HA, Genikhovich G, Benvenuto G, Arnone MI, Technau U. An ancestral Wnt-Brachyury feedback loop in axial patterning and recruitment of mesoderm-determining target genes. Nat Ecol Evol 2022; 6:1921-1939. [PMID: 36396969 DOI: 10.1038/s41559-022-01905-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/12/2022] [Indexed: 11/18/2022]
Abstract
Transcription factors are crucial drivers of cellular differentiation during animal development and often share ancient evolutionary origins. The T-box transcription factor Brachyury plays a pivotal role as an early mesoderm determinant and neural repressor in vertebrates; yet, the ancestral function and key evolutionary transitions of the role of this transcription factor remain obscure. Here, we present a genome-wide target-gene screen using chromatin immunoprecipitation sequencing in the sea anemone Nematostella vectensis, an early branching non-bilaterian, and the sea urchin Strongylocentrotus purpuratus, a representative of the sister lineage of chordates. Our analysis reveals an ancestral gene regulatory feedback loop connecting Brachyury, FoxA and canonical Wnt signalling involved in axial patterning that predates the cnidarian-bilaterian split about 700 million years ago. Surprisingly, we also found that part of the gene regulatory network controlling the fate of neuromesodermal progenitors in vertebrates was already present in the common ancestor of cnidarians and bilaterians. However, while several endodermal and neuronal Brachyury target genes are ancestrally shared, hardly any of the key mesodermal downstream targets in vertebrates are found in the sea anemone or the sea urchin. Our study suggests that a limited number of target genes involved in mesoderm formation were newly acquired in the vertebrate lineage, leading to a dramatic shift in the function of this ancestral developmental regulator.
Collapse
Affiliation(s)
- Michaela Schwaiger
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences,University of Vienna, Vienna, Austria
- Friedrich Miescher Institute for Biomedical Research, Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Carmen Andrikou
- Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, Italy
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Rohit Dnyansagar
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences,University of Vienna, Vienna, Austria
| | - Patricio Ferrer Murguia
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences,University of Vienna, Vienna, Austria
| | | | - Danila Voronov
- Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, Italy
| | - Bob Zimmermann
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences,University of Vienna, Vienna, Austria
| | - Tatiana Lebedeva
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences,University of Vienna, Vienna, Austria
| | - Heiko A Schmidt
- Center for Integrative Bioinformatics Vienna, Max Perutz Labs, University of Vienna, Vienna, Austria
| | - Grigory Genikhovich
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences,University of Vienna, Vienna, Austria
| | | | | | - Ulrich Technau
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences,University of Vienna, Vienna, Austria.
- Max Perutz Labs, University of Vienna, Vienna, Austria.
- Research Platform 'Single Cell Regulation of Stem Cells', University of Vienna, Vienna, Austria.
| |
Collapse
|
6
|
Lee S, Kim KH, Lee ES, Kim VJ, Kim SP, Ban S, Wang KC, Lee JY. The transcriptomic landscape of caudal cell mass in different developmental stages of the chick embryo. Childs Nerv Syst 2022; 38:2101-2111. [PMID: 36181521 DOI: 10.1007/s00381-022-05675-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 09/12/2022] [Indexed: 11/03/2022]
Abstract
INTRODUCTION The caudal cell mass (CCM) is an aggregate of undifferentiated pluripotent cells and the main player in secondary neurulation. Previous studies have elucidated the dynamic fate of the multipotent cell lineages, with a recent interest in the neuromesodermal progenitors. However, a transcriptomic analysis of the CCM during secondary neurulation has not been performed yet. METHODS We analyzed RNA sequencing data of CCM samples at three different developmental stages of chicken embryos; HH16 (largest CCM phase), HH20 (secondary neural tube formation phase), and HH28 (degeneration phase). RESULTS The transcriptomic profiles were clearly distinguishable according to developmental stage, and HH20 was shown to have not only intermediate, but also unique properties in secondary neurulation. A total of 10,666 differentially expressed genes, including FGF18 and GDF11, were identified and enriched in several gene ontologies related to embryogenesis or organogenesis. We also found that genes encoding transcription factors, such as TWIST2, IRX4, HOXB4, HOXD13, LIN28A, CDX4, and Brachyury, were among the top-ranked differentially expressed genes. CONCLUSION Through transcriptomic profiling, we provided a picture of the developmental process of the CCM. We identified several key molecules or pathways involved in secondary neurulation and the pathogenesis of related diseases.
Collapse
Affiliation(s)
- Seungbok Lee
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, Republic of Korea.,Department of Pediatrics, Seoul National University College of Medicine, Seoul National University Children's Hospital, Seoul, Republic of Korea
| | - Kyung Hyun Kim
- Division of Pediatric Neurosurgery, Seoul National University Children's Hospital, Seoul, Republic of Korea.,Department of Anatomy and Cell Biology, Seoul National University College of Medicine, 101 Daehakro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Eun Sun Lee
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, 101 Daehakro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Veronica Jihyun Kim
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, 101 Daehakro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Saet Pyoul Kim
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, 101 Daehakro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Saeli Ban
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, 101 Daehakro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Kyu-Chang Wang
- Center for Rare Cancers, National Cancer Center, Goyang, Republic of Korea
| | - Ji Yeoun Lee
- Division of Pediatric Neurosurgery, Seoul National University Children's Hospital, Seoul, Republic of Korea. .,Department of Anatomy and Cell Biology, Seoul National University College of Medicine, 101 Daehakro, Jongno-gu, Seoul, 03080, Republic of Korea. .,Genomic Medicine Institute, Medical Research Center, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
7
|
Talbot CD, Walsh MD, Cutty SJ, Elsayed R, Vlachaki E, Bruce AEE, Wardle FC, Nelson AC. Eomes function is conserved between zebrafish and mouse and controls left-right organiser progenitor gene expression via interlocking feedforward loops. Front Cell Dev Biol 2022; 10:982477. [PMID: 36133924 PMCID: PMC9483813 DOI: 10.3389/fcell.2022.982477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
The T-box family transcription factor Eomesodermin (Eomes) is present in all vertebrates, with many key roles in the developing mammalian embryo and immune system. Homozygous Eomes mutant mouse embryos exhibit early lethality due to defects in both the embryonic mesendoderm and the extraembryonic trophoblast cell lineage. In contrast, zebrafish lacking the predominant Eomes homologue A (Eomesa) do not suffer complete lethality and can be maintained. This suggests fundamental differences in either the molecular function of Eomes orthologues or the molecular configuration of processes in which they participate. To explore these hypotheses we initially analysed the expression of distinct Eomes isoforms in various mouse cell types. Next we compared the functional capabilities of these murine isoforms to zebrafish Eomesa. These experiments provided no evidence for functional divergence. Next we examined the functions of zebrafish Eomesa and other T-box family members expressed in early development, as well as its paralogue Eomesb. Though Eomes is a member of the Tbr1 subfamily we found evidence for functional redundancy with the Tbx6 subfamily member Tbx16, known to be absent from eutherians. However, Tbx16 does not appear to synergise with Eomesa cofactors Mixl1 and Gata5. Finally, we analysed the ability of Eomesa and other T-box factors to induce zebrafish left-right organiser progenitors (known as dorsal forerunner cells) known to be positively regulated by vgll4l, a gene we had previously shown to be repressed by Eomesa. Here we demonstrate that Eomesa indirectly upregulates vgll4l expression via interlocking feedforward loops, suggesting a role in establishment of left-right asymmetry. Conversely, other T-box factors could not similarly induce left-right organiser progenitors. Overall these findings demonstrate conservation of Eomes molecular function and participation in similar processes, but differential requirements across evolution due to additional co-expressed T-box factors in teleosts, albeit with markedly different molecular capabilities. Our analyses also provide insights into the role of Eomesa in left-right organiser formation in zebrafish.
Collapse
Affiliation(s)
- Conor D. Talbot
- School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry, United Kingdom
| | - Mark D. Walsh
- School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry, United Kingdom
| | - Stephen J. Cutty
- Randall Centre for Cell and Molecular Biophysics, New Hunt’s House, Guy’s Campus, King’s College London, London, United Kingdom
| | - Randa Elsayed
- Warwick Medical School, Gibbet Hill Campus, University of Warwick, Coventry, United Kingdom
| | - Eirini Vlachaki
- School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry, United Kingdom
| | - Ashley E. E. Bruce
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Fiona C. Wardle
- Randall Centre for Cell and Molecular Biophysics, New Hunt’s House, Guy’s Campus, King’s College London, London, United Kingdom
| | - Andrew C. Nelson
- School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
8
|
Campbell GP, Farkas DR, Chapman DL. Ectopic expression of T in the paraxial mesoderm disrupts somite maturation in the mouse. Dev Biol 2022; 485:37-49. [PMID: 35276131 DOI: 10.1016/j.ydbio.2022.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 02/19/2022] [Accepted: 02/23/2022] [Indexed: 11/03/2022]
Abstract
T is the founding member of the T-box family of transcription factors; family members are critical for cell fate decisions and tissue morphogenesis throughout the animal kingdom. T is expressed in the primitive streak and notochord with mouse mutant studies revealing its critical role in mesoderm formation in the primitive streak and notochord integrity. We previously demonstrated that misexpression of Tbx6 in the paraxial and lateral plate mesoderm results in embryos resembling Tbx15 and Tbx18 nulls. This, together with results from in vitro transcriptional assays, suggested that ectopically expressed Tbx6 can compete with endogenously expressed Tbx15 and Tbx18 at the binding sites of target genes. Since T-box proteins share a similar DNA binding domain, we hypothesized that misexpressing T in the paraxial and lateral plate mesoderm would also interfere with the endogenous Tbx15 and Tbx18, causing embryonic phenotypes resembling those seen upon Tbx6 expression in the somites and limbs. Interestingly, ectopic T expression led to distinct embryonic phenotypes, specifically, reduced-sized somites in embryos expressing the highest levels of T, which ultimately affects axis length and neural tube morphogenesis. We further demonstrate that ectopic T leads to ectopic expression of Tbx6 and Mesogenin 1, known targets of T. These results suggests that ectopic T expression contributes to the phenotype by activating its own targets rather than via a straight competition with endogenous T-box factors.
