1
|
Basu S, Nadhan R, Dhanasekaran DN. Long Non-Coding RNAs in Ovarian Cancer: Mechanistic Insights and Clinical Applications. Cancers (Basel) 2025; 17:472. [PMID: 39941838 PMCID: PMC11815776 DOI: 10.3390/cancers17030472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/25/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
Background/Objectives: Ovarian cancer is a leading cause of gynecological cancer mortality worldwide, often diagnosed at advanced stages due to vague symptoms and the lack of effective early detection methods. Long non-coding RNAs (lncRNAs) have emerged as key regulators in cancer biology, influencing cellular processes such as proliferation, apoptosis, and chemoresistance. This review explores the multifaceted roles of lncRNAs in ovarian cancer pathogenesis and their potential as biomarkers and therapeutic targets. Methods: A comprehensive literature review was conducted to analyze the structural and functional characteristics of lncRNAs and their contributions to ovarian cancer biology. This includes their regulatory mechanisms, interactions with signaling pathways, and implications for therapeutic resistance. Advanced bioinformatics and omics approaches were also evaluated for their potential in lncRNA research. Results: The review highlights the dual role of lncRNAs as oncogenes and tumor suppressors, modulating processes such as cell proliferation, invasion, and angiogenesis. Specific lncRNAs, such as HOTAIR and GAS5, demonstrate significant potential as diagnostic biomarkers and therapeutic targets. Emerging technologies, such as single-cell sequencing, provide valuable insights into the tumor microenvironment and the heterogeneity of lncRNA expression. Conclusions: LncRNAs hold transformative potential in advancing ovarian cancer diagnosis, prognosis, and treatment. Targeting lncRNAs or their associated pathways offers promising strategies to overcome therapy resistance and enhance personalized medicine. Continued research integrating omics and bioinformatics will be essential to unlock the full clinical potential of lncRNAs in ovarian cancer management.
Collapse
Affiliation(s)
- Sneha Basu
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (S.B.); (R.N.)
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Revathy Nadhan
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (S.B.); (R.N.)
| | - Danny N. Dhanasekaran
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (S.B.); (R.N.)
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
2
|
Hu Q, Wang Y, Mao W. Knockdown of Glycolysis-Related LINC01070 Inhibits the Progression of Breast Cancer. Cureus 2024; 16:e60093. [PMID: 38860098 PMCID: PMC11163994 DOI: 10.7759/cureus.60093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2024] [Indexed: 06/12/2024] Open
Abstract
Accumulative evidence confirms that glycolysis and long non-coding RNAs (lncRNAs) are closely associated with tumor development. The aim of this study was to construct a novel prognostic model based on glycolysis-related lncRNAs (GRLs) in breast cancer patients. By performing Pearson correlation analysis and Lasso regression analysis on differentially expressed genes and lncRNAs associated with glycolysis in the Cancer Genome Atlas (TCGA) and Gene Set Enrichment Analysis (GSEA) datasets, we identified nine GRLs and constructed associated prognostic risk signature. Kaplan-Meier survival analysis and univariate and multivariate Cox analysis showed that patients in the low-risk group had a better prognosis. The receiver operator characteristics (ROC) curves showed that the area under the curve (AUC) of the prognostic risk signature predicting patients' overall survival at 1-, 3- and 5- years was 0.78, 0.71, and 0.71, respectively. Moreover, the validation curves also showed that the signature had better diagnostic efficacy and clinical predictive power. Furthermore, clone formation assay, EdU assay, and Transwell assay showed that knockdown of LINC01070 inhibited breast cancer progression. We developed a prognostic risk-associated GRLs signature that can accurately predict the breast cancer patient's prognostic status, and LINC01070 can be used as a potential biomarker for the prognosis of breast cancer patients.
Collapse
Affiliation(s)
- Qiang Hu
- Urology, Zhongda Hospital, Southeast University, Nanjing, CHN
| | - Yiduo Wang
- Urology, Zhongda Hospital, Southeast University, Nanjing, CHN
| | - Weipu Mao
- Urology, Zhongda Hospital, Southeast University, Nanjing, CHN
| |
Collapse
|
3
|
Davodabadi F, Farasati Far B, Sargazi S, Fatemeh Sajjadi S, Fathi-Karkan S, Mirinejad S, Ghotekar S, Sargazi S, Rahman MM. Nanomaterials-Based Targeting of Long Non-Coding RNAs in Cancer: A Cutting-Edge Review of Current Trends. ChemMedChem 2024; 19:e202300528. [PMID: 38267373 DOI: 10.1002/cmdc.202300528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 01/26/2024]
Abstract
This review article spotlights the burgeoning potential of using nanotherapeutic strategies to target long non-coding RNAs (lncRNAs) in cancer cells. This updated discourse underlines the prominent role of lncRNAs in instigating cancer, facilitating its progression, and metastasis, validating lncRNAs' potential for being effective diagnostic biomarkers and therapeutic targets. The manuscript offers an in-depth examination of different strategies presently employed to modulate lncRNA expression and function for therapeutic purposes. Among these strategies, Antisense Oligonucleotides (ASOs), RNA interference (RNAi) technologies, and the innovative clustered regularly interspaced short palindromic repeats (CRISPR)-based gene editing tools garner noteworthy mention. A significant section of the review is dedicated to nanocarriers and their crucial role in drug delivery. These nanocarriers' efficiency in targeting lncRNAs in varied types of cancers is elaborated upon, validating the importance of targeted therapy. The manuscript culminates by reaffirming the promising prospects of targeting lncRNAs to enhance the accuracy of cancer diagnosis and improve treatment efficacy. Consequently, new paths are opened to more research and innovation in employing nanotherapeutic approaches against lncRNAs in cancer cells. Thus, this comprehensive manuscript serves as a valuable resource that underscores the vital role of lncRNAs and the various nano-strategies for targeting them in cancer treatment. Future research should also focus on unraveling the complex regulatory networks involving lncRNAs and identifying fundamental functional interactions to refine therapeutic strategies targeting lncRNAs in cancer.
Collapse
Affiliation(s)
- Fatemeh Davodabadi
- Department of Biology, Faculty of Basic Science, Payame Noor University, Tehran, Iran
| | - Bahareh Farasati Far
- Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Seyedeh Fatemeh Sajjadi
- School of Biological Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Sonia Fathi-Karkan
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, 9453155166, Iran
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, 9414974877, Iran
| | - Shekoufeh Mirinejad
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Suresh Ghotekar
- Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India
| | - Sara Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mohammed M Rahman
- Center of Excellence for Advanced Materials Research (CEAMR) & Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
4
|
Cao L, Zhang S, Peng H, Lin Y, Xi Z, Lin W, Guo J, Wu G, Yu F, Zhang H, Ye H. Identification and validation of anoikis-related lncRNAs for prognostic significance and immune microenvironment characterization in ovarian cancer. Aging (Albany NY) 2024; 16:1463-1483. [PMID: 38226979 PMCID: PMC10866438 DOI: 10.18632/aging.205439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/04/2023] [Indexed: 01/17/2024]
Abstract
Anoikis, a form of apoptotic cell death resulting from inadequate cell-matrix interactions, has been implicated in tumor progression by regulating tumor angiogenesis and metastasis. However, the potential roles of anoikis-related long non-coding RNAs (arlncRNAs) in the tumor microenvironment are not well understood. In this study, five candidate lncRNAs were screened through least absolute shrinkage and selection operator (LASSO), and multivariate Cox regression analysis based on differentially expressed lncRNAs associated with anoikis-related genes (ARGs) from TCGA and GSE40595 datasets. The prognostic accuracy of the risk model was evaluated using Kaplan-Meier survival analysis and receiver operating characteristic (ROC) curves. Furthermore, Kyoto Encyclopedia of Genes and Genomes (KEGG) and gene set enrichment analysis (GSEA) analyses revealed significant differences in immune-related hallmarks and signal transduction pathways between the high-risk and low-risk groups. Additionally, immune infiltrate analysis showed significant differences in the distribution of macrophages M2, follicular T helper cells, plasma cells, and neutrophils between the two risk groups. Lastly, silencing the expression of PRR34_AS1 and SPAG5_AS1 significantly increased anoikis-induced cell death in ovarian cancer cells. In conclusion, our study constructed a risk model that can predict clinicopathological features, tumor microenvironment characteristics, and prognosis of ovarian cancer patients. The immune-related pathways identified in this study may offer new treatment strategies for ovarian cancer.
Collapse
Affiliation(s)
- Lixue Cao
- Medical Research Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Shaofen Zhang
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Haojie Peng
- Department of Breast Surgery, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yongqing Lin
- Department of Gynecology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhihui Xi
- Medical Research Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Wumei Lin
- Department of Gynecology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Jialing Guo
- Medical Research Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Geyan Wu
- Biomedicine Research Centre, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Fei Yu
- Medical Research Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Hui Zhang
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Haiyan Ye
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| |
Collapse
|
5
|
Li C, Liu FY, Shen Y, Tian Y, Han FJ. Research progress on the mechanism of glycolysis in ovarian cancer. Front Immunol 2023; 14:1284853. [PMID: 38090580 PMCID: PMC10715264 DOI: 10.3389/fimmu.2023.1284853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/10/2023] [Indexed: 12/18/2023] Open
Abstract
Glycolysis is the preferred energy metabolism pathway in cancer cells even when the oxygen content is sufficient. Through glycolysis, cancer cells convert glucose into pyruvic acid and then lactate to rapidly produce energy and promote cancer progression. Changes in glycolysis activity play a crucial role in the biosynthesis and energy requirements of cancer cells needed to maintain growth and metastasis. This review focuses on ovarian cancer and the significance of key rate-limiting enzymes (hexokinase, phosphofructokinase, and pyruvate kinase, related signaling pathways (PI3K-AKT, Wnt, MAPK, AMPK), transcription regulators (HIF-1a), and non-coding RNA in the glycolytic pathway. Understanding the relationship between glycolysis and these different mechanisms may provide new opportunities for the future treatment of ovarian cancer.
Collapse
Affiliation(s)
- Chan Li
- Heilongjiang University of Traditional Chinese Medicine (TCM), Harbin, Heilongjiang, China
| | - Fang-Yuan Liu
- Heilongjiang University of Traditional Chinese Medicine (TCM), Harbin, Heilongjiang, China
| | - Ying Shen
- Heilongjiang University of Traditional Chinese Medicine (TCM), Harbin, Heilongjiang, China
- The First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine (TCM), Harbin, Heilongjiang, China
| | - Yuan Tian
- Zhejiang University of Chinese Medicine, Hangzhou, Zhejiang, China
| | - Feng-Juan Han
- The First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine (TCM), Harbin, Heilongjiang, China
| |
Collapse
|
6
|
Wei C, Xu Y, Shen Q, Li R, Xiao X, Saw PE, Xu X. Role of long non-coding RNAs in cancer: From subcellular localization to nanoparticle-mediated targeted regulation. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:774-793. [PMID: 37655045 PMCID: PMC10466435 DOI: 10.1016/j.omtn.2023.07.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Long non-coding RNAs (lncRNAs) are a class of RNA transcripts more than 200 nucleotides in length that play crucial roles in cancer development and progression. With the rapid development of high-throughput sequencing technology, a considerable number of lncRNAs have been identified as novel biomarkers for predicting the prognosis of cancer patients and/or therapeutic targets for cancer therapy. In recent years, increasing evidence has shown that the biological functions and regulatory mechanisms of lncRNAs are closely associated with their subcellular localization. More importantly, based on the important roles of lncRNAs in regulating cancer progression (e.g., growth, therapeutic resistance, and metastasis) and the specific ability of nucleic acids (e.g., siRNA, mRNA, and DNA) to regulate the expression of any target genes, much effort has been exerted recently to develop nanoparticle (NP)-based nucleic acid delivery systems for in vivo regulation of lncRNA expression and cancer therapy. In this review, we introduce the subcellular localization and regulatory mechanisms of various functional lncRNAs in cancer and systemically summarize the recent development of NP-mediated nucleic acid delivery for targeted regulation of lncRNA expression and effective cancer therapy.
Collapse
Affiliation(s)
- Chunfang Wei
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, China
| | - Ya Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, China
| | - Qian Shen
- The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Rong Li
- The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Xiaoyun Xiao
- Department of Ultrasound, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Phei Er Saw
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, China
| | - Xiaoding Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, China
- The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| |
Collapse
|
7
|
Wang X, Guo Y, Chen G, Fang E, Wang J, Li Q, Li D, Hu A, Bao B, Zhou Y, Gao H, Song J, Du X, Zheng L, Tong Q. Therapeutic targeting of FUBP3 phase separation by GATA2-AS1 inhibits malate-aspartate shuttle and neuroblastoma progression via modulating SUZ12 activity. Oncogene 2023; 42:2673-2687. [PMID: 37537343 DOI: 10.1038/s41388-023-02798-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 07/19/2023] [Accepted: 07/27/2023] [Indexed: 08/05/2023]
Abstract
Malate-aspartate shuttle (MAS) is essential for maintaining glycolysis and energy metabolism in tumors, while its regulatory mechanisms in neuroblastoma (NB), the commonest extracranial malignancy during childhood, still remain to be elucidated. Herein, by analyzing multi-omics data, GATA binding protein 2 (GATA2) and its antisense RNA 1 (GATA2-AS1) were identified to suppress MAS during NB progression. Mechanistic studies revealed that GATA2 inhibited the transcription of glutamic-oxaloacetic transaminase 2 (GOT2) and malate dehydrogenase 2 (MDH2). As a long non-coding RNA destabilized by RNA binding motif protein 15-mediated N6-methyladenosine methylation, GATA2-AS1 bound with far upstream element binding protein 3 (FUBP3) to repress its liquid-liquid phase separation and interaction with suppressor of zest 12 (SUZ12), resulting in decrease of SUZ12 activity and epigenetic up-regulation of GATA2 and other tumor suppressors. Rescue experiments revealed that GATA2-AS1 inhibited MAS and NB progression via repressing interaction between FUBP3 and SUZ12. Pre-clinically, administration of lentivirus carrying GATA2-AS1 suppressed MAS, aerobic glycolysis, and aggressive behaviors of NB xenografts. Notably, low GATA2-AS1 or GATA2 expression and high FUBP3, SUZ12, GOT2 or MDH2 levels were linked with unfavorable outcome of NB patients. These findings suggest that GATA2-AS1 inhibits FUBP3 phase separation to repress MAS and NB progression via modulating SUZ12 activity.
Collapse
Affiliation(s)
- Xiaojing Wang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, P. R. China
- Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, P. R. China
| | - Yanhua Guo
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, P. R. China
| | - Guo Chen
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, P. R. China
| | - Erhu Fang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, P. R. China
| | - Jianqun Wang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, P. R. China
| | - Qilan Li
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, P. R. China
| | - Dan Li
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, P. R. China
| | - Anpei Hu
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, P. R. China
| | - Banghe Bao
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, P. R. China
| | - Yi Zhou
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, P. R. China
| | - Haiyang Gao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, P. R. China
| | - Jiyu Song
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, P. R. China
| | - Xinyi Du
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, P. R. China
| | - Liduan Zheng
- Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, P. R. China.
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, P. R. China.
| | - Qiangsong Tong
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, P. R. China.
- Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, P. R. China.
| |
Collapse
|
8
|
Xu X, Peng Q, Jiang X, Tan S, Yang Y, Yang W, Han Y, Chen Y, Oyang L, Lin J, Xia L, Peng M, Wu N, Tang Y, Li J, Liao Q, Zhou Y. Metabolic reprogramming and epigenetic modifications in cancer: from the impacts and mechanisms to the treatment potential. Exp Mol Med 2023; 55:1357-1370. [PMID: 37394582 PMCID: PMC10394076 DOI: 10.1038/s12276-023-01020-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/15/2023] [Accepted: 03/24/2023] [Indexed: 07/04/2023] Open
Abstract
Metabolic reprogramming and epigenetic modifications are hallmarks of cancer cells. In cancer cells, metabolic pathway activity varies during tumorigenesis and cancer progression, indicating regulated metabolