1
|
Liu S, Alexander KD, Francis MM. Neural Circuit Remodeling: Mechanistic Insights from Invertebrates. J Dev Biol 2024; 12:27. [PMID: 39449319 PMCID: PMC11503349 DOI: 10.3390/jdb12040027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024] Open
Abstract
As nervous systems mature, neural circuit connections are reorganized to optimize the performance of specific functions in adults. This reorganization of connections is achieved through a remarkably conserved phase of developmental circuit remodeling that engages neuron-intrinsic and neuron-extrinsic molecular mechanisms to establish mature circuitry. Abnormalities in circuit remodeling and maturation are broadly linked with a variety of neurodevelopmental disorders, including autism spectrum disorders and schizophrenia. Here, we aim to provide an overview of recent advances in our understanding of the molecular processes that govern neural circuit remodeling and maturation. In particular, we focus on intriguing mechanistic insights gained from invertebrate systems, such as the nematode Caenorhabditis elegans and the fruit fly Drosophila melanogaster. We discuss how transcriptional control mechanisms, synaptic activity, and glial engulfment shape specific aspects of circuit remodeling in worms and flies. Finally, we highlight mechanistic parallels across invertebrate and mammalian systems, and prospects for further advances in each.
Collapse
Affiliation(s)
- Samuel Liu
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Program in Neuroscience, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Kellianne D. Alexander
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Program in Neuroscience, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Michael M. Francis
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Program in Neuroscience, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| |
Collapse
|
2
|
Hegde S, Modi S, Deihl EW, Glomb OV, Yogev S, Hoerndli FJ, Koushika SP. Axonal mitochondria regulate gentle touch response through control of axonal actin dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.13.607780. [PMID: 39185223 PMCID: PMC11343141 DOI: 10.1101/2024.08.13.607780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Actin in neuronal processes is both stable and dynamic. The origin & functional roles of the different pools of actin is not well understood. We find that mutants that lack mitochondria, ric-7 and mtx-2; miro-1, in neuronal processes also lack dynamic actin. Mitochondria can regulate actin dynamics upto a distance ~80 μm along the neuronal process. Absence of axonal mitochondria and dynamic actin does not markedly alter the Spectrin Membrane Periodic Skeleton (MPS) in touch receptor neurons (TRNs). Restoring mitochondria inTRNs cell autonomously restores dynamic actin in a sod-2 dependent manner. We find that dynamic actin is necessary and sufficient for the localization of gap junction proteins in the TRNs and for the C. elegans gentle touch response. We identify an in vivo mechanism by which axonal mitochondria locally facilitate actin dynamics through reactive oxygen species that we show is necessary for electrical synapses & behaviour.
Collapse
Affiliation(s)
- Sneha Hegde
- Tata Institute of Fundamental Research, Homi Bhabha Road, Navy Nagar, Colaba, Mumbai-400005, India
| | - Souvik Modi
- Tata Institute of Fundamental Research, Homi Bhabha Road, Navy Nagar, Colaba, Mumbai-400005, India
| | - Ennis W. Deihl
- Colorado State University, Anatomy and Zoology W309, 1617 Campus Delivery, Fort Collins, 80523 Colorado
| | - Oliver Vinzenz Glomb
- Yale University, Boyer Center for Molecular Medicine, 295 Congress Ave, New Haven, CT 06510
- Current address: Institute of Clinical Anatomy and Cell Analysis, University of Tübingen, 72074 Tübingen, Germany
| | - Shaul Yogev
- Yale University, Boyer Center for Molecular Medicine, 295 Congress Ave, New Haven, CT 06510
| | - Frederic J. Hoerndli
- Colorado State University, Anatomy and Zoology W309, 1617 Campus Delivery, Fort Collins, 80523 Colorado
| | - Sandhya P. Koushika
- Tata Institute of Fundamental Research, Homi Bhabha Road, Navy Nagar, Colaba, Mumbai-400005, India
| |
Collapse
|
3
|
Kuhara A, Takagaki N, Okahata M, Ohta A. Cold Tolerance in the Nematode Caenorhabditis elegans. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1461:33-46. [PMID: 39289272 DOI: 10.1007/978-981-97-4584-5_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Organisms receive environmental information and respond accordingly in order to survive and proliferate. Temperature is the environmental factor of most immediate importance, as exceeding its life-supporting range renders essential biochemical reactions impossible. In this chapter, we introduce the mechanisms underlying cold tolerance and temperature acclimation in a model organism-the nematode Caenorhabditis elegans, at molecular and physiological levels. Recent investigations utilizing molecular genetics and neural calcium imaging have unveiled a novel perspective on cold tolerance within the nematode worm. Notably, the ASJ neuron, previously known to possess photosensitive properties, has been found to sense temperature and regulate the sperm and gut cell-mediated pathway underlying cold tolerance. We will also explore C. elegans' cold tolerance and cold acclimation at the molecular and tissue levels.
Collapse
Affiliation(s)
- Atsushi Kuhara
- Faculty of Science and Engineering, Graduate School of Natural Science, Institute for Integrative Neurobiology, Konan University, Okamoto, Higashinada-ku, Kobe, Japan
- AMED-PRIME, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Natsune Takagaki
- Faculty of Science and Engineering, Graduate School of Natural Science, Institute for Integrative Neurobiology, Konan University, Okamoto, Higashinada-ku, Kobe, Japan
- AMED-PRIME, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Misaki Okahata
- Faculty of Science and Engineering, Graduate School of Natural Science, Institute for Integrative Neurobiology, Konan University, Okamoto, Higashinada-ku, Kobe, Japan
- AMED-PRIME, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Akane Ohta
- Faculty of Science and Engineering, Graduate School of Natural Science, Institute for Integrative Neurobiology, Konan University, Okamoto, Higashinada-ku, Kobe, Japan
- AMED-PRIME, Japan Agency for Medical Research and Development, Tokyo, Japan
| |
Collapse
|
4
|
Cuentas-Condori A, Chen S, Krout M, Gallik KL, Tipps J, Gailey C, Flautt L, Kim H, Mulcahy B, Zhen M, Richmond JE, Miller DM. The epithelial Na + channel UNC-8 promotes an endocytic mechanism that recycles presynaptic components to new boutons in remodeling neurons. Cell Rep 2023; 42:113327. [PMID: 37906594 PMCID: PMC10921563 DOI: 10.1016/j.celrep.2023.113327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 06/01/2023] [Accepted: 10/06/2023] [Indexed: 11/02/2023] Open
Abstract
Circuit refinement involves the formation of new presynaptic boutons as others are dismantled. Nascent presynaptic sites can incorporate material from recently eliminated synapses, but the recycling mechanisms remain elusive. In early-stage C. elegans larvae, the presynaptic boutons of GABAergic DD neurons are removed and new outputs established at alternative sites. Here, we show that developmentally regulated expression of the epithelial Na+ channel (ENaC) UNC-8 in remodeling DD neurons promotes a Ca2+ and actin-dependent mechanism, involving activity-dependent bulk endocytosis (ADBE), that recycles presynaptic material for reassembly at nascent DD synapses. ADBE normally functions in highly active neurons to accelerate local recycling of synaptic vesicles. In contrast, we find that an ADBE-like mechanism results in the distal recycling of synaptic material from old to new synapses. Thus, our findings suggest that a native mechanism (ADBE) can be repurposed to dismantle presynaptic terminals for reassembly at new, distant locations.
Collapse
Affiliation(s)
- Andrea Cuentas-Condori
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Siqi Chen
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Mia Krout
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Kristin L Gallik
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - John Tipps
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Casey Gailey
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Leah Flautt
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Hongkyun Kim
- Department of Cell Biology and Anatomy, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Ben Mulcahy
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Mei Zhen
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Janet E Richmond
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - David M Miller
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA; Neurosience Program, Vanderbilt University, Nashville, TN 37240, USA.
| |
Collapse
|
5
|
Alexander KD, Ramachandran S, Biswas K, Lambert CM, Russell J, Oliver DB, Armstrong W, Rettler M, Liu S, Doitsidou M, Bénard C, Walker AK, Francis MM. The homeodomain transcriptional regulator DVE-1 directs a program for synapse elimination during circuit remodeling. Nat Commun 2023; 14:7520. [PMID: 37980357 PMCID: PMC10657367 DOI: 10.1038/s41467-023-43281-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 11/02/2023] [Indexed: 11/20/2023] Open
Abstract
The elimination of synapses during circuit remodeling is critical for brain maturation; however, the molecular mechanisms directing synapse elimination and its timing remain elusive. We show that the transcriptional regulator DVE-1, which shares homology with special AT-rich sequence-binding (SATB) family members previously implicated in human neurodevelopmental disorders, directs the elimination of juvenile synaptic inputs onto remodeling C. elegans GABAergic neurons. Juvenile acetylcholine receptor clusters and apposing presynaptic sites are eliminated during the maturation of wild-type GABAergic neurons but persist into adulthood in dve-1 mutants, producing heightened motor connectivity. DVE-1 localization to GABAergic nuclei is required for synapse elimination, consistent with DVE-1 regulation of transcription. Pathway analysis of putative DVE-1 target genes, proteasome inhibitor, and genetic experiments implicate the ubiquitin-proteasome system in synapse elimination. Together, our findings define a previously unappreciated role for a SATB family member in directing synapse elimination during circuit remodeling, likely through transcriptional regulation of protein degradation processes.
Collapse
Affiliation(s)
- Kellianne D Alexander
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Program in Neuroscience, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Shankar Ramachandran
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Kasturi Biswas
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Program in Neuroscience, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Christopher M Lambert
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Julia Russell
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Devyn B Oliver
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Program in Neuroscience, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - William Armstrong
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Monika Rettler
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Samuel Liu
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Program in Neuroscience, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Maria Doitsidou
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, Scotland
| | - Claire Bénard
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Biological Sciences, Université du Québec à Montréal, Quebec, Canada
| | - Amy K Walker
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Michael M Francis
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
- Program in Neuroscience, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
6
|
Rashidbenam Z, Ozturk E, Pagnin M, Theotokis P, Grigoriadis N, Petratos S. How does Nogo receptor influence demyelination and remyelination in the context of multiple sclerosis? Front Cell Neurosci 2023; 17:1197492. [PMID: 37361998 PMCID: PMC10285164 DOI: 10.3389/fncel.2023.1197492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/15/2023] [Indexed: 06/28/2023] Open
Abstract
Multiple sclerosis (MS) can progress with neurodegeneration as a consequence of chronic inflammatory mechanisms that drive neural cell loss and/or neuroaxonal dystrophy in the central nervous system. Immune-mediated mechanisms can accumulate myelin debris in the disease extracellular milieu during chronic-active demyelination that can limit neurorepair/plasticity and experimental evidence suggests that potentiated removal of myelin debris can promote neurorepair in models of MS. The myelin-associated inhibitory factors (MAIFs) are integral contributors to neurodegenerative processes in models of trauma and experimental MS-like disease that can be targeted to promote neurorepair. This review highlights the molecular and cellular mechanisms that drive neurodegeneration as a consequence of chronic-active inflammation and outlines plausible therapeutic approaches to antagonize the MAIFs during the evolution of neuroinflammatory lesions. Moreover, investigative lines for translation of targeted therapies against these myelin inhibitors are defined with an emphasis on the chief MAIF, Nogo-A, that may demonstrate clinical efficacy of neurorepair during progressive MS.
Collapse
Affiliation(s)
- Zahra Rashidbenam
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Ezgi Ozturk
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Maurice Pagnin
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Paschalis Theotokis
- Laboratory of Experimental Neurology and Neuroimmunology, Department of Neurology, AHEPA University Hospital, Thessaloniki, Greece
| | - Nikolaos Grigoriadis
- Laboratory of Experimental Neurology and Neuroimmunology, Department of Neurology, AHEPA University Hospital, Thessaloniki, Greece
| | - Steven Petratos
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
7
|
Mizumoto K, Jin Y, Bessereau JL. Synaptogenesis: unmasking molecular mechanisms using Caenorhabditis elegans. Genetics 2023; 223:iyac176. [PMID: 36630525 PMCID: PMC9910414 DOI: 10.1093/genetics/iyac176] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/22/2022] [Indexed: 01/13/2023] Open
Abstract
The nematode Caenorhabditis elegans is a research model organism particularly suited to the mechanistic understanding of synapse genesis in the nervous system. Armed with powerful genetics, knowledge of complete connectomics, and modern genomics, studies using C. elegans have unveiled multiple key regulators in the formation of a functional synapse. Importantly, many signaling networks display remarkable conservation throughout animals, underscoring the contributions of C. elegans research to advance the understanding of our brain. In this chapter, we will review up-to-date information of the contribution of C. elegans to the understanding of chemical synapses, from structure to molecules and to synaptic remodeling.
Collapse
Affiliation(s)
- Kota Mizumoto
- Department of Zoology, University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Yishi Jin
- Department of Neurobiology, University of California San Diego, La Jolla, CA 92093, USA
| | - Jean-Louis Bessereau
- Univ Lyon, University Claude Bernard Lyon 1, CNRS UMR 5284, INSERM U 1314, Melis, 69008 Lyon, France
| |
Collapse
|
8
|
Wirak GS, Florman J, Alkema MJ, Connor CW, Gabel CV. Age-associated changes to neuronal dynamics involve a disruption of excitatory/inhibitory balance in C. elegans. eLife 2022; 11:72135. [PMID: 35703498 PMCID: PMC9273219 DOI: 10.7554/elife.72135] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
In the aging brain, many of the alterations underlying cognitive and behavioral decline remain opaque. C. elegans offers a powerful model for aging research, with a simple, well-studied nervous system to further our understanding of the cellular modifications and functional alterations accompanying senescence. We perform multi-neuronal functional imaging across the aged C. elegans nervous system, measuring an age-associated breakdown in system-wide functional organization. At single-cell resolution, we detect shifts in activity dynamics toward higher frequencies. In addition, we measure a specific loss of inhibitory signaling that occurs early in the aging process and alters the systems critical excitatory/inhibitory balance. These effects are recapitulated with mutation of the calcium channel subunit UNC-2/CaV2a. We find that manipulation of inhibitory GABA signaling can partially ameliorate or accelerate the effects of aging. The effects of aging are also partially mitigated by disruption of the insulin signaling pathway, known to increase longevity, or by a reduction of caspase activation. Data from mammals are consistent with our findings, suggesting a conserved shift in the balance of excitatory/inhibitory signaling with age that leads to breakdown in global neuronal dynamics and functional decline.
Collapse
Affiliation(s)
- Gregory S Wirak
- Department of Physiology and Biophysics, Boston University, Boston, United States
| | - Jeremy Florman
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, United States
| | - Mark J Alkema
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, United States
| | - Christopher W Connor
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, United States
| | - Christopher V Gabel
- Department of Physiology and Biophysics, Boston University, Boston, United States
| |
Collapse
|
9
|
Biswas K, Alexander K, Francis MM. Reactive Oxygen Species: Angels and Demons in the Life of a Neuron. NEUROSCI 2022; 3:130-145. [PMID: 39484669 PMCID: PMC11523706 DOI: 10.3390/neurosci3010011] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 03/13/2022] [Indexed: 11/03/2024] Open
Abstract
Reactive oxygen species (ROS) have emerged as regulators of key processes supporting neuronal growth, function, and plasticity across lifespan. At normal physiological levels, ROS perform important roles as secondary messengers in diverse molecular processes such as regulating neuronal differentiation, polarization, synapse maturation, and neurotransmission. In contrast, high levels of ROS are toxic and can ultimately lead to cell death. Excitable cells, such as neurons, often require high levels of metabolic activity to perform their functions. As a consequence, these cells are more likely to produce high levels of ROS, potentially enhancing their susceptibility to oxidative damage. In addition, because neurons are generally post-mitotic, they may be subject to accumulating oxidative damage. Thus, maintaining tight control over ROS concentration in the nervous system is essential for proper neuronal development and function. We are developing a more complete understanding of the cellular and molecular mechanisms for control of ROS in these processes. This review focuses on ROS regulation of the developmental and functional properties of neurons, highlighting recent in vivo studies. We also discuss the current evidence linking oxidative damage to pathological conditions associated with neurodevelopmental and neurodegenerative disorders.
Collapse
Affiliation(s)
- Kasturi Biswas
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; (K.B.); (K.A.)
- Graduate Program in Neuroscience, Morningside Graduate School of Biomedical Sciences, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Kellianne Alexander
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; (K.B.); (K.A.)
- Graduate Program in Neuroscience, Morningside Graduate School of Biomedical Sciences, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Michael M Francis
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; (K.B.); (K.A.)
- Graduate Program in Neuroscience, Morningside Graduate School of Biomedical Sciences, UMass Chan Medical School, Worcester, MA 01605, USA
| |
Collapse
|
10
|
Juanez K, Ghose P. Repurposing the Killing Machine: Non-canonical Roles of the Cell Death Apparatus in Caenorhabditis elegans Neurons. Front Cell Dev Biol 2022; 10:825124. [PMID: 35237604 PMCID: PMC8882910 DOI: 10.3389/fcell.2022.825124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/31/2022] [Indexed: 12/29/2022] Open
Abstract
Here we highlight the increasingly divergent functions of the Caenorhabditis elegans cell elimination genes in the nervous system, beyond their well-documented roles in cell dismantling and removal. We describe relevant background on the C. elegans nervous system together with the apoptotic cell death and engulfment pathways, highlighting pioneering work in C. elegans. We discuss in detail the unexpected, atypical roles of cell elimination genes in various aspects of neuronal development, response and function. This includes the regulation of cell division, pruning, axon regeneration, and behavioral outputs. We share our outlook on expanding our thinking as to what cell elimination genes can do and noting their versatility. We speculate on the existence of novel genes downstream and upstream of the canonical cell death pathways relevant to neuronal biology. We also propose future directions emphasizing the exploration of the roles of cell death genes in pruning and guidance during embryonic development.
Collapse
|
11
|
Oliver D, Ramachandran S, Philbrook A, Lambert CM, Nguyen KCQ, Hall DH, Francis MM. Kinesin-3 mediated axonal delivery of presynaptic neurexin stabilizes dendritic spines and postsynaptic components. PLoS Genet 2022; 18:e1010016. [PMID: 35089924 PMCID: PMC8827443 DOI: 10.1371/journal.pgen.1010016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 02/09/2022] [Accepted: 01/03/2022] [Indexed: 12/02/2022] Open
Abstract
The functional properties of neural circuits are defined by the patterns of synaptic connections between their partnering neurons, but the mechanisms that stabilize circuit connectivity are poorly understood. We systemically examined this question at synapses onto newly characterized dendritic spines of C. elegans GABAergic motor neurons. We show that the presynaptic adhesion protein neurexin/NRX-1 is required for stabilization of postsynaptic structure. We find that early postsynaptic developmental events proceed without a strict requirement for synaptic activity and are not disrupted by deletion of neurexin/nrx-1. However, in the absence of presynaptic NRX-1, dendritic spines and receptor clusters become destabilized and collapse prior to adulthood. We demonstrate that NRX-1 delivery to presynaptic terminals is dependent on kinesin-3/UNC-104 and show that ongoing UNC-104 function is required for postsynaptic maintenance in mature animals. By defining the dynamics and temporal order of synapse formation and maintenance events in vivo, we describe a mechanism for stabilizing mature circuit connectivity through neurexin-based adhesion.
Collapse
Affiliation(s)
- Devyn Oliver
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Shankar Ramachandran
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Alison Philbrook
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Christopher M. Lambert
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Ken C. Q. Nguyen
- Department of Neuroscience, Albert Einstein College of Medicine, New York, New York, United States of America
| | - David H. Hall
- Department of Neuroscience, Albert Einstein College of Medicine, New York, New York, United States of America
| | - Michael M. Francis
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| |
Collapse
|
12
|
Faust TE, Gunner G, Schafer DP. Mechanisms governing activity-dependent synaptic pruning in the developing mammalian CNS. Nat Rev Neurosci 2021; 22:657-673. [PMID: 34545240 PMCID: PMC8541743 DOI: 10.1038/s41583-021-00507-y] [Citation(s) in RCA: 168] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2021] [Indexed: 02/08/2023]
Abstract
Almost 60 years have passed since the initial discovery by Hubel and Wiesel that changes in neuronal activity can elicit developmental rewiring of the central nervous system (CNS). Over this period, we have gained a more comprehensive picture of how both spontaneous neural activity and sensory experience-induced changes in neuronal activity guide CNS circuit development. Here we review activity-dependent synaptic pruning in the mammalian CNS, which we define as the removal of a subset of synapses, while others are maintained, in response to changes in neural activity in the developing nervous system. We discuss the mounting evidence that immune and cell-death molecules are important mechanistic links by which changes in neural activity guide the pruning of specific synapses, emphasizing the role of glial cells in this process. Finally, we discuss how these developmental pruning programmes may go awry in neurodevelopmental disorders of the human CNS, focusing on autism spectrum disorder and schizophrenia. Together, our aim is to give an overview of how the field of activity-dependent pruning research has evolved, led to exciting new questions and guided the identification of new, therapeutically relevant mechanisms that result in aberrant circuit development in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Travis E Faust
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Georgia Gunner
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Dorothy P Schafer
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
13
|
Solabre Valois L, Shi V(H, Bishop P, Zhu B, Nakamura Y, Wilkinson KA, Henley JM. Neurotrophic effects of Botulinum neurotoxin type A in hippocampal neurons involve activation of Rac1 by the non-catalytic heavy chain (HC C/A). IBRO Neurosci Rep 2021; 10:196-207. [PMID: 34041508 PMCID: PMC8143998 DOI: 10.1016/j.ibneur.2021.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 04/22/2021] [Indexed: 12/19/2022] Open
Abstract
Botulinum neurotoxins (BoNTs) are extremely potent naturally occurring poisons that act by silencing neurotransmission. Intriguingly, in addition to preventing presynaptic vesicle fusion, BoNT serotype A (BoNT/A) can also promote axonal regeneration in preclinical models. Here we report that the non-toxic C-terminal region of the receptor-binding domain of heavy chain BoNT/A (HCC/A) activates the small GTPase Rac1 and ERK pathway to potentiate axonal outgrowth, dendritic protrusion formation and synaptic vesicle release in hippocampal neurons. These data are consistent with HCC/A exerting neurotrophic properties, at least in part, independent of any BoNT catalytic activity or toxic effect.