Collapse
Affiliation(s)
- Gregory P Campbell
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Deborah R Farkas
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Deborah L Chapman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| |
Collapse
|
9
|
Godden AM, Antonaci M, Ward NJ, van der Lee M, Abu-Daya A, Guille M, Wheeler GN. An efficient miRNA knockout approach using CRISPR-Cas9 in Xenopus. Dev Biol 2022; 483:66-75. [PMID: 34968443 PMCID: PMC8865746 DOI: 10.1016/j.ydbio.2021.12.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 12/15/2021] [Accepted: 12/23/2021] [Indexed: 12/14/2022]
Abstract
In recent years CRISPR-Cas9 knockouts (KO) have become increasingly ultilised to study gene function. MicroRNAs (miRNAs) are short non-coding RNAs, 20-22 nucleotides long, which affect gene expression through post-transcriptional repression. We previously identified miRNAs-196a and -219 as implicated in the development of Xenopus neural crest (NC). The NC is a multipotent stem-cell population, specified during early neurulation. Following EMT, NC cells migrate to various points in the developing embryo where they give rise to a number of tissues including parts of the peripheral nervous system, pigment cells and craniofacial skeleton. Dysregulation of NC development results in many diseases grouped under the term neurocristopathies. As miRNAs are so small, it is difficult to design CRISPR sgRNAs that reproducibly lead to a KO. We have therefore designed a novel approach using two guide RNAs to effectively 'drop out' a miRNA. We have knocked out miR-196a and miR-219 and compared the results to morpholino knockdowns (KD) of the same miRNAs. Validation of efficient CRISPR miRNA KO and phenotype analysis included use of whole-mount in situ hybridization of key NC and neural plate border markers such as Pax3, Xhe2, Sox10 and Snail2, q-RT-PCR and Sanger sequencing. To show specificity we have also rescued the knockout phenotype using miRNA mimics. MiRNA-219 and miR-196a KO's both show loss of NC, altered neural plate and hatching gland phenotypes. Tadpoles show gross craniofacial and pigment phenotypes.
Collapse
Affiliation(s)
- Alice M Godden
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, United Kingdom
| | - Marco Antonaci
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, United Kingdom
| | - Nicole J Ward
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, United Kingdom
| | - Michael van der Lee
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, United Kingdom
| | - Anita Abu-Daya
- King Henry Building, King Henry I St, Portsmouth, PO1 2DY, United Kingdom
| | - Matthew Guille
- King Henry Building, King Henry I St, Portsmouth, PO1 2DY, United Kingdom
| | - Grant N Wheeler
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, United Kingdom.
| |
Collapse
|
10
|
Jansen C, Paraiso KD, Zhou JJ, Blitz IL, Fish MB, Charney RM, Cho JS, Yasuoka Y, Sudou N, Bright AR, Wlizla M, Veenstra GJC, Taira M, Zorn AM, Mortazavi A, Cho KWY. Uncovering the mesendoderm gene regulatory network through multi-omic data integration. Cell Rep 2022; 38:110364. [PMID: 35172134 PMCID: PMC8917868 DOI: 10.1016/j.celrep.2022.110364] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 10/30/2021] [Accepted: 01/19/2022] [Indexed: 01/01/2023] Open
Abstract
Mesendodermal specification is one of the earliest events in embryogenesis, where cells first acquire distinct identities. Cell differentiation is a highly regulated process that involves the function of numerous transcription factors (TFs) and signaling molecules, which can be described with gene regulatory networks (GRNs). Cell differentiation GRNs are difficult to build because existing mechanistic methods are low throughput, and high-throughput methods tend to be non-mechanistic. Additionally, integrating highly dimensional data composed of more than two data types is challenging. Here, we use linked self-organizing maps to combine chromatin immunoprecipitation sequencing (ChIP-seq)/ATAC-seq with temporal, spatial, and perturbation RNA sequencing (RNA-seq) data from Xenopus tropicalis mesendoderm development to build a high-resolution genome scale mechanistic GRN. We recover both known and previously unsuspected TF-DNA/TF-TF interactions validated through reporter assays. Our analysis provides insights into transcriptional regulation of early cell fate decisions and provides a general approach to building GRNs using highly dimensional multi-omic datasets.
Collapse
Affiliation(s)
- Camden Jansen
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA; Center for Complex Biological Systems, University of California, Irvine, CA, USA
| | - Kitt D Paraiso
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA; Center for Complex Biological Systems, University of California, Irvine, CA, USA
| | - Jeff J Zhou
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Ira L Blitz
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Margaret B Fish
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Rebekah M Charney
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Jin Sun Cho
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Yuuri Yasuoka
- Laboratory for Comprehensive Genomic Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Norihiro Sudou
- Department of Anatomy, School of Medicine, Toho University, Tokyo, Japan
| | - Ann Rose Bright
- Department of Molecular Developmental Biology, Radboud University, Nijmegen, the Netherlands
| | - Marcin Wlizla
- Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Gert Jan C Veenstra
- Department of Molecular Developmental Biology, Radboud University, Nijmegen, the Netherlands
| | - Masanori Taira
- Department of Biological Sciences, Chuo University, Tokyo, Japan
| | - Aaron M Zorn
- Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ali Mortazavi
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA; Center for Complex Biological Systems, University of California, Irvine, CA, USA.
| | - Ken W Y Cho
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA; Center for Complex Biological Systems, University of California, Irvine, CA, USA.
| |
Collapse
|
11
|
Della Gaspera B, Weill L, Chanoine C. Evolution of Somite Compartmentalization: A View From Xenopus. Front Cell Dev Biol 2022; 9:790847. [PMID: 35111756 PMCID: PMC8802780 DOI: 10.3389/fcell.2021.790847] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/26/2021] [Indexed: 11/13/2022] Open
Abstract
Somites are transitory metameric structures at the basis of the axial organization of vertebrate musculoskeletal system. During evolution, somites appear in the chordate phylum and compartmentalize mainly into the dermomyotome, the myotome, and the sclerotome in vertebrates. In this review, we summarized the existing literature about somite compartmentalization in Xenopus and compared it with other anamniote and amniote vertebrates. We also present and discuss a model that describes the evolutionary history of somite compartmentalization from ancestral chordates to amniote vertebrates. We propose that the ancestral organization of chordate somite, subdivided into a lateral compartment of multipotent somitic cells (MSCs) and a medial primitive myotome, evolves through two major transitions. From ancestral chordates to vertebrates, the cell potency of MSCs may have evolved and gave rise to all new vertebrate compartments, i.e., the dermomyome, its hypaxial region, and the sclerotome. From anamniote to amniote vertebrates, the lateral MSC territory may expand to the whole somite at the expense of primitive myotome and may probably facilitate sclerotome formation. We propose that successive modifications of the cell potency of some type of embryonic progenitors could be one of major processes of the vertebrate evolution.
Collapse
|
12
|
Schifferl D, Scholze-Wittler M, Wittler L, Veenvliet JV, Koch F, Herrmann BG. A 37 kb region upstream of brachyury comprising a notochord enhancer is essential for notochord and tail development. Development 2021; 148:273520. [PMID: 34822716 PMCID: PMC8722351 DOI: 10.1242/dev.200059] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 11/08/2021] [Indexed: 12/31/2022]
Abstract
The node-streak border region comprising notochord progenitor cells (NPCs) at the posterior node and neuro-mesodermal progenitor cells (NMPs) in the adjacent epiblast is the prime organizing center for axial elongation in mouse embryos. The T-box transcription factor brachyury (T) is essential for both formation of the notochord and maintenance of NMPs, and thus is a key regulator of trunk and tail development. The T promoter controlling T expression in NMPs and nascent mesoderm has been characterized in detail; however, control elements for T expression in the notochord have not been identified yet. We have generated a series of deletion alleles by CRISPR/Cas9 genome editing in mESCs, and analyzed their effects in mutant mouse embryos. We identified a 37 kb region upstream of T that is essential for notochord function and tailbud outgrowth. Within that region, we discovered a T-binding enhancer required for notochord cell specification and differentiation. Our data reveal a complex regulatory landscape controlling cell type-specific expression and function of T in NMP/nascent mesoderm and node/notochord, allowing proper trunk and tail development. Summary: Genetic dissection of the mouse brachyury locus identifies a notochord enhancer and predicts additional control elements essential for trunk and tail development of the mouse embryo.
