1
|
Subburayan K, Thayyullathil F, Pallichankandy S, Cheratta AR, Alakkal A, Sultana M, Drou N, Arshad M, Palanikumar L, Magzoub M, Rangnekar VM, Galadari S. Tumor suppressor Par-4 activates autophagy-dependent ferroptosis. Commun Biol 2024; 7:732. [PMID: 38886572 PMCID: PMC11183062 DOI: 10.1038/s42003-024-06430-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 06/07/2024] [Indexed: 06/20/2024] Open
Abstract
Ferroptosis is a unique iron-dependent form of non-apoptotic cell death characterized by devastating lipid peroxidation. Whilst growing evidence suggests that ferroptosis is a type of autophagy-dependent cell death, the underlying molecular mechanisms regulating ferroptosis are largely unknown. In this study, through an unbiased RNA-sequencing screening, we demonstrate the activation of a multi-faceted tumor-suppressor protein Par-4/PAWR during ferroptosis. Functional studies reveal that genetic depletion of Par-4 effectively blocks ferroptosis, whereas Par-4 overexpression sensitizes cells to undergo ferroptosis. More importantly, we have determined that Par-4-triggered ferroptosis is mechanistically driven by the autophagic machinery. Upregulation of Par-4 promotes activation of ferritinophagy (autophagic degradation of ferritin) via the nuclear receptor co-activator 4 (NCOA4), resulting in excessive release of free labile iron and, hence, enhanced lipid peroxidation and ferroptosis. Inhibition of Par-4 dramatically suppresses the NCOA4-mediated ferritinophagy signaling axis. Our results also establish that Par-4 activation positively correlates with reactive oxygen species (ROS) production, which is critical for ferritinophagy-mediated ferroptosis. Furthermore, Par-4 knockdown effectively blocked ferroptosis-mediated tumor suppression in the mouse xenograft models. Collectively, these findings reveal that Par-4 has a crucial role in ferroptosis, which could be further exploited for cancer therapy.
Collapse
Affiliation(s)
- Karthikeyan Subburayan
- Cell Death Signaling Laboratory, Division of Science (Biology), Experimental Research Building, New York University Abu Dhabi, PO Box 129188, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Faisal Thayyullathil
- Cell Death Signaling Laboratory, Division of Science (Biology), Experimental Research Building, New York University Abu Dhabi, PO Box 129188, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Siraj Pallichankandy
- Cell Death Signaling Laboratory, Division of Science (Biology), Experimental Research Building, New York University Abu Dhabi, PO Box 129188, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Anees Rahman Cheratta
- Cell Death Signaling Laboratory, Division of Science (Biology), Experimental Research Building, New York University Abu Dhabi, PO Box 129188, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Ameer Alakkal
- Cell Death Signaling Laboratory, Division of Science (Biology), Experimental Research Building, New York University Abu Dhabi, PO Box 129188, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Mehar Sultana
- Center for Genomics and Systems Biology (CGSB), Experimental Research Building, New York University Abu Dhabi, PO Box 129188, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Nizar Drou
- CGSB Core Bioinformatics, Experimental Research Building, New York University Abu Dhabi, PO Box 129188, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Muhammad Arshad
- CGSB Core Bioinformatics, Experimental Research Building, New York University Abu Dhabi, PO Box 129188, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - L Palanikumar
- Biology Program, Division of Science, Experimental Research Building, New York University Abu Dhabi, PO Box 129188, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Mazin Magzoub
- Biology Program, Division of Science, Experimental Research Building, New York University Abu Dhabi, PO Box 129188, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Vivek M Rangnekar
- Department of Radiation Medicine and Markey Cancer Center, University of Kentucky, Lexington, KY, 40536, USA
| | - Sehamuddin Galadari
- Cell Death Signaling Laboratory, Division of Science (Biology), Experimental Research Building, New York University Abu Dhabi, PO Box 129188, Saadiyat Island, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
2
|
Burikhanov R, Ganguly S, Ellingson S, Sviripa VM, Araujo N, Li S, Venkatraman P, Rao M, Choughule A, Brainson CF, Zhan CG, Spielmann HP, Watt DS, Govindan R, Rangnekar VM. Crizotinib induces Par-4 secretion from normal cells and GRP78 expression on the cancer cell surface for selective tumor growth inhibition. Am J Cancer Res 2023; 13:976-991. [PMID: 37034206 PMCID: PMC10077052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 02/20/2023] [Indexed: 04/11/2023] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths. Lung cancer cells develop resistance to apoptosis by suppressing the secretion of the tumor suppressor Par-4 protein (also known as PAWR) and/or down-modulating the Par-4 receptor GRP78 on the cell surface (csGRP78). We sought to identify FDA-approved drugs that elevate csGRP78 on the surface of lung cancer cells and induce Par-4 secretion from the cancer cells and/or normal cells in order to inhibit cancer growth in an autocrine or paracrine manner. In an unbiased screen, we identified crizotinib (CZT), an inhibitor of activated ALK/MET/ROS1 receptor tyrosine kinase, as an inducer of csGRP78 expression in ALK-negative, KRAS or EGFR mutant lung cancer cells. Elevation of csGRP78 in the lung cancer cells was dependent on activation of the non-receptor tyrosine kinase SRC by CZT. Inhibition of SRC activation in the cancer cells prevented csGRP78 translocation but promoted Par-4 secretion by CZT, implying that activated SRC prevented Par-4 secretion. In normal cells, CZT did not activate SRC and csGRP78 elevation but induced Par-4 secretion. Consequently, CZT induced Par-4 secretion from normal cells and elevated csGRP78 in the ALK-negative tumor cells to cause paracrine apoptosis in cancer cell cultures and growth inhibition of tumor xenografts in mice. Thus, CZT induces differential activation of SRC in normal and cancer cells to trigger the pro-apoptotic Par-4-GRP78 axis. As csGRP78 is a targetable receptor, CZT can be repurposed to elevate csGRP78 for inhibition of ALK-negative lung tumors.
Collapse
Affiliation(s)
- Ravshan Burikhanov
- Department of Radiation Medicine, College of Medicine, University of KentuckyLexington, Kentucky, USA
| | - Saptadwipa Ganguly
- Department of Toxicology and Cancer Biology, College of Medicine, University of KentuckyLexington, Kentucky, USA
| | - Sally Ellingson
- Department of Internal Medicine, College of Medicine, University of KentuckyLexington, Kentucky, USA
| | - Vitaliy M Sviripa
- Department of Pharmaceutical Sciences, College of Pharmacy, University of KentuckyLexington, Kentucky, USA
| | - Nathalia Araujo
- Department of Toxicology and Cancer Biology, College of Medicine, University of KentuckyLexington, Kentucky, USA
| | - Shunqiang Li
- Department of Medicine, Division of Oncology, Washington UniversitySt. Louis, Missouri, USA
| | - Prasanna Venkatraman
- Tata Memorial Centre-Advanced Centre for Treatment Research and Education in CancerNavi Mumbai, Maharashtra, India
| | - Mahadev Rao
- Department of Pharmacy Practice, Center for Translational Research, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher EducationManipal, Karnataka, India
| | - Anuradha Choughule
- Tata Memorial Centre-Advanced Centre for Treatment Research and Education in CancerNavi Mumbai, Maharashtra, India
| | - Christine F Brainson
- Department of Toxicology and Cancer Biology, College of Medicine, University of KentuckyLexington, Kentucky, USA
- Markey Cancer Center, University of KentuckyLexington, Kentucky, USA
| | - Chang-Guo Zhan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of KentuckyLexington, Kentucky, USA
| | - H Peter Spielmann
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of KentuckyLexington, Kentucky, USA
| | - David S Watt
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of KentuckyLexington, Kentucky, USA
| | - Ramaswamy Govindan
- Department of Medicine, Division of Oncology, Washington UniversitySt. Louis, Missouri, USA
| | - Vivek M Rangnekar
- Department of Radiation Medicine, College of Medicine, University of KentuckyLexington, Kentucky, USA
- Markey Cancer Center, University of KentuckyLexington, Kentucky, USA
| |
Collapse
|
3
|
Araujo N, Sledziona J, Noothi SK, Burikhanov R, Hebbar N, Ganguly S, Shrestha-Bhattarai T, Zhu B, Katz WS, Zhang Y, Taylor BS, Liu J, Chen L, Weiss HL, He D, Wang C, Morris AJ, Cassis LA, Nikolova-Karakashian M, Nagareddy PR, Melander O, Evers BM, Kern PA, Rangnekar VM. Tumor Suppressor Par-4 Regulates Complement Factor C3 and Obesity. Front Oncol 2022; 12:860446. [PMID: 35425699 PMCID: PMC9004617 DOI: 10.3389/fonc.2022.860446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 02/28/2022] [Indexed: 11/30/2022] Open
Abstract
Prostate apoptosis response-4 (Par-4) is a tumor suppressor that induces apoptosis in cancer cells. However, the physiological function of Par-4 remains unknown. Here we show that conventional Par-4 knockout (Par-4-/-) mice and adipocyte-specific Par-4 knockout (AKO) mice, but not hepatocyte-specific Par-4 knockout mice, are obese with standard chow diet. Par-4-/- and AKO mice exhibit increased absorption and storage of fat in adipocytes. Mechanistically, Par-4 loss is associated with mdm2 downregulation and activation of p53. We identified complement factor c3 as a p53-regulated gene linked to fat storage in adipocytes. Par-4 re-expression in adipocytes or c3 deletion reversed the obese mouse phenotype. Moreover, obese human subjects showed lower expression of Par-4 relative to lean subjects, and in longitudinal studies, low baseline Par-4 levels denoted an increased risk of developing obesity later in life. These findings indicate that Par-4 suppresses p53 and its target c3 to regulate obesity.
Collapse
Affiliation(s)
- Nathalia Araujo
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, United States
| | - James Sledziona
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, United States
| | - Sunil K. Noothi
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY, United States
| | - Ravshan Burikhanov
- Department of Radiation Medicine, University of Kentucky, Lexington, KY, United States
| | - Nikhil Hebbar
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, United States
| | - Saptadwipa Ganguly
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, United States
| | - Tripti Shrestha-Bhattarai
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Beibei Zhu
- Division of Internal Medicine, University of Kentucky, Lexington, KY, United States
- Barnstable Brown Diabetes and Obesity Center, University of Kentucky, Lexington, KY, United States
| | - Wendy S. Katz
- Barnstable Brown Diabetes and Obesity Center, University of Kentucky, Lexington, KY, United States
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, United States
| | - Yi Zhang
- Department of Computer Science, University of Kentucky, Lexington, KY, United States
| | - Barry S. Taylor
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Jinze Liu
- Department of Computer Science, University of Kentucky, Lexington, KY, United States
| | - Li Chen
- Division of Internal Medicine, University of Kentucky, Lexington, KY, United States
- Markey Cancer Center, University of Kentucky, Lexington, KY, United States
| | - Heidi L. Weiss
- Division of Internal Medicine, University of Kentucky, Lexington, KY, United States
- Markey Cancer Center, University of Kentucky, Lexington, KY, United States
| | - Daheng He
- Department of Statistics, University of Kentucky, Lexington, KY, United States
| | - Chi Wang
- Markey Cancer Center, University of Kentucky, Lexington, KY, United States
- Department of Biostatistics, University of Kentucky, Lexington, KY, United States
| | - Andrew J. Morris
- Division of Internal Medicine, University of Kentucky, Lexington, KY, United States
- Markey Cancer Center, University of Kentucky, Lexington, KY, United States
| | - Lisa A. Cassis
- Barnstable Brown Diabetes and Obesity Center, University of Kentucky, Lexington, KY, United States
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, United States
| | - Mariana Nikolova-Karakashian
- Markey Cancer Center, University of Kentucky, Lexington, KY, United States
- Department of Physiology, University of Kentucky, Lexington, KY, United States
| | | | - Olle Melander
- Department of Clinical Sciences, Lund University, Malmö, Sweden
- Department of Internal Medicine, Skåne University Hospital, Malmö, Sweden
| | - B. Mark Evers
- Markey Cancer Center, University of Kentucky, Lexington, KY, United States
- Department of Surgery, University of Kentucky, Lexington, KY, United States
| | - Philip A. Kern
- Division of Internal Medicine, University of Kentucky, Lexington, KY, United States
- Barnstable Brown Diabetes and Obesity Center, University of Kentucky, Lexington, KY, United States
| | - Vivek M. Rangnekar
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, United States
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY, United States
- Department of Radiation Medicine, University of Kentucky, Lexington, KY, United States
- Markey Cancer Center, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
4
|
Zhu Q, Schultz E, Long J, Roh JM, Valice E, Laurent CA, Radimer KH, Yan L, Ergas IJ, Davis W, Ranatunga D, Gandhi S, Kwan ML, Bao PP, Zheng W, Shu XO, Ambrosone C, Yao S, Kushi LH. UACA locus is associated with breast cancer chemoresistance and survival. NPJ Breast Cancer 2022; 8:39. [PMID: 35322040 PMCID: PMC8943134 DOI: 10.1038/s41523-022-00401-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/16/2022] [Indexed: 12/13/2022] Open
Abstract
Few germline genetic variants have been robustly linked with breast cancer outcomes. We conducted trans-ethnic meta genome-wide association study (GWAS) of overall survival (OS) in 3973 breast cancer patients from the Pathways Study, one of the largest prospective breast cancer survivor cohorts. A locus spanning the UACA gene, a key regulator of tumor suppressor Par-4, was associated with OS in patients taking Par-4 dependent chemotherapies, including anthracyclines and anti-HER2 therapy, at a genome-wide significance level (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$P = 1.27 \times 10^{ - 9}$$\end{document}P=1.27×10−9). This association was confirmed in meta-analysis across four independent prospective breast cancer cohorts (combined hazard ratio = 1.84, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$P = 1.28 \times 10^{ - 11}$$\end{document}P=1.28×10−11). Transcriptome-wide association study revealed higher UACA gene expression was significantly associated with worse OS (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$P = 4.68 \times 10^{ - 7}$$\end{document}P=4.68×10−7). Our study identified the UACA locus as a genetic predictor of patient outcome following treatment with anthracyclines and/or anti-HER2 therapy, which may have clinical utility in formulating appropriate treatment strategies for breast cancer patients based on their genetic makeup.
Collapse
Affiliation(s)
- Qianqian Zhu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.
| | - Emily Schultz
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Jirong Long
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Janise M Roh
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Emily Valice
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Cecile A Laurent
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Kelly H Radimer
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Li Yan
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Isaac J Ergas
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Warren Davis
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Dilrini Ranatunga
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Shipra Gandhi
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Marilyn L Kwan
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Ping-Ping Bao
- Shanghai Municipal Center for Disease Prevention and Control, Shanghai, China
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Christine Ambrosone
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Song Yao
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.
| | - Lawrence H Kushi
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA.
| |
Collapse
|
5
|
Mello-Andrade F, Guedes APM, Pires WC, Velozo-Sá VS, Delmond KA, Mendes D, Molina MS, Matuda L, de Sousa MAM, Melo-Reis P, Gomes CC, Castro CH, Almeida MAP, Menck CFM, Batista AA, Burikhanov R, Rangnekar VM, Silveira-Lacerda E. Ru(II)/amino acid complexes inhibit the progression of breast cancer cells through multiple mechanism-induced apoptosis. J Inorg Biochem 2021; 226:111625. [PMID: 34655962 DOI: 10.1016/j.jinorgbio.2021.111625] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 10/02/2021] [Accepted: 10/04/2021] [Indexed: 12/20/2022]
Abstract
For some cancer subtypes, such as triple-negative breast cancer, there are no specific therapies, which leads to a poor prognosis associated with invasion and metastases. Ruthenium complexes have been developed to act in all steps of tumor growth and its progression. In this study, we investigated the effects of Ruthenium (II) complexes coupled to the amino acids methionine (RuMet) and tryptophan (RuTrp) on the induction of cell death, clonogenic survival ability, inhibition of angiogenesis, and migration of MDA-MB-231 cells (human triple-negative breast cancer). The study also demonstrated that the RuMet and RuTrp complexes induce cell cycle blockage and apoptosis of MDA-MB-231 cells, as evidenced by an increase in the number of Annexin V-positive cells, p53 phosphorylation, caspase 3 activation, and poly(ADP-ribose) polymerase cleavage. Moreover, morphological changes and loss of mitochondrial membrane potential were detected. The RuMet and RuTrp complexes induced DNA damage probably due to reactive oxygen species production related to mitochondrial membrane depolarization. Therefore, the RuMet and RuTrp complexes acted directly on breast tumor cells, leading to cell death and inhibiting their metastatic potential; this reveals the potential therapeutic action of these drugs.
Collapse
Affiliation(s)
- Francyelli Mello-Andrade
- Department of Genetics, Laboratory of Molecular Genetics and Cytogenetics, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás 74690-900, Brazil; Department of Chemistry, Federal Institute of Education, Science and Technology of Goiás, Goiânia, Goiás 74055-110, Brazil.
| | - Adriana P M Guedes
- Department of Chemistry, Federal University of São Carlos, São Carlos, SP 13565-905, Brazil
| | - Wanessa C Pires
- Department of Genetics, Laboratory of Molecular Genetics and Cytogenetics, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás 74690-900, Brazil
| | - Vivianne S Velozo-Sá
- Department of Genetics, Laboratory of Molecular Genetics and Cytogenetics, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás 74690-900, Brazil
| | - Kezia A Delmond
- Department of Genetics, Laboratory of Molecular Genetics and Cytogenetics, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás 74690-900, Brazil
| | - Davi Mendes
- Department of Microbiology, Laboratory of DNA Repair, Institute of Biomedical Sciences, University of São Paulo - USP, São Paulo, SP 05508-900, Brazil
| | - Matheus S Molina
- Department of Microbiology, Laboratory of DNA Repair, Institute of Biomedical Sciences, University of São Paulo - USP, São Paulo, SP 05508-900, Brazil
| | - Larissa Matuda
- Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás - UFG, Goiânia, GO 74690-900, Brazil
| | | | - Paulo Melo-Reis
- Departament of Biomedicine, Pontifical Catholic University of Goiás, Goiânia, GO, Brazil
| | - Clever C Gomes
- Department of Morphology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO 74690-900, Brazil
| | - Carlos Henrique Castro
- Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás - UFG, Goiânia, GO 74690-900, Brazil
| | - Márcio Aurélio P Almeida
- Coordination of Science and Technology, Federal University of Maranhão, São Luís, MA 65080-805, Brazil
| | - Carlos F M Menck
- Department of Microbiology, Laboratory of DNA Repair, Institute of Biomedical Sciences, University of São Paulo - USP, São Paulo, SP 05508-900, Brazil
| | - Alzir A Batista
- Department of Chemistry, Federal University of São Carlos, São Carlos, SP 13565-905, Brazil
| | - Ravshan Burikhanov
- Department of Radiation Medicine, University of Kentucky, Lexington, KY 40536, United States of America
| | - Vivek M Rangnekar
- Department of Radiation Medicine, University of Kentucky, Lexington, KY 40536, United States of America; L. P. Markey Cancer Center, University of Kentucky, Lexington, KY 40536, United States of America
| | - Elisângela Silveira-Lacerda
- Department of Genetics, Laboratory of Molecular Genetics and Cytogenetics, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás 74690-900, Brazil.
| |
Collapse
|
6
|
Cheratta AR, Thayyullathil F, Pallichankandy S, Subburayan K, Alakkal A, Galadari S. Prostate apoptosis response-4 and tumor suppression: it's not just about apoptosis anymore. Cell Death Dis 2021; 12:47. [PMID: 33414404 PMCID: PMC7790818 DOI: 10.1038/s41419-020-03292-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 02/06/2023]
Abstract
The tumor suppressor prostate apoptosis response-4 (Par-4) has recently turned ‘twenty-five’. Beyond its indisputable role as an apoptosis inducer, an increasing and sometimes bewildering, new roles for Par-4 are being reported. These roles include its ability to regulate autophagy, senescence, and metastasis. This growing range of responses to Par-4 is reflected by our increasing understanding of the various mechanisms through which Par-4 can function. In this review, we summarize the existing knowledge on Par-4 tumor suppressive mechanisms, and discuss how the interaction of Par-4 with different regulators influence cell fate. This review also highlights the new secretory pathway that has emerged and the likely discussion on its clinical implications.
Collapse
Affiliation(s)
- Anees Rahman Cheratta
- Cell Death Signaling Laboratory, Division of Science, Experimental Research Building, New York University Abu Dhabi, PO Box 129188, Saadiyat Island Campus, Abu Dhabi, UAE
| | - Faisal Thayyullathil
- Cell Death Signaling Laboratory, Division of Science, Experimental Research Building, New York University Abu Dhabi, PO Box 129188, Saadiyat Island Campus, Abu Dhabi, UAE
| | - Siraj Pallichankandy
- Cell Death Signaling Laboratory, Division of Science, Experimental Research Building, New York University Abu Dhabi, PO Box 129188, Saadiyat Island Campus, Abu Dhabi, UAE
| | - Karthikeyan Subburayan
- Cell Death Signaling Laboratory, Division of Science, Experimental Research Building, New York University Abu Dhabi, PO Box 129188, Saadiyat Island Campus, Abu Dhabi, UAE
| | - Ameer Alakkal
- Cell Death Signaling Laboratory, Division of Science, Experimental Research Building, New York University Abu Dhabi, PO Box 129188, Saadiyat Island Campus, Abu Dhabi, UAE
| | - Sehamuddin Galadari
- Cell Death Signaling Laboratory, Division of Science, Experimental Research Building, New York University Abu Dhabi, PO Box 129188, Saadiyat Island Campus, Abu Dhabi, UAE.
| |
Collapse
|
7
|
Lee SC, Lin KH, Balogh A, Norman DD, Bavaria M, Kuo B, Yue J, Balázs L, Benyó Z, Tigyi G. Dysregulation of lysophospholipid signaling by p53 in malignant cells and the tumor microenvironment. Cell Signal 2020; 78:109850. [PMID: 33253914 DOI: 10.1016/j.cellsig.2020.109850] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/20/2020] [Accepted: 11/22/2020] [Indexed: 12/22/2022]
Abstract
The TP53 gene has been widely studied for its roles in cell cycle control, maintaining genome stability, activating repair mechanisms upon DNA damage, and initiating apoptosis should repair mechanisms fail. Thus, it is not surprising that mutations of p53 are the most common genetic alterations found in human cancer. Emerging evidence indicates that dysregulation of lipid metabolism by p53 can have a profound impact not only on cancer cells but also cells of the tumor microenvironment (TME). In particular, intermediates of the sphingolipid and lysophospholipid pathways regulate many cellular responses common to p53 such as cell survival, migration, DNA damage repair and apoptosis. The majority of these cellular events become dysregulated in cancer as well as cell senescence. In this review, we will provide an account on the seminal contributions of Prof. Lina Obeid, who deciphered the crosstalk between p53 and the sphingolipid pathway particularly in modulating DNA damage repair and apoptosis in non-transformed as well as transformed cells. We will also provide insights on the integrative role of p53 with the lysophosphatidic acid (LPA) signaling pathway in cancer progression and TME regulation.
Collapse
Affiliation(s)
- Sue Chin Lee
- Department of Physiology, University of Tennessee Health Science Center Memphis, Van Vleet Cancer Research Building, 3 N. Dunlap Street, Memphis, TN 38163, USA
| | - Kuan-Hung Lin
- Department of Physiology, University of Tennessee Health Science Center Memphis, Van Vleet Cancer Research Building, 3 N. Dunlap Street, Memphis, TN 38163, USA
| | - Andrea Balogh
- Department of Physiology, University of Tennessee Health Science Center Memphis, Van Vleet Cancer Research Building, 3 N. Dunlap Street, Memphis, TN 38163, USA; Institute of Translational Medicine, Semmelweis University, POB 2, H-1428 Budapest, Hungary
| | - Derek D Norman
- Department of Physiology, University of Tennessee Health Science Center Memphis, Van Vleet Cancer Research Building, 3 N. Dunlap Street, Memphis, TN 38163, USA
| | - Mitul Bavaria
- Department of Physiology, University of Tennessee Health Science Center Memphis, Van Vleet Cancer Research Building, 3 N. Dunlap Street, Memphis, TN 38163, USA
| | - Bryan Kuo
- Department of Physiology, University of Tennessee Health Science Center Memphis, Van Vleet Cancer Research Building, 3 N. Dunlap Street, Memphis, TN 38163, USA
| | - Junming Yue
- Department of Pathology, University of Tennessee Health Science Center Memphis, USA
| | - Louisa Balázs
- Department of Pathology, University of Tennessee Health Science Center Memphis, USA
| | - Zoltán Benyó
- Institute of Translational Medicine, Semmelweis University, POB 2, H-1428 Budapest, Hungary
| | - Gábor Tigyi
- Department of Physiology, University of Tennessee Health Science Center Memphis, Van Vleet Cancer Research Building, 3 N. Dunlap Street, Memphis, TN 38163, USA; Institute of Translational Medicine, Semmelweis University, POB 2, H-1428 Budapest, Hungary.
| |
Collapse
|
8
|
Kamer I, Daniel-Meshulam I, Zadok O, Bab-Dinitz E, Perry G, Feniger-Barish R, Perelman M, Barshack I, Ben-Nun A, Onn A, Bar J. Stromal-MDM2 Promotes Lung Cancer Cell Invasion through Tumor-Host Feedback Signaling. Mol Cancer Res 2020; 18:926-937. [PMID: 32169890 DOI: 10.1158/1541-7786.mcr-19-0395] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 01/05/2020] [Accepted: 03/10/2020] [Indexed: 11/16/2022]
Abstract
Tumor-host interactions play a major role in malignancies' initiation and progression. We have reported in the past that tumor cells attenuate genotoxic stress-induced p53 activation in neighboring stromal cells. Herein, we aim to further elucidate cancer cells' impact on signaling within lung cancer stroma. Primary cancer-associated fibroblasts were grown from resected human lung tumors. Lung cancer lines as well as fresh cultures of resected human lung cancers were used to produce conditioned medium (CM) or cocultured with stromal cells. Invasiveness of cancer cells was evaluated by transwell assays, and in vivo tumor growth was tested in Athymic nude mice. We found CM of a large variety of cancer cell lines as well as ex vivo-cultured lung cancers to rapidly induce protein levels of stromal-MDM2. CM of nontransformed cells had no such effect. Mdm2 induction occurred through enhanced translation, was mTORC1-dependent, and correlated with activation of AKT and p70 S6 Kinase. AKT or MDM2 knockdown in fibroblasts reduced the invasion of neighboring cancer cells, independently of stromal-p53. MDM2 overexpression in fibroblasts enhanced cancer cells' invasion and growth of inoculated tumors in mice. Our results indicate that stromal-MDM2 participates in a p53-independent cancer-host feedback mechanism. Soluble cancer-originated signals induce enhanced translation of stromal-MDM2 through AKT/mTORC1 signaling, which in turn enhances the neighboring cancer cells' invasion ability. The role of these tumor-host interactions needs to be further explored. IMPLICATIONS: We uncovered a novel tumor-stroma signaling loop, which is a potentially new therapeutic target in lung cancer and possibly in additional types of cancer.
Collapse
Affiliation(s)
- Iris Kamer
- Institute of Oncology, Chaim Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | | | - Oranit Zadok
- Institute of Oncology, Chaim Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Elizabeta Bab-Dinitz
- Institute of Oncology, Chaim Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Gili Perry
- Institute of Oncology, Chaim Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Rotem Feniger-Barish
- Institute of Oncology, Chaim Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Marina Perelman
- Institute of Pathology, Chaim Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Iris Barshack
- Institute of Pathology, Chaim Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Alon Ben-Nun
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,The Department of Thoracic Surgery, Chaim Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Amir Onn
- Institute of Pulmonology, Chaim Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Jair Bar
- Institute of Oncology, Chaim Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel. .,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
9
|
The Urinary Transcriptome as a Source of Biomarkers for Prostate Cancer. Cancers (Basel) 2020; 12:cancers12020513. [PMID: 32098402 PMCID: PMC7072374 DOI: 10.3390/cancers12020513] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/18/2020] [Accepted: 02/21/2020] [Indexed: 12/21/2022] Open
Abstract
Prostate cancer (PCa) is the second most common cancer of men and is typically slow-growing and asymptomatic. The use of blood PSA as a screening method has greatly improved PCa diagnosis, but high levels of false positives has raised much interest in alternative biomarkers. We used next-generation sequencing (NGS) to elucidate the urinary transcriptome of whole urine collected from high-stage and low-stage PCa patients as well as from patients with the confounding diagnosis of benign hyperplasia (BPH). We identified and validated five differentially expressed protein-coding genes (FTH1 BRPF1, OSBP, PHC3, and UACA) in an independent validation cohort of small-volume (1 mL) centrifuged urine (n = 94) and non-centrifuged urine (n = 84) by droplet digital (dd)PCR. These biomarkers were able to discriminate between BPH and PCa patients and healthy controls using either centrifuged or non-centrifuged whole urine samples, suggesting that the urinary transcriptome is a valuable source of non-invasive biomarkers for PCa that warrants further investigation.
Collapse
|
10
|
Wolf D, Hofbrucker-MacKenzie SA, Izadi M, Seemann E, Steiniger F, Schwintzer L, Koch D, Kessels MM, Qualmann B. Ankyrin repeat-containing N-Ank proteins shape cellular membranes. Nat Cell Biol 2019; 21:1191-1205. [PMID: 31548610 DOI: 10.1038/s41556-019-0381-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 07/25/2019] [Indexed: 01/02/2023]
Abstract
Cells of multicellular organisms need to adopt specific morphologies. However, the molecular mechanisms bringing about membrane topology changes are far from understood-mainly because knowledge of membrane-shaping proteins that can promote local membrane curvatures is still limited. Our analyses unveiled that several members of a large, previously unrecognised protein family, which we termed N-Ank proteins, use a combination of their ankyrin repeat array and an amino (N)-terminal amphipathic helix to bind and shape membranes. Consistently, functional analyses revealed that the N-Ank protein ankycorbin (NORPEG/RAI14), which was exemplarily characterised further, plays an important, ankyrin repeat-based and N-terminal amphipathic helix-dependent role in early morphogenesis of neurons. This function furthermore required coiled coil-mediated self-assembly and manifested as ankycorbin nanodomains marked by protrusive membrane topologies. In summary, here, we unveil a class of powerful membrane shapers and thereby assign mechanistic and cell biological functions to the N-Ank protein superfamily.
Collapse
Affiliation(s)
- David Wolf
- Institute of Biochemistry I, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | | | - Maryam Izadi
- Institute of Biochemistry I, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Eric Seemann
- Institute of Biochemistry I, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Frank Steiniger
- Electron Microscopy Centre, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Lukas Schwintzer
- Institute of Biochemistry I, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Dennis Koch
- Institute of Biochemistry I, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Michael Manfred Kessels
- Institute of Biochemistry I, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany.
| | - Britta Qualmann
- Institute of Biochemistry I, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany.
| |
Collapse
|
11
|
Rokavec M, Bouznad N, Hermeking H. Paracrine Induction of Epithelial-Mesenchymal Transition Between Colorectal Cancer Cells and its Suppression by a p53/miR-192/215/NID1 Axis. Cell Mol Gastroenterol Hepatol 2019; 7:783-802. [PMID: 30831320 PMCID: PMC6468198 DOI: 10.1016/j.jcmgh.2019.02.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 01/05/2023]
Abstract
BACKGROUND & AIMS Intratumor heterogeneity is a common feature of colorectal cancer (CRC). Here, we analyzed whether mesenchymal-like CRC cells promote the progression of epithelial-like CRC cells via paracrine mechanisms. METHODS Six CRC cell lines that show an epithelial phenotype were treated with conditioned media (CM) from CRC cell lines that show a mesenchymal phenotype, and effects on epithelial-mesenchymal transition (EMT), migration, invasion, and chemoresistance were determined. Secreted factors potentially mediating these effects were identified by using cytokine arrays. Associations of these factors with tumor progression and patient survival were determined. RESULTS CM obtained from mesenchymal-like CRC cells induced EMT associated with increased migration, invasion, and chemoresistance in epithelial-like CRC cell lines. Notably, activation of p53 in mesenchymal-like CRC cells prevented these effects of CM. Increased concentrations of several cytokines were identified in CM from mesenchymal-like CRC cell lines and a subset of these cytokines showed repression by p53. The down-regulation of nidogen-1 (NID1) was particularly significant and was owing to p53-mediated induction of microRNA-192 and microRNA-215, which directly target the NID1 messenger RNA. NID1 was found to be required and sufficient for inducing EMT, invasion, and migration in epithelial-like CRC cells. In primary CRCs, increased NID1 expression was associated with p53 mutation and microRNA-192/215 down-regulation. Importantly, increased NID1 expression in CRCs correlated with enhanced tumor progression and poor patient survival. CONCLUSIONS Taken together, our results show that CRC cells promote tumor progression via secreting NID1, which induces EMT in neighboring tumor cells. Importantly, the interference of p53 with this paracrine signaling between tumor cells may critically contribute to tumor suppression.
Collapse
Affiliation(s)
- Matjaz Rokavec
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Nassim Bouznad
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Heiko Hermeking
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-Universität München, Munich, Germany,German Cancer Consortium (DKTK), Partner site Munich, Germany,German Cancer Research Center (DKFZ), Heidelberg, Germany,Correspondence Address correspondence to: Heiko Hermeking, Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-Universität München, Thalkirchner Strasse 36, D-80337 Munich, Germany. fax: (49) 89-2180-73697.
| |
Collapse
|
12
|
Sun JY, Zhu ZR, Wang H, Li WW, Cao CH, Liu L, Wu DH. Knockdown of UACA inhibitsproliferation and invasion and promotes senescence of hepatocellular carcinoma cells. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:4666-4675. [PMID: 31949867 PMCID: PMC6962967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/14/2018] [Indexed: 06/10/2023]
Abstract
Uveal autoantigen with coiled-coil domains and ankyrin repeats (UACA/Nucling), has been reported to be upregulated in various cancers. However, its expression and function have not been studied in hepatocellular carcinoma (HCC). In the present study, expression of UACA was detected by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and the results revealed that UACA was upregulated in 23 cases of HCC compared with paired corresponding non-tumor liver tissues. In addition, the upregulation of UACA in HCC was further validated by analyzing the datasets from The Cancer Genome Atlas-Liver Hepatocellular Carcinoma (TCGA-LIHC) and GSE36376. Furthermore, knockdown of UACA suppressed the proliferative and invasive ability as well as inducing senescence of HCC cells. Besides, the expression level of UACA was positively associated with Hif1α (hypoxia-inducible factor 1α) in HCC datasets from TCGA-LIHC and GSE54236. Moreover, treatment with CoCl2 led to the increased expression and the localization alteration of UACA in HCC cells. In summary, UACA is upregulated in HCC and knockdown of UACA ameliorated malignant behaviors of HCC cells, and UACA was correlated with and under control of Hif1α.
Collapse
Affiliation(s)
- Jing-Yuan Sun
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical UniversityGuangzhou, Guangdong, P. R. China
| | - Zhen-Ru Zhu
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical UniversityGuangzhou, Guangdong, P. R. China
| | - Hui Wang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical UniversityGuangzhou, Guangdong, P. R. China
| | - Wen-Wen Li
- Hepatology Unit, Department of Infectious Diseases, Nanfang Hospital, Southern Medical UniversityGuangzhou, Guangdong, P. R. China
| | - Chuan-Hui Cao
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical UniversityGuangzhou, Guangdong, P. R. China
| | - Li Liu
- Hepatology Unit, Department of Infectious Diseases, Nanfang Hospital, Southern Medical UniversityGuangzhou, Guangdong, P. R. China
| | - De-Hua Wu
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical UniversityGuangzhou, Guangdong, P. R. China
| |
Collapse
|
13
|
Novel role of prostate apoptosis response-4 tumor suppressor in B-cell chronic lymphocytic leukemia. Blood 2018; 131:2943-2954. [PMID: 29695515 DOI: 10.1182/blood-2017-10-813931] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 04/08/2018] [Indexed: 01/04/2023] Open
Abstract
Prostate apoptosis response-4 (Par-4), a proapoptotic tumor suppressor protein, is downregulated in many cancers including renal cell carcinoma, glioblastoma, endometrial, and breast cancer. Par-4 induces apoptosis selectively in various types of cancer cells but not normal cells. We found that chronic lymphocytic leukemia (CLL) cells from human patients and from Eµ-Tcl1 mice constitutively express Par-4 in greater amounts than normal B-1 or B-2 cells. Interestingly, knockdown of Par-4 in human CLL-derived Mec-1 cells results in a robust increase in p21/WAF1 expression and decreased growth due to delayed G1-to-S cell-cycle transition. Lack of Par-4 also increased the expression of p21 and delayed CLL growth in Eμ-Tcl1 mice. Par-4 expression in CLL cells required constitutively active B-cell receptor (BCR) signaling, as inhibition of BCR signaling with US Food and Drug Administration (FDA)-approved drugs caused a decrease in Par-4 messenger RNA and protein, and an increase in apoptosis. In particular, activities of Lyn, a Src family kinase, spleen tyrosine kinase, and Bruton tyrosine kinase are required for Par-4 expression in CLL cells, suggesting a novel regulation of Par-4 through BCR signaling. Together, these results suggest that Par-4 may play a novel progrowth rather than proapoptotic role in CLL and could be targeted to enhance the therapeutic effects of BCR-signaling inhibitors.
Collapse
|
14
|
Subburayan K, Thayyullathil F, Pallichankandy S, Rahman A, Galadari S. Par-4-dependent p53 up-regulation plays a critical role in thymoquinone-induced cellular senescence in human malignant glioma cells. Cancer Lett 2018; 426:80-97. [PMID: 29656006 DOI: 10.1016/j.canlet.2018.04.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 04/08/2018] [Accepted: 04/09/2018] [Indexed: 12/18/2022]
Abstract
Thymoquinone (TQ), the predominant bioactive constituent present in black cumin (Nigella sativa), exerts tumor suppressive activity against a wide variety of cancer cells. Cellular senescence, characterized by stable and long term loss of proliferative capacity, acts as a potent tumor suppressive mechanism. Here, we provide evidence for the first time that TQ suppresses growth of glioma cells by potentially inducing the expression of prostate apoptosis response-4 (Par-4) tumor suppressor protein. In turn, TQ-induced Par-4 expression triggers cellular senescence, as evidenced by increasing cellular size, β-galactosidase staining, G1 phase arrest, and increased expression of senescence markers such as p53, p21, Rb, and decreased expression of lamin B1, cyclin E and cyclin depended kinase-2 (CDK-2). Further, overexpression of Par-4 significantly increases the expression of p53 and its downstream target p21, and increases β-galactosidase positive cells, while siRNA/shRNA mediated-knockdown of Par-4 reverses the TQ-induced effects. Altogether, we describe a novel mechanism of cross talk between Par-4 and p53, that plays a critical role in TQ-induced senescence in human malignant glioma cells.
Collapse
Affiliation(s)
- Karthikeyan Subburayan
- Cell Death Signaling Laboratory, Division of Science (Biology), Experimental Research Building, New York University Abu Dhabi, P.O. Box 129188, Saadiyat Island Campus, Abu Dhabi, United Arab Emirates.
| | - Faisal Thayyullathil
- Cell Death Signaling Laboratory, Division of Science (Biology), Experimental Research Building, New York University Abu Dhabi, P.O. Box 129188, Saadiyat Island Campus, Abu Dhabi, United Arab Emirates.
| | - Siraj Pallichankandy
- Cell Death Signaling Laboratory, Division of Science (Biology), Experimental Research Building, New York University Abu Dhabi, P.O. Box 129188, Saadiyat Island Campus, Abu Dhabi, United Arab Emirates.
| | - Anees Rahman
- Cell Death Signaling Laboratory, Division of Science (Biology), Experimental Research Building, New York University Abu Dhabi, P.O. Box 129188, Saadiyat Island Campus, Abu Dhabi, United Arab Emirates.
| | - Sehamuddin Galadari
- Cell Death Signaling Laboratory, Division of Science (Biology), Experimental Research Building, New York University Abu Dhabi, P.O. Box 129188, Saadiyat Island Campus, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
15
|
Shen Z, Qin X, Yan M, Li R, Chen G, Zhang J, Chen W. Cancer-associated fibroblasts promote cancer cell growth through a miR-7-RASSF2-PAR-4 axis in the tumor microenvironment. Oncotarget 2018; 8:1290-1303. [PMID: 27901488 PMCID: PMC5352055 DOI: 10.18632/oncotarget.13609] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 11/07/2016] [Indexed: 01/08/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs), a major component of cancer stroma, play an important role in cancer progression but little is known about how CAFs affect tumorigenesis and development. MicroRNAs (miRNAs) are small non-coding RNAs that can negatively regulate target mRNA expression at post-transcriptional levels. In head and neck cancer (HNC), our analysis of miRNA arrays showed that miR-7, miR-196 and miR-335 were significantly up-regulated in CAFs when compared with their paired normal fibroblasts (NFs). FAP, α-SMA and FSP, specific markers of CAFs, were significantly expressed in CAFs. Functionally, exogenous expression of miR-7 in NFs induced a functional conversion of NFs into CAFs. In contrast, inhibition of miR-7 expression in CAFs could induce a functional conversion of CAFs into NFs. Our study demonstrated that overexpression of miR-7 in NFs significantly increased the migration activity and growth rates of cancer cells in co-culture experiments. Mechanistically, we confirmed that the RASSF2-PAR-4 axis was mainly responsible for miR-7 functions in CAFs using bioinformatics methods. Overexpression of miR-7 in CAFs led to down-regulation of RASSF2, which dramatically decreased the secretion of PAR-4 from CAFs and then enhanced the proliferation and migration of the co-cultured cancer cells. Thus, these results reveal that the inactivation of the RASSF2-PAR-4 axis controlled by miR-7 may be a novel strategy for gene therapy in HNCs.
Collapse
Affiliation(s)
- Zongze Shen
- Department of Oral and Maxillofacial Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Xing Qin
- Department of Oral and Maxillofacial Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Ming Yan
- Department of Oral and Maxillofacial Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Rongrong Li
- Department of Oral and Maxillofacial Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Gang Chen
- Department of Oral and Maxillofacial Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Jianjun Zhang
- Department of Oral and Maxillofacial Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Wantao Chen
- Department of Oral and Maxillofacial Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai 200011, China
| |
Collapse
|
16
|
Shelke GV, Jagtap JC, Kim DK, Shah RD, Das G, Shivayogi M, Pujari R, Shastry P. TNF-α and IFN-γ Together Up-Regulates Par-4 Expression and Induce Apoptosis in Human Neuroblastomas. Biomedicines 2017; 6:biomedicines6010004. [PMID: 29278364 PMCID: PMC5874661 DOI: 10.3390/biomedicines6010004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 12/15/2017] [Accepted: 12/19/2017] [Indexed: 01/18/2023] Open
Abstract
The objective of this study was to examine the combined effect of Interferon-gamma (IFN-γ) and Tumor Necrosis factor-alpha (TNF-α) on cytotoxicity and expression of prostate apoptosis response-4 (Par-4) and Par-4 interacting proteins B-cell lymphoma (Bcl-2), nuclear factor kappa-light-chain-enhancer of activated B cells/p65 subunit (NF-κB/p65), Ak mouse strain thymoma (Akt) in human neuroblastoma (NB) cells. Materials and methods included human neuroblastoma cell lines-SK-N-MC, SK-N-SH, and SH-SY5Y, which were treated with IFN-γ and TNF-α individually, or in combination, and were assessed for viability by tetrazolium (MTT) assay. Apoptosis was monitored by hypodiploid population (by flow cytometry), DNA fragmentation, Poly (ADP-ribose) polymerase (PARP) cleavage, and caspase-8 activity. Transcript level of Par-4 was measured by RT-PCR. Protein levels of Par-4 and suppressor of cytokine signaling 3 (SOCS-3) were assessed by immunoblotting. Cellular localization of Par-4 and p65 was examined by immunofluorescence. Unbiased transcript analysis for IFN-γ, TNF-α, and Par-4 were analyzed from three independent clinical datasets from neuroblastoma patients. In terms of results, SK-N-MC cells treated with a combination of, but not individually with, IFN-γ and TNF-α induced apoptosis characterized by hypodiploidy, DNA fragmentation, PARP cleavage, and increased caspase-8 activity. Apoptosis was associated with up-regulation of Par-4 mRNA and protein expression. Immunofluorescence studies revealed that Par-4 was localized exclusively in cytoplasm in SK-N-MC cells cultured for 24 h. but showed nuclear localization at 48 h. Treatment with IFN-γ and TNF-α together enhanced the intensity of nuclear Par-4. In gene expression, data from human neuroblastoma patients, levels of IFN-γ, and TNF-α have strong synergy with Par-4 expression and provide good survival advantage. The findings also demonstrated that apoptosis was associated with reduced level of pro-survival proteins–Bcl-2 and Akt and NF-κB/p65. Furthermore, the apoptotic effect induced by IFN-γ-induced Signal Transducer and Activator of Transcription-1(STAT-1), and could be due to down-regulation of suppressor of cytokine signaling-3 (SOCS3). The study concludes that a combinatorial approach using IFN-γ and TNF-α can be explored to maximize the effect in chemotherapy in neuroblastoma, and implies a role for Par-4 in the process.
Collapse
Affiliation(s)
- Ganesh V Shelke
- National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind, Pune 411007, India
- Current address: Krefting Research Centre, University of Gothenburg, Box-424, SE-405 30 Gothenburg, Sweden.
| | - Jayashree C Jagtap
- National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind, Pune 411007, India.
| | - Dae-Kyum Kim
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada.
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, ON M5G 1X5, Canada.
| | - Reecha D Shah
- National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind, Pune 411007, India.
| | - Gowry Das
- National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind, Pune 411007, India.
| | | | - Radha Pujari
- Rasayani Biologics Pvt Ltd, 48/7, Mhalunge-Nande Road, Mhalunge, Pune 411045, India.
| | - Padma Shastry
- National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind, Pune 411007, India.
| |
Collapse
|
17
|
Burikhanov R, Hebbar N, Noothi SK, Shukla N, Sledziona J, Araujo N, Kudrimoti M, Wang QJ, Watt DS, Welch DR, Maranchie J, Harada A, Rangnekar VM. Chloroquine-Inducible Par-4 Secretion Is Essential for Tumor Cell Apoptosis and Inhibition of Metastasis. Cell Rep 2017; 18:508-519. [PMID: 28076793 PMCID: PMC5264245 DOI: 10.1016/j.celrep.2016.12.051] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 05/05/2016] [Accepted: 12/15/2016] [Indexed: 12/11/2022] Open
Abstract
The induction of tumor suppressor proteins capable of cancer cell apoptosis represents an attractive option for the re-purposing of existing drugs. We report that the anti-malarial drug, chloroquine (CQ), is a robust inducer of Par-4 secretion from normal cells in mice and cancer patients in a clinical trial. CQ-inducible Par-4 secretion triggers paracrine apoptosis of cancer cells and also inhibits metastatic tumor growth. CQ induces Par-4 secretion via the classical secretory pathway that requires the activation of p53. Mechanistically, p53 directly induces Rab8b, a GTPase essential for vesicle transport of Par-4 to the plasma membrane prior to secretion. Our findings indicate that CQ induces p53- and Rab8b-dependent Par-4 secretion from normal cells for Par-4-dependent inhibition of metastatic tumor growth.
Collapse
Affiliation(s)
- Ravshan Burikhanov
- Department of Radiation Medicine, University of Kentucky, Lexington, KY 40356, USA
| | - Nikhil Hebbar
- Graduate Center for Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40356, USA
| | - Sunil K Noothi
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY 40356, USA
| | - Nidhi Shukla
- Graduate Center for Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40356, USA
| | - James Sledziona
- Graduate Center for Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40356, USA
| | - Nathália Araujo
- Graduate Center for Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40356, USA
| | - Meghana Kudrimoti
- Department of Radiation Medicine, University of Kentucky, Lexington, KY 40356, USA
| | - Qing Jun Wang
- Graduate Center for Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40356, USA; Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40356, USA
| | - David S Watt
- Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40356, USA; Lucille Parker Markey Cancer Center, University of Kentucky, Lexington, KY 40356, USA
| | - Danny R Welch
- Department of Cancer Biology, University of Kansas, Kansas City, KS 66160, USA
| | - Jodi Maranchie
- Department of Urology, University of Pittsburgh, Pittsburgh, PA 15232, USA
| | - Akihiro Harada
- Department of Cell Biology, Osaka University, Osaka 565-0871, Japan
| | - Vivek M Rangnekar
- Department of Radiation Medicine, University of Kentucky, Lexington, KY 40356, USA; Graduate Center for Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40356, USA; Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY 40356, USA; Lucille Parker Markey Cancer Center, University of Kentucky, Lexington, KY 40356, USA.
| |
Collapse
|
18
|
Hebbar N, Burikhanov R, Shukla N, Qiu S, Zhao Y, Elenitoba-Johnson KSJ, Rangnekar VM. A Naturally Generated Decoy of the Prostate Apoptosis Response-4 Protein Overcomes Therapy Resistance in Tumors. Cancer Res 2017. [PMID: 28625975 DOI: 10.1158/0008-5472.can-16-1970] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Primary tumors are often heterogeneous, composed of therapy-sensitive and emerging therapy-resistant cancer cells. Interestingly, treatment of therapy-sensitive tumors in heterogeneous tumor microenvironments results in apoptosis of therapy-resistant tumors. In this study, we identify a prostate apoptosis response-4 (Par-4) amino-terminal fragment (PAF) that is released by diverse therapy-sensitive cancer cells following therapy-induced caspase cleavage of the tumor suppressor Par-4 protein. PAF caused apoptosis in cancer cells resistant to therapy and inhibited tumor growth. A VASA segment of Par-4 mediated its binding and degradation by the ubiquitin ligase Fbxo45, resulting in loss of Par-4 proapoptotic function. Conversely, PAF, which contains this VASA segment, competitively bound to Fbxo45 and rescued Par-4-mediated induction of cancer cell-specific apoptosis. Collectively, our findings identify a molecular decoy naturally generated during apoptosis that inhibits a ubiquitin ligase to overcome therapy resistance in tumors. Cancer Res; 77(15); 4039-50. ©2017 AACR.
Collapse
Affiliation(s)
- Nikhil Hebbar
- Department of Radiation Medicine, University of Kentucky, Lexington, Kentucky.,Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky
| | - Ravshan Burikhanov
- Department of Radiation Medicine, University of Kentucky, Lexington, Kentucky
| | - Nidhi Shukla
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky
| | - Shirley Qiu
- Department of Radiation Medicine, University of Kentucky, Lexington, Kentucky
| | - Yanming Zhao
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky
| | | | - Vivek M Rangnekar
- Department of Radiation Medicine, University of Kentucky, Lexington, Kentucky. .,Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky.,Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky.,L.P. Markey Cancer Center, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
19
|
A journey beyond apoptosis: new enigma of controlling metastasis by pro-apoptotic Par-4. Clin Exp Metastasis 2016; 33:757-764. [PMID: 27568374 DOI: 10.1007/s10585-016-9819-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 08/22/2016] [Indexed: 10/21/2022]
Abstract
Prostate apoptotic response 4 (Par-4) is coined as a therapeutic protein since owing to its diverse physiologically relevant properties, especially in the cancer perspective. Albeit, Par-4 expression is not restricted to any specific tissue/organ, apart from cell death promotion (due to challenging threats), the other biological role of Par-4 is convincingly emerging. In the recent years, several laboratories have intended to dissect the signaling or mechanisms involved in Par-4 activation to augment apoptosis cascades but new developments in Par-4 research have widened its therapeutic potential. One of these important avenues is the prevention of metastasis by pro-apoptotic Par-4. In this review, we will focus on the therapeutic perspective of Par-4 with a special reference to its (Par-4) virgin prospect of devastating metastasis control.
Collapse
|
20
|
Das TP, Suman S, Alatassi H, Ankem MK, Damodaran C. Inhibition of AKT promotes FOXO3a-dependent apoptosis in prostate cancer. Cell Death Dis 2016; 7:e2111. [PMID: 26913603 PMCID: PMC4849149 DOI: 10.1038/cddis.2015.403] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 12/08/2015] [Accepted: 12/09/2015] [Indexed: 01/02/2023]
Abstract
Growth factor-induced activation of protein kinase-B (PKB), also known as AKT, induces pro-survival signaling and inhibits activation of pro-apoptotic signaling molecules including the Forkhead box O-3a (FOXO3a) transcription factor and caspase in transformed prostate cells in vitro. Earlier we reported that Withaferin-A (WA), a small herbal molecule, induces pro-apoptotic response-4 (Par-4) mediated apoptosis in castration-resistant prostate cancer (CRPC) cells. In the present study, we demonstrate that inhibition of AKT facilitates nuclear shuttling of FOXO3a where it regulates Par-4 transcription in CRPC cells. FOXO3a is upstream of Par-4 signaling, which is required for induction of apoptosis in CRPC cells. Promoter bashing studies and Ch-IP analysis confirm a direct interaction of FOXO3a and Par-4; a sequential deletion of FOXO3a-binding sites in the Par-4 promoter fails to induce Par-4 activation. To confirm these observations, we either overexpressed AKT or silenced FOXO3a activation in CRPC cells. Both methods inhibit Par-4 function and apoptosis is significantly compromised. In xenograft tumors derived from AKT-overexpressed CRPC cells, FOXO3a and Par-4 expression is downregulated, leading to aggressive tumor growth. Oral administration of WA to mice with xenograft tumors restores FOXO3a-mediated Par-4 functions and results in inhibited tumor growth. Finally, an inverse correlation of nuclear localization of AKT expression corresponds to cytoplasmic Par-4 localization in human prostate tissue array. Our studies suggest that Par-4 is one of the key transcriptional targets of FOXO3a, and Par-4 activation is required for induction of apoptosis in CRPC cells. Activation of FOXO3a appears to be an attractive target for the treatment of CRPC and molecules such as WA can be explored further for the treatment of CRPC.
Collapse
Affiliation(s)
- T P Das
- Department of Urology, University of Louisville, Louisville, KY 40202, USA
| | - S Suman
- Department of Urology, University of Louisville, Louisville, KY 40202, USA
| | - H Alatassi
- Department of Pathology, University of Louisville, Louisville, KY 40202, USA
| | - M K Ankem
- Department of Urology, University of Louisville, Louisville, KY 40202, USA
| | - C Damodaran
- Department of Urology, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
21
|
Rah B, ur Rasool R, Nayak D, Yousuf SK, Mukherjee D, Kumar LD, Goswami A. PAWR-mediated suppression of BCL2 promotes switching of 3-azido withaferin A (3-AWA)-induced autophagy to apoptosis in prostate cancer cells. Autophagy 2016; 11:314-31. [PMID: 25803782 DOI: 10.1080/15548627.2015.1017182] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
An active medicinal component of plant origin with an ability to overcome autophagy by inducing apoptosis should be considered a therapeutically active lead pharmacophore to control malignancies. In this report, we studied the effect of concentration-dependent 3-AWA (3-azido withaferin A) sensitization to androgen-independent prostate cancer (CaP) cells which resulted in a distinct switching of 2 interrelated conserved biological processes, i.e. autophagy and apoptosis. We have observed 3 distinct parameters which are hallmarks of autophagy in our studies. First, a subtoxic concentration of 3-AWA resulted in an autophagic phenotype with an elevation of autophagy markers in prostate cancer cells. This led to a massive accumulation of MAP1LC3B and EGFP-LC3B puncta coupled with gradual degradation of SQSTM1. Second, higher toxic concentrations of 3-AWA stimulated ER stress in CaP cells to turn on apoptosis within 12 h by elevating the expression of the proapoptotic protein PAWR, which in turn suppressed the autophagy-related proteins BCL2 and BECN1. This inhibition of BECN1 in CaP cells, leading to the disruption of the BCL2-BECN1 interaction by overexpressed PAWR has not been reported so far. Third, we provide evidence that pawr-KO MEFs exhibited abundant autophagy signs even at toxic concentrations of 3-AWA underscoring the relevance of PAWR in switching of autophagy to apoptosis. Last but not least, overexpression of EGFP-LC3B and DS-Red-BECN1 revealed a delayed apoptosis turnover at a higher concentration of 3-AWA in CaP cells. In summary, this study provides evidence that 3-AWA is a strong anticancer candidate to abrogate protective autophagy. It also enhanced chemosensitivity by sensitizing prostate cancer cells to apoptosis through induction of PAWR endorsing its therapeutic potential.
Collapse
Key Words
- 3-AWA, 3-azido withaferin A
- 3-azido withaferin A
- AO, acridine orange
- ATG, autophagy-related
- AVOs, acidic vesicular organelles
- BAD, BCL2-associated agonist of cell death
- BAF A1, bafilomycin A1
- BCL2
- BCL2, B-cell CLL/lymphoma 2
- BECN1
- BECN1, Beclin 1, autophagy-related
- CASP3, caspase 3
- CASP9, caspase 9
- CQ, chloroquine
- CYCS, cytochrome c, somatic
- CaP, prostate cancer cells
- DAPI, 4’6-diamidino-2-phenylindole
- DCF, dichlorofluorescein
- DDIT3/CHOP, DNA-damage-inducible transcript 3
- EIF2AK3/PERK, eukaryotic initiation translation factor 2-α kinase 3
- ER, endoplasmic reticulum
- HSPA5/GRP78, heat shock 70kDa protein 5 (glucose-regulated protein, 78kDa)
- MAP1LC3B/LC3B, microtubule-associated protein 1 light chain 3 β
- MDC, monodansylcadaverine
- MEFs, mouse embryonic fibroblasts
- MMPψ, mitochondrial membrane potential
- MTOR, mechanistic target of rapamycin
- NAC, N-acetyl-L-cysteine
- PARP1, poly (ADP-ribose) polymerase 1
- PAWR
- PAWR/Par-4, PRKC, apoptosis, WT1, regulator
- PRKCZ/PKCζ, protein kinase C, zeta
- SQSTM1/p62, sequestosome 1
- WT1, Wilms tumor 1
- apoptosis
- autophagy
- myrAKT1, myristoylated v-akt murine thymoma viral oncogene homolog 1
Collapse
Affiliation(s)
- Bilal Rah
- a Academy of Scientific & Innovative Research (AcSIR) ; New Delhi , India
| | | | | | | | | | | | | |
Collapse
|
22
|
Rekaik H, Blaudin de Thé FX, Fuchs J, Massiani-Beaudoin O, Prochiantz A, Joshi RL. Engrailed Homeoprotein Protects Mesencephalic Dopaminergic Neurons from Oxidative Stress. Cell Rep 2015; 13:242-50. [PMID: 26411690 PMCID: PMC5066840 DOI: 10.1016/j.celrep.2015.08.076] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 06/30/2015] [Accepted: 08/26/2015] [Indexed: 12/03/2022] Open
Abstract
Engrailed homeoproteins are expressed in adult dopaminergic neurons of the substantia nigra. In Engrailed1 heterozygous mice, these neurons start dying at 6 weeks, are more sensitive to oxidative stress, and progressively develop traits similar to those observed following an acute and strong oxidative stress inflected to wild-type neurons. These changes include DNA strand breaks and the modification (intensity and distribution) of several nuclear and nucleolar heterochromatin marks. Engrailed1 and Engrailed2 are biochemically equivalent transducing proteins previously used to antagonize dopaminergic neuron death in Engrailed1 heterozygous mice and in mouse models of Parkinson disease. Accordingly, we show that, following an acute oxidative stress, a single Engrailed2 injection restores all nuclear and nucleolar heterochromatin marks, decreases the number of DNA strand breaks, and protects dopaminergic neurons against apoptosis.
Collapse
Affiliation(s)
- Hocine Rekaik
- Centre for Interdisciplinary Research in Biology (CIRB), Labex Memolife, CNRS UMR 7241/INSERM U1050, Collège de France, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | - François-Xavier Blaudin de Thé
- Centre for Interdisciplinary Research in Biology (CIRB), Labex Memolife, CNRS UMR 7241/INSERM U1050, Collège de France, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | - Julia Fuchs
- Centre for Interdisciplinary Research in Biology (CIRB), Labex Memolife, CNRS UMR 7241/INSERM U1050, Collège de France, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | - Olivia Massiani-Beaudoin
- Centre for Interdisciplinary Research in Biology (CIRB), Labex Memolife, CNRS UMR 7241/INSERM U1050, Collège de France, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | - Alain Prochiantz
- Centre for Interdisciplinary Research in Biology (CIRB), Labex Memolife, CNRS UMR 7241/INSERM U1050, Collège de France, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France.
| | - Rajiv L Joshi
- Centre for Interdisciplinary Research in Biology (CIRB), Labex Memolife, CNRS UMR 7241/INSERM U1050, Collège de France, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France
| |
Collapse
|
23
|
Frasinyuk MS, Bondarenko SP, Sviripa VM, Burikhanov R, Rangnekar VM, Liu C, Watt DS. Development of 6H-Chromeno[3,4- c]pyrido[3',2':4,5]thieno[2,3-e]pyridazin-6-ones as Par-4 Secretagogues. Tetrahedron Lett 2015; 56:3382-3384. [PMID: 26236052 PMCID: PMC4518469 DOI: 10.1016/j.tetlet.2015.01.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Nitrosation and cyclization of 4-(3-aminothieno[2,3-b]pyridine-2-yl)-2H-chromen-2-ones 1 afforded substituted 6H-chromeno[3,4-c]pyrido[3',2':4,5]thieno[2,3-e]pyridazin-6-ones 2 that inhibited the intermediary filament protein, vimentin, at low micromolar concentrations. This inhibition promoted the secretion of Prostate Apoptosis Response-4 protein (Par-4), which selectively triggered apoptosis in prostate cancer cells such as CWR22Rv1, LNCaP-derivative C4-2B, PC-3 and its aggressive analog, PC-3 MM2.
Collapse
Affiliation(s)
- Mykhaylo S. Frasinyuk
- Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Science of Ukraine, Kyiv 02094, Ukraine
| | | | - Vitaliy M. Sviripa
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536-0509, United States
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0596, United States
| | - Ravshan Burikhanov
- Department of Radiation Medicine, College of Medicine; University of Kentucky, Lexington, KY 40536-0096, United States
| | - Vivek M. Rangnekar
- Department of Radiation Medicine, College of Medicine; University of Kentucky, Lexington, KY 40536-0096, United States
- Lucille Parker Markey Cancer Center, University of Kentucky, Lexington, KY 40536-0093, United States
| | - Chunming Liu
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536-0509, United States
- Lucille Parker Markey Cancer Center, University of Kentucky, Lexington, KY 40536-0093, United States
| | - David S. Watt
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536-0509, United States
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0596, United States
- Lucille Parker Markey Cancer Center, University of Kentucky, Lexington, KY 40536-0093, United States
| |
Collapse
|
24
|
Amin H, Nayak D, ur Rasool R, Chakraborty S, Kumar A, Yousuf K, Sharma PR, Ahmed Z, Sharma N, Magotra A, Mukherjee D, Kumar LD, Goswami A. Par-4 dependent modulation of cellular β-catenin by medicinal plant natural product derivative 3-azido Withaferin A. Mol Carcinog 2015; 55:864-81. [DOI: 10.1002/mc.22328] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 03/15/2015] [Accepted: 03/26/2015] [Indexed: 12/24/2022]
Affiliation(s)
- Hina Amin
- Cancer Pharmacology Division; Indian Institute of Integrative Medicine (CSIR), Canal Road; Jammu Tawi Jammu and Kashmir India
- School of Biosciences and Biotechnology; Baba Ghulam Shah Badshah University; Rajouri Jammu and Kashmir India
| | - Debasis Nayak
- Cancer Pharmacology Division; Indian Institute of Integrative Medicine (CSIR), Canal Road; Jammu Tawi Jammu and Kashmir India
| | - Reyaz ur Rasool
- Cancer Pharmacology Division; Indian Institute of Integrative Medicine (CSIR), Canal Road; Jammu Tawi Jammu and Kashmir India
| | - Souneek Chakraborty
- Cancer Pharmacology Division; Indian Institute of Integrative Medicine (CSIR), Canal Road; Jammu Tawi Jammu and Kashmir India
| | - Anmol Kumar
- Center for Cellular and Molecular Biology; Uppal Road; Hyderabad Andra Pradesh India
| | - Khalid Yousuf
- Natural Product Chemistry; Indian Institute of Integrative Medicine (CSIR), Canal Road; Jammu Tawi Jammu and Kashmir India
| | - Parduman Raj Sharma
- Cancer Pharmacology Division; Indian Institute of Integrative Medicine (CSIR), Canal Road; Jammu Tawi Jammu and Kashmir India
| | - Zabeer Ahmed
- Cancer Pharmacology Division; Indian Institute of Integrative Medicine (CSIR), Canal Road; Jammu Tawi Jammu and Kashmir India
| | - Neelam Sharma
- Cancer Pharmacology Division; Indian Institute of Integrative Medicine (CSIR), Canal Road; Jammu Tawi Jammu and Kashmir India
| | - Asmita Magotra
- Cancer Pharmacology Division; Indian Institute of Integrative Medicine (CSIR), Canal Road; Jammu Tawi Jammu and Kashmir India
| | - Debaraj Mukherjee
- Natural Product Chemistry; Indian Institute of Integrative Medicine (CSIR), Canal Road; Jammu Tawi Jammu and Kashmir India
| | - Lekha Dinesh Kumar
- Center for Cellular and Molecular Biology; Uppal Road; Hyderabad Andra Pradesh India
| | - Anindya Goswami
- Cancer Pharmacology Division; Indian Institute of Integrative Medicine (CSIR), Canal Road; Jammu Tawi Jammu and Kashmir India
| |
Collapse
|
25
|
Prabhu VV, El-Deiry WS. 4th international conference on tumor progression and therapeutic resistance: meeting report. Cancer Biol Ther 2015; 16:363-76. [PMID: 25782066 DOI: 10.1080/15384047.2015.1004928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
The fourth international conference on tumor progression and therapeutic resistance organized in association with GTCbio was held in Boston, MA from March 9 to 11, 2014. The meeting attracted a diverse group of experts in the field of cancer biology, therapeutics and medical oncology from academia and industry. The meeting addressed the current challenges in the treatment of cancer including tumor heterogeneity, therapy resistance and metastasis along with the need for improved biomarkers of tumor progression and clinical trial design. Keynote speakers included Clifton Leaf, Editor at Fortune Magazine, Dr. Mina Bissell from the Lawrence Berkeley National Laboratory and Dr. Levi Garraway from the Dana Farber Cancer Institute. The meeting featured cutting edge tools, preclinical models and the latest basic, translational and clinical research findings in the field.
Collapse
Affiliation(s)
- Varun V Prabhu
- a Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Department of Hematology/Oncology and Molecular Therapeutics Program , Fox Chase Cancer Center , Philadelphia , PA , USA
| | | |
Collapse
|
26
|
Burikhanov R, Sviripa VM, Hebbar N, Zhang W, Layton WJ, Hamza A, Zhan CG, Watt DS, Liu C, Rangnekar VM. Arylquins target vimentin to trigger Par-4 secretion for tumor cell apoptosis. Nat Chem Biol 2014; 10:924-926. [PMID: 25218743 PMCID: PMC4201913 DOI: 10.1038/nchembio.1631] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 08/13/2014] [Indexed: 12/17/2022]
Abstract
The tumor suppressor protein Par-4, which is secreted by normal cells, selectively induces apoptosis in cancer cells. We identified a 3-arylquinoline derivative, designated Arylquin 1, as a potent Par-4 secretagogue in cell cultures and mice. Mechanistically, Arylquin 1 binds to vimentin, displaces Par-4 from vimentin for secretion and triggers the efficient paracrine apoptosis of diverse cancer cells. Thus, targeting vimentin with Par-4 secretagogues efficiently induces paracrine apoptosis of tumor cells.
Collapse
Affiliation(s)
- Ravshan Burikhanov
- Department of Radiation Medicine, College of Medicine, University of Kentucky, Lexington, KY 40536
| | - Vitaliy M Sviripa
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536.,Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY 40536
| | - Nikhil Hebbar
- Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY 40536
| | - Wen Zhang
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536.,Lucille Parker Markey Cancer Center, University of Kentucky, Lexington, KY 40536
| | - W John Layton
- Department of Chemistry, College of Arts and Sciences, University of Kentucky, Lexington, KY 40536
| | - Adel Hamza
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536
| | - Chang-Guo Zhan
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY 40536.,Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536.,Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, Lexington, KY 40536
| | - David S Watt
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536.,Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY 40536.,Lucille Parker Markey Cancer Center, University of Kentucky, Lexington, KY 40536.,Department of Chemistry, College of Arts and Sciences, University of Kentucky, Lexington, KY 40536
| | - Chunming Liu
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536.,Lucille Parker Markey Cancer Center, University of Kentucky, Lexington, KY 40536
| | - Vivek M Rangnekar
- Department of Radiation Medicine, College of Medicine, University of Kentucky, Lexington, KY 40536.,Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY 40536.,Lucille Parker Markey Cancer Center, University of Kentucky, Lexington, KY 40536
| |
Collapse
|
27
|
Chua CEL, Chan SN, Tang BL. Non-Cell Autonomous or Secretory Tumor Suppression. J Cell Physiol 2014; 229:1346-52. [DOI: 10.1002/jcp.24574] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 02/03/2014] [Indexed: 12/19/2022]
Affiliation(s)
- Christelle En Lin Chua
- Department of Biochemistry; Yong Loo Lin School of Medicine National University Health System; Singapore Singapore
- NUS Graduate School for Integrative Sciences and Engineering; National University of Singapore; Singapore Singapore
| | - Shu Ning Chan
- Department of Biochemistry; Yong Loo Lin School of Medicine National University Health System; Singapore Singapore
| | - Bor Luen Tang
- Department of Biochemistry; Yong Loo Lin School of Medicine National University Health System; Singapore Singapore
- NUS Graduate School for Integrative Sciences and Engineering; National University of Singapore; Singapore Singapore
| |
Collapse
|
28
|
Abstract
INTRODUCTION Apoptosis plays an important role in age-related disease, and prostate apoptosis response-4 (PAR-4) is a novel apoptosis-inducing factor that regulates apoptosis in most cells. Recent studies suggest that PAR-4 plays an important role in the progression of many age-related diseases. This review highlights the significance of PAR-4 and builds a strong case supporting its role as a possible therapeutic target in age-related disease. AREAS COVERED This review covers the advancements over the last 15 years with respect to PAR-4 and its significance in age-related disease. Additionally, it provides knowledge regarding the significance of PAR-4 in age-related disease as well as its role in apoptotic signaling pathways, endoplasmic reticulum (ER) stress, and other mechanisms that may induce age-related disease. EXPERT OPINION PAR-4 may be a potential therapeutic target that can trigger selective apoptosis in cancer cells. It is induced by ER stress and increased ER stress, and it is involved in the activity of the dopamine D2 receptor. Abnormal expression of PAR-4 may be associated with cardiovascular disease and diabetes. PAR-4 agonists and inhibitors must be identified before gene therapy can commence.
Collapse
Affiliation(s)
- Wu Qinan
- The First Affiliated Hospital of the Third Military Medical University, Endocrine Department , Post number: 400038, Chongqing , China
| | | | | |
Collapse
|