1
|
Wani SA, Hussain S, Gray JS, Nayak D, Tang H, Perez LM, Long MD, Siddappa M, McCabe CJ, Sucheston-Campbell LE, Freeman MR, Campbell MJ. Epigenetic disruption of the RARγ complex impairs its function to bookmark AR enhancer interactions required for enzalutamide sensitivity in prostate cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.15.571947. [PMID: 38168185 PMCID: PMC10760102 DOI: 10.1101/2023.12.15.571947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The current study in prostate cancer (PCa) focused on the genomic mechanisms at the cross-roads of pro-differentiation signals and the emergence of lineage plasticity. We explored an understudied cistromic mechanism involving RARγ's ability to govern AR cistrome-transcriptome relationships, including those associated with more aggressive PCa features. The RARγ complex in PCa cell models was enriched for canonical cofactors, as well as proteins involved in RNA processing and bookmarking. Identifying the repertoire of miR-96 bound and regulated gene targets, including those recognition elements marked by m6A, revealed their significant enrichment in the RARγ complex. RARγ significantly enhanced the AR cistrome, particularly in active enhancers and super-enhancers, and overlapped with the binding of bookmarking factors. Furthermore, RARγ expression led to nucleosome-free chromatin enriched with H3K27ac, and significantly enhanced the AR cistrome in G2/M cells. RARγ functions also antagonized the transcriptional actions of the lineage master regulator ONECUT2. Similarly, gene programs regulated by either miR-96 or antagonized by RARγ were enriched in alternative lineages and more aggressive PCa phenotypes. Together these findings reveal an under-investigated role for RARγ, modulated by miR-96, to bookmark enhancer sites during mitosis. These sites are required by the AR to promote transcriptional competence, and emphasize luminal differentiation, while antagonizing ONECUT2.
Collapse
Affiliation(s)
- Sajad A Wani
- Division of Pharmaceutics and Pharmacology, The Ohio State University, Columbus, OH 43210
| | - Shahid Hussain
- Division of Cancer Biology, Cedars Sinai Cancer, and Los Angeles, CA 90048
- Board of Governors Innovation Center, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Jaimie S Gray
- Division of Pharmaceutics and Pharmacology, The Ohio State University, Columbus, OH 43210
| | - Debasis Nayak
- Division of Pharmaceutics and Pharmacology, The Ohio State University, Columbus, OH 43210
| | - Hancong Tang
- Division of Pharmaceutics and Pharmacology, The Ohio State University, Columbus, OH 43210
| | - Lillian M Perez
- Division of Cancer Therapeutics, Cedars Sinai Cancer, Departments of Urology and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Mark D Long
- Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263
| | - Manjunath Siddappa
- Division of Pharmaceutics and Pharmacology, The Ohio State University, Columbus, OH 43210
| | - Christopher J McCabe
- Institute of Metabolism and Systems Research (IMSR), and Centre of Endocrinology, Diabetes and Metabolism (CEDAM), University of Birmingham, Birmingham, UK
| | | | - Michael R Freeman
- Division of Cancer Therapeutics, Cedars Sinai Cancer, Departments of Urology and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Moray J Campbell
- Division of Cancer Biology, Cedars Sinai Cancer, and Los Angeles, CA 90048
- Board of Governors Innovation Center, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| |
Collapse
|
2
|
Kawaji‐Kanayama Y, Tsukamoto T, Nakano M, Tokuda Y, Nagata H, Mizuhara K, Katsuragawa‐Taminishi Y, Isa R, Fujino T, Matsumura‐Kimoto Y, Mizutani S, Shimura Y, Taniwaki M, Tashiro K, Kuroda J. miR-17-92 cluster-BTG2 axis regulates B-cell receptor signaling in mantle cell lymphoma. Cancer Sci 2024; 115:452-464. [PMID: 38050664 PMCID: PMC10859618 DOI: 10.1111/cas.16027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/04/2023] [Accepted: 11/03/2023] [Indexed: 12/06/2023] Open
Abstract
B-cell receptor (BCR) signaling is critically activated and stable for mantle cell lymphoma (MCL), but the underlying mechanism of the activated BCR signaling pathway is not clear. The pathogenic basis of miR-17-92 cluster remains unclear although the oncogenic microRNA (miRNA) miR-17-92 cluster is highly expressed in patients with MCL. We revealed that miR-17-92 cluster overexpression is partly dependent on SOX11 expression and chromatin acetylation of MIR17HG enhancer regions. Moreover, miR-17-92 cluster regulates not only cell proliferation but BCR signaling activation in MCL cell lines. To comprehensively identify miR-17-92 cluster target genes, we performed pulldown-seq, where target RNA of miRNA was captured using the biotinylated miRNA mimics and magnetic bead-coated streptavidin, and quantified using next-generation sequencing. The pulldown-seq identified novel miRNA target genes, including tumor suppressors such as BTG2 (miR-19b), CDKN2A (miR-17), SYNE1 (miR-20a), TET2 (miR-18, miR-19b, and miR-92a), TNFRSF10A (miR-92a), and TRAF3 (miR-17). Notably, the gene expression profile data of patients with MCL revealed that BTG2 expression was negatively associated with that of BCR signature genes, and low BTG2 expression was associated with poor overall survival. Moreover, BTG2 silencing in MCL cell lines significantly induced BCR signaling overactivation and cell proliferation. Our results suggest an oncogenic role of miR-17-92 cluster-activating BCR signaling throughout BTG2 deregulation in MCL. Furthermore, this may contribute to the prediction of the therapeutic efficacy and improved outcomes of MCL.
Collapse
Affiliation(s)
- Yuka Kawaji‐Kanayama
- Department of Medicine, Division of Hematology and OncologyKyoto Prefectural University of MedicineKyotoJapan
| | - Taku Tsukamoto
- Department of Medicine, Division of Hematology and OncologyKyoto Prefectural University of MedicineKyotoJapan
| | - Masakazu Nakano
- Department of Genomic Medical SciencesKyoto Prefectural University of MedicineKyotoJapan
| | - Yuichi Tokuda
- Department of Genomic Medical SciencesKyoto Prefectural University of MedicineKyotoJapan
| | - Hiroaki Nagata
- Department of Medicine, Division of Hematology and OncologyKyoto Prefectural University of MedicineKyotoJapan
| | - Kentaro Mizuhara
- Department of Medicine, Division of Hematology and OncologyKyoto Prefectural University of MedicineKyotoJapan
| | - Yoko Katsuragawa‐Taminishi
- Department of Medicine, Division of Hematology and OncologyKyoto Prefectural University of MedicineKyotoJapan
| | - Reiko Isa
- Department of Medicine, Division of Hematology and OncologyKyoto Prefectural University of MedicineKyotoJapan
| | - Takahiro Fujino
- Department of Medicine, Division of Hematology and OncologyKyoto Prefectural University of MedicineKyotoJapan
| | - Yayoi Matsumura‐Kimoto
- Department of Medicine, Division of Hematology and OncologyKyoto Prefectural University of MedicineKyotoJapan
- Department of HematologyJapan Community Health Care Organization, Kyoto Kuramaguchi Medical CenterKyotoJapan
| | - Shinsuke Mizutani
- Department of Medicine, Division of Hematology and OncologyKyoto Prefectural University of MedicineKyotoJapan
| | - Yuji Shimura
- Department of Medicine, Division of Hematology and OncologyKyoto Prefectural University of MedicineKyotoJapan
| | - Masafumi Taniwaki
- Department of Medicine, Division of Hematology and OncologyKyoto Prefectural University of MedicineKyotoJapan
- Department of HematologyAiseikai Yamashina HospitalKyotoJapan
- Center for Molecular Diagnostic and TherapeuticsKyoto Prefectural University of MedicineKyotoJapan
| | - Kei Tashiro
- Department of Genomic Medical SciencesKyoto Prefectural University of MedicineKyotoJapan
| | - Junya Kuroda
- Department of Medicine, Division of Hematology and OncologyKyoto Prefectural University of MedicineKyotoJapan
| |
Collapse
|
3
|
Dai Y, Zhang X, Ou Y, Zou L, Zhang D, Yang Q, Qin Y, Du X, Li W, Yuan Z, Xiao Z, Wen Q. Anoikis resistance--protagonists of breast cancer cells survive and metastasize after ECM detachment. Cell Commun Signal 2023; 21:190. [PMID: 37537585 PMCID: PMC10399053 DOI: 10.1186/s12964-023-01183-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 06/04/2023] [Indexed: 08/05/2023] Open
Abstract
Breast cancer exhibits the highest global incidence among all tumor types. Regardless of the type of breast cancer, metastasis is a crucial cause of poor prognosis. Anoikis, a form of apoptosis initiated by cell detachment from the native environment, is an outside-in process commencing with the disruption of cytosolic connectors such as integrin-ECM and cadherin-cell. This disruption subsequently leads to intracellular cytoskeletal and signaling pathway alterations, ultimately activating caspases and initiating programmed cell death. Development of an anoikis-resistant phenotype is a critical initial step in tumor metastasis. Breast cancer employs a series of stromal alterations to suppress anoikis in cancer cells. Comprehensive investigation of anoikis resistance mechanisms can inform strategies for preventing and regressing metastatic breast cancer. The present review first outlines the physiological mechanisms of anoikis, elucidating the alterations in signaling pathways, cytoskeleton, and protein targets that transpire from the outside in upon adhesion loss in normal breast cells. The specific anoikis resistance mechanisms induced by pathological changes in various spatial structures during breast cancer development are also discussed. Additionally, the genetic loci of targets altered in the development of anoikis resistance in breast cancer, are summarized. Finally, the micro-RNAs and targeted drugs reported in the literature concerning anoikis are compiled, with keratocin being the most functionally comprehensive. Video Abstract.
Collapse
Affiliation(s)
- Yalan Dai
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Oncology, Garze Tibetan Autonomous Prefecture People's Hospital, Kangding, China
| | - Xinyi Zhang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shenzhen, China
| | - Yingjun Ou
- Clinical Medicine School, Southwest Medicial Univercity, Luzhou, China
- Orthopaedics, Garze Tibetan Autonomous Prefecture People's Hospital, Kangding, China
| | - Linglin Zou
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Duoli Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Qingfan Yang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yi Qin
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiuju Du
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Wei Li
- Southwest Medical University, Luzhou, China
| | | | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.
| | - Qinglian Wen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| |
Collapse
|
4
|
Hu DG, Mackenzie PI, Hulin JA, McKinnon RA, Meech R. Regulation of human UDP-glycosyltransferase ( UGT) genes by miRNAs. Drug Metab Rev 2022; 54:120-140. [PMID: 35275773 DOI: 10.1080/03602532.2022.2048846] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The human UGT gene superfamily is divided into four subfamilies (UGT1, UGT2, UGT3 and UGT8) that encodes 22 functional enzymes. UGTs are critical for the metabolism and clearance of numerous endogenous and exogenous compounds, including steroid hormones, bile acids, bilirubin, fatty acids, carcinogens, and therapeutic drugs. Therefore, the expression and activities of UGTs are tightly regulated by multiple processes at the transcriptional, post-transcriptional and post-translational levels. During recent years, nearly twenty studies have investigated the post-transcriptional regulation of UGT genes by miRNAs using human cancer cell lines (predominantly liver cancer). Overall, 14 of the 22 UGT mRNAs (1A1, 1A3, 1A4, 1A6, 1A8, 1A9, 1A10, 2A1, 2B4, 2B7, 2B10, 2B15, 2B17, UGT8) have been shown to be regulated by various miRNAs through binding to their respective 3' untranslated regions (3'UTRs). Three 3'UTRs (UGT1A, UGT2B7 and UGT2B15) contain the largest number of functional miRNA target sites; in particular, the UGT1A 3'UTR contains binding sites for 12 miRNAs (548d-5p, 183-5p, 214-5p, 486-3p, 200a-3p, 491-3p, 141-3p, 298, 103b, 376b-3p, 21-3p, 1286). Although all nine UGT1A family members have the same 3'UTR, these miRNA target sites appear to be functional in an isoform-specific and cellular context-dependent manner. Collectively, these observations demonstrate that miRNAs represent important post-transcriptional regulators of the UGT gene superfamily. In this article, we present a comprehensive review of reported UGT/miRNA regulation studies, describe polymorphisms within functional miRNA target sites that may affect their functionalities, and discuss potential cooperative and competitive regulation of UGT mRNAs by miRNAs through adjacently located miRNA target sites.
Collapse
Affiliation(s)
- Dong Gui Hu
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Bedford Park, Australia
| | - Peter I Mackenzie
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Bedford Park, Australia
| | - Julie-Ann Hulin
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Bedford Park, Australia
| | - Ross A McKinnon
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Bedford Park, Australia
| | - Robyn Meech
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Bedford Park, Australia
| |
Collapse
|
5
|
Chirichella M, Bianchi N, Džafo E, Foli E, Gualdrini F, Kenyon A, Natoli G, Monticelli S. RFX transcription factors control a miR-150/PDAP1 axis that restrains the proliferation of human T cells. PLoS Biol 2022; 20:e3001538. [PMID: 35143476 PMCID: PMC8865640 DOI: 10.1371/journal.pbio.3001538] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 02/23/2022] [Accepted: 01/13/2022] [Indexed: 01/11/2023] Open
Abstract
Within the immune system, microRNAs (miRNAs) exert key regulatory functions. However, what are the mRNA targets regulated by miRNAs and how miRNAs are transcriptionally regulated themselves remain for the most part unknown. We found that in primary human memory T helper lymphocytes, miR-150 was the most abundantly expressed miRNA, and its expression decreased drastically upon activation, suggesting regulatory roles. Constitutive MIR150 gene expression required the RFX family of transcription factors, and its activation-induced down-regulation was linked to their reduced expression. By performing miRNA pull-down and sequencing experiments, we identified PDGFA-associated protein 1 (PDAP1) as one main target of miR-150 in human T lymphocytes. PDAP1 acted as an RNA-binding protein (RBP), and its CRISPR/Cas-9–mediated deletion revealed that it prominently contributed to the regulation of T-cell proliferation. Overall, using an integrated approach involving quantitative analysis, unbiased genomics, and genome editing, we identified RFX factors, miR-150, and the PDAP1 RBP as the components of a regulatory axis that restrains proliferation of primary human T lymphocytes. MicroRNAs exert key regulatory functions in the immune system, but their targets are largely unknown. This study shows that the ability of primary human T lymphocytes to proliferate in response to T cell receptor activation is modulated by a network comprising miR-150, transcription factors of the RFX family, and the RNA-binding protein PDAP1.
Collapse
Affiliation(s)
- Michele Chirichella
- Institute for Research in Biomedicine (IRB), Università della Svizzera italiana (USI), Bellinzona, Switzerland
| | - Niccolò Bianchi
- Institute for Research in Biomedicine (IRB), Università della Svizzera italiana (USI), Bellinzona, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Emina Džafo
- Institute for Research in Biomedicine (IRB), Università della Svizzera italiana (USI), Bellinzona, Switzerland
| | - Elena Foli
- Institute for Research in Biomedicine (IRB), Università della Svizzera italiana (USI), Bellinzona, Switzerland
| | - Francesco Gualdrini
- IEO, European Institute of Oncology IRCCS, Department of Experimental Oncology, Milan, Italy
- Humanitas University, Milan, Italy
| | - Amy Kenyon
- IEO, European Institute of Oncology IRCCS, Department of Experimental Oncology, Milan, Italy
| | - Gioacchino Natoli
- IEO, European Institute of Oncology IRCCS, Department of Experimental Oncology, Milan, Italy
- Humanitas University, Milan, Italy
| | - Silvia Monticelli
- Institute for Research in Biomedicine (IRB), Università della Svizzera italiana (USI), Bellinzona, Switzerland
| |
Collapse
|
6
|
Wang J, Zhang T, Yu Z, Tan WT, Wen M, Shen Y, Lambert FRP, Huber RG, Wan Y. Genome-wide RNA structure changes during human neurogenesis modulate gene regulatory networks. Mol Cell 2021; 81:4942-4953.e8. [PMID: 34655516 DOI: 10.1016/j.molcel.2021.09.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 08/01/2021] [Accepted: 09/24/2021] [Indexed: 11/18/2022]
Abstract
The distribution, dynamics, and function of RNA structures in human development are under-explored. Here, we systematically assayed RNA structural dynamics and their relationship with gene expression, translation, and decay during human neurogenesis. We observed that the human ESC transcriptome is globally more structurally accessible than differentiated cells and undergoes extensive RNA structure changes, particularly in the 3' UTR. Additionally, RNA structure changes during differentiation are associated with translation and decay. We observed that RBP and miRNA binding is associated with RNA structural changes during early neuronal differentiation, and splicing is associated during later neuronal differentiation. Furthermore, our analysis suggests that RBPs are major factors in structure remodeling and co-regulate additional RBPs and miRNAs through structure. We demonstrated an example of this by showing that PUM2-induced structure changes on LIN28A enable miR-30 binding. This study deepens our understanding of the widespread and complex role of RNA-based gene regulation during human development.
Collapse
Affiliation(s)
- Jiaxu Wang
- Stem Cell and Regenerative Biology, Genome Institute of Singapore, A(∗)STAR, Singapore 138672, Singapore
| | - Tong Zhang
- Stem Cell and Regenerative Biology, Genome Institute of Singapore, A(∗)STAR, Singapore 138672, Singapore
| | - Zhang Yu
- Stem Cell and Regenerative Biology, Genome Institute of Singapore, A(∗)STAR, Singapore 138672, Singapore
| | - Wen Ting Tan
- Stem Cell and Regenerative Biology, Genome Institute of Singapore, A(∗)STAR, Singapore 138672, Singapore
| | - Ming Wen
- Stem Cell and Regenerative Biology, Genome Institute of Singapore, A(∗)STAR, Singapore 138672, Singapore
| | - Yang Shen
- Stem Cell and Regenerative Biology, Genome Institute of Singapore, A(∗)STAR, Singapore 138672, Singapore
| | - Finnlay R P Lambert
- Stem Cell and Regenerative Biology, Genome Institute of Singapore, A(∗)STAR, Singapore 138672, Singapore; Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Roland G Huber
- Bioinformatics Institute, A(∗)STAR, Singapore 138671, Singapore
| | - Yue Wan
- Stem Cell and Regenerative Biology, Genome Institute of Singapore, A(∗)STAR, Singapore 138672, Singapore; Department of Biochemistry, National University of Singapore, Singapore 117596, Singapore.
| |
Collapse
|
7
|
Baxter DE, Allinson LM, Al Amri WS, Poulter JA, Pramanik A, Thorne JL, Verghese ET, Hughes TA. MiR-195 and Its Target SEMA6D Regulate Chemoresponse in Breast Cancer. Cancers (Basel) 2021; 13:cancers13235979. [PMID: 34885090 PMCID: PMC8656586 DOI: 10.3390/cancers13235979] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/23/2021] [Accepted: 11/26/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND poor prognosis primary breast cancers are typically treated with cytotoxic chemotherapy. However, recurrences remain relatively common even after this aggressive therapy. Comparison of matched tumours pre- and post-chemotherapy can allow identification of molecular characteristics of therapy resistance and thereby potentially aid discovery of novel predictive markers or targets for chemosensitisation. Through this comparison, we aimed to identify microRNAs associated with chemoresistance, define microRNA target genes, and assess targets as predictors of chemotherapy response. METHODS cancer cells were laser microdissected from matched breast cancer tissues pre- and post-chemotherapy from estrogen receptor positive/HER2 negative breast cancers showing partial responses to epirubicin/cyclophosphamide chemotherapy (n = 5). MicroRNA expression was profiled using qPCR arrays. MicroRNA/mRNA expression was manipulated in estrogen receptor positive/HER2 negative breast cancer cell lines (MCF7 and MDA-MB-175 cells) with mimics, inhibitors or siRNAs, and chemoresponse was assessed using MTT and colony forming survival assays. MicroRNA targets were identified by RNA-sequencing of microRNA mimic pull-downs, and comparison of these with mRNAs containing predicted microRNA binding sites. Survival correlations were tested using the METABRIC expression dataset (n = 1979). RESULTS miR-195 and miR-26b were consistently up-regulated after therapy, and changes in their expression in cell lines caused significant differences in chemotherapy sensitivity, in accordance with up-regulation driving resistance. SEMA6D was defined and confirmed as a target of the microRNAs. Reduced SEMA6D expression was significantly associated with chemoresistance, in accordance with SEMA6D being a down-stream effector of the microRNAs. Finally, low SEMA6D expression in breast cancers was significantly associated with poor survival after chemotherapy, but not after other therapies. CONCLUSIONS microRNAs and their targets influence chemoresponse, allowing the identification of SEMA6D as a predictive marker for chemotherapy response that could be used to direct therapy or as a target in chemosensitisation strategies.
Collapse
Affiliation(s)
- Diana E. Baxter
- School of Medicine, University of Leeds, Leeds LS9 7TF, UK; (D.E.B.); (J.A.P.); (A.P.)
- Cancer Research UK Manchester Institute, University of Manchester, Manchester SK10 4TG, UK
| | - Lisa M. Allinson
- Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4AD, UK;
| | - Waleed S. Al Amri
- Department of Histopathology and Cytopathology, The Royal Hospital, Muscat, Oman;
| | - James A. Poulter
- School of Medicine, University of Leeds, Leeds LS9 7TF, UK; (D.E.B.); (J.A.P.); (A.P.)
| | - Arindam Pramanik
- School of Medicine, University of Leeds, Leeds LS9 7TF, UK; (D.E.B.); (J.A.P.); (A.P.)
| | - James L. Thorne
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK;
| | - Eldo T. Verghese
- Department of Histopathology, St. James’s University Hospital, Leeds LS9 7JX, UK;
| | - Thomas A. Hughes
- School of Medicine, University of Leeds, Leeds LS9 7TF, UK; (D.E.B.); (J.A.P.); (A.P.)
- Correspondence:
| |
Collapse
|
8
|
|
9
|
Dong Y, Long J, Luo X, Xie G, Xiao ZJ, Tong Y. Targeting of ΔNp63α by miR-522 promotes the migration of breast epithelial cells. FEBS Open Bio 2021; 11:468-481. [PMID: 33369228 PMCID: PMC7876488 DOI: 10.1002/2211-5463.13072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 12/10/2020] [Accepted: 12/21/2020] [Indexed: 01/09/2023] Open
Abstract
The TP63 gene, which encodes the p63 protein, is involved in multiple biological processes, including embryonic development and tumorigenesis. ΔNp63α, the predominant isoform of p63 in epithelial cells, acts as an oncogene in early-stage tumors, but paradoxically acts as a potent antimetastatic factor in advanced cancers. Here, we report that ΔNp63α is a direct target of hsa-miR-522 (miR-522). Induced expression of miR-522 reduced the levels of ΔNp63α, predisposing breast epithelial cells to a loss of epithelial and acquisition of mesenchymal morphology, resulting in accelerated collective and single-cell migration. Restoration of ΔNp63α repressed miR-522-induced migration. Interestingly, overexpression of miR-522 did not affect breast epithelial cell proliferation, suggesting that miR-522 acts specifically through ΔNp63α in this context. Furthermore, expression of miR-522-3p and p63 was negatively correlated in human cancer samples. Thus, miR-522 might be a causative factor for breast tumorigenesis and cancer metastasis. In summary, our results reveal a novel miR-522/p63 axis in cell migration and thus suggest a potential strategy for therapeutic treatment of cancer metastasis.