Collapse
Affiliation(s)
- Dennis Schifferl
- Max Planck Institute for Molecular Genetics, Department of Developmental Genetics, Ihnestr. 63-73, 14195 Berlin, Germany.,Institute of Biology, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 1-3, 14195 Berlin, Germany
| | - Manuela Scholze-Wittler
- Max Planck Institute for Molecular Genetics, Department of Developmental Genetics, Ihnestr. 63-73, 14195 Berlin, Germany
| | - Lars Wittler
- Max Planck Institute for Molecular Genetics, Department of Developmental Genetics, Ihnestr. 63-73, 14195 Berlin, Germany
| | - Jesse V Veenvliet
- Max Planck Institute for Molecular Genetics, Department of Developmental Genetics, Ihnestr. 63-73, 14195 Berlin, Germany
| | - Frederic Koch
- Max Planck Institute for Molecular Genetics, Department of Developmental Genetics, Ihnestr. 63-73, 14195 Berlin, Germany
| | - Bernhard G Herrmann
- Max Planck Institute for Molecular Genetics, Department of Developmental Genetics, Ihnestr. 63-73, 14195 Berlin, Germany
| |
Collapse
|
13
|
Rankin SA, Steimle JD, Yang XH, Rydeen AB, Agarwal K, Chaturvedi P, Ikegami K, Herriges MJ, Moskowitz IP, Zorn AM. Tbx5 drives Aldh1a2 expression to regulate a RA-Hedgehog-Wnt gene regulatory network coordinating cardiopulmonary development. eLife 2021; 10:69288. [PMID: 34643182 PMCID: PMC8555986 DOI: 10.7554/elife.69288] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 09/23/2021] [Indexed: 12/14/2022] Open
Abstract
The gene regulatory networks that coordinate the development of the cardiac and pulmonary systems are essential for terrestrial life but poorly understood. The T-box transcription factor Tbx5 is critical for both pulmonary specification and heart development, but how these activities are mechanistically integrated remains unclear. Here using Xenopus and mouse embryos, we establish molecular links between Tbx5 and retinoic acid (RA) signaling in the mesoderm and between RA signaling and sonic hedgehog expression in the endoderm to unveil a conserved RA-Hedgehog-Wnt signaling cascade coordinating cardiopulmonary (CP) development. We demonstrate that Tbx5 directly maintains expression of aldh1a2, the RA-synthesizing enzyme, in the foregut lateral plate mesoderm via an evolutionarily conserved intronic enhancer. Tbx5 promotes posterior second heart field identity in a positive feedback loop with RA, antagonizing a Fgf8-Cyp regulatory module to restrict FGF activity to the anterior. We find that Tbx5/Aldh1a2-dependent RA signaling directly activates shh transcription in the adjacent foregut endoderm through a conserved MACS1 enhancer. Hedgehog signaling coordinates with Tbx5 in the mesoderm to activate expression of wnt2/2b, which induces pulmonary fate in the foregut endoderm. These results provide mechanistic insight into the interrelationship between heart and lung development informing CP evolution and birth defects.
Collapse
Affiliation(s)
- Scott A Rankin
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Jeffrey D Steimle
- Department of Pediatrics, University of Chicago, Chicago, United States.,Department of Pathology, University of Chicago, Chicago, United States.,Department of Human Genetics, University of Chicago, Chicago, United States
| | - Xinan H Yang
- Department of Pediatrics, University of Chicago, Chicago, United States.,Department of Pathology, University of Chicago, Chicago, United States.,Department of Human Genetics, University of Chicago, Chicago, United States
| | - Ariel B Rydeen
- Department of Pediatrics, University of Chicago, Chicago, United States.,Department of Pathology, University of Chicago, Chicago, United States.,Department of Human Genetics, University of Chicago, Chicago, United States
| | - Kunal Agarwal
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Praneet Chaturvedi
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Kohta Ikegami
- Department of Pediatrics, University of Chicago, Chicago, United States
| | | | - Ivan P Moskowitz
- Department of Pediatrics, University of Chicago, Chicago, United States.,Department of Pathology, University of Chicago, Chicago, United States.,Department of Human Genetics, University of Chicago, Chicago, United States
| | - Aaron M Zorn
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, United States.,University of Cincinnati, College of Medicine, Department of Pediatrics, Chicago, United States
| |
Collapse
|
14
|
Disappearance of Temporal Collinearity in Vertebrates and Its Eventual Reappearance. BIOLOGY 2021; 10:biology10101018. [PMID: 34681117 PMCID: PMC8533308 DOI: 10.3390/biology10101018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/03/2021] [Accepted: 10/05/2021] [Indexed: 12/04/2022]
Abstract
Simple Summary In 1999 T. Kondo and D. Duboule performed excisions of posterior upstream DNA domains in mouse embryos and they observed that for an extended excision (including Evx gene) the Hox genes of the cluster were simultaneously expressed with the first Hoxd1 gene ‘as if’ Temporal Collinearity (TC) had disappeared. According to a Biophysical Model (BM) during Hox gene expression, Hox clusters behave similar toexpanding elastic springs. For the extended upstream DNA excision, BM predicts the TC disappearance and an experiment is proposed to test this BM prediction. In the chick limb bud C. Tickle et al. observed that the excision of the apical ectodermal ridge (AER) caused the inhibition of HoxA13 expression. However, the implantation of FGF soaked beads at the tip of the limb could surprisingly rescue HoxA13 expression after 24 h so that TC is restored.Brachyury transcription factor (TF) is essential in identifying the targets of this transcription and a chromatin immunoprecipitation microarray chip (ChIP-chip) was produced which can be inserted in the mouse embryonic cells. It is here proposed to insert this chip in the mutant cells where TC has disappeared and compare it to the limb bud case.Is TC restored? It is an important issue worth exploring. Abstract It was observed that a cluster of ordered genes (Hox1, Hox2, Hox3…) in the genome are activated in the ontogenetic units (1, 2, 3 …) of an embryo along the Anterior/Posterior axis following the same order of the Hox genes. This Spatial Collinearity (SC) is very strange since it correlates events of very different spatial dimensions. It was later observed in vertebrates, that, in the above ordering, first is Hox1expressed in ontogenetic unit 1, followed later by Hox2 in unit 2 and even later Hox3 in unit 3. This temporal collinearity (TC) is an enigma and even to-day is explored in depth. In 1999 T. Kondo and D. Duboule, after posterior upstream extended DNA excisions, concluded that the Hox cluster behaves ‘as if’ TC disappears. Here the consideration of TC really disappearing is taken face value and its repercussions are analyzed. Furthermore, an experiment is proposed to test TC disappearance. An outcome of this experiment could be the reappearance (partial or total) of TC.
Collapse
|
15
|
Satoh N, Tominaga H, Kiyomoto M, Hisata K, Inoue J, Nishitsuji K. A Preliminary Single-Cell RNA-Seq Analysis of Embryonic Cells That Express Brachyury in the Amphioxus, Branchiostoma japonicum. Front Cell Dev Biol 2021; 9:696875. [PMID: 34336847 PMCID: PMC8321703 DOI: 10.3389/fcell.2021.696875] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/08/2021] [Indexed: 11/13/2022] Open
Abstract
Among chordate taxa, the cephalochordates diverged earlier than urochordates and vertebrates; thus, they retain unique, primitive developmental features. In particular, the amphioxus notochord has muscle-like properties, a feature not seen in urochordates or vertebrates. Amphioxus contains two Brachyury genes, Bra1 and Bra2. Bra2 is reportedly expressed in the blastopore, notochord, somites, and tail bud, in contrast to a low level of Bra1 expression only in notochord. To distinguish the expression profiles of the two Brachyury genes at the single-cell level, we carried out single-cell RNA-seq (scRNA-seq) analysis using the amphioxus, Branchiostoma japonicum. This scRNA-seq analysis classified B. japonicum embryonic cells into 15 clusters at developmental stages from midgastrula to early swimming larva. Brachyury was expressed in cells of clusters 4, 5, 8, and 9. We first confirmed that cluster 8 comprises cells that form somites since this cluster specifically expresses four myogenic factor genes. Cluster 9 contains a larger number of cells with high levels of Bra2 expression and a smaller number of cells with Bra1 expression. Simultaneous expression in cluster 9 of tool-kit genes, including FoxA, Goosecoid, and hedgehog, showed that this cluster comprises cells that form the notochord. Expression of Bra2, but not Bra1, in cells of clusters 4 and 5 at the gastrula stage together with expression of Wnt1 and Caudal indicates that clusters 4 and 5 comprise cells of the blastopore, which contiguously form the tail bud. In addition, Hox1, Hox3, and Hox4 were highly expressed in Bra2-expressing clusters 4, 5, 8, and 9 in a temporally coordinated manner, suggesting roles of anterior Hox genes in specification of mesodermal organs, including somites, notochord, and tail bud. This scRNA-seq analysis therefore highlights differences between the two Brachyury genes in relation to embryonic regions in which they are expressed and their levels of expression. Bra2 is the ancestral Brachyury in amphioxus, since expression in the blastopore is shared with other deuterostomes. On the other hand, Bra1 is a duplicate copy and likely evolved a supplementary function in notochord and somite formation in the Branchiostoma lineage.
Collapse
Affiliation(s)
- Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Hitoshi Tominaga
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Masato Kiyomoto
- Tateyama Marine Laboratory, Marine and Coastal Research Center, Ochanomizu University, Chiba, Japan
| | - Kanako Hisata
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Jun Inoue
- Atmosphere and Ocean Research Institute, University of Tokyo, Chiba, Japan
| | - Koki Nishitsuji
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| |
Collapse
|
16
|
Wymeersch FJ, Wilson V, Tsakiridis A. Understanding axial progenitor biology in vivo and in vitro. Development 2021; 148:148/4/dev180612. [PMID: 33593754 DOI: 10.1242/dev.180612] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The generation of the components that make up the embryonic body axis, such as the spinal cord and vertebral column, takes place in an anterior-to-posterior (head-to-tail) direction. This process is driven by the coordinated production of various cell types from a pool of posteriorly-located axial progenitors. Here, we review the key features of this process and the biology of axial progenitors, including neuromesodermal progenitors, the common precursors of the spinal cord and trunk musculature. We discuss recent developments in the in vitro production of axial progenitors and their potential implications in disease modelling and regenerative medicine.
Collapse
Affiliation(s)
- Filip J Wymeersch
- Laboratory for Human Organogenesis, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Valerie Wilson
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Anestis Tsakiridis
- Centre for Stem Cell Biology, Department of Biomedical Science, The University of Sheffield, Western Bank, Sheffield S10 2TN UK .,Neuroscience Institute, The University of Sheffield, Western Bank, Sheffield, S10 2TN UK
| |
Collapse
|
17
|
Bright AR, van Genesen S, Li Q, Grasso A, Frölich S, van der Sande M, van Heeringen SJ, Veenstra GJC. Combinatorial transcription factor activities on open chromatin induce embryonic heterogeneity in vertebrates. EMBO J 2021; 40:e104913. [PMID: 33555045 PMCID: PMC8090851 DOI: 10.15252/embj.2020104913] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 12/21/2020] [Accepted: 12/24/2020] [Indexed: 12/15/2022] Open
Abstract
During vertebrate gastrulation, mesoderm is induced in pluripotent cells, concomitant with dorsal‐ventral patterning and establishing of the dorsal axis. We applied single‐cell chromatin accessibility and transcriptome analyses to explore the emergence of cellular heterogeneity during gastrulation in Xenopus tropicalis. Transcriptionally inactive lineage‐restricted genes exhibit relatively open chromatin in animal caps, whereas chromatin accessibility in dorsal marginal zone cells more closely reflects transcriptional activity. We characterized single‐cell trajectories and identified head and trunk organizer cell clusters in early gastrulae. By integrating chromatin accessibility and transcriptome data, we inferred the activity of transcription factors in single‐cell clusters and tested the activity of organizer‐expressed transcription factors in animal caps, alone or in combination. The expression profile induced by a combination of Foxb1 and Eomes most closely resembles that observed in the head organizer. Genes induced by Eomes, Otx2, or the Irx3‐Otx2 combination are enriched for maternally regulated H3K4me3 modifications, whereas Lhx8‐induced genes are marked more frequently by zygotically controlled H3K4me3. Taken together, our results show that transcription factors cooperate in a combinatorial fashion in generally open chromatin to orchestrate zygotic gene expression.