Collapse
Affiliation(s)
- Luis Solabre Valois
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Vanilla (Hua) Shi
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Paul Bishop
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Bangfu Zhu
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Yasuko Nakamura
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Kevin A. Wilkinson
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | | |
Collapse
|
14
|
Kim YW, Al‐Ramahi I, Koire A, Wilson SJ, Konecki DM, Mota S, Soleimani S, Botas J, Lichtarge O. Harnessing the paradoxical phenotypes of APOE ɛ2 and APOE ɛ4 to identify genetic modifiers in Alzheimer's disease. Alzheimers Dement 2020; 17:831-846. [PMID: 33576571 PMCID: PMC8247413 DOI: 10.1002/alz.12240] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/08/2020] [Accepted: 10/22/2020] [Indexed: 01/05/2023]
Abstract
The strongest genetic risk factor for idiopathic late‐onset Alzheimer's disease (LOAD) is apolipoprotein E (APOE) ɛ4, while the APOE ɛ2 allele is protective. However, there are paradoxical APOE ɛ4 carriers who remain disease‐free and APOE ɛ2 carriers with LOAD. We compared exomes of healthy APOE ɛ4 carriers and APOE ɛ2 Alzheimer's disease (AD) patients, prioritizing coding variants based on their predicted functional impact, and identified 216 genes with differential mutational load between these two populations. These candidate genes were significantly dysregulated in LOAD brains, and many modulated tau‐ or β42‐induced neurodegeneration in Drosophila. Variants in these genes were associated with AD risk, even in APOE ɛ3 homozygotes, showing robust predictive power for risk stratification. Network analyses revealed involvement of candidate genes in brain cell type‐specific pathways including synaptic biology, dendritic spine pruning and inflammation. These potential modifiers of LOAD may constitute novel biomarkers, provide potential therapeutic intervention avenues, and support applying this approach as larger whole exome sequencing cohorts become available.
Collapse
Affiliation(s)
- Young Won Kim
- Program in Integrative Molecular and Biomedical SciencesBaylor College of MedicineHoustonTexasUSA
| | - Ismael Al‐Ramahi
- Jan and Dan Duncan Neurological Research InstituteHoustonTexasUSA
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTexasUSA
| | - Amanda Koire
- Graduate Program in Quantitative and Computational BiosciencesBaylor College of MedicineHoustonTexasUSA
- Medical Scientist Training ProgramBaylor College of MedicineHoustonTexasUSA
| | - Stephen J. Wilson
- Biochemistry and Molecular BiologyBaylor College of MedicineHoustonTexasUSA
| | - Daniel M. Konecki
- Graduate Program in Quantitative and Computational BiosciencesBaylor College of MedicineHoustonTexasUSA
| | - Samantha Mota
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTexasUSA
| | - Shirin Soleimani
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTexasUSA
| | - Juan Botas
- Jan and Dan Duncan Neurological Research InstituteHoustonTexasUSA
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTexasUSA
- Graduate Program in Quantitative and Computational BiosciencesBaylor College of MedicineHoustonTexasUSA
| | - Olivier Lichtarge
- Program in Integrative Molecular and Biomedical SciencesBaylor College of MedicineHoustonTexasUSA
- Jan and Dan Duncan Neurological Research InstituteHoustonTexasUSA
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTexasUSA
- Graduate Program in Quantitative and Computational BiosciencesBaylor College of MedicineHoustonTexasUSA
- Medical Scientist Training ProgramBaylor College of MedicineHoustonTexasUSA
- Biochemistry and Molecular BiologyBaylor College of MedicineHoustonTexasUSA
| |
Collapse
|
15
|
Meng L, Yan D. NLR-1/CASPR Anchors F-Actin to Promote Gap Junction Formation. Dev Cell 2020; 55:574-587.e3. [PMID: 33238150 DOI: 10.1016/j.devcel.2020.10.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 08/05/2020] [Accepted: 10/28/2020] [Indexed: 12/31/2022]
Abstract
Gap junctions are present in most tissues and play essential roles in various biological processes. However, we know surprisingly little about the molecular mechanisms underlying gap junction formation. Here, we uncover the essential role of a conserved EGF- and laminin-G-domain-containing protein nlr-1/CASPR in the regulation of gap junction formation in multiple tissues across different developmental stages in C. elegans. NLR-1 is located in the gap junction perinexus, a region adjacent to but not overlapping with gap junctions, and forms puncta before the clusters of gap junction channels appear on the membrane. We show that NLR-1 can directly bind to actin to recruit F-actin networks at the gap junction formation plaque, and the formation of F-actin patches plays a critical role in the assembly of gap junction channels. Our findings demonstrate that nlr-1/CASPR acts as an early stage signal for gap junction formation through anchoring of F-actin networks.
Collapse
Affiliation(s)
- Lingfeng Meng
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Dong Yan
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA; Department of Neurobiology, Regeneration Next, and Duke Institute for Brain Sciences, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
16
|
Insulin and Leptin/Upd2 Exert Opposing Influences on Synapse Number in Fat-Sensing Neurons. Cell Metab 2020; 32:786-800.e7. [PMID: 32976758 PMCID: PMC7642105 DOI: 10.1016/j.cmet.2020.08.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 06/29/2020] [Accepted: 08/28/2020] [Indexed: 01/20/2023]
Abstract
Energy-sensing neural circuits decide to expend or conserve resources based, in part, on the tonic, steady-state, energy-store information they receive. Tonic signals, in the form of adipose tissue-derived adipokines, set the baseline level of activity in the energy-sensing neurons, thereby providing context for interpretation of additional inputs. However, the mechanism by which tonic adipokine information establishes steady-state neuronal function has heretofore been unclear. We show here that under conditions of nutrient surplus, Upd2, a Drosophila leptin ortholog, regulates actin-based synapse reorganization to reduce bouton number in an inhibitory circuit, thus establishing a neural tone that is permissive for insulin release. Unexpectedly, we found that insulin feeds back on these same inhibitory neurons to conversely increase bouton number, resulting in maintenance of negative tone. Our results point to a mechanism by which two surplus-sensing hormonal systems, Upd2/leptin and insulin, converge on a neuronal circuit with opposing outcomes to establish energy-store-dependent neuron activity.
Collapse
|
17
|
Gauba E, Sui S, Tian J, Driskill C, Jia K, Yu C, Rughwani T, Wang Q, Kroener S, Guo L, Du H. Modulation of OSCP mitigates mitochondrial and synaptic deficits in a mouse model of Alzheimer's pathology. Neurobiol Aging 2020; 98:63-77. [PMID: 33254080 DOI: 10.1016/j.neurobiolaging.2020.09.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 09/09/2020] [Accepted: 09/21/2020] [Indexed: 01/22/2023]
Abstract
Synaptic failure underlies cognitive impairment in Alzheimer's disease (AD). Cumulative evidence suggests a strong link between mitochondrial dysfunction and synaptic deficits in AD. We previously found that oligomycin-sensitivity-conferring protein (OSCP) dysfunction produces pronounced neuronal mitochondrial defects in AD brains and a mouse model of AD pathology (5xFAD mice). Here, we prevented OSCP dysfunction by overexpressing OSCP in 5xFAD mouse neurons in vivo (Thy-1 OSCP/5xFAD mice). This approach protected OSCP expression and reduced interaction of amyloid-beta (Aβ) with membrane-bound OSCP. OSCP overexpression also alleviated F1Fo ATP synthase deregulation and preserved mitochondrial function. Moreover, OSCP modulation conferred resistance to Aβ-mediated defects in axonal mitochondrial dynamics and motility. Consistent with preserved neuronal mitochondrial function, OSCP overexpression ameliorated synaptic injury in 5xFAD mice as demonstrated by preserved synaptic density, reduced complement-dependent synapse elimination, and improved synaptic transmission, leading to preserved spatial learning and memory. Taken together, our findings show the consequences of OSCP dysfunction in the development of synaptic stress in AD-related conditions and implicate OSCP modulation as a potential therapeutic strategy.