Collapse
Affiliation(s)
- Yuanyuan Dong
- Center of Growth, Metabolism and AgingKey Laboratory of Bio‐Resource and Eco‐Environment of Ministry of EducationCollege of Life SciencesSichuan UniversityChengduChina
| | - Juan Long
- Center of Growth, Metabolism and AgingKey Laboratory of Bio‐Resource and Eco‐Environment of Ministry of EducationCollege of Life SciencesSichuan UniversityChengduChina
| | - Xingyong Luo
- Center of Growth, Metabolism and AgingKey Laboratory of Bio‐Resource and Eco‐Environment of Ministry of EducationCollege of Life SciencesSichuan UniversityChengduChina
| | - Gang Xie
- Sichuan Integrative Medicine HospitalChengduChina
| | - Zhi‐Xiong Jim Xiao
- Center of Growth, Metabolism and AgingKey Laboratory of Bio‐Resource and Eco‐Environment of Ministry of EducationCollege of Life SciencesSichuan UniversityChengduChina
| | - Ying Tong
- Center of Growth, Metabolism and AgingKey Laboratory of Bio‐Resource and Eco‐Environment of Ministry of EducationCollege of Life SciencesSichuan UniversityChengduChina
| |
Collapse
|
10
|
Jia TZ, Wang PH, Niwa T, Mamajanov I. Connecting primitive phase separation to biotechnology, synthetic biology, and engineering. J Biosci 2021; 46:79. [PMID: 34373367 PMCID: PMC8342986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/20/2021] [Indexed: 02/07/2023]
Abstract
One aspect of the study of the origins of life focuses on how primitive chemistries assembled into the first cells on Earth and how these primitive cells evolved into modern cells. Membraneless droplets generated from liquid-liquid phase separation (LLPS) are one potential primitive cell-like compartment; current research in origins of life includes study of the structure, function, and evolution of such systems. However, the goal of primitive LLPS research is not simply curiosity or striving to understand one of life's biggest unanswered questions, but also the possibility to discover functions or structures useful for application in the modern day. Many applicational fields, including biotechnology, synthetic biology, and engineering, utilize similar phaseseparated structures to accomplish specific functions afforded by LLPS. Here, we briefly review LLPS applied to primitive compartment research and then present some examples of LLPS applied to biomolecule purification, drug delivery, artificial cell construction, waste and pollution management, and flavor encapsulation. Due to a significant focus on similar functions and structures, there appears to be much for origins of life researchers to learn from those working on LLPS in applicational fields, and vice versa, and we hope that such researchers can start meaningful cross-disciplinary collaborations in the future.
Collapse
Affiliation(s)
- Tony Z Jia
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo, 152-8550 Japan
- Blue Marble Space Institute of Science, 1001 4th Ave., Suite 3201, Seattle, Washington 98154 USA
| | - Po-Hsiang Wang
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo, 152-8550 Japan
- Graduate Institute of Environmental Engineering, National Central University, Zhongli Dist, 300 Zhongda Rd, Taoyuan City, 32001 Taiwan
| | - Tatsuya Niwa
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama, 226-8503 Japan
| | - Irena Mamajanov
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo, 152-8550 Japan
| |
Collapse
|
11
|
Li PF, Guo SC, Liu T, Cui H, Feng D, Yang A, Cheng Z, Luo J, Tang T, Wang Y. Integrative analysis of transcriptomes highlights potential functions of transfer-RNA-derived small RNAs in experimental intracerebral hemorrhage. Aging (Albany NY) 2020; 12:22794-22813. [PMID: 33203799 PMCID: PMC7746353 DOI: 10.18632/aging.103938] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/01/2020] [Indexed: 12/16/2022]
Abstract
Transfer-RNA-derived small RNAs (tsRNAs) are a novel class of short non-coding RNAs, that possess regulatory functions. However, their biological roles in hemorrhagic stroke are not understood. In this study, by RNA sequencing, we investigated the tsRNA expression profiles of intracerebral hemorrhagic rat brains in the chronic phase. A total of 331 tsRNAs were identified (308 in sham and 309 in intracerebral hemorrhage). Among them, the validation revealed that 7 tsRNAs (1 up-regulated and 6 down-regulated) were significantly changed. Subsequently, we predicted the target mRNAs of the 7 tsRNAs. Through integrative analysis, the predicted targets were validated by mRNA microarray data. Moreover, we confirmed the functions of tsRNAs targeting mRNAs in vitro. Furthermore, using bioinformatics tools and databases, we developed a tsRNA-mRNA-pathway interaction network to visualize their potential functions. Bioinformatics analyses and confirmatory experiments indicated that the altered genes were mainly enriched in several signaling pathways. These pathways were interrelated with intracerebral hemorrhage, such as response to oxidative stress, endocytosis, and regulation of G protein-coupled receptor signaling pathway. In summary, this study systematically revealed the profiles of tsRNAs after an experimental intracerebral hemorrhage. These results may provide novel therapeutic targets following a hemorrhagic stroke in the chronic phase.
Collapse
Affiliation(s)
- Peng-Fei Li
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, China.,Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.,Henan Key Laboratory for Pharmacology of Liver Diseases, Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Shi-Chao Guo
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Tao Liu
- Department of Gerontology, Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Urumqi 830011, China
| | - Hanjin Cui
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Dandan Feng
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Ali Yang
- Department of Neurology, Henan Province People’s Hospital, Zhengzhou 450003, China
| | - Zhe Cheng
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.,Henan Key Laboratory for Pharmacology of Liver Diseases, Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Jiekun Luo
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Tao Tang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yang Wang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
12
|
Miyamoto M, Sawada K, Nakamura K, Yoshimura A, Ishida K, Kobayashi M, Shimizu A, Yamamoto M, Kodama M, Hashimoto K, Kimura T. Paclitaxel exposure downregulates miR-522 expression and its downregulation induces paclitaxel resistance in ovarian cancer cells. Sci Rep 2020; 10:16755. [PMID: 33028939 PMCID: PMC7542453 DOI: 10.1038/s41598-020-73785-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 09/22/2020] [Indexed: 12/22/2022] Open
Abstract
Paclitaxel resistance is a critical challenge in ovarian cancer treatment. This study aimed to identify microRNAs (miRNAs) that modulate paclitaxel resistance for use as potential therapeutic targets in such settings. Paclitaxel-resistant cell lines were established using two ovarian cancer cell lines: SKOV3ip1 and HeyA8. The evaluation of miRNA polymerase chain reaction (PCR) arrays indicated that the expression of miR-522-3p was downregulated in paclitaxel-resistant cells. The restoration of miR-522-3p sensitized the resistant cells to paclitaxel, and its downregulation desensitized the parental cells. Using PCR arrays, we focused on E2F2, with the luciferase reporter assay revealing that it was a direct target for miR-522-3p. The paclitaxel-resistant cells showed stronger E2F2 expression than the parental cells, while E2F2 inhibition sensitized the resistant cells to paclitaxel. Forced E2F2 expression in the parental cells led to the acquisition of paclitaxel resistance, while miR-522-3p inhibited E2F2 expression and was associated with retinoblastoma protein phosphorylation attenuation, which resulted in G0/G1 arrest. The effects of miR-522-3p and E2F2 in ovarian cancer were examined using public databases, revealing that low miR-522-3p expression and high E2F2 expression were associated with significantly poorer overall survival. In conclusion, miR-522-3p attenuated the degree of paclitaxel resistance in vitro through the downregulation of E2F2; miR-522-3p supplementation may be a therapeutic target for paclitaxel-resistant ovarian cancer.
Collapse
Affiliation(s)
- Mayuko Miyamoto
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 5650871, Japan
| | - Kenjiro Sawada
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 5650871, Japan.
| | - Koji Nakamura
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 5650871, Japan.,Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, 12902 Magnolia Dr, Tampa, FL, 33612, USA
| | - Akihiko Yoshimura
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 5650871, Japan
| | - Kyoso Ishida
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 5650871, Japan
| | - Masaki Kobayashi
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 5650871, Japan
| | - Aasa Shimizu
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 5650871, Japan
| | - Misa Yamamoto
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 5650871, Japan
| | - Michiko Kodama
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 5650871, Japan
| | - Kae Hashimoto
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 5650871, Japan
| | - Tadashi Kimura
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 5650871, Japan
| |
Collapse
|
13
|
Kyrollos DG, Reid B, Dick K, Green JR. RPmirDIP: Reciprocal Perspective improves miRNA targeting prediction. Sci Rep 2020; 10:11770. [PMID: 32678114 PMCID: PMC7366700 DOI: 10.1038/s41598-020-68251-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/15/2020] [Indexed: 12/16/2022] Open
Abstract
MicroRNAs (miRNAs) are short, non-coding RNAs that interact with messenger RNA (mRNA) to accomplish critical cellular activities such as the regulation of gene expression. Several machine learning methods have been developed to improve classification accuracy and reduce validation costs by predicting which miRNA will target which gene. Application of these predictors to large numbers of unique miRNA-gene pairs has resulted in datasets comprising tens of millions of scored interactions; the largest among these is mirDIP. We here demonstrate that miRNA target prediction can be significantly improved ([Formula: see text]) through the application of the Reciprocal Perspective (RP) method, a cascaded, semi-supervised machine learning method originally developed for protein-protein interaction prediction. The RP method, aptly named RPmirDIP, augments the original mirDIP prediction scores by leveraging local thresholds from the two complimentary views available to each miRNA-gene pair, rather than apply a traditional global decision threshold. Application of this novel RPmirDIP predictor promises to help identify new, unexpected miRNA-gene interactions. A dataset of RPmirDIP-scored interactions are made available to the scientific community at cu-bic.ca/RPmirDIP and https://doi.org/10.5683/SP2/LD8JKJ.
Collapse
Affiliation(s)
- Daniel G Kyrollos
- Department of Systems and Computer Engineering, Carleton University, Ottawa, Canada
| | - Bradley Reid
- Department of Systems and Computer Engineering, Carleton University, Ottawa, Canada
| | - Kevin Dick
- Department of Systems and Computer Engineering, Carleton University, Ottawa, Canada
- Institute of Data Science, Carleton University, Ottawa, Canada
| | - James R Green
- Department of Systems and Computer Engineering, Carleton University, Ottawa, Canada.
- Institute of Data Science, Carleton University, Ottawa, Canada.
| |
Collapse
|
14
|
Gong Z, Wang J, Wang D, Buas MF, Ren X, Freudenheim JL, Belinsky SA, Liu S, Ambrosone CB, Higgins MJ. Differences in microRNA expression in breast cancer between women of African and European ancestry. Carcinogenesis 2019; 40:61-69. [PMID: 30321299 DOI: 10.1093/carcin/bgy134] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 09/21/2018] [Accepted: 10/09/2018] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is a heterogeneous disease, characterized by molecularly and phenotypically distinct tumor subtypes, linked to disparate clinical outcomes. American women of African ancestry (AA) are more likely than those of European ancestry (EA) to be diagnosed with aggressive, estrogen receptor negative (ER-) or triple negative breast cancer, and to die of this disease. However, the underlying causes of AA predisposition to ER-/triple negative breast cancer are still largely unknown. In this study, we performed high-throughput whole-genome miRNA expression profiling in breast tissue samples from both AA and EA women. A number of differentially expressed miRNAs, i.e., DEmiRs defined as >2-fold change in expression and false discovery rate <0.05, were identified as up- or downregulated by tumor ER status or by ancestry. We found that among 102 ER-subtype-related DEmiRs identified in breast tumors, the majority of these DEmiRs were race specific, with only 23 DEmiRs shared in tumors from both AAs and EAs; this finding indicates that there are unique subsets of miRNAs differentially expressed between ER- and ER positive tumors within AAs versus EAs. Our overall results support the notion that miRNA expression patterns may differ not only by tumor subtype but by ancestry, indicating differences in tumor biology and heterogeneity of breast cancer between AAs and EAs. These results will provide the basis for further functional analysis to elucidate biological differences between AAs and EAs and to help develop targeted treatment strategies to reduce disparities in breast cancer.