Collapse
Affiliation(s)
- Ann Rose Bright
- Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands
| | - Siebe van Genesen
- Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands
| | - Qingqing Li
- Biomedical Pioneering Innovation Center, Peking University, Beijing, China
| | - Alexia Grasso
- Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands
| | - Siebren Frölich
- Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands
| | - Maarten van der Sande
- Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands
| | - Simon J van Heeringen
- Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands
| | - Gert Jan C Veenstra
- Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
18
|
Yuan L, Wang Y, Li G. Differential expression pattern of two Brachyury genes in amphioxus embryos. Gene Expr Patterns 2020; 38:119152. [PMID: 33115671 DOI: 10.1016/j.gep.2020.119152] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 10/20/2020] [Accepted: 10/20/2020] [Indexed: 10/23/2022]
Abstract
Cephalochordate amphioxus contain two Brachyury genes (AmphiBra1 and AmphiBra2). Using probes from the highly conserved coding regions, a summation of their expression profiles in amphioxus embryos have been investigated by several previous studies. However, their respective expression patterns have not been determined up to date. We here address this issue using both qRT-PCR and in situ hybridization methods (with probes from the divergent untranslated regions). qRT-PCR detected a very low maternal expression for AmphiBra2, but not for AmphiBra1. Zygotic expression of both genes are activated around early gastrula stage and change in a similar pattern at subsequent stages. However, compared to AmphiBra1, the expression level of AmphiBra2 is much higher in all examined stages of embryos; in some extreme cases an over fifty-times difference is observed. In situ hybridization and embryonic sections reveal that while AmphiBra2 is highly expressed in the blastopore, the tail bud and the notochord, AmphiBra1 is weakly transcribed only in the notochord. Our results show that the two Brachyury genes, resulted from a lineage-specific duplication in amphioxus, have evolved different embryonic expression profiles.
Collapse
Affiliation(s)
- Liang Yuan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiangan District, Xiamen, Fujian, 361102, China; School of Life Sciences, Xinjiang Normal University, Saybagh District, Urumqi, Xinjiang, 830054, China
| | - Yiquan Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiangan District, Xiamen, Fujian, 361102, China
| | - Guang Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiangan District, Xiamen, Fujian, 361102, China.
| |
Collapse
|
19
|
Ossipova O, Itoh K, Radu A, Ezan J, Sokol SY. Pinhead signaling regulates mesoderm heterogeneity via the FGF receptor-dependent pathway. Development 2020; 147:dev188094. [PMID: 32859582 PMCID: PMC7502591 DOI: 10.1242/dev.188094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 08/04/2020] [Indexed: 12/29/2022]
Abstract
Among the three embryonic germ layers, the mesoderm plays a central role in the establishment of the vertebrate body plan. The mesoderm is specified by secreted signaling proteins from the FGF, Nodal, BMP and Wnt families. No new classes of extracellular mesoderm-inducing factors have been identified in more than two decades. Here, we show that the pinhead (pnhd) gene encodes a secreted protein that is essential for the activation of a subset of mesodermal markers in the Xenopus embryo. RNA sequencing revealed that many transcriptional targets of Pnhd are shared with those of the FGF pathway. Pnhd activity was accompanied by Erk phosphorylation and required FGF and Nodal but not Wnt signaling. We propose that during gastrulation Pnhd acts in the marginal zone to contribute to mesoderm heterogeneity via an FGF receptor-dependent positive feedback mechanism.
Collapse
Affiliation(s)
- Olga Ossipova
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Keiji Itoh
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Aurelian Radu
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jerome Ezan
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sergei Y Sokol
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
20
|
Bruce AEE, Winklbauer R. Brachyury in the gastrula of basal vertebrates. Mech Dev 2020; 163:103625. [PMID: 32526279 DOI: 10.1016/j.mod.2020.103625] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/11/2020] [Accepted: 06/03/2020] [Indexed: 12/20/2022]
Abstract
The Brachyury gene encodes a transcription factor that is conserved across all animals. In non-chordate metazoans, brachyury is primarily expressed in ectoderm regions that are added to the endodermal gut during development, and often form a ring around the site of endoderm internalization in the gastrula, the blastopore. In chordates, this brachyury ring is conserved, but the gene has taken on a new role in the formation of the mesoderm. In this phylum, a novel type of mesoderm that develops into notochord and somites has been added to the ancestral lateral plate mesoderm. Brachyury contributes to a shift in cell fate from neural ectoderm to posterior notochord and somites during a major lineage segregation event that in Xenopus and in the zebrafish takes place in the early gastrula. In the absence of this brachyury function, impaired formation of posterior mesoderm indirectly affects the gastrulation movements of peak involution and convergent extension. These movements are confined to specific regions and stages, leaving open the question why brachyury expression in an extensive, coherent ring, before, during and after gastrulation, is conserved in the two species whose gastrulation modes differ considerably, and also in many other metazoan gastrulae of diverse structure.
Collapse
Affiliation(s)
- Ashley E E Bruce
- Department of Cell and Systems Biology, University of Toronto, Canada
| | - Rudolf Winklbauer
- Department of Cell and Systems Biology, University of Toronto, Canada.
| |
Collapse
|
21
|
Reich S, Kayastha P, Teegala S, Weinstein DC. Tbx2 mediates dorsal patterning and germ layer suppression through inhibition of BMP/GDF and Activin/Nodal signaling. BMC Mol Cell Biol 2020; 21:39. [PMID: 32466750 PMCID: PMC7257154 DOI: 10.1186/s12860-020-00282-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 05/11/2020] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Members of the T-box family of DNA-binding proteins play a prominent role in the differentiation of the three primary germ layers. VegT, Brachyury, and Eomesodermin function as transcriptional activators and, in addition to directly activating the transcription of endoderm- and mesoderm-specific genes, serve as regulators of growth factor signaling during induction of these germ layers. In contrast, the T-box gene, tbx2, is expressed in the embryonic ectoderm, where Tbx2 functions as a transcriptional repressor and inhibits mesendodermal differentiation by the TGFβ ligand Activin. Tbx2 misexpression also promotes dorsal ectodermal fate via inhibition of the BMP branch of the TGFβ signaling network. RESULTS Here, we report a physical association between Tbx2 and both Smad1 and Smad2, mediators of BMP and Activin/Nodal signaling, respectively. We perform structure/function analysis of Tbx2 to elucidate the roles of both Tbx2-Smad interaction and Tbx2 DNA-binding in germ layer suppression. CONCLUSION Our studies demonstrate that Tbx2 associates with intracellular mediators of the Activin/Nodal and BMP/GDF pathways. We identify a novel repressor domain within Tbx2, and have determined that Tbx2 DNA-binding activity is required for repression of TGFβ signaling. Finally, our data also point to overlapping yet distinct mechanisms for Tbx2-mediated repression of Activin/Nodal and BMP/GDF signaling.
Collapse
Affiliation(s)
- Shoshana Reich
- The Graduate Center, The City University of New York, New York, NY, 10016, USA
| | - Peter Kayastha
- Department of Biology, Queens College, The City University of New York, Queens, NY, 11367, USA
| | - Sushma Teegala
- Department of Biology, Queens College, The City University of New York, Queens, NY, 11367, USA
| | - Daniel C Weinstein
- The Graduate Center, The City University of New York, New York, NY, 10016, USA. .,Department of Biology, Queens College, The City University of New York, Queens, NY, 11367, USA.
| |
Collapse
|
22
|
Gilchrist MJ, Cho KWY, Veenstra GJC. Genomics Methods for Xenopus Embryos and Tissues. Cold Spring Harb Protoc 2020; 2020:097915. [PMID: 32123020 DOI: 10.1101/pdb.top097915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
High-throughput sequencing methods have created exciting opportunities to explore the regulatory landscape of the entire genome. Here we introduce methods to characterize the genomic locations of bound proteins, open chromatin, and sites of DNA-DNA contact in Xenopus embryos. These methods include chromatin immunoprecipitation followed by sequencing (ChIP-seq), a combination of DNase I digestion and sequencing (DNase-seq), the assay for transposase-accessible chromatin and sequencing (ATAC-seq), and the use of proximity-based DNA ligation followed by sequencing (Hi-C).