Collapse
Affiliation(s)
- Esha Gauba
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Shaomei Sui
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Jing Tian
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Christopher Driskill
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Kun Jia
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Chunxiao Yu
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Tripta Rughwani
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Qi Wang
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Sven Kroener
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Lan Guo
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX, USA; Department of Pharmacology & Toxicology, The University of Kansas, Lawrence, KS, USA; Higuchi Biosciences Center, The University of Kansas, Lawrence, KS, USA.
| | - Heng Du
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX, USA; Department of Pharmacology & Toxicology, The University of Kansas, Lawrence, KS, USA; Higuchi Biosciences Center, The University of Kansas, Lawrence, KS, USA.
| |
Collapse
|
18
|
Kelley CA, Triplett O, Mallick S, Burkewitz K, Mair WB, Cram EJ. FLN-1/filamin is required to anchor the actomyosin cytoskeleton and for global organization of sub-cellular organelles in a contractile tissue. Cytoskeleton (Hoboken) 2020; 77:379-398. [PMID: 32969593 DOI: 10.1002/cm.21633] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/11/2020] [Accepted: 09/17/2020] [Indexed: 01/01/2023]
Abstract
Actomyosin networks are organized in space, direction, size, and connectivity to produce coordinated contractions across cells. We use the C. elegans spermatheca, a tube composed of contractile myoepithelial cells, to study how actomyosin structures are organized. FLN-1/filamin is required for the formation and stabilization of a regular array of parallel, contractile, actomyosin fibers in this tissue. Loss of fln-1 results in the detachment of actin fibers from the basal surface, which then accumulate along the cell junctions and are stabilized by spectrin. In addition, actin and myosin are captured at the nucleus by the linker of nucleoskeleton and cytoskeleton complex (LINC) complex, where they form large foci. Nuclear positioning and morphology, distribution of the endoplasmic reticulum and the mitochondrial network are also disrupted. These results demonstrate that filamin is required to prevent large actin bundle formation and detachment, to prevent excess nuclear localization of actin and myosin, and to ensure correct positioning of organelles.
Collapse
Affiliation(s)
- Charlotte A Kelley
- Department of Biology, Northeastern University, Boston, Massachusetts, USA
| | - Olivia Triplett
- Department of Biology, Northeastern University, Boston, Massachusetts, USA
| | - Samyukta Mallick
- Department of Biology, Northeastern University, Boston, Massachusetts, USA
| | - Kristopher Burkewitz
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, Massachusetts, USA.,Department of Cell and Developmental Biology, Vanderbilt School of Medicine, Nashville, Tennessee, USA
| | - William B Mair
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Erin J Cram
- Department of Biology, Northeastern University, Boston, Massachusetts, USA
| |
Collapse
|
19
|
Cuentas-Condori A, Miller Rd DM. Synaptic remodeling, lessons from C. elegans. J Neurogenet 2020; 34:307-322. [PMID: 32808848 PMCID: PMC7855814 DOI: 10.1080/01677063.2020.1802725] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 07/07/2020] [Indexed: 02/08/2023]
Abstract
Sydney Brenner's choice of Caenorhabditis elegans as a model organism for understanding the nervous system has accelerated discoveries of gene function in neural circuit development and behavior. In this review, we discuss a striking example of synaptic remodeling in the C. elegans motor circuit in which DD class motor neurons effectively reverse polarity as presynaptic and postsynaptic domains at opposite ends of the DD neurite switch locations. Originally revealed by EM reconstruction conducted over 40 years ago, DD remodeling has since been investigated by live cell imaging methods that exploit the power of C. elegans genetics to reveal key effectors of synaptic plasticity. Although synapses are also extensively rewired in developing mammalian circuits, the underlying remodeling mechanisms are largely unknown. Here, we highlight the possibility that studies in C. elegans can reveal pathways that orchestrate synaptic remodeling in more complex organisms. Specifically, we describe (1) transcription factors that regulate DD remodeling, (2) the cellular and molecular cascades that drive synaptic remodeling and (3) examples of circuit modifications in vertebrate neurons that share some similarities with synaptic remodeling in C. elegans DD neurons.
Collapse
|
20
|
LeBoeuf B, Chen X, Garcia LR. WNT regulates programmed muscle remodeling through PLC-β and calcineurin in Caenorhabditis elegans males. Development 2020; 147:dev181305. [PMID: 32317273 PMCID: PMC10679511 DOI: 10.1242/dev.181305] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 03/31/2020] [Indexed: 11/29/2023]
Abstract
The ability of a muscle to break down and reform fibers is vital for development; however, if unregulated, abnormal muscle remodeling can occur, such as in the heart following cardiac infarction. To study how normal developmental remodeling is mediated, we used fluorescently tagged actin, mutant analyses, Ca2+ imaging and controlled Ca2+ release to determine the mechanisms regulating a conspicuous muscle change that occurs in Caenorhabditis elegans males. In hermaphrodites and larval males, the single cell anal depressor muscle, used for waste expulsion, contains bilateral dorsal-ventral sarcomeres. However, prior to male adulthood, the muscle sex-specifically remodels its sarcomeres anteriorly-posteriorly to promote copulation behavior. Although WNT signaling and calcineurin have been implicated separately in muscle remodeling, we unexpectedly found that they participate in the same pathway. We show that WNT signaling through Gαo and PLC-β results in sustained Ca2+ release via IP3 and ryanodine receptors to activate calcineurin. These results highlight the utility of this new model in identifying additional molecules involved in muscle remodeling.
Collapse
Affiliation(s)
- Brigitte LeBoeuf
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - Xin Chen
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - Luis Rene Garcia
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
21
|
Takeishi A, Takagaki N, Kuhara A. Temperature signaling underlying thermotaxis and cold tolerance in Caenorhabditis elegans. J Neurogenet 2020; 34:351-362. [DOI: 10.1080/01677063.2020.1734001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Asuka Takeishi
- Neural Circuit of Multisensory Integration RIKEN Hakubi Research Team, RIKEN Cluster for Pioneering Research (CPR), RIKEN Center for Brain Science (CBS), Wako, Japan
| | - Natsune Takagaki
- Graduate School of Natural Science, Konan University, Kobe, Japan
- Institute for Integrative Neurobiology, Konan University, Kobe, Japan
| | - Atsushi Kuhara
- Graduate School of Natural Science, Konan University, Kobe, Japan
- Institute for Integrative Neurobiology, Konan University, Kobe, Japan
- Faculty of Science and Engineering, Konan University, Kobe, Japan
- AMED-PRIME, Japan Agency for Medical Research and Development, Tokyo, Japan
| |
Collapse
|
22
|
Cardozo PL, de Lima IBQ, Maciel EMA, Silva NC, Dobransky T, Ribeiro FM. Synaptic Elimination in Neurological Disorders. Curr Neuropharmacol 2020; 17:1071-1095. [PMID: 31161981 PMCID: PMC7052824 DOI: 10.2174/1570159x17666190603170511] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/23/2019] [Accepted: 05/31/2019] [Indexed: 12/12/2022] Open
Abstract
Synapses are well known as the main structures responsible for transmitting information through the release and recognition of neurotransmitters by pre- and post-synaptic neurons. These structures are widely formed and eliminated throughout the whole lifespan via processes termed synaptogenesis and synaptic pruning, respectively. Whilst the first pro-cess is needed for ensuring proper connectivity between brain regions and also with the periphery, the second phenomenon is important for their refinement by eliminating weaker and unnecessary synapses and, at the same time, maintaining and fa-voring the stronger ones, thus ensuring proper synaptic transmission. It is well-known that synaptic elimination is modulated by neuronal activity. However, only recently the role of the classical complement cascade in promoting this phenomenon has been demonstrated. Specifically, microglial cells recognize activated complement component 3 (C3) bound to synapses tar-geted for elimination, triggering their engulfment. As this is a highly relevant process for adequate neuronal functioning, dis-ruptions or exacerbations in synaptic pruning could lead to severe circuitry alterations that could underlie neuropathological alterations typical of neurological and neuropsychiatric disorders. In this review, we focus on discussing the possible in-volvement of excessive synaptic elimination in Alzheimer’s disease, as it has already been reported dendritic spine loss in post-synaptic neurons, increased association of complement proteins with its synapses and, hence, augmented microglia-mediated pruning in animal models of this disorder. In addition, we briefly discuss how this phenomenon could be related to other neurological disorders, including multiple sclerosis and schizophrenia.
Collapse
Affiliation(s)
- Pablo L Cardozo
- Laboratório de Neurobioquímica, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Izabella B Q de Lima
- Laboratório de Neurobioquímica, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Esther M A Maciel
- Laboratório de Neurobioquímica, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Nathália C Silva
- Laboratório de Neurobioquímica, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Fabíola M Ribeiro
- Laboratório de Neurobioquímica, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
23
|
Activity-Dependent Regulation of the Proapoptotic BH3-Only Gene egl-1 in a Living Neuron Pair in Caenorhabditis elegans. G3-GENES GENOMES GENETICS 2019; 9:3703-3714. [PMID: 31519744 PMCID: PMC6829140 DOI: 10.1534/g3.119.400654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The BH3-only family of proteins is key for initiating apoptosis in a variety of contexts, and may also contribute to non-apoptotic cellular processes. Historically, the nematode Caenorhabditis elegans has provided a powerful system for studying and identifying conserved regulators of BH3-only proteins. In C. elegans, the BH3-only protein egl-1 is expressed during development to cell-autonomously trigger most developmental cell deaths. Here we provide evidence that egl-1 is also transcribed after development in the sensory neuron pair URX without inducing apoptosis. We used genetic screening and epistasis analysis to determine that its transcription is regulated in URX by neuronal activity and/or in parallel by orthologs of Protein Kinase G and the Salt-Inducible Kinase family. Because several BH3-only family proteins are also expressed in the adult nervous system of mammals, we suggest that studying egl-1 expression in URX may shed light on mechanisms that regulate conserved family members in higher organisms.
Collapse
|
24
|
Devine MJ, Kittler JT. Mitochondria at the neuronal presynapse in health and disease. Nat Rev Neurosci 2019; 19:63-80. [PMID: 29348666 DOI: 10.1038/nrn.2017.170] [Citation(s) in RCA: 360] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Synapses enable neurons to communicate with each other and are therefore a prerequisite for normal brain function. Presynaptically, this communication requires energy and generates large fluctuations in calcium concentrations. Mitochondria are optimized for supplying energy and buffering calcium, and they are actively recruited to presynapses. However, not all presynapses contain mitochondria; thus, how might synapses with and without mitochondria differ? Mitochondria are also increasingly recognized to serve additional functions at the presynapse. Here, we discuss the importance of presynaptic mitochondria in maintaining neuronal homeostasis and how dysfunctional presynaptic mitochondria might contribute to the development of disease.
Collapse
Affiliation(s)
- Michael J Devine
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Josef T Kittler
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| |
Collapse
|
25
|
Mulcahy B, Witvliet D, Holmyard D, Mitchell J, Chisholm AD, Meirovitch Y, Samuel ADT, Zhen M. A Pipeline for Volume Electron Microscopy of the Caenorhabditis elegans Nervous System. Front Neural Circuits 2018; 12:94. [PMID: 30524248 PMCID: PMC6262311 DOI: 10.3389/fncir.2018.00094] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 10/08/2018] [Indexed: 01/01/2023] Open
Abstract
The “connectome,” a comprehensive wiring diagram of synaptic connectivity, is achieved through volume electron microscopy (vEM) analysis of an entire nervous system and all associated non-neuronal tissues. White et al. (1986) pioneered the fully manual reconstruction of a connectome using Caenorhabditis elegans. Recent advances in vEM allow mapping new C. elegans connectomes with increased throughput, and reduced subjectivity. Current vEM studies aim to not only fill the remaining gaps in the original connectome, but also address fundamental questions including how the connectome changes during development, the nature of individuality, sexual dimorphism, and how genetic and environmental factors regulate connectivity. Here we describe our current vEM pipeline and projected improvements for the study of the C. elegans nervous system and beyond.
Collapse
Affiliation(s)
- Ben Mulcahy
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Daniel Witvliet
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Douglas Holmyard
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, Canada.,Nanoscale Biomedical Imaging Facility, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada
| | - James Mitchell
- Center for Brain Science, Department of Physics, Harvard University, Cambridge, MA, United States
| | - Andrew D Chisholm
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Yaron Meirovitch
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Aravinthan D T Samuel
- Center for Brain Science, Department of Physics, Harvard University, Cambridge, MA, United States
| | - Mei Zhen
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada.,Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
26
|
Endoribonuclease ENDU-2 regulates multiple traits including cold tolerance via cell autonomous and nonautonomous controls in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2018; 115:8823-8828. [PMID: 30104389 DOI: 10.1073/pnas.1808634115] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Environmental temperature acclimation is essential to animal survival, yet thermoregulation mechanisms remain poorly understood. We demonstrate cold tolerance in Caenorhabditis elegans as regulated by paired ADL chemosensory neurons via Ca2+-dependent endoribonuclease (EndoU) ENDU-2. Loss of ENDU-2 function results in life span, brood size, and synaptic remodeling abnormalities in addition to enhanced cold tolerance. Enzymatic ENDU-2 defects localized in the ADL and certain muscle cells led to increased cold tolerance in endu-2 mutants. Ca2+ imaging revealed ADL neurons were responsive to temperature stimuli through transient receptor potential (TRP) channels, concluding that ADL function requires ENDU-2 action in both cell-autonomous and cell-nonautonomous mechanisms. ENDU-2 is involved in caspase expression, which is central to cold tolerance and synaptic remodeling in dorsal nerve cord. We therefore conclude that ENDU-2 regulates cell type-dependent, cell-autonomous, and cell-nonautonomous cold tolerance.
Collapse
|
27
|
Jin Y, Qi YB. Building stereotypic connectivity: mechanistic insights into structural plasticity from C. elegans. Curr Opin Neurobiol 2017; 48:97-105. [PMID: 29182952 DOI: 10.1016/j.conb.2017.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 11/07/2017] [Accepted: 11/14/2017] [Indexed: 01/10/2023]
Abstract
The ability of neurons to modify or remodel their synaptic connectivity is critical for the function of neural circuitry throughout the life of an animal. Understanding the mechanisms underlying neuronal structural changes is central to our knowledge of how the nervous system is shaped for complex behaviors and how it further adapts to developmental and environmental demands. Caenorhabditis elegans provides a powerful model for examining developmental processes and for discovering mechanisms controlling neural plasticity. Recent findings have identified conserved themes underlying neural plasticity in development and under environmental stress.
Collapse
Affiliation(s)
- Yishi Jin
- Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Yingchuan B Qi
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China.
| |
Collapse
|
28
|
Yu B, Wang X, Wei S, Fu T, Dzakah EE, Waqas A, Walthall WW, Shan G. Convergent Transcriptional Programs Regulate cAMP Levels in C. elegans GABAergic Motor Neurons. Dev Cell 2017; 43:212-226.e7. [PMID: 29033363 DOI: 10.1016/j.devcel.2017.09.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 06/26/2017] [Accepted: 09/15/2017] [Indexed: 02/07/2023]
Abstract
Both transcriptional regulation and signaling pathways play crucial roles in neuronal differentiation and plasticity. Caenorhabditis elegans possesses 19 GABAergic motor neurons (MNs) called D MNs, which are divided into two subgroups: DD and VD. DD, but not VD, MNs reverse their cellular polarity in a developmental process called respecification. UNC-30 and UNC-55 are two critical transcription factors in D MNs. By using chromatin immunoprecipitation with CRISPR/Cas9 knockin of GFP fusion, we uncovered the global targets of UNC-30 and UNC-55. UNC-30 and UNC-55 are largely converged to regulate over 1,300 noncoding and coding genes, and genes in multiple biological processes, including cAMP metabolism, are co-regulated. Increase in cAMP levels may serve as a timing signal for respecification, whereas UNC-55 regulates genes such as pde-4 to keep the cAMP levels low in VD. Other genes modulating DD respecification such as lin-14, irx-1, and oig-1 are also found to affect cAMP levels.
Collapse
Affiliation(s)
- Bin Yu
- CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Science, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui Province 230027, China
| | - Xiaolin Wang
- CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Science, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui Province 230027, China
| | - Shuai Wei
- CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Science, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui Province 230027, China
| | - Tao Fu
- CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Science, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui Province 230027, China
| | - Emmanuel Enoch Dzakah
- CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Science, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui Province 230027, China
| | - Ahmed Waqas
- CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Science, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui Province 230027, China
| | - Walter W Walthall
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Ge Shan
- CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Science, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui Province 230027, China.
| |
Collapse
|
29
|
Differential regulation of polarized synaptic vesicle trafficking and synapse stability in neural circuit rewiring in Caenorhabditis elegans. PLoS Genet 2017. [PMID: 28636662 PMCID: PMC5500376 DOI: 10.1371/journal.pgen.1006844] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Neural circuits are dynamic, with activity-dependent changes in synapse density and connectivity peaking during different phases of animal development. In C. elegans, young larvae form mature motor circuits through a dramatic switch in GABAergic neuron connectivity, by concomitant elimination of existing synapses and formation of new synapses that are maintained throughout adulthood. We have previously shown that an increase in microtubule dynamics during motor circuit rewiring facilitates new synapse formation. Here, we further investigate cellular control of circuit rewiring through the analysis of mutants obtained in a forward genetic screen. Using live imaging, we characterize novel mutations that alter cargo binding in the dynein motor complex and enhance anterograde synaptic vesicle movement during remodeling, providing in vivo evidence for the tug-of-war between kinesin and dynein in fast axonal transport. We also find that a casein kinase homolog, TTBK-3, inhibits stabilization of nascent synapses in their new locations, a previously unexplored facet of structural plasticity of synapses. Our study delineates temporally distinct signaling pathways that are required for effective neural circuit refinement. In this study, we identify pathways that regulate the formation and maintenance of synapses, the functional connections between neurons, in the nervous system of the nematode C. elegans. Our work characterizes the interaction between molecular motors kinesin and dynein, which carry cargo and move towards opposite ends of microtubules during synapse formation. We also address the role of a protein kinase gene TTBK-3 in maintaining synapse structure once synaptic components have reached the sites of new synapses. Our findings shed mechanistic insight into the coordination of molecular motors and the cytoskeleton in neural circuit function.
Collapse
|
30
|
Meng L, Zhang A, Jin Y, Yan D. Regulation of neuronal axon specification by glia-neuron gap junctions in C. elegans. eLife 2016; 5. [PMID: 27767956 PMCID: PMC5083064 DOI: 10.7554/elife.19510] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 10/20/2016] [Indexed: 01/22/2023] Open
Abstract
Axon specification is a critical step in neuronal development, and the function of glial cells in this process is not fully understood. Here, we show that C. elegans GLR glial cells regulate axon specification of their nearby GABAergic RME neurons through GLR-RME gap junctions. Disruption of GLR-RME gap junctions causes misaccumulation of axonal markers in non-axonal neurites of RME neurons and converts microtubules in those neurites to form an axon-like assembly. We further uncover that GLR-RME gap junctions regulate RME axon specification through activation of the CDK-5 pathway in a calcium-dependent manner, involving a calpain clp-4. Therefore, our study reveals the function of glia-neuron gap junctions in neuronal axon specification and shows that calcium originated from glial cells can regulate neuronal intracellular pathways through gap junctions.
Collapse
Affiliation(s)
- Lingfeng Meng
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, United States.,Department of Neurobiology, Duke University Medical Center, Durham, United States.,Duke Institute for Brain Sciences, Duke Medical Center, Durham, United States
| | - Albert Zhang
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, United States.,Department of Neurobiology, Duke University Medical Center, Durham, United States.,Duke Institute for Brain Sciences, Duke Medical Center, Durham, United States
| | - Yishi Jin
- Neurobiology Section, Division of Biological Sciences, Howard Hughes Medical Institute, University of California, San Diego, United States.,Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, United States
| | - Dong Yan
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, United States.,Department of Neurobiology, Duke University Medical Center, Durham, United States.,Duke Institute for Brain Sciences, Duke Medical Center, Durham, United States
| |
Collapse
|
31
|
Terni B, López-Murcia FJ, Llobet A. Role of neuron-glia interactions in developmental synapse elimination. Brain Res Bull 2016; 129:74-81. [PMID: 27601093 DOI: 10.1016/j.brainresbull.2016.08.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 08/19/2016] [Accepted: 08/31/2016] [Indexed: 11/16/2022]
Abstract
During the embryonic development of the nervous system there is a massive formation of synapses. However, the exuberant connectivity present after birth must be pruned during postnatal growth to optimize the function of neuronal circuits. Whilst glial cells play a fundamental role in the formation of early synaptic contacts, their contribution to developmental modifications of established synapses is not well understood. The present review aims to highlight the various roles of glia in the developmental refinement of embryonic synaptic connectivity. We summarize recent evidences linking secretory abilities of glial cells to the disassembly of synaptic contacts that are complementary of a well-established phagocytic role. Considering a theoretical framework, it is discussed how release of glial molecules could be relevant to the developmental refinement of synaptic connectivity. Finally, we propose a three-stage model of synapse elimination in which neurons and glia are functionally associated to timely eliminate synapses.
Collapse
Affiliation(s)
- Beatrice Terni
- Laboratory of Neurobiology, Department of Pathology and Experimental Therapeutics, Institute of Neurosciences, University of Barcelona and Bellvitge Biomedical Research Institute (IDIBELL), 08907 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Francisco José López-Murcia
- Laboratory of Neurobiology, Department of Pathology and Experimental Therapeutics, Institute of Neurosciences, University of Barcelona and Bellvitge Biomedical Research Institute (IDIBELL), 08907 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Artur Llobet
- Laboratory of Neurobiology, Department of Pathology and Experimental Therapeutics, Institute of Neurosciences, University of Barcelona and Bellvitge Biomedical Research Institute (IDIBELL), 08907 L'Hospitalet de Llobregat, Barcelona, Spain.
| |
Collapse
|
32
|
Miller-Fleming TW, Petersen SC, Manning L, Matthewman C, Gornet M, Beers A, Hori S, Mitani S, Bianchi L, Richmond J, Miller DM. The DEG/ENaC cation channel protein UNC-8 drives activity-dependent synapse removal in remodeling GABAergic neurons. eLife 2016; 5. [PMID: 27403890 PMCID: PMC4980115 DOI: 10.7554/elife.14599] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 07/11/2016] [Indexed: 12/30/2022] Open
Abstract
Genetic programming and neural activity drive synaptic remodeling in developing neural circuits, but the molecular components that link these pathways are poorly understood. Here we show that the C. elegans Degenerin/Epithelial Sodium Channel (DEG/ENaC) protein, UNC-8, is transcriptionally controlled to function as a trigger in an activity-dependent mechanism that removes synapses in remodeling GABAergic neurons. UNC-8 cation channel activity promotes disassembly of presynaptic domains in DD type GABA neurons, but not in VD class GABA neurons where unc-8 expression is blocked by the COUP/TF transcription factor, UNC-55. We propose that the depolarizing effect of UNC-8-dependent sodium import elevates intracellular calcium in a positive feedback loop involving the voltage-gated calcium channel UNC-2 and the calcium-activated phosphatase TAX-6/calcineurin to initiate a caspase-dependent mechanism that disassembles the presynaptic apparatus. Thus, UNC-8 serves as a link between genetic and activity-dependent pathways that function together to promote the elimination of GABA synapses in remodeling neurons. DOI:http://dx.doi.org/10.7554/eLife.14599.001 The brain contains billions of nerve cells, or neurons, that communicate with one another through connections called synapses. As the brain develops, these circuits are extensively modified as new synapses are created and others are removed. Neurological disorders may emerge if these processes are not regulated correctly. Identifying the biological pathways that control the addition and removal of synapses could therefore provide new insights into how to treat human brain diseases. To communicate across a synapse, the signaling neuron releases chemicals called neurotransmitters that alter the activity of the receiving neuron. Some neurotransmitters, such as GABA, inhibit the activity of the receiving neuron. The activity of a neuron – and hence how often it releases neurotransmitters – depends on different ions moving into and out of the neuron through proteins called ion channels that are embedded in the cell membrane. For example, the movement of calcium ions into the neuron can trigger the release of neurotransmitters. The roundworm Caenorhabditis elegans is often used as a model organism to study how the brain develops. During development, the worm nervous system eliminates synapses that release GABA and reassembles them at new locations. However, the nervous system does not eliminate these synapses at random. Miller-Fleming, Petersen et al. now show that a C. elegans protein called UNC-8 is responsible for this effect. UNC-8 forms part of an ion channel that allows sodium ions to enter the neuron and is selectively produced in GABA neurons that are destined for remodeling. Miller-Fleming, Petersen et al. found that inside GABA-releasing neurons, calcium ions stimulate an enzyme called calcineurin that may in turn activate UNC-8. Sodium ions then enter the neuron through UNC-8 channels. This boosts the activity of the calcium ion channels, which further increases how many calcium ions enter the cell. Ultimately, the amount of calcium inside the neuron becomes high enough to activate an additional pathway that eliminates the synapse. This downstream pathway involves components of a cell-killing (or “apoptotic”) mechanism that is repurposed in this case to remove the GABA release apparatus at the synapse. Other proteins are likely to help UNC-8 sense the activity of neurons and destroy synapses in response. Further work is required to investigate these additional components and to determine how they work with UNC-8 to remove synapses in the nervous system during development. DOI:http://dx.doi.org/10.7554/eLife.14599.002
Collapse
Affiliation(s)
| | - Sarah C Petersen
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, United States
| | - Laura Manning
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, United States
| | - Cristina Matthewman
- Department of Physiology and Biophysics, University of Miami, Miami, United States
| | - Megan Gornet
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, United States
| | - Allison Beers
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, United States
| | - Sayaka Hori
- Department of Physiology, Tokyo Women's Medical University, Tokyo, Japan
| | - Shohei Mitani
- Department of Physiology, Tokyo Women's Medical University, Tokyo, Japan
| | - Laura Bianchi
- Department of Physiology and Biophysics, University of Miami, Miami, United States
| | - Janet Richmond
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, United States
| | - David M Miller
- Neuroscience Program, Vanderbilt University, Nashville, United States.,Department of Cell and Developmental Biology, Vanderbilt University, Nashville, United States
| |
Collapse
|
33
|
Kurup N, Jin Y. Neural circuit rewiring: insights from DD synapse remodeling. WORM 2015; 5:e1129486. [PMID: 27073734 DOI: 10.1080/21624054.2015.1129486] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 11/24/2015] [Accepted: 12/04/2015] [Indexed: 01/27/2023]
Abstract
Nervous systems exhibit many forms of neuronal plasticity during growth, learning and memory consolidation, as well as in response to injury. Such plasticity can occur across entire nervous systems as with the case of insect metamorphosis, in individual classes of neurons, or even at the level of a single neuron. A striking example of neuronal plasticity in C. elegans is the synaptic rewiring of the GABAergic Dorsal D-type motor neurons during larval development, termed DD remodeling. DD remodeling entails multi-step coordination to concurrently eliminate pre-existing synapses and form new synapses on different neurites, without changing the overall morphology of the neuron. This mini-review focuses on recent advances in understanding the cellular and molecular mechanisms driving DD remodeling.
Collapse
Affiliation(s)
- Naina Kurup
- Neurobiology Section, Division of Biological Sciences, University of California , San Diego, La Jolla, CA, USA
| | - Yishi Jin
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA; Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA; Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
34
|
Ukken FP, Bruckner JJ, Weir KL, Hope SJ, Sison SL, Birschbach RM, Hicks L, Taylor KL, Dent EW, Gonsalvez GB, O'Connor-Giles KM. BAR-SH3 sorting nexins are conserved interacting proteins of Nervous wreck that organize synapses and promote neurotransmission. J Cell Sci 2015; 129:166-77. [PMID: 26567222 PMCID: PMC4732300 DOI: 10.1242/jcs.178699] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 11/11/2015] [Indexed: 12/13/2022] Open
Abstract
Nervous wreck (Nwk) is a conserved F-BAR protein that attenuates synaptic growth and promotes synaptic function in Drosophila. In an effort to understand how Nwk carries out its dual roles, we isolated interacting proteins using mass spectrometry. We report a conserved interaction between Nwk proteins and BAR-SH3 sorting nexins, a family of membrane-binding proteins implicated in diverse intracellular trafficking processes. In mammalian cells, BAR-SH3 sorting nexins induce plasma membrane tubules that localize NWK2, consistent with a possible functional interaction during the early stages of endocytic trafficking. To study the role of BAR-SH3 sorting nexins in vivo, we took advantage of the lack of genetic redundancy in Drosophila and employed CRISPR-based genome engineering to generate null and endogenously tagged alleles of SH3PX1. SH3PX1 localizes to neuromuscular junctions where it regulates synaptic ultrastructure, but not synapse number. Consistently, neurotransmitter release was significantly diminished in SH3PX1 mutants. Double-mutant and tissue-specific-rescue experiments indicate that SH3PX1 promotes neurotransmitter release presynaptically, at least in part through functional interactions with Nwk, and might act to distinguish the roles of Nwk in regulating synaptic growth and function.
Collapse
Affiliation(s)
- Fiona P Ukken
- Laboratory of Cell and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Joseph J Bruckner
- Cell and Molecular Biology Training Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kurt L Weir
- Laboratory of Cell and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Sarah J Hope
- Laboratory of Cell and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Samantha L Sison
- Laboratory of Cell and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Ryan M Birschbach
- Laboratory of Cell and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Lawrence Hicks
- Cellular Biology and Anatomy, Georgia Regents University, Augusta, GA 30912, USA
| | - Kendra L Taylor
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Erik W Dent
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Graydon B Gonsalvez
- Cellular Biology and Anatomy, Georgia Regents University, Augusta, GA 30912, USA
| | - Kate M O'Connor-Giles
- Laboratory of Cell and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706, USA Cell and Molecular Biology Training Program, University of Wisconsin-Madison, Madison, WI 53706, USA Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|