Collapse
Affiliation(s)
- Zhihong Gong
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Jie Wang
- Department of Biochemistry, University at Buffalo, Buffalo, NY, USA.,Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Dan Wang
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Matthew F Buas
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Xuefeng Ren
- Department of Epidemiology and Environmental Health, University at Buffalo, Buffalo, NY, USA
| | - Jo L Freudenheim
- Department of Epidemiology and Environmental Health, University at Buffalo, Buffalo, NY, USA
| | - Steven A Belinsky
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Christine B Ambrosone
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Michael J Higgins
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| |
Collapse
|
15
|
Circular RNAs: pivotal molecular regulators and novel diagnostic and prognostic biomarkers in non-small cell lung cancer. J Cancer Res Clin Oncol 2019; 145:2875-2889. [DOI: 10.1007/s00432-019-03045-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 10/09/2019] [Indexed: 02/07/2023]
|
16
|
Rojo Arias JE, Busskamp V. Challenges in microRNAs' targetome prediction and validation. Neural Regen Res 2019; 14:1672-1677. [PMID: 31169173 PMCID: PMC6585557 DOI: 10.4103/1673-5374.257514] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 01/14/2019] [Indexed: 11/11/2022] Open
Abstract
MicroRNAs (miRNAs) are small RNA molecules with important roles in post-transcriptional regulation of gene expression. In recent years, the predicted number of miRNAs has skyrocketed, largely as a consequence of high-throughput sequencing technologies becoming ubiquitous. This dramatic increase in miRNA candidates poses multiple challenges in terms of data deposition, curation, and validation. Although multiple databases containing miRNA annotations and targets have been developed, ensuring data quality by validating miRNA-target interactions requires the efforts of the research community. In order to generate databases containing biologically active miRNAs, it is imperative to overcome a multitude of hurdles, including restricted miRNA expression patterns, distinct miRNA biogenesis machineries, and divergent miRNA-mRNA interaction dynamics. In the present review, we discuss recent advances and limitations in miRNA prediction, identification, and validation. Lastly, we focus on the most enriched neuronal miRNA, miR-124, and its gene regulatory network in human neurons, which has been revealed using a combined computational and experimental approach.
Collapse
Affiliation(s)
| | - Volker Busskamp
- Center for Regenerative Therapies (CRTD), Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
17
|
Xu X, Liu M. miR-522 stimulates TGF-β/Smad signaling pathway and promotes osteosarcoma tumorigenesis by targeting PPM1A. J Cell Biochem 2019; 120:18425-18434. [PMID: 31190351 DOI: 10.1002/jcb.29160] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 05/18/2019] [Accepted: 05/23/2019] [Indexed: 12/19/2022]
Abstract
Osteosarcoma (OS) is identified as an aggressive malignancy of the skeletal system and normally occurs among young people. It is well accepted that microRNAs are implicated in biological activities of diverse tumors. Although miR-522 has been proved to elicit oncogenic properties in a wide range of human cancers, the physiological function and latent mechanism of miR-522 in OS tumorigenesis remain largely to be probed. In the current study, we certified that miR-522 was highly expressed in OS cells and presented carcinogenic function by contributing to cell proliferation, migration, and EMT progression whereas dampening cell apoptosis. In addition, miR-522 provoked TGF-β/Smad pathway through targeting PPM1A. Finally, the results of mechanism experiments elucidated that miR-522 stimulated TGF-β/Smad pathway to induce the development of OS via targeting PPM1A, which exposed that miR-522 may become a promising curative target for OS patients.
Collapse
Affiliation(s)
- Xiqiang Xu
- Department of Spine Surgery, Shandong Provincial Hospital affiliated to Shandong University, Jinan, China
| | - Mengmeng Liu
- Department of Anesthesiology, Shandong Provincial Hospital affiliated to Shandong University, Jinan, China
| |
Collapse
|
18
|
Naorem LD, Muthaiyan M, Venkatesan A. Identification of dysregulated miRNAs in triple negative breast cancer: A meta‐analysis approach. J Cell Physiol 2018; 234:11768-11779. [DOI: 10.1002/jcp.27839] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 11/07/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Leimarembi Devi Naorem
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University Pondicherry India
| | - Mathavan Muthaiyan
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University Pondicherry India
| | - Amouda Venkatesan
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University Pondicherry India
| |
Collapse
|
19
|
Li N, Zhang Y, Sidlauskas K, Ellis M, Evans I, Frankel P, Lau J, El-Hassan T, Guglielmi L, Broni J, Richard-Loendt A, Brandner S. Inhibition of GPR158 by microRNA-449a suppresses neural lineage of glioma stem/progenitor cells and correlates with higher glioma grades. Oncogene 2018; 37:4313-4333. [PMID: 29720725 PMCID: PMC6072706 DOI: 10.1038/s41388-018-0277-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 03/22/2018] [Accepted: 03/28/2018] [Indexed: 12/19/2022]
Abstract
To identify biomarkers for glioma growth, invasion and progression, we used a candidate gene approach in mouse models with two complementary brain tumour phenotypes, developing either slow-growing, diffusely infiltrating gliomas or highly proliferative, non-invasive primitive neural tumours. In a microRNA screen we first identified microRNA-449a as most significantly differentially expressed between these two tumour types. miR-449a has a target dependent effect, inhibiting cell growth and migration by downregulation of CCND1 and suppressing neural phenotypes by inhibition of G protein coupled-receptor (GPR) 158. GPR158 promotes glioma stem cell differentiation and induces apoptosis and is highest expressed in the cerebral cortex and in oligodendrogliomas, lower in IDH mutant astrocytomas and lowest in the most malignant form of glioma, IDH wild-type glioblastoma. The correlation of GPR158 expression with molecular subtypes, patient survival and therapy response suggests a possible role of GPR158 as prognostic biomarker in human gliomas.
Collapse
Affiliation(s)
- Ningning Li
- Department of Neurodegeneration, Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK.
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China.
| | - Ying Zhang
- Department of Neurodegeneration, Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK
| | - Kastytis Sidlauskas
- Department of Neurodegeneration, Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK
| | - Matthew Ellis
- Department of Neurodegeneration, Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK
| | - Ian Evans
- Division of Medicine, University College London, University Street, London, WC1E 6JF, UK
| | - Paul Frankel
- Division of Medicine, University College London, University Street, London, WC1E 6JF, UK
| | - Joanne Lau
- Department of Neurodegeneration, Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK
| | - Tedani El-Hassan
- Division of Neuropathology, the National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust Queen Square, London, WC1N 3BG, UK
| | - Loredana Guglielmi
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London, E1 2AT, UK
| | - Jessica Broni
- Department of Neurodegeneration, Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK
- UCL IQPath laboratory, Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK
| | - Angela Richard-Loendt
- Department of Neurodegeneration, Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK
- UCL IQPath laboratory, Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK
| | - Sebastian Brandner
- Department of Neurodegeneration, Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK.
- Division of Neuropathology, the National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust Queen Square, London, WC1N 3BG, UK.
| |
Collapse
|
20
|
Steiman-Shimony A, Shtrikman O, Margalit H. Assessing the functional association of intronic miRNAs with their host genes. RNA (NEW YORK, N.Y.) 2018; 24:991-1004. [PMID: 29752351 PMCID: PMC6049507 DOI: 10.1261/rna.064386.117] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 04/26/2018] [Indexed: 05/07/2023]
Abstract
In human, nearly half of the known microRNAs (miRNAs) are encoded within the introns of protein-coding genes. The embedment of these miRNA genes within the sequences of protein-coding genes alludes to a possible functional relationship between intronic miRNAs and their hosting genes. Several studies, using predicted targets, suggested that intronic miRNAs influence their hosts' function either antagonistically or synergistically. New experimental data of miRNA expression patterns and targets enable exploring this putative association by relying on actual data rather than on predictions. Here, our analysis based on currently available experimental data implies that the potential functional association between intronic miRNAs and their hosting genes is limited. For host-miRNA examples where functional associations were detected, it was manifested by either autoregulation, common targets of the miRNA and hosting gene, or through the targeting of transcripts participating in pathways in which the host gene is involved. This low prevalence of functional association is consistent with our observation that many intronic miRNAs have independent transcription start sites and are not coexpressed with the hosting gene. Yet, the intronic miRNAs that do show functional association with their hosts were found to be more evolutionarily conserved compared to other intronic miRNAs. This might suggest a selective pressure to maintain this architecture when it has a functional consequence.
Collapse
Affiliation(s)
- Avital Steiman-Shimony
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Orr Shtrikman
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Hanah Margalit
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| |
Collapse
|
21
|
Hanin G, Yayon N, Tzur Y, Haviv R, Bennett ER, Udi S, Krishnamoorthy YR, Kotsiliti E, Zangen R, Efron B, Tam J, Pappo O, Shteyer E, Pikarsky E, Heikenwalder M, Greenberg DS, Soreq H. miRNA-132 induces hepatic steatosis and hyperlipidaemia by synergistic multitarget suppression. Gut 2018; 67:1124-1134. [PMID: 28381526 PMCID: PMC5969364 DOI: 10.1136/gutjnl-2016-312869] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 03/16/2017] [Accepted: 03/18/2017] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Both non-alcoholic fatty liver disease (NAFLD) and the multitarget complexity of microRNA (miR) suppression have recently raised much interest, but the in vivo impact and context-dependence of hepatic miR-target interactions are incompletely understood. Assessing the relative in vivo contributions of specific targets to miR-mediated phenotypes is pivotal for investigating metabolic processes. DESIGN We quantified fatty liver parameters and the levels of miR-132 and its targets in novel transgenic mice overexpressing miR-132, in liver tissues from patients with NAFLD, and in diverse mouse models of hepatic steatosis. We tested the causal nature of miR-132 excess in these phenotypes by injecting diet-induced obese mice with antisense oligonucleotide suppressors of miR-132 or its target genes, and measured changes in metabolic parameters and transcripts. RESULTS Transgenic mice overexpressing miR-132 showed a severe fatty liver phenotype and increased body weight, serum low-density lipoprotein/very low-density lipoprotein (LDL/VLDL) and liver triglycerides, accompanied by decreases in validated miR-132 targets and increases in lipogenesis and lipid accumulation-related transcripts. Likewise, liver samples from both patients with NAFLD and mouse models of hepatic steatosis or non-alcoholic steatohepatitis (NASH) displayed dramatic increases in miR-132 and varying decreases in miR-132 targets compared with controls. Furthermore, injecting diet-induced obese mice with anti-miR-132 oligonucleotides, but not suppressing its individual targets, reversed the hepatic miR-132 excess and hyperlipidemic phenotype. CONCLUSIONS Our findings identify miR-132 as a key regulator of hepatic lipid homeostasis, functioning in a context-dependent fashion via suppression of multiple targets and with cumulative synergistic effects. This indicates reduction of miR-132 levels as a possible treatment of hepatic steatosis.