Collapse
Affiliation(s)
| | - Ken W Y Cho
- Department of Developmental and Cell Biology, University of California, Irvine, California 92697;
| | - Gert Jan C Veenstra
- Radboud University, Department of Molecular Developmental Biology, 6525GA Nijmegen, The Netherlands
| |
Collapse
|
23
|
Osborn DPS, Li K, Cutty SJ, Nelson AC, Wardle FC, Hinits Y, Hughes SM. Fgf-driven Tbx protein activities directly induce myf5 and myod to initiate zebrafish myogenesis. Development 2020; 147:147/8/dev184689. [PMID: 32345657 PMCID: PMC7197714 DOI: 10.1242/dev.184689] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 02/14/2020] [Indexed: 01/02/2023]
Abstract
Skeletal muscle derives from dorsal mesoderm formed during vertebrate gastrulation. Fibroblast growth factor (Fgf) signalling cooperates with Tbx transcription factors to promote dorsal mesoderm formation, but their role in myogenesis has been unclear. Using zebrafish, we show that dorsally derived Fgf signals act through Tbx16 and Tbxta to induce slow and fast trunk muscle precursors at distinct dorsoventral positions. Tbx16 binds to and directly activates the myf5 and myod genes, which are required for commitment to myogenesis. Tbx16 activity depends on Fgf signalling from the organiser. In contrast, Tbxta is not required for myf5 expression, but binds a specific site upstream of myod that is not bound by Tbx16 and drives (dependent on Fgf signals) myod expression in adaxial slow precursors, thereby initiating trunk myogenesis. After gastrulation, when similar muscle cell populations in the post-anal tail are generated from tailbud, declining Fgf signalling is less effective at initiating adaxial myogenesis, which is instead initiated by Hedgehog signalling from the notochord. Our findings suggest a hypothesis for ancestral vertebrate trunk myogenic patterning and how it was co-opted during tail evolution to generate similar muscle by new mechanisms. This article has an associated ‘The people behind the papers’ interview. Highlighted Article: Tbx16 and Tbxta activate myf5 and myod directly during the earliest myogenesis in zebrafish, and Fgf signalling acts through Tbx16 to drive myogenesis in trunk but not tail.
Collapse
Affiliation(s)
- Daniel P S Osborn
- Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, SE1 1UL, UK
| | - Kuoyu Li
- Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, SE1 1UL, UK
| | - Stephen J Cutty
- Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, SE1 1UL, UK
| | - Andrew C Nelson
- Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, SE1 1UL, UK
| | - Fiona C Wardle
- Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, SE1 1UL, UK
| | - Yaniv Hinits
- Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, SE1 1UL, UK
| | - Simon M Hughes
- Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, SE1 1UL, UK
| |
Collapse
|
24
|
Paraiso KD, Cho JS, Yong J, Cho KWY. Early Xenopus gene regulatory programs, chromatin states, and the role of maternal transcription factors. Curr Top Dev Biol 2020; 139:35-60. [PMID: 32450966 PMCID: PMC11344482 DOI: 10.1016/bs.ctdb.2020.02.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
For decades, the early development of the Xenopus embryo has been an essential model system to study the gene regulatory mechanisms that govern cellular specification. At the top of the hierarchy of gene regulatory networks, maternally deposited transcription factors initiate this process and regulate the expression of zygotic genes that give rise to three distinctive germ layer cell types (ectoderm, mesoderm, and endoderm), and subsequent generation of organ precursors. The onset of germ layer specification is also closely coupled with changes associated with chromatin modifications. This review will examine the timing of maternal transcription factors initiating the zygotic genome activation, the epigenetic landscape of embryonic chromatin, and the network structure that governs the process.
Collapse
Affiliation(s)
- Kitt D Paraiso
- Department of Developmental and Cell Biology, University of California, Irvine, CA, United States; Center for Complex Biological Systems, University of California, Irvine, CA, United States
| | - Jin S Cho
- Department of Developmental and Cell Biology, University of California, Irvine, CA, United States
| | - Junseok Yong
- Department of Developmental and Cell Biology, University of California, Irvine, CA, United States
| | - Ken W Y Cho
- Department of Developmental and Cell Biology, University of California, Irvine, CA, United States; Center for Complex Biological Systems, University of California, Irvine, CA, United States.
| |
Collapse
|
25
|
Paraiso KD, Blitz IL, Zhou JJ, Cho KWY. Morpholinos Do Not Elicit an Innate Immune Response during Early Xenopus Embryogenesis. Dev Cell 2020; 49:643-650.e3. [PMID: 31112700 DOI: 10.1016/j.devcel.2019.04.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 03/14/2019] [Accepted: 04/16/2019] [Indexed: 02/06/2023]
Abstract
It has recently been reported that a common side effect of translation-blocking morpholino antisense oligonucleotides is the induction of a set of innate immune response genes in Xenopus embryos and that splicing-blocking morpholinos lead to unexpected off-target mis-splicing events. Here, we present an analysis of all publicly available Xenopus RNA sequencing (RNA-seq) data in a reexamination of the effects of translation-blocking morpholinos on the innate immune response. Our analysis does not support the authors' general conclusion, which was based on a limited number of RNA-seq datasets. Moreover, the strong induction of an immune response appears to be specific to the tbxt/tbxt2 morpholinos. The more comprehensive study presented here indicates that using morpholinos for targeted gene knockdowns remains of considerable value for the rapid identification of gene function.
Collapse
Affiliation(s)
- Kitt D Paraiso
- Developmental and Cell Biology, University of California, Irvine, CA, USA; Center for Complex Biological Systems, University of California, Irvine, CA, USA
| | - Ira L Blitz
- Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Jeff J Zhou
- Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Ken W Y Cho
- Developmental and Cell Biology, University of California, Irvine, CA, USA; Center for Complex Biological Systems, University of California, Irvine, CA, USA.
| |
Collapse
|
26
|
Eomes and Brachyury control pluripotency exit and germ-layer segregation by changing the chromatin state. Nat Cell Biol 2019; 21:1518-1531. [PMID: 31792383 DOI: 10.1038/s41556-019-0423-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 10/24/2019] [Indexed: 12/20/2022]
Abstract
The first lineage specification of pluripotent mouse epiblast segregates neuroectoderm (NE) from mesoderm and definitive endoderm (ME) by mechanisms that are not well understood. Here we demonstrate that the induction of ME gene programs critically relies on the T-box transcription factors Eomesodermin (also known as Eomes) and Brachyury, which concomitantly repress pluripotency and NE gene programs. Cells deficient in these T-box transcription factors retain pluripotency and differentiate to NE lineages despite the presence of ME-inducing signals transforming growth factor β (TGF-β)/Nodal and Wnt. Pluripotency and NE gene networks are additionally repressed by ME factors downstream of T-box factor induction, demonstrating a redundancy in program regulation to safeguard mutually exclusive lineage specification. Analyses of chromatin revealed that accessibility of ME enhancers depends on T-box factor binding, whereas NE enhancers are accessible and already activation primed at pluripotency. This asymmetry of the chromatin landscape thus explains the default differentiation of pluripotent cells to NE in the absence of ME induction that depends on activating and repressive functions of Eomes and Brachyury.
Collapse
|
27
|
Gentsch GE, Spruce T, Owens NDL, Smith JC. Maternal pluripotency factors initiate extensive chromatin remodelling to predefine first response to inductive signals. Nat Commun 2019; 10:4269. [PMID: 31537794 PMCID: PMC6753111 DOI: 10.1038/s41467-019-12263-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 08/30/2019] [Indexed: 12/14/2022] Open
Abstract
Embryonic development yields many different cell types in response to just a few families of inductive signals. The property of signal-receiving cells that determines how they respond to inductive signals is known as competence, and it differs in different cell types. Here, we explore the ways in which maternal factors modify chromatin to specify initial competence in the frog Xenopus tropicalis. We identify early-engaged regulatory DNA sequences, and infer from them critical activators of the zygotic genome. Of these, we show that the pioneering activity of the maternal pluripotency factors Pou5f3 and Sox3 determines competence for germ layer formation by extensively remodelling compacted chromatin before the onset of inductive signalling. This remodelling includes the opening and marking of thousands of regulatory elements, extensive chromatin looping, and the co-recruitment of signal-mediating transcription factors. Our work identifies significant developmental principles that inform our understanding of how pluripotent stem cells interpret inductive signals.
Collapse
Affiliation(s)
- George E Gentsch
- Developmental Biology Laboratory, The Francis Crick Institute, London, NW1 1AT, UK.
| | - Thomas Spruce
- Centre for Genomic Regulation, Barcelona Institute for Science and Technology, 08003, Barcelona, Spain
| | - Nick D L Owens
- Department of Stem Cell and Developmental Biology, Pasteur Institute, 75015, Paris, France
| | - James C Smith
- Developmental Biology Laboratory, The Francis Crick Institute, London, NW1 1AT, UK.
| |
Collapse
|
28
|
Abstract
Soon after fertilization the zebrafish embryo generates the pool of cells that will give rise to the germline and the three somatic germ layers of the embryo (ectoderm, mesoderm and endoderm). As the basic body plan of the vertebrate embryo emerges, evolutionarily conserved developmental signaling pathways, including Bmp, Nodal, Wnt, and Fgf, direct the nearly totipotent cells of the early embryo to adopt gene expression profiles and patterns of cell behavior specific to their eventual fates. Several decades of molecular genetics research in zebrafish has yielded significant insight into the maternal and zygotic contributions and mechanisms that pattern this vertebrate embryo. This new understanding is the product of advances in genetic manipulations and imaging technologies that have allowed the field to probe the cellular, molecular and biophysical aspects underlying early patterning. The current state of the field indicates that patterning is governed by the integration of key signaling pathways and physical interactions between cells, rather than a patterning system in which distinct pathways are deployed to specify a particular cell fate. This chapter focuses on recent advances in our understanding of the genetic and molecular control of the events that impart cell identity and initiate the patterning of tissues that are prerequisites for or concurrent with movements of gastrulation.
Collapse
Affiliation(s)
- Florence L Marlow
- Icahn School of Medicine Mount Sinai Department of Cell, Developmental and Regenerative Biology, New York, NY, United States.
| |
Collapse
|
29
|
Abstract
Znf703 is an RAR- and Wnt-inducible transcription factor that exhibits a complex expression pattern in the developing embryo: Znf703 mRNA is found in the early circumblastoporal ring, then later throughout the neural plate and its border, and subsequently in the mid/hindbrain and somites. We show that Znf703 has a different and separable function in early mesoderm versus neural crest and placode development. Independent of its early knockdown phenotype on Gdf3 and Wnt8, Znf703 disrupts patterning of distinct neural crest migratory streams normally delineated by Sox10, Twist, and Foxd3 and inhibits otocyst formation and otic expression of Sox10 and Eya1. Furthermore, Znf703 promotes massive overgrowth of SOX2+ cells, disrupting the SoxB1 balance at the neural plate border. Despite prominent expression in other neural plate border-derived cranial and sensory domains, Znf703 is selectively absent from the otocyst, suggesting that Znf703 must be specifically cleared or down-regulated for proper otic development. We show that mutation of the putative Groucho-repression domain does not ameliorate Znf703 effects on mesoderm, neural crest, and placodes. We instead provide evidence that Znf703 requires the Buttonhead domain for transcriptional repression.