Collapse
Affiliation(s)
- Geula Hanin
- The Silberman Institute of Life Sciences and the Edmond and Lily Safra Center for Brain Science, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, Israel
| | - Nadav Yayon
- The Silberman Institute of Life Sciences and the Edmond and Lily Safra Center for Brain Science, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, Israel
| | - Yonat Tzur
- The Silberman Institute of Life Sciences and the Edmond and Lily Safra Center for Brain Science, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, Israel
| | - Rotem Haviv
- The Silberman Institute of Life Sciences and the Edmond and Lily Safra Center for Brain Science, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, Israel
| | - Estelle R Bennett
- The Silberman Institute of Life Sciences and the Edmond and Lily Safra Center for Brain Science, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, Israel
| | - Shiran Udi
- Obesity and Metabolism Laboratory, The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yoganathan R Krishnamoorthy
- The Lautenberg Center for Immunology and Cancer Research, Institute for Medical Research Israel Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Eleni Kotsiliti
- Institute of Virology, Technische Universität München and Helmholtz Zentrum München, Munich, Germany
| | - Rivka Zangen
- The Silberman Institute of Life Sciences and the Edmond and Lily Safra Center for Brain Science, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, Israel
| | - Ben Efron
- The Silberman Institute of Life Sciences and the Edmond and Lily Safra Center for Brain Science, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, Israel
| | - Joseph Tam
- Obesity and Metabolism Laboratory, The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Orit Pappo
- The Department of Pathology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Eyal Shteyer
- The Juliet Keidan Institute of Pediatric Gastroenterology and Nutrition, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Eli Pikarsky
- The Lautenberg Center for Immunology and Cancer Research, Institute for Medical Research Israel Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel,The Department of Pathology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Mathias Heikenwalder
- Institute of Virology, Technische Universität München and Helmholtz Zentrum München, Munich, Germany,Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David S Greenberg
- The Silberman Institute of Life Sciences and the Edmond and Lily Safra Center for Brain Science, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, Israel
| | - Hermona Soreq
- The Silberman Institute of Life Sciences and the Edmond and Lily Safra Center for Brain Science, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, Israel
| |
Collapse
|
22
|
Geddes VEV, de Oliveira AS, Tanuri A, Arruda E, Ribeiro-Alves M, Aguiar RS. MicroRNA and cellular targets profiling reveal miR-217 and miR-576-3p as proviral factors during Oropouche infection. PLoS Negl Trop Dis 2018; 12:e0006508. [PMID: 29813068 PMCID: PMC5993330 DOI: 10.1371/journal.pntd.0006508] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 06/08/2018] [Accepted: 05/08/2018] [Indexed: 12/16/2022] Open
Abstract
Oropouche Virus is the etiological agent of an arbovirus febrile disease that affects thousands of people and is widespread throughout Central and South American countries. Although isolated in 1950’s, still there is scarce information regarding the virus biology and its prevalence is likely underestimated. In order to identify and elucidate interactions with host cells factors and increase the understanding about the Oropouche Virus biology, we performed microRNA (miRNA) and target genes screening in human hepatocarcinoma cell line HuH-7. Cellular miRNAs are short non-coding RNAs that regulates gene expression post-transcriptionally and play key roles in several steps of viral infections. The large scale RT-qPCR based screening found 13 differentially expressed miRNAs in Oropouche infected cells. Further validation confirmed that miR-217 and miR-576-3p were 5.5 fold up-regulated at early stages of virus infection (6 hours post-infection). Using bioinformatics and pathway enrichment analysis, we predicted the cellular targets genes for miR-217 and miR-576-3p. Differential expression analysis of RNA from 95 selected targets revealed genes involved in innate immunity modulation, viral release and neurological disorder outcomes. Further analysis revealed the gene of decapping protein 2 (DCP2), a previous known restriction factor for bunyaviruses transcription, as a miR-217 candidate target that is progressively down-regulated during Oropouche infection. Our analysis also showed that activators genes involved in innate immune response through IFN-β pathway, as STING (Stimulator of Interferon Genes) and TRAF3 (TNF-Receptor Associated Factor 3), were down-regulated as the infection progress. Inhibition of miR-217 or miR-576-3p restricts OROV replication, decreasing viral RNA (up to 8.3 fold) and virus titer (3 fold). Finally, we showed that virus escape IFN-β mediated immune response increasing the levels of cellular miR-576-3p resulting in a decreasing of its partners STING and TRAF3. We concluded stating that the present study, the first for a Peribunyaviridae member, gives insights in its prospective pathways that could help to understand virus biology, interactions with host cells and pathogenesis, suggesting that the virus escapes the antiviral cellular pathways increasing the expression of cognates miRNAs. Oropouche Virus causes typical arboviral febrile illness and is widely distributed in tropical region of Americas, mainly Amazon region, associated with cases of encephalitis. 500,000 people are estimated to be infected with Oropouche worldwide and some states in Brazil detected higher number of cases among other arboviruses such as Dengue and Chikungunya. As much as climate change, human migration and vector and host availability might increase the risk of virus transmission. Despite its estimated high prevalence in Central and South America populations, the literature concerning the main aspects of viral biology remain scarce and began to be investigated only in the last two decades. Nonetheless, little is known about virus-host cell interactions and pathogenesis. Virus infection regulates cellular pathways either promoting its replication or escaping from immune response through microRNAs. Knowing which microRNAs and target genes are modulated in infection could give us new insights to understand multiple aspects of infection. Here, we depicted candidate miRNAs, genes and pathways affected by Oropouche Virus infection in hepatocyte cells. We hope this work serve as guideline for prospective studies in order to assess the complexity regarding the orthobunyaviruses infections.
Collapse
Affiliation(s)
- Victor Emmanuel Viana Geddes
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Anibal Silva de Oliveira
- Departamento de Biologia Celular e Molecular, Centro de Pesquisa em Virologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirao Preto, São Paulo, Brazil
| | - Amilcar Tanuri
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eurico Arruda
- Departamento de Biologia Celular e Molecular, Centro de Pesquisa em Virologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirao Preto, São Paulo, Brazil
| | - Marcelo Ribeiro-Alves
- Instituto Nacional de Infectologia Evandro Chagas, FIOCRUZ, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Renato Santana Aguiar
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
23
|
Wang X, Si X, Sun J, Yue L, Wang J, Yu Z. miR-522 Modulated the Expression of Proinflammatory Cytokines and Matrix Metalloproteinases Partly via Targeting Suppressor of Cytokine Signaling 3 in Rheumatoid Arthritis Synovial Fibroblasts. DNA Cell Biol 2018; 37:405-415. [PMID: 29394098 DOI: 10.1089/dna.2017.4008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Xin Wang
- Department of Endocrine and Rheumatology, The Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, China
| | - Xuwei Si
- Department of Endocrine and Rheumatology, The Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, China
| | - Jiaying Sun
- Department of Endocrine and Rheumatology, The Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, China
| | - Lixia Yue
- Department of Endocrine and Rheumatology, The Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, China
| | - Jiajia Wang
- Department of Endocrine and Rheumatology, The Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, China
| | - Zhongming Yu
- Department of Endocrine and Rheumatology, The Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, China
| |
Collapse
|
24
|
Hypoxia-Induced MicroRNA-210 Targets Neurodegenerative Pathways. Noncoding RNA 2018; 4:ncrna4020010. [PMID: 29657306 PMCID: PMC6027187 DOI: 10.3390/ncrna4020010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/22/2018] [Accepted: 03/26/2018] [Indexed: 12/13/2022] Open
Abstract
Hypoxia-regulated microRNA-210 (miR-210) is a highly conserved microRNA, known to regulate various processes under hypoxic conditions. Previously we found that miR-210 is also involved in honeybee learning and memory, raising the questions of how neural activity may induce hypoxia-regulated genes and how miR-210 may regulate plasticity in more complex mammalian systems. Using a pull-down approach, we identified 620 unique target genes of miR-210 in humans, among which there was a significant enrichment of age-related neurodegenerative pathways, including Huntington's, Alzheimer's, and Parkinson's diseases. We have also validated that miR-210 directly regulates various identified target genes of interest involved with neuronal plasticity, neurodegenerative diseases, and miR-210-associated cancers. This data suggests a potentially novel mechanism for how metabolic changes may couple plasticity to neuronal activity through hypoxia-regulated genes such as miR-210.
Collapse
|
25
|
Poenitzsch Strong AM, Berry SM, Beebe DJ, Li JL, Spiegelman VS. miFAST: A novel and rapid microRNA target capture method. Mol Carcinog 2018; 57:559-566. [PMID: 29350431 DOI: 10.1002/mc.22780] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 12/30/2017] [Accepted: 01/02/2018] [Indexed: 12/23/2022]
Abstract
MicroRNAs (miRNAs), small 22-25 nucleotide non-coding RNAs, play important roles in cellular and tumor biology. However, characterizing miRNA function remains challenging due to an abundance of predicted targets and an experimental bottleneck in identifying biologically relevant direct targets. Here, we developed a novel technique (miFAST) to identify direct miRNA target genes. Using miFAST, we confirmed several previously reported miR-340 target genes and identified five additional novel direct miR-340 targets in melanoma cells. This methodology can also be efficiently applied for the global characterization of miRNA targets. Utilizing miFAST to characterize direct miRNA targetomes will further our understanding of miRNA biology and function.
Collapse
Affiliation(s)
| | - Scott M Berry
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin
| | - David J Beebe
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin
| | - Jian-Liang Li
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida
| | - Vladimir S Spiegelman
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania
| |
Collapse
|
26
|
Pickl JMA, Tichy D, Kuryshev VY, Tolstov Y, Falkenstein M, Schüler J, Reidenbach D, Hotz-Wagenblatt A, Kristiansen G, Roth W, Hadaschik B, Hohenfellner M, Duensing S, Heckmann D, Sültmann H. Ago-RIP-Seq identifies Polycomb repressive complex I member CBX7 as a major target of miR-375 in prostate cancer progression. Oncotarget 2018; 7:59589-59603. [PMID: 27449098 PMCID: PMC5312160 DOI: 10.18632/oncotarget.10729] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 07/09/2016] [Indexed: 01/02/2023] Open
Abstract
Prostate cancer is a heterogeneous disease. MiR-375 is a marker for prostate cancer progression, but its cellular function is not characterized. Here, we provide the first comprehensive investigation of miR-375 in prostate cancer. We show that miR-375 is enriched in prostate cancer compared to normal cells. Furthermore, miR-375 enhanced proliferation, migration and invasion in vitro and induced tumor growth and reduced survival in vivo showing that miR-375 has oncogenic properties in prostate cancer. On the molecular level, we provide the targetome and genome-wide transcriptional changes of miR-375 expression by applying a generalized linear model for Ago-RIP-Seq and RNA-Seq, and show that miR-375 is involved in tumorigenic networks and Polycomb regulation. Integration of tissue and gene ontology data prioritized miR-375 targets and identified the tumor suppressor gene CBX7, a member of Polycomb repressive complex 1, as a major miR-375 target. MiR-375-mediated repression of CBX7 was accompanied by increased expression of its homolog CBX8 and activated transcriptional programs linked to malignant progression in prostate cancer cells. Tissue analysis showed association of CBX7 loss with advanced prostate cancer. Our study indicates that miR-375 exerts its tumor-promoting role in prostate cancer by influencing the epigenetic regulation of transcriptional programs through its ability to directly target the Polycomb complex member CBX7.
Collapse
Affiliation(s)
- Julia M A Pickl
- Cancer Genome Research Group, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Diana Tichy
- Department of Biostatistics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Vladimir Y Kuryshev
- Cancer Genome Research Group, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Yanis Tolstov
- Section of Molecular Urooncology, Department of Urology, University of Heidelberg School of Medicine, Heidelberg, Germany
| | - Michael Falkenstein
- Section of Molecular Urooncology, Department of Urology, University of Heidelberg School of Medicine, Heidelberg, Germany
| | - Julia Schüler
- Oncotest GmbH, Institute for Experimental Oncology, Freiburg, Germany
| | - Daniel Reidenbach
- Cancer Genome Research Group, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Agnes Hotz-Wagenblatt
- Bioinformatics Group, Core Facility Genomics & Proteomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Glen Kristiansen
- Institute of Pathology, Center for Integrated Oncology, University of Bonn, Bonn, Germany
| | - Wilfried Roth
- NCT Tissue Bank of The National Center of Tumor Diseases (NCT) and Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Boris Hadaschik
- Department of Urology, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Stefan Duensing
- Section of Molecular Urooncology, Department of Urology, University of Heidelberg School of Medicine, Heidelberg, Germany
| | - Doreen Heckmann
- Cancer Genome Research Group, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Holger Sültmann
- Cancer Genome Research Group, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| |
Collapse
|
27
|
Shuai F, Wang B, Dong S. miR-522-3p Promotes Tumorigenesis in Human Colorectal Cancer via Targeting Bloom Syndrome Protein. Oncol Res 2018; 26:1113-1121. [PMID: 29386092 PMCID: PMC7844714 DOI: 10.3727/096504018x15166199939341] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
miR-522-3p is known to degrade bloom syndrome protein (BLM) and enhance expression of other proto-oncogenes, leading to tumorigenesis. This study aimed to investigate the molecular mechanisms of miR-522-3p in human colorectal cancer (CRC) cells. Expressions of miR-522-3p in CRC and adjacent tissues, as well as in normal human colon epithelial cell line (FHC) and five CRC cell lines, were detected. Human CRC cell lines, HCT-116 and HT29, were transfected with miR-522-3p mimic, inhibitor, or scrambled controls. Then cell viability, apoptosis, cell cycle progression, and the expressions of c-myc, cyclin E, CDK2, and BLM were assessed. It was found that miR-522-3p was highly expressed in CRC tissues when compared to adjacent nontumor tissues and was highly expressed in CRC cell lines when compared to FHC cells. miR-522-3p overexpression promoted cell viability, reduced apoptotic cell rate, arrested more cells in the S phase, and upregulated c-myc, cyclin E, and CDK2 expression. BLM was a target gene of miR-522-3p, and miR-522-3p suppression did not exert antiproliferative and proapoptotic activities when BLM was silenced. These findings demonstrate that miR-522-3p upregulation negatively regulates the expression of BLM, with upregulation of c-myc, CDK2, and cyclin E, and thereby promoting the proliferation of human CRC cells.
Collapse
Affiliation(s)
- Feng Shuai
- Department of Gastroenterology, Eastern District of Linyi People's Hospital, Linyi, Shandong, P.R. China
| | - Bo Wang
- Department of Pediatrics, Chinese Medicine Hospital in Linyi City, Linyi, Shandong, P.R. China
| | - Shuxiao Dong
- Department of Gastrointestinal Surgery, Linyi People's Hospital, Linyi, Shandong, P.R. China
| |
Collapse
|
28
|
Rennie W, Kanoria S, Liu C, Mallick B, Long D, Wolenc A, Carmack CS, Lu J, Ding Y. STarMirDB: A database of microRNA binding sites. RNA Biol 2017; 13:554-60. [PMID: 27144897 PMCID: PMC4962797 DOI: 10.1080/15476286.2016.1182279] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
microRNAs (miRNAs) are an abundant class of small endogenous non-coding RNAs (ncRNAs) of ∼22 nucleotides (nts) in length. These small regulatory molecules are involved in diverse developmental, physiological and pathological processes. miRNAs target mRNAs (mRNAs) for translational repression and/or mRNA degradation. Predictions of miRNA binding sites facilitate experimental validation of miRNA targets. Models developed with data from CLIP studies have been used for predictions of miRNA binding sites in the whole transcriptomes of human, mouse and worm. The prediction results have been assembled into STarMirDB, a new database of miRNA binding sites available at http://sfold.wadsworth.org/starmirDB.php. STarMirDB can be searched by miRNAs or mRNAs separately or in combination. The search results are categorized into seed and seedless sites in 3′ UTR, CDS and 5′ UTR. For each predicted site, STarMirDB provides a comprehensive list of sequence, thermodynamic and target structural features that are known to influence miRNA: target interaction. A high resolution PDF diagram of the conformation of the miRNA:target hybrid is also available for visualization and publication. The results of a database search are available through both an interactive viewer and downloadable text files.
Collapse
Affiliation(s)
- William Rennie
- a Wadsworth Center, New York State Department of Health , Center for Medical Science , Albany , NY , USA
| | - Shaveta Kanoria
- a Wadsworth Center, New York State Department of Health , Center for Medical Science , Albany , NY , USA
| | - Chaochun Liu
- a Wadsworth Center, New York State Department of Health , Center for Medical Science , Albany , NY , USA
| | - Bibekanand Mallick
- a Wadsworth Center, New York State Department of Health , Center for Medical Science , Albany , NY , USA
| | - Dang Long
- a Wadsworth Center, New York State Department of Health , Center for Medical Science , Albany , NY , USA
| | - Adam Wolenc
- a Wadsworth Center, New York State Department of Health , Center for Medical Science , Albany , NY , USA
| | - C Steven Carmack
- a Wadsworth Center, New York State Department of Health , Center for Medical Science , Albany , NY , USA
| | - Jun Lu
- a Wadsworth Center, New York State Department of Health , Center for Medical Science , Albany , NY , USA
| | - Ye Ding
- a Wadsworth Center, New York State Department of Health , Center for Medical Science , Albany , NY , USA
| |
Collapse
|
29
|
Tichy D, Pickl JMA, Benner A, Sültmann H. Experimental design and data analysis of Ago-RIP-Seq experiments for the identification of microRNA targets. Brief Bioinform 2017; 19:918-929. [DOI: 10.1093/bib/bbx032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Indexed: 11/13/2022] Open
Affiliation(s)
- Diana Tichy
- Division of Biostatistics, German Cancer Research Center, Heidelberg, Germany
| | | | - Axel Benner
- Division of Biostatistics, German Cancer Research Center, Heidelberg, Germany
| | | |
Collapse
|
30
|
Identification of targets of tumor suppressor microRNA-34a using a reporter library system. Proc Natl Acad Sci U S A 2017; 114:3927-3932. [PMID: 28356515 DOI: 10.1073/pnas.1620019114] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
miRNAs play critical roles in various biological processes by targeting specific mRNAs. Current approaches to identifying miRNA targets are insufficient for elucidation of a miRNA regulatory network. Here, we created a cell-based screening system using a luciferase reporter library composed of 4,891 full-length cDNAs, each of which was integrated into the 3' UTR of a luciferase gene. Using this reporter library system, we conducted a screening for targets of miR-34a, a tumor-suppressor miRNA. We identified both previously characterized and previously uncharacterized targets. miR-34a overexpression in MDA-MB-231 breast cancer cells repressed the expression of these previously unrecognized targets. Among these targets, GFRA3 is crucial for MDA-MB-231 cell growth, and its expression correlated with the overall survival of patients with breast cancer. Furthermore, GFRA3 was found to be directly regulated by miR-34a via its coding region. These data show that this system is useful for elucidating miRNA functions and networks.
Collapse
|
31
|
Bracken CP, Scott HS, Goodall GJ. A network-biology perspective of microRNA function and dysfunction in cancer. Nat Rev Genet 2016; 17:719-732. [DOI: 10.1038/nrg.2016.134] [Citation(s) in RCA: 468] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
32
|
Paraskevopoulou MD, Vlachos IS, Hatzigeorgiou AG. DIANA‐TarBase and DIANA Suite Tools: Studying Experimentally Supported microRNA Targets. ACTA ACUST UNITED AC 2016; 55:12.14.1-12.14.18. [DOI: 10.1002/cpbi.12] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Maria D. Paraskevopoulou
- DIANA‐Lab, Department of Electrical & Computer Engineering, University of Thessaly Volos Greece
- Hellenic Pasteur Institute Athens Greece
| | - Ioannis S. Vlachos
- DIANA‐Lab, Department of Electrical & Computer Engineering, University of Thessaly Volos Greece
- Hellenic Pasteur Institute Athens Greece
| | - Artemis G. Hatzigeorgiou
- DIANA‐Lab, Department of Electrical & Computer Engineering, University of Thessaly Volos Greece
- Hellenic Pasteur Institute Athens Greece
| |
Collapse
|
33
|
Zhang H, Yu C, Chen M, Li Z, Tian S, Jiang J, Sun C. miR-522 contributes to cell proliferation of hepatocellular carcinoma by targeting DKK1 and SFRP2. Tumour Biol 2016; 37:11321-9. [PMID: 26960688 DOI: 10.1007/s13277-016-4995-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 02/25/2016] [Indexed: 01/23/2023] Open
Abstract
The morbidity and mortality of hepatocellular carcinoma (HCC) is very high, finding new therapeutic targets are critical for HCC treatment. miR-522 has been demonstrated to be upregulated in HCC tissues, but its role in HCC progression remains to be elucidated. In this report, we found miR-522 was upregulated in HCC cells and tissues, miR-522 overexpression promoted cell proliferation, colony formation, and cell cycle progression, whereas knockdown of miR-522 reduced these effects. We also analyzed the expression of several key cell cycle regulatory proteins and found overexpression of miR-522-inhibited cell cycle inhibitors p21 and p27 expression and enhanced cyclin D1 expression and the level of Rb phosphorylation, vice versa. These suggested miR-522-accelerated G1/S transition. DKK1 (dickkopf-1) and SFRP2 (secreted frizzled-related protein 2) were the targets of miR-522, their expression was inversely with miR-522 in HCC tissues. DKK1 and SFRP2 the antagonists of Wnt signaling, suggesting miR-522-promoted HCC progression through activating Wnt signaling. miR-522 might be a valuable target for HCC therapy.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guiyang Medical College, 28 Guiyi Street, Yunyan District, Guiyang, 550004, Guizhou, China
| | - Chao Yu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guiyang Medical College, 28 Guiyi Street, Yunyan District, Guiyang, 550004, Guizhou, China
| | - Meiyuan Chen
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guiyang Medical College, 28 Guiyi Street, Yunyan District, Guiyang, 550004, Guizhou, China
| | - Zhu Li
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guiyang Medical College, 28 Guiyi Street, Yunyan District, Guiyang, 550004, Guizhou, China
| | - Se Tian
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guiyang Medical College, 28 Guiyi Street, Yunyan District, Guiyang, 550004, Guizhou, China
| | - Jianxin Jiang
- Department of Hepatic-Biliary-Pancreatic Surgery, Hubei Cancer Hospital, 116 Zhuodaoquan south road, Hongshan district, Wuhan, 430079, Hubei, People's Republic of China.
| | - Chengyi Sun
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guiyang Medical College, 28 Guiyi Street, Yunyan District, Guiyang, 550004, Guizhou, China.
| |
Collapse
|
34
|
Zhang T, Hu Y, Ju J, Hou L, Li Z, Xiao D, Li Y, Yao J, Wang C, Zhang Y, Zhang L. Downregulation of miR-522 suppresses proliferation and metastasis of non-small cell lung cancer cells by directly targeting DENN/MADD domain containing 2D. Sci Rep 2016; 6:19346. [PMID: 26783084 PMCID: PMC4726064 DOI: 10.1038/srep19346] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 12/07/2015] [Indexed: 12/17/2022] Open
Abstract
Non-small cell lung cancer (NSCLC), one of the most common causes of cancer-related death, is a worldwide public health problem. MicroRNAs (miRNAs) have recently been identified as a novel class of regulators of carcinogenesis and tumor progression, including miRNAs associated with NSCLC. This study aimed to explore the role of miR-522 in NSCLC and the mechanisms underlying this role. We report here that miR-522 expression was significantly increased in both human NSCLC tissues and cell lines. Furthermore, an MTT assay, 5-Ethynyl-2′-deoxyuridine (EdU) assay kit and flow cytometry confirmed that the inhibition of miR-522 suppressed NSCLC cells proliferation and induced apoptosis. Compared with miR-522 overexpression, miR-522 inhibitor markedly reduced cells migration and invasion, as indicated by wound-healing and transwell assays. In addition, a luciferase assay identified DENN/MADD domain containing 2D (DENND2D) as a direct target of miR-522. qRT-PCR and western blot analyses indicated the reciprocal expression of miR-522 and DENND2D in NSCLC tissue samples. DENND2D was involved in miR-522 induced proliferation and metastasis of NSCLC cells by a miRNA-masking antisense oligonucleotides (miR-mask) technology. These data highlight a novel molecular interaction between miR-522 and DENND2D, which indicates that targeting miR-522 may constitute a potential therapy for NSCLC.
Collapse
Affiliation(s)
- Tianze Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Yingying Hu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine- Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin 150081, China.,Department of Pharmacy, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Jin Ju
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine- Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin 150081, China
| | - Liangyu Hou
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine- Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin 150081, China
| | - Zhange Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine- Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin 150081, China
| | - Dan Xiao
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine- Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin 150081, China
| | - Yongchao Li
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Jianyu Yao
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Chao Wang
- Department of Anesthesiology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Yong Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine- Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin 150081, China
| | - Linyou Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| |
Collapse
|
35
|
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that regulate the stability and expression of target RNAs in a sequence-dependent manner. Identifying miRNA-regulated genes is key to understanding miRNA function. Here, we describe an unbiased biochemical pulldown method to identify with high-specificity miRNA targets. Regulated transcripts are enriched in streptavidin-captured mRNAs that bind to a transfected biotinylated miRNA mimic. The method is relatively simple, does not involve cross-linking and can be performed with only a million cells. Addition of an on-bead RNase digestion step also identifies miRNA recognition elements (MRE).
Collapse
Affiliation(s)
- Shen Mynn Tan
- Cellular and Molecular Medicine Program, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, 200 Longwood Ave, Boston, MA, 02115, USA
| | - Judy Lieberman
- Cellular and Molecular Medicine Program, Boston Children's Hospital, Boston, MA, 02115, USA.
- Department of Pediatrics, Harvard Medical School, 200 Longwood Ave, Boston, MA, 02115, USA.
| |
Collapse
|
36
|
|
37
|
Chou CH, Chang NW, Shrestha S, Hsu SD, Lin YL, Lee WH, Yang CD, Hong HC, Wei TY, Tu SJ, Tsai TR, Ho SY, Jian TY, Wu HY, Chen PR, Lin NC, Huang HT, Yang TL, Pai CY, Tai CS, Chen WL, Huang CY, Liu CC, Weng SL, Liao KW, Hsu WL, Huang HD. miRTarBase 2016: updates to the experimentally validated miRNA-target interactions database. Nucleic Acids Res 2015; 44:D239-47. [PMID: 26590260 PMCID: PMC4702890 DOI: 10.1093/nar/gkv1258] [Citation(s) in RCA: 798] [Impact Index Per Article: 88.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 10/30/2015] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs of approximately 22 nucleotides, which negatively regulate the gene expression at the post-transcriptional level. This study describes an update of the miRTarBase (http://miRTarBase.mbc.nctu.edu.tw/) that provides information about experimentally validated miRNA-target interactions (MTIs). The latest update of the miRTarBase expanded it to identify systematically Argonaute-miRNA-RNA interactions from 138 crosslinking and immunoprecipitation sequencing (CLIP-seq) data sets that were generated by 21 independent studies. The database contains 4966 articles, 7439 strongly validated MTIs (using reporter assays or western blots) and 348 007 MTIs from CLIP-seq. The number of MTIs in the miRTarBase has increased around 7-fold since the 2014 miRTarBase update. The miRNA and gene expression profiles from The Cancer Genome Atlas (TCGA) are integrated to provide an effective overview of this exponential growth in the miRNA experimental data. These improvements make the miRTarBase one of the more comprehensively annotated, experimentally validated miRNA-target interactions databases and motivate additional miRNA research efforts.
Collapse
Affiliation(s)
- Chih-Hung Chou
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, 300, Taiwan
| | - Nai-Wen Chang
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, 106, Taiwan
| | - Sirjana Shrestha
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, 300, Taiwan
| | - Sheng-Da Hsu
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, 300, Taiwan
| | - Yu-Ling Lin
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, 300, Taiwan Center for Bioinformatics Research, National Chiao Tung University, Hsinchu, 300, Taiwan
| | - Wei-Hsiang Lee
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, 300, Taiwan Clinical Research Center, Chung Shan Medical University Hospital, Taichung, 402, Taiwan
| | - Chi-Dung Yang
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, 300, Taiwan Institute of Population Health Sciences, National Health Research Institutes, Miaoli, 350, Taiwan
| | - Hsiao-Chin Hong
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, 300, Taiwan
| | - Ting-Yen Wei
- Interdisciplinary Program of Life Science, National Tsing Hua University, Hsinchu, 300, Taiwan
| | - Siang-Jyun Tu
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, 300, Taiwan
| | - Tzi-Ren Tsai
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, 300, Taiwan
| | - Shu-Yi Ho
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, 300, Taiwan
| | - Ting-Yan Jian
- Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu, 300, Taiwan
| | - Hsin-Yi Wu
- Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu, 300, Taiwan
| | - Pin-Rong Chen
- Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu, 300, Taiwan
| | - Nai-Chieh Lin
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, 300, Taiwan
| | - Hsin-Tzu Huang
- Degree Program of Applied Science and Technology, National Chiao Tung University, Hsinchu, 300, Taiwan
| | - Tzu-Ling Yang
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, 300, Taiwan
| | - Chung-Yuan Pai
- Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu, 300, Taiwan
| | - Chun-San Tai
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, 300, Taiwan Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu, 300, Taiwan
| | - Wen-Liang Chen
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, 300, Taiwan Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, 300, Taiwan
| | - Chia-Yen Huang
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, 300, Taiwan Gynecologic Cancer Center, Department of Obstetrics and Gynecology, Cathay General Hospital, Taipei, 106, Taiwan
| | - Chun-Chi Liu
- Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung, 402, Taiwan
| | - Shun-Long Weng
- Department of Obstetrics and Gynecology, Hsinchu Mackay Memorial Hospital, Hsinchu, 300, Taiwan Mackay Medicine, Nursing and Management College, Taipei, 112, Taiwan Department of Medicine, Mackay Medical College, New Taipei City, 252, Taiwan
| | - Kuang-Wen Liao
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, 300, Taiwan Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu, 300, Taiwan
| | - Wen-Lian Hsu
- Institute of Information Science, Academia Sinica, Taipei, 115, Taiwan
| | - Hsien-Da Huang
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, 300, Taiwan Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, 300, Taiwan Center for Bioinformatics Research, National Chiao Tung University, Hsinchu, 300, Taiwan Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| |
Collapse
|
38
|
Mouillet JF, Ouyang Y, Coyne CB, Sadovsky Y. MicroRNAs in placental health and disease. Am J Obstet Gynecol 2015; 213:S163-72. [PMID: 26428496 DOI: 10.1016/j.ajog.2015.05.057] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 05/15/2015] [Accepted: 05/26/2015] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) constitute a large family of small noncoding RNAs that are encoded by the genomes of most organisms. They regulate gene expression through posttranscriptional mechanisms to attenuate protein output in various genetic networks. The discovery of miRNAs has transformed our understanding of gene regulation and sparked intense efforts intended to harness their potential as diagnostic markers and therapeutic tools. Over the last decade, a flurry of studies has shed light on placental miRNAs but has also raised many questions regarding the scope of their biologic action. Moreover, the recognition that miRNAs of placental origin are released continually in the maternal circulation throughout pregnancy suggested that circulating miRNAs might serve as biomarkers for placental function during pregnancy. Although this generated much enthusiasm, recently recognized challenges have delayed the application of miRNA-based biomarkers and therapeutics in clinical practice. In this review, we summarize key findings in the field and discuss current knowledge related to miRNAs in the context of placental biology.
Collapse
|
39
|
Agarwal V, Bell GW, Nam JW, Bartel DP. Predicting effective microRNA target sites in mammalian mRNAs. eLife 2015; 4. [PMID: 26267216 PMCID: PMC4532895 DOI: 10.7554/elife.05005] [Citation(s) in RCA: 5095] [Impact Index Per Article: 566.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 07/12/2015] [Indexed: 12/20/2022] Open
Abstract
MicroRNA targets are often recognized through pairing between the miRNA seed region and complementary sites within target mRNAs, but not all of these canonical sites are equally effective, and both computational and in vivo UV-crosslinking approaches suggest that many mRNAs are targeted through non-canonical interactions. Here, we show that recently reported non-canonical sites do not mediate repression despite binding the miRNA, which indicates that the vast majority of functional sites are canonical. Accordingly, we developed an improved quantitative model of canonical targeting, using a compendium of experimental datasets that we pre-processed to minimize confounding biases. This model, which considers site type and another 14 features to predict the most effectively targeted mRNAs, performed significantly better than existing models and was as informative as the best high-throughput in vivo crosslinking approaches. It drives the latest version of TargetScan (v7.0; targetscan.org), thereby providing a valuable resource for placing miRNAs into gene-regulatory networks.
Collapse
Affiliation(s)
- Vikram Agarwal
- Howard Hughes Medical Institute, Whitehead Institute for Biomedical Research, Cambridge, United States
| | - George W Bell
- Bioinformatics and Research Computing, Whitehead Institute for Biomedical Research, Cambridge, United States
| | - Jin-Wu Nam
- Howard Hughes Medical Institute, Whitehead Institute for Biomedical Research, Cambridge, United States
| | - David P Bartel
- Howard Hughes Medical Institute, Whitehead Institute for Biomedical Research, Cambridge, United States
| |
Collapse
|
40
|
Abstract
MicroRNAs (miRNAs) are key players in the regulation of neuronal processes by targeting a large network of target messenger RNAs (mRNAs). However, the identity and function of mRNAs targeted by miRNAs in specific cells of the brain are largely unknown. Here, we established an adeno-associated viral vector (AAV)-based neuron-specific Argonaute2:GFP-RNA immunoprecipitation followed by high-throughput sequencing to analyse the regulatory role of miRNAs in mouse hippocampal neurons. Using this approach, we identified more than two thousand miRNA targets in hippocampal neurons, regulating essential neuronal features such as cell signalling, transcription and axon guidance. Furthermore, we found that stable inhibition of the highly expressed miR-124 and miR-125 in hippocampal neurons led to significant but distinct changes in the AGO2 binding of target mRNAs, resulting in subsequent upregulation of numerous miRNA target genes. These findings greatly enhance our understanding of the miRNA targetome in hippocampal neurons.
Collapse
|
41
|
Elton TS, Yalowich JC. Experimental procedures to identify and validate specific mRNA targets of miRNAs. EXCLI JOURNAL 2015; 14:758-90. [PMID: 27047316 PMCID: PMC4817421 DOI: 10.17179/excli2015-319] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 05/20/2015] [Indexed: 12/14/2022]
Abstract
Functionally matured microRNAs (miRNAs) are small single-stranded non-coding RNA molecules which are emerging as important post-transcriptional regulators of gene expression and consequently are central players in many physiological and pathological processes. Since the biological roles of individual miRNAs will be dictated by the mRNAs that they regulate, the identification and validation of miRNA/mRNA target interactions is critical for our understanding of the regulatory networks governing biological processes. We promulgate the combined use of prediction algorithms, the examination of curated databases of experimentally supported miRNA/mRNA interactions, manual sequence inspection of cataloged miRNA binding sites in specific target mRNAs, and review of the published literature as a reliable practice for identifying and prioritizing biologically important miRNA/mRNA target pairs. Once a preferred miRNA/mRNA target pair has been selected, we propose that the authenticity of a functional miRNA/mRNA target pair be validated by fulfilling four well-defined experimental criteria. This review summarizes our current knowledge of miRNA biology, miRNA/mRNA target prediction algorithms, validated miRNA/mRNA target data bases, and outlines several experimental methods by which miRNA/mRNA targets can be authenticated. In addition, a case study of human endoglin is presented as an example of the utilization of these methodologies.
Collapse
Affiliation(s)
- Terry S Elton
- College of Pharmacy, Division of Pharmacology, The Ohio State University, Columbus, OH, USA
| | - Jack C Yalowich
- College of Pharmacy, Division of Pharmacology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
42
|
Bracken CP, Khew-Goodall Y, Goodall GJ. Network-Based Approaches to Understand the Roles of miR-200 and Other microRNAs in Cancer. Cancer Res 2015; 75:2594-9. [PMID: 26069247 DOI: 10.1158/0008-5472.can-15-0287] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 03/25/2015] [Indexed: 11/16/2022]
Abstract
microRNAs (miRNA) are well suited to the task of regulating gene expression networks, because any given miRNA has the capacity to target dozens, if not hundreds, of genes. The simultaneous targeting of multiple genes within a pathway may enable miRNAs to more strongly regulate the pathway, or to achieve more subtle control through the targeting of distinct subnetworks of genes. Therefore, as our capacity to discover miRNA targets en masse increases, so must our consideration of the complex networks in which these genes participate. We highlight recent studies in which the comprehensive identification of targets has been used to elucidate miRNA-regulated gene networks in cancer, focusing especially upon miRNAs such as members of the miR-200 family that regulate epithelial-mesenchymal transition (EMT), a reversible phenotypic switch whereby epithelial cells take on the more invasive properties of their mesenchymal counterparts. These studies have expanded our understanding of the roles of miRNAs in EMT, which were already known to form important regulatory loops with key transcription factors to regulate the epithelial or mesenchymal properties of cells.
Collapse
Affiliation(s)
- Cameron P Bracken
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia, Australia. Department of Medicine, University of Adelaide, Adelaide, South Australia, Australia.
| | - Yeesim Khew-Goodall
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia, Australia. School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia, Australia
| | - Gregory J Goodall
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia, Australia. Department of Medicine, University of Adelaide, Adelaide, South Australia, Australia. School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia, Australia.
| |
Collapse
|
43
|
Perdigão-Henriques R, Petrocca F, Altschuler G, Thomas MP, Le MTN, Tan SM, Hide W, Lieberman J. miR-200 promotes the mesenchymal to epithelial transition by suppressing multiple members of the Zeb2 and Snail1 transcriptional repressor complexes. Oncogene 2015; 35:158-72. [PMID: 25798844 DOI: 10.1038/onc.2015.69] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 01/15/2015] [Accepted: 01/20/2015] [Indexed: 02/07/2023]
Abstract
The miR-200 family promotes the epithelial state by suppressing the Zeb1/Zeb2 epithelial gene transcriptional repressors. To identify other miR-200-regulated genes, we isolated mRNAs bound to transfected biotinylated miR-200c in mouse breast cancer cells. In all, 520 mRNAs were significantly enriched in miR-200c binding at least twofold. Putative miR-200-regulated genes included Zeb2, enriched 3.5-fold in the pull down. However, Zeb2 knockdown does not fully recapitulate miR-200c overexpression, suggesting that regulating other miR-200 targets contributes to miR-200's enhancement of epithelial gene expression. Candidate genes were highly enriched for miR-200c seed pairing in their 3'UTR and coding sequence and for genes that were downregulated by miR-200c overexpression. Epidermal growth factor receptor and downstream MAPK signaling pathways were the most enriched pathways. Genes whose products mediate transforming growth factor (TGF)-β signaling were also significantly overrepresented, and miR-200 counteracted the suppressive effects of TGF-β and bone morphogenic protein 2 (BMP-2) on epithelial gene expression. miR-200c regulated the 3'UTRs of 12 of 14 putative miR-200c-binding mRNAs tested. The extent of mRNA binding to miR-200c strongly correlated with gene suppression. Twelve targets of miR-200c (Crtap, Fhod1, Smad2, Map3k1, Tob1, Ywhag/14-3-3γ, Ywhab/14-3-3β, Smad5, Zfp36, Xbp1, Mapk12, Snail1) were experimentally validated by identifying their 3'UTR miR-200 recognition elements. Smad2 and Smad5 form a complex with Zeb2 and Ywhab/14-3-3β and Ywhag/14-3-3γ form a complex with Snail1. These complexes that repress transcription assemble on epithelial gene promoters. miR-200 overexpression induced RNA polymerase II localization and reduced Zeb2 and Snail1 binding to epithelial gene promoters. Expression of miR-200-resistant Smad5 modestly, but significantly, reduced epithelial gene induction by miR-200. miR-200 expression and Zeb2 knockdown are known to inhibit cell invasion in in vitro assays. Knockdown of each of three novel miR-200 target genes identified here, Smad5, Ywhag and Crtap, also profoundly suppressed cell invasion. Thus, miR-200 suppresses TGF-β/BMP signaling, promotes epithelial gene expression and suppresses cell invasion by regulating a network of genes.
Collapse
Affiliation(s)
- R Perdigão-Henriques
- Cellular and Molecular Medicine Program, Boston Children's Hospital, Boston, MA, USA.,Animal Cell Technology Unit, Instituto de Tecnologia Química e Biológica (ITQB), Universidade Nova de Lisboa, Oeiras, Portugal.,Instituto de Biologia Experimental e Tecnológica (IBET), Oeiras, Portugal
| | - F Petrocca
- Cellular and Molecular Medicine Program, Boston Children's Hospital, Boston, MA, USA
| | - G Altschuler
- Department of Biostatistics, Harvard School of Public Health, Boston, MA, USA
| | - M P Thomas
- Cellular and Molecular Medicine Program, Boston Children's Hospital, Boston, MA, USA
| | - M T N Le
- Cellular and Molecular Medicine Program, Boston Children's Hospital, Boston, MA, USA
| | - S M Tan
- Cellular and Molecular Medicine Program, Boston Children's Hospital, Boston, MA, USA
| | - W Hide
- Department of Biostatistics, Harvard School of Public Health, Boston, MA, USA.,Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, Sheffield, UK
| | - J Lieberman
- Cellular and Molecular Medicine Program, Boston Children's Hospital, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
44
|
Abstract
Eukaryotic cells produce several classes of long and small noncoding RNA (ncRNA). Many DNA and RNA viruses synthesize their own ncRNAs. Like their host counterparts, viral ncRNAs associate with proteins that are essential for their stability, function, or both. Diverse biological roles--including the regulation of viral replication, viral persistence, host immune evasion, and cellular transformation--have been ascribed to viral ncRNAs. In this review, we focus on the multitude of functions played by ncRNAs produced by animal viruses. We also discuss their biogenesis and mechanisms of action.
Collapse
Affiliation(s)
- Kazimierz T Tycowski
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | - Yang Eric Guo
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | - Nara Lee
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | - Walter N Moss
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | - Tenaya K Vallery
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | - Mingyi Xie
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | - Joan A Steitz
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| |
Collapse
|
45
|
Vlachos IS, Paraskevopoulou MD, Karagkouni D, Georgakilas G, Vergoulis T, Kanellos I, Anastasopoulos IL, Maniou S, Karathanou K, Kalfakakou D, Fevgas A, Dalamagas T, Hatzigeorgiou AG. DIANA-TarBase v7.0: indexing more than half a million experimentally supported miRNA:mRNA interactions. Nucleic Acids Res 2014; 43:D153-9. [PMID: 25416803 PMCID: PMC4383989 DOI: 10.1093/nar/gku1215] [Citation(s) in RCA: 583] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
microRNAs (miRNAs) are short non-coding RNA species, which act as potent gene expression regulators. Accurate identification of miRNA targets is crucial to understanding their function. Currently, hundreds of thousands of miRNA:gene interactions have been experimentally identified. However, this wealth of information is fragmented and hidden in thousands of manuscripts and raw next-generation sequencing data sets. DIANA-TarBase was initially released in 2006 and it was the first database aiming to catalog published experimentally validated miRNA:gene interactions. DIANA-TarBase v7.0 (http://www.microrna.gr/tarbase) aims to provide for the first time hundreds of thousands of high-quality manually curated experimentally validated miRNA:gene interactions, enhanced with detailed meta-data. DIANA-TarBase v7.0 enables users to easily identify positive or negative experimental results, the utilized experimental methodology, experimental conditions including cell/tissue type and treatment. The new interface provides also advanced information ranging from the binding site location, as identified experimentally as well as in silico, to the primer sequences used for cloning experiments. More than half a million miRNA:gene interactions have been curated from published experiments on 356 different cell types from 24 species, corresponding to 9- to 250-fold more entries than any other relevant database. DIANA-TarBase v7.0 is freely available.
Collapse
Affiliation(s)
- Ioannis S Vlachos
- DIANA-Lab, Department of Electrical & Computer Engineering, University of Thessaly, 382 21 Volos, Greece Laboratory for Experimental Surgery and Surgical Research 'N.S. Christeas', Medical School of Athens, University of Athens, 11527 Athens, Greece
| | - Maria D Paraskevopoulou
- DIANA-Lab, Department of Electrical & Computer Engineering, University of Thessaly, 382 21 Volos, Greece
| | - Dimitra Karagkouni
- DIANA-Lab, Department of Electrical & Computer Engineering, University of Thessaly, 382 21 Volos, Greece
| | - Georgios Georgakilas
- DIANA-Lab, Department of Electrical & Computer Engineering, University of Thessaly, 382 21 Volos, Greece
| | | | - Ilias Kanellos
- 'Athena' Research and Innovation Center, 11524 Athens, Greece School of Electrical and Computer Engineering, NTUA, 15773 Zografou, Greece
| | - Ioannis-Laertis Anastasopoulos
- Department of Informatics and Telecommunications, Postgraduate Program: 'Information Technologies in Medicine and Biology', University of Athens, 15784 Athens, Greece
| | - Sofia Maniou
- Department of Informatics and Telecommunications, Postgraduate Program: 'Information Technologies in Medicine and Biology', University of Athens, 15784 Athens, Greece
| | - Konstantina Karathanou
- Department of Informatics and Telecommunications, Postgraduate Program: 'Information Technologies in Medicine and Biology', University of Athens, 15784 Athens, Greece
| | - Despina Kalfakakou
- Department of Informatics and Telecommunications, Postgraduate Program: 'Information Technologies in Medicine and Biology', University of Athens, 15784 Athens, Greece
| | - Athanasios Fevgas
- Department of Electrical & Computer Engineering, University of Thessaly, 382 21 Volos, Greece
| | | | - Artemis G Hatzigeorgiou
- DIANA-Lab, Department of Electrical & Computer Engineering, University of Thessaly, 382 21 Volos, Greece
| |
Collapse
|