Collapse
|
30
|
Polevoy H, Gutkovich YE, Michaelov A, Volovik Y, Elkouby YM, Frank D. New roles for Wnt and BMP signaling in neural anteroposterior patterning. EMBO Rep 2019; 20:embr.201845842. [PMID: 30936121 DOI: 10.15252/embr.201845842] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/04/2019] [Accepted: 03/07/2019] [Indexed: 01/19/2023] Open
Abstract
During amphibian development, neural patterning occurs via a two-step process. Spemann's organizer secretes BMP antagonists that induce anterior neural tissue. A subsequent caudalizing step re-specifies anterior fated cells to posterior fates such as hindbrain and spinal cord. The neural patterning paradigm suggests that a canonical Wnt-signaling gradient acts along the anteroposterior axis to pattern the nervous system. Wnt activity is highest in the posterior, inducing spinal cord, at intermediate levels in the trunk, inducing hindbrain, and is lowest in anterior fated forebrain, while BMP-antagonist levels are constant along the axis. Our results in Xenopus laevis challenge this paradigm. We find that inhibition of canonical Wnt signaling or its downstream transcription factors eliminates hindbrain, but not spinal cord fates, an observation not compatible with a simple high-to-low Wnt gradient specifying all fates along the neural anteroposterior axis. Additionally, we find that BMP activity promotes posterior spinal cord cell fate formation in an FGF-dependent manner, while inhibiting hindbrain fates. These results suggest a need to re-evaluate the paradigms of neural anteroposterior pattern formation during vertebrate development.
Collapse
Affiliation(s)
- Hanna Polevoy
- Department of Biochemistry, Faculty of Medicine, The Rappaport Family Institute for Research in the Medical Sciences, Technion - Israel Institute of Technology, Haifa, Israel
| | - Yoni E Gutkovich
- Department of Biochemistry, Faculty of Medicine, The Rappaport Family Institute for Research in the Medical Sciences, Technion - Israel Institute of Technology, Haifa, Israel
| | - Ariel Michaelov
- Department of Biochemistry, Faculty of Medicine, The Rappaport Family Institute for Research in the Medical Sciences, Technion - Israel Institute of Technology, Haifa, Israel
| | - Yael Volovik
- Department of Biochemistry, Faculty of Medicine, The Rappaport Family Institute for Research in the Medical Sciences, Technion - Israel Institute of Technology, Haifa, Israel
| | - Yaniv M Elkouby
- Department of Biochemistry, Faculty of Medicine, The Rappaport Family Institute for Research in the Medical Sciences, Technion - Israel Institute of Technology, Haifa, Israel
| | - Dale Frank
- Department of Biochemistry, Faculty of Medicine, The Rappaport Family Institute for Research in the Medical Sciences, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
31
|
Gentsch GE, Smith JC. Mapping Chromatin Features of Xenopus Embryos. Cold Spring Harb Protoc 2019; 2019:pdb.prot100263. [PMID: 30606752 DOI: 10.1101/pdb.prot100263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Chromatin immunoprecipitation (ChIP) combined with genomic analysis provides a global snapshot of protein-DNA interactions in the context of chromatin, yielding insights into which genome loci might be regulated by the DNA-associated protein under investigation. This protocol is an update of a previous version and describes how to perform ChIP on intact or dissected Xenopus embryos. The ChIP-isolated DNA fragments are suitable for both deep sequencing (ChIP-Seq) and quantitative polymerase chain reaction (ChIP-qPCR). General advice for qPCR and for making ChIP-Seq libraries is offered, and approaches for analyzing ChIP-Seq data are outlined.
Collapse
Affiliation(s)
- George E Gentsch
- Developmental Biology Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - James C Smith
- Developmental Biology Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom
| |
Collapse
|
32
|
Chang S, Lu X, Wang S, Wang Z, Huo J, Huang J, Shangguan S, Li S, Zou J, Bao Y, Guo J, Wang F, Niu B, Zhang T, Qiu Z, Wu J, Wang L. The effect of folic acid deficiency on FGF pathway via Brachyury regulation in neural tube defects. FASEB J 2018; 33:4688-4702. [PMID: 30592646 DOI: 10.1096/fj.201801536r] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Folate deficiency in early development leads to disturbance in multiple processes, including neurogenesis during which fibroblast growth factor (FGF) pathway is one of the crucial pathways. Whether folic acid (FA) directly affects FGF pathways to influence neurodevelopment and the possible mechanism remains unclear. In this study, we presented evidence that in human FA-insufficient encephalocele, the FGF pathway was interfered. Furthermore, in Brachyury knockout mice devoid of such T-box transcription factors regulating embryonic neuromesodermal bipotency and a key component of FGF pathway, change in expression of Brachyury downstream targets, activator Fgf8 and suppressor dual specificity phosphatase 6 was detected, along with the reduction in expression of other key FGF pathway genes. By using a FA-deficient cell model, we further demonstrated that decrease in Brachyury expression was through alteration in hypermethylation at the Brachyury promoter region under FA deficiency conditions, and suppression of Brachyury promoted the inactivation of the FGF pathway. Correspondingly, FA supplementation partially reverses the effects seen in FA-deficient embryoid bodies. Lastly, in mice with maternal folate-deficient diets, aberrant FGF pathway activity was found in fetal brain dysplasia. Taken together, our findings highlight the effect of FA on FGF pathways during neurogenesis, and the mechanism may be due to the low expression of Brachyury gene via hypermethylation under FA-insufficient conditions.-Chang, S., Lu, X., Wang, S., Wang, Z., Huo, J., Huang, J., Shangguan, S., Li, S., Zou, J., Bao, Y., Guo, J., Wang, F., Niu, B., Zhang, T., Qiu, Z., Wu, J., Wang, L. The effect of folic acid deficiency on FGF pathway via Brachyury regulation in neural tube defects.
Collapse
Affiliation(s)
- Shaoyan Chang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Xiaolin Lu
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Shan Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Zhigang Wang
- Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Junsheng Huo
- Key Laboratory of Trace Element Nutrition of National Health and Family Planning Commission of the People's Republic of China, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, China; and
| | - Jian Huang
- Key Laboratory of Trace Element Nutrition of National Health and Family Planning Commission of the People's Republic of China, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, China; and
| | - Shaofang Shangguan
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Shen Li
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Jizhen Zou
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Yihua Bao
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Jin Guo
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Fang Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Bo Niu
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Ting Zhang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Zhiyong Qiu
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Jianxin Wu
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Li Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| |
Collapse
|
33
|
An Evolutionarily Conserved Mesodermal Enhancer in Vertebrate Zic3. Sci Rep 2018; 8:14954. [PMID: 30297839 PMCID: PMC6175831 DOI: 10.1038/s41598-018-33235-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 09/25/2018] [Indexed: 11/08/2022] Open
Abstract
Zic3 encodes a zinc finger protein essential for the development of meso-ectodermal tissues. In mammals, Zic3 has important roles in the development of neural tube, axial skeletons, left-right body axis, and in maintaining pluripotency of ES cells. Here we characterized cis-regulatory elements required for Zic3 expression. Enhancer activities of human-chicken-conserved noncoding sequences around Zic1 and Zic3 were screened using chick whole-embryo electroporation. We identified enhancers for meso-ectodermal tissues. Among them, a mesodermal enhancer (Zic3-ME) in distant 3' flanking showed robust enhancement of reporter gene expression in the mesodermal tissue of chicken and mouse embryos, and was required for mesodermal Zic3 expression in mice. Zic3-ME minimal core region is included in the DNase hypersensitive region of ES cells, mesoderm, and neural progenitors, and was bound by T (Brachyury), Eomes, Lef1, Nanog, Oct4, and Zic2. Zic3-ME is derived from an ancestral sequence shared with a sequence encoding a mitochondrial enzyme. These results indicate that Zic3-ME is an integrated cis-regulatory element essential for the proper expression of Zic3 in vertebrates, serving as a hub for a gene regulatory network including Zic3.
Collapse
|
34
|
Xbra and Smad-1 cooperate to activate the transcription of neural repressor ventx1.1 in Xenopus embryos. Sci Rep 2018; 8:11391. [PMID: 30061699 PMCID: PMC6065435 DOI: 10.1038/s41598-018-29740-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 07/17/2018] [Indexed: 01/12/2023] Open
Abstract
Crosstalk of signaling pathways play crucial roles in cell proliferation, cell differentiation, and cell fate determination for development. In the case of ventx1.1 in Xenopus embryos, both BMP-4/Smad-1 and FGF/Xbra signaling induce the expression of neural repressor ventx1.1. However, the details of how these two pathways interact and lead to neural inhibition by ventx1.1 remain largely unknown. In the present study, Xbra directly bound to the ventx1.1 promoter region and inhibited neurogenesis in a Ventx1.1-dependent manner. Furthermore, Smad-1 and Xbra physically interacted and regulated ventx1.1 transcription in a synergistic fashion. Xbra and Smad-1 interaction cooperatively enhanced the binding of an interacting partner within the ventx1.1 promoter and maximum cooperation was achieved in presence of intact DNA binding sites for both Smad-1 and Xbra. Collectively, BMP-4/Smad-1 and FGF/Xbra signal crosstalk cooperate to activate the transcription of neural repressor ventx1.1 in Xenopus embryos. This suggests that the crosstalk between BMP-4 and FGF signaling negatively regulates early neurogenesis by synergistic activation of ventx1.1 in Xenopus embryos.
Collapse
|
35
|
Monteiro RS, Gentsch GE, Smith JC. Transcriptomics of dorso-ventral axis determination in Xenopus tropicalis. Dev Biol 2018; 439:69-79. [PMID: 29709598 PMCID: PMC5971218 DOI: 10.1016/j.ydbio.2018.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 04/08/2018] [Accepted: 04/24/2018] [Indexed: 11/26/2022]
Abstract
Amphibian embryos provide a powerful system to study early cell fate determination because their eggs are externally fertilised, large, and easy to manipulate. Ultraviolet (UV) or lithium chloride (LiCl) treatment are classic embryonic manipulations frequently used to perturb specification of the dorso-ventral (DV) axis by affecting the stability of the maternal Wnt mediator β-catenin. Such treatments result in the formation of so-called ventralised or dorsalised embryos. Although these phenotypes have been well described with respect to their morphology and some aspects of gene expression, their whole transcriptomes have never been systematically characterised and compared. Here we show that at the early gastrula stage UV-treated embryos are transcriptionally more closely related to untreated embryos than to LiCl-treated embryos. Transcriptional comparisons with dissected ventral and dorsal regions of unperturbed gastrula embryos indicate that UV and LiCl treatments indeed enrich for ventral and dorsal cells, respectively. However, these treatments also affect the balance of neural induction in the ectodermal germ layer, with LiCl stimulating pro-neural BMP inhibition and UV preferentially generating epidermis because of elevated BMP levels. Thus the transcriptomes of UV- and LiCl-treated embryos can best be described as ventro-epidermalised and dorso-neuralised. These descriptions notwithstanding, our profiling reveals several hitherto uncharacterized genes with differential expression along the DV axis. At least one of these genes, a RNF220-like ubiquitin ligase, is activated dorsally by β-catenin. Our analysis of UV/LiCl-mediated axis perturbation will enhance the mechanistic understanding of DV axis determination in vertebrates.
Collapse
Affiliation(s)
- Rita S Monteiro
- The Francis Crick Institute, Developmental Biology Laboratory, 1 Midland Road, London NW1 1AT, United Kingdom.
| | - George E Gentsch
- The Francis Crick Institute, Developmental Biology Laboratory, 1 Midland Road, London NW1 1AT, United Kingdom
| | - James C Smith
- The Francis Crick Institute, Developmental Biology Laboratory, 1 Midland Road, London NW1 1AT, United Kingdom.
| |
Collapse
|
36
|
Nelson AC, Cutty SJ, Gasiunas SN, Deplae I, Stemple DL, Wardle FC. In Vivo Regulation of the Zebrafish Endoderm Progenitor Niche by T-Box Transcription Factors. Cell Rep 2018; 19:2782-2795. [PMID: 28658625 PMCID: PMC5494305 DOI: 10.1016/j.celrep.2017.06.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 04/28/2017] [Accepted: 05/31/2017] [Indexed: 01/15/2023] Open
Abstract
T-box transcription factors T/Brachyury homolog A (Ta) and Tbx16 are essential for correct mesoderm development in zebrafish. The downstream transcriptional networks guiding their functional activities are poorly understood. Additionally, important contributions elsewhere are likely masked due to redundancy. Here, we exploit functional genomic strategies to identify Ta and Tbx16 targets in early embryogenesis. Surprisingly, we discovered they not only activate mesodermal gene expression but also redundantly regulate key endodermal determinants, leading to substantial loss of endoderm in double mutants. To further explore the gene regulatory networks (GRNs) governing endoderm formation, we identified targets of Ta/Tbx16-regulated homeodomain transcription factor Mixl1, which is absolutely required in zebrafish for endoderm formation. Interestingly, we find many endodermal determinants coordinately regulated through common genomic occupancy by Mixl1, Eomesa, Smad2, Nanog, Mxtx2, and Pou5f3. Collectively, these findings augment the endoderm GRN and reveal a panel of target genes underlying the Ta, Tbx16, and Mixl1 mutant phenotypes.
Collapse
Affiliation(s)
- Andrew C Nelson
- Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK; Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK; School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK.
| | - Stephen J Cutty
- Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | - Saule N Gasiunas
- Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | - Isabella Deplae
- Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | - Derek L Stemple
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Fiona C Wardle
- Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK.
| |
Collapse
|
37
|
Teegala S, Chauhan R, Lei E, Weinstein DC. Tbx2 is required for the suppression of mesendoderm during early Xenopus development. Dev Dyn 2018; 247:903-913. [PMID: 29633424 DOI: 10.1002/dvdy.24633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 03/14/2018] [Accepted: 03/31/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND T-box family proteins are DNA-binding transcriptional regulators that play crucial roles during germ layer formation in the early vertebrate embryo. Well-characterized members of this family, including the transcriptional activators Brachyury and VegT, are essential for the proper formation of mesoderm and endoderm, respectively. To date, T-box proteins have not been shown to play a role in the promotion of the third primary germ layer, ectoderm. RESULTS Here, we report that the T-box factor Tbx2 is both sufficient and necessary for ectodermal differentiation in the frog Xenopus laevis. Tbx2 is expressed zygotically in the presumptive ectoderm, during blastula and gastrula stages. Ectopic expression of Tbx2 represses mesoderm and endoderm, while loss of Tbx2 leads to inappropriate expression of mesoderm- and endoderm-specific genes in the region fated to give rise to ectoderm. Misexpression of Tbx2 also promotes neural tissue in animal cap explants, suggesting that Tbx2 plays a role in both the establishment of ectodermal fate and its dorsoventral patterning. CONCLUSIONS Our studies demonstrate that Tbx2 functions as a transcriptional repressor during germ layer formation, and suggest that this activity is mediated in part through repression of target genes that are stimulated, in the mesendoderm, by transactivating T-box proteins. Taken together, our results point to a critical role for Tbx2 in limiting the potency of blastula-stage progenitor cells during vertebrate germ layer differentiation. Developmental Dynamics 247:903-913, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sushma Teegala
- Department of Biology, The Graduate Center, City University of New York, New York.,Department of Biology, Queens College, City University of New York, Flushing, New York
| | - Riddhi Chauhan
- Department of Biology, Queens College, City University of New York, Flushing, New York
| | - Emily Lei
- Department of Biology, Queens College, City University of New York, Flushing, New York
| | - Daniel C Weinstein
- Department of Biology, Queens College, City University of New York, Flushing, New York
| |
Collapse
|
38
|
Gentsch GE, Spruce T, Monteiro RS, Owens NDL, Martin SR, Smith JC. Innate Immune Response and Off-Target Mis-splicing Are Common Morpholino-Induced Side Effects in Xenopus. Dev Cell 2018; 44:597-610.e10. [PMID: 29478923 PMCID: PMC5861998 DOI: 10.1016/j.devcel.2018.01.022] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 11/21/2017] [Accepted: 01/26/2018] [Indexed: 12/20/2022]
Abstract
Antisense morpholino oligomers (MOs) have been indispensable tools for developmental biologists to transiently knock down (KD) genes rather than to knock them out (KO). Here we report on the implications of genetic KO versus MO-mediated KD of the mesoderm-specifying Brachyury paralogs in the frog Xenopus tropicalis. While both KO and KD embryos fail to activate the same core gene regulatory network, resulting in virtually identical morphological defects, embryos injected with control or target MOs also show a systemic GC content-dependent immune response and many off-target splicing defects. Optimization of MO dosage and increasing incubation temperatures can mitigate, but not eliminate, these MO side effects, which are consistent with the high affinity measured between MO and off-target sequence in vitro. We conclude that while MOs can be useful to profile loss-of-function phenotypes at a molecular level, careful attention must be paid to their immunogenic and off-target side effects.
Collapse
Affiliation(s)
- George E Gentsch
- The Francis Crick Institute, Developmental Biology Laboratory, 1 Midland Road, London NW1 1AT, UK.
| | - Thomas Spruce
- The Francis Crick Institute, Developmental Biology Laboratory, 1 Midland Road, London NW1 1AT, UK
| | - Rita S Monteiro
- The Francis Crick Institute, Developmental Biology Laboratory, 1 Midland Road, London NW1 1AT, UK
| | - Nick D L Owens
- The Francis Crick Institute, Developmental Biology Laboratory, 1 Midland Road, London NW1 1AT, UK
| | - Stephen R Martin
- The Francis Crick Institute, Structural Biology Science Technology Platform, 1 Midland Road, London NW1 1AT, UK
| | - James C Smith
- The Francis Crick Institute, Developmental Biology Laboratory, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
39
|
Beisaw A, Tsaytler P, Koch F, Schmitz SU, Melissari MT, Senft AD, Wittler L, Pennimpede T, Macura K, Herrmann BG, Grote P. BRACHYURY directs histone acetylation to target loci during mesoderm development. EMBO Rep 2017; 19:118-134. [PMID: 29141987 DOI: 10.15252/embr.201744201] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 10/19/2017] [Accepted: 10/25/2017] [Indexed: 12/24/2022] Open
Abstract
T-box transcription factors play essential roles in multiple aspects of vertebrate development. Here, we show that cooperative function of BRACHYURY (T) with histone-modifying enzymes is essential for mouse embryogenesis. A single point mutation (TY88A) results in decreased histone 3 lysine 27 acetylation (H3K27ac) at T target sites, including the T locus, suggesting that T autoregulates the maintenance of its expression and functions by recruiting permissive chromatin modifications to putative enhancers during mesoderm specification. Our data indicate that T mediates H3K27ac recruitment through a physical interaction with p300. In addition, we determine that T plays a prominent role in the specification of hematopoietic and endothelial cell types. Hematopoietic and endothelial gene expression programs are disrupted in TY88A mutant embryos, leading to a defect in the differentiation of hematopoietic progenitors. We show that this role of T is mediated, at least in part, through activation of a distal Lmo2 enhancer.
Collapse
Affiliation(s)
- Arica Beisaw
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany.,Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany.,Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Pavel Tsaytler
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Frederic Koch
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Sandra U Schmitz
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Maria-Theodora Melissari
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Anna D Senft
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Lars Wittler
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Tracie Pennimpede
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Karol Macura
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Bernhard G Herrmann
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany.,Institute for Medical Genetics, Charité-University Medicine Berlin Campus Benjamin Franklin, Berlin, Germany
| | - Phillip Grote
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany .,Institute of Cardiovascular Regeneration, Center for Molecular Medicine, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
40
|
Antagonistic Activities of Sox2 and Brachyury Control the Fate Choice of Neuro-Mesodermal Progenitors. Dev Cell 2017; 42:514-526.e7. [DOI: 10.1016/j.devcel.2017.07.021] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 06/07/2017] [Accepted: 07/24/2017] [Indexed: 12/25/2022]
|
41
|
Jukam D, Shariati SAM, Skotheim JM. Zygotic Genome Activation in Vertebrates. Dev Cell 2017; 42:316-332. [PMID: 28829942 PMCID: PMC5714289 DOI: 10.1016/j.devcel.2017.07.026] [Citation(s) in RCA: 268] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/25/2017] [Accepted: 07/28/2017] [Indexed: 12/12/2022]
Abstract
The first major developmental transition in vertebrate embryos is the maternal-to-zygotic transition (MZT) when maternal mRNAs are degraded and zygotic transcription begins. During the MZT, the embryo takes charge of gene expression to control cell differentiation and further development. This spectacular organismal transition requires nuclear reprogramming and the initiation of RNAPII at thousands of promoters. Zygotic genome activation (ZGA) is mechanistically coordinated with other embryonic events, including changes in the cell cycle, chromatin state, and nuclear-to-cytoplasmic component ratios. Here, we review progress in understanding vertebrate ZGA dynamics in frogs, fish, mice, and humans to explore differences and emphasize common features.
Collapse
Affiliation(s)
- David Jukam
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - S Ali M Shariati
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Jan M Skotheim
- Department of Biology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
42
|
Servetnick MD, Steinworth B, Babonis LS, Simmons D, Salinas-Saavedra M, Martindale MQ. Cas9-mediated excision of Nematostella brachyury disrupts endoderm development, pharynx formation and oral-aboral patterning. Development 2017; 144:2951-2960. [PMID: 28705897 PMCID: PMC5592810 DOI: 10.1242/dev.145839] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 07/05/2017] [Indexed: 12/26/2022]
Abstract
The mesoderm is a key novelty in animal evolution, although we understand little of how the mesoderm arose. brachyury, the founding member of the T-box gene family, is a key gene in chordate mesoderm development. However, the brachyury gene was present in the common ancestor of fungi and animals long before mesoderm appeared. To explore ancestral roles of brachyury prior to the evolution of definitive mesoderm, we excised the gene using CRISPR/Cas9 in the diploblastic cnidarian Nematostella vectensis Nvbrachyury is normally expressed in precursors of the pharynx, which separates endoderm from ectoderm. In knockout embryos, the pharynx does not form, embryos fail to elongate, and endoderm organization, ectodermal cell polarity and patterning along the oral-aboral axis are disrupted. Expression of many genes both inside and outside the Nvbrachyury expression domain is affected, including downregulation of Wnt genes at the oral pole. Our results point to an ancient role for brachyury in morphogenesis, cell polarity and the patterning of both ectodermal and endodermal derivatives along the primary body axis.
Collapse
Affiliation(s)
- Marc D Servetnick
- Division of Biological Sciences, University of Washington Bothell, Bothell, WA 98011, USA
| | - Bailey Steinworth
- Whitney Laboratory for Marine Bioscience, University of Florida, St Augustine, FL 32080, USA
| | - Leslie S Babonis
- Whitney Laboratory for Marine Bioscience, University of Florida, St Augustine, FL 32080, USA
| | - David Simmons
- Whitney Laboratory for Marine Bioscience, University of Florida, St Augustine, FL 32080, USA
| | - Miguel Salinas-Saavedra
- Whitney Laboratory for Marine Bioscience, University of Florida, St Augustine, FL 32080, USA
| | - Mark Q Martindale
- Whitney Laboratory for Marine Bioscience, University of Florida, St Augustine, FL 32080, USA
| |
Collapse
|
43
|
Kjolby RAS, Harland RM. Genome-wide identification of Wnt/β-catenin transcriptional targets during Xenopus gastrulation. Dev Biol 2017; 426:165-175. [PMID: 27091726 PMCID: PMC6288011 DOI: 10.1016/j.ydbio.2016.03.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 03/16/2016] [Accepted: 03/16/2016] [Indexed: 10/21/2022]
Abstract
The canonical Wnt/β-catenin signaling pathway plays multiple roles during Xenopus gastrulation, including posteriorization of the neural plate, patterning of the mesoderm, and induction of the neural crest. Wnt signaling stabilizes β-catenin, which then activates target genes. However, few targets of this signaling pathway that mediate early developmental processes are known. Here we sought to identify transcriptional targets of the Wnt/β-catenin signaling pathway using a genome-wide approach. We selected putative targets using the criteria of reduced expression upon zygotic Wnt knockdown, β-catenin binding within 50kb of the gene, and expression in tissues that receive Wnt signaling. Using these criteria, we found 21 novel direct transcriptional targets of Wnt/β-catenin signaling during gastrulation and in addition have identified putative regulatory elements for further characterization in future studies.
Collapse
Affiliation(s)
- Rachel A S Kjolby
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Richard M Harland
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
44
|
Watanabe M, Yasuoka Y, Mawaribuchi S, Kuretani A, Ito M, Kondo M, Ochi H, Ogino H, Fukui A, Taira M, Kinoshita T. Conservatism and variability of gene expression profiles among homeologous transcription factors in Xenopus laevis. Dev Biol 2017; 426:301-324. [DOI: 10.1016/j.ydbio.2016.09.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 07/27/2016] [Accepted: 09/19/2016] [Indexed: 12/11/2022]
|
45
|
Inoue J, Yasuoka Y, Takahashi H, Satoh N. The chordate ancestor possessed a single copy of the Brachyury gene for notochord acquisition. ZOOLOGICAL LETTERS 2017; 3:4. [PMID: 28344820 PMCID: PMC5363035 DOI: 10.1186/s40851-017-0064-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/22/2017] [Indexed: 06/06/2023]
Abstract
BACKGROUND The T-box family transcription-factor gene, Brachyury, has two expression domains with discrete functions during animal embryogenesis. The primary domain, associated with the blastopore, is shared by most metazoans, while the secondary domain, involved in the notochord, is specific to chordates. In most animals, Brachyury is present in a single copy, but in cephalochordates, the most basal of the chordates, the gene is present in two copies, suggesting allotment of the two domains to each of the duplicates. RESULTS In order to clarify whether Brachyury duplication occurred in the common ancestor of chordates after which one of duplicates was lost in the urochordate and vertebrate lineages, we estimated phylogenetic relationships of Brachyury genes and examined the synteny of a Brachyury-containing genomic region of deuterostomes with decoded genomes. The monophyletic origin of tandemly arranged Brachyury genes of cephalochordates indicates that the tandem duplication occurred in the cephalochordate lineage, but not in the chordate ancestor. CONCLUSIONS Our results thus suggest that, in the common ancestor of chordates, a single copy of Brachyury acquired two expression domains and that the duplication was not involved in the acquisition of the notochord. However, in relation to regulatory mechanisms, both possibilities-namely a single copy with two domains and two copies with different domains-should be considered in future studies of Brachyury.
Collapse
Affiliation(s)
- Jun Inoue
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495 Japan
| | - Yuuri Yasuoka
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495 Japan
| | - Hiroki Takahashi
- Developmental Biology, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585 Japan
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495 Japan
| |
Collapse
|
46
|
Charney RM, Paraiso KD, Blitz IL, Cho KWY. A gene regulatory program controlling early Xenopus mesendoderm formation: Network conservation and motifs. Semin Cell Dev Biol 2017; 66:12-24. [PMID: 28341363 DOI: 10.1016/j.semcdb.2017.03.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 03/12/2017] [Accepted: 03/20/2017] [Indexed: 02/08/2023]
Abstract
Germ layer formation is among the earliest differentiation events in metazoan embryos. In triploblasts, three germ layers are formed, among which the endoderm gives rise to the epithelial lining of the gut tube and associated organs including the liver, pancreas and lungs. In frogs (Xenopus), where early germ layer formation has been studied extensively, the process of endoderm specification involves the interplay of dozens of transcription factors. Here, we review the interactions between these factors, summarized in a transcriptional gene regulatory network (GRN). We highlight regulatory connections conserved between frog, fish, mouse, and human endodermal lineages. Especially prominent is the conserved role and regulatory targets of the Nodal signaling pathway and the T-box transcription factors, Vegt and Eomes. Additionally, we highlight network topologies and motifs, and speculate on their possible roles in development.
Collapse
Affiliation(s)
- Rebekah M Charney
- Department of Developmental and Cell Biology, Ayala School of Biological Sciences, University of California, Irvine, CA 92697, USA
| | - Kitt D Paraiso
- Department of Developmental and Cell Biology, Ayala School of Biological Sciences, University of California, Irvine, CA 92697, USA
| | - Ira L Blitz
- Department of Developmental and Cell Biology, Ayala School of Biological Sciences, University of California, Irvine, CA 92697, USA
| | - Ken W Y Cho
- Department of Developmental and Cell Biology, Ayala School of Biological Sciences, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
47
|
Cooperation Between T-Box Factors Regulates the Continuous Segregation of Germ Layers During Vertebrate Embryogenesis. Curr Top Dev Biol 2017; 122:117-159. [DOI: 10.1016/bs.ctdb.2016.07.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
48
|
|
49
|
Sebé-Pedrós A, Ruiz-Trillo I. Evolution and Classification of the T-Box Transcription Factor Family. Curr Top Dev Biol 2017; 122:1-26. [DOI: 10.1016/bs.ctdb.2016.06.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
50
|
Cdx and T Brachyury Co-activate Growth Signaling in the Embryonic Axial Progenitor Niche. Cell Rep 2016; 17:3165-3177. [DOI: 10.1016/j.celrep.2016.11.069] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 10/26/2016] [Accepted: 11/18/2016] [Indexed: 12/30/2022] Open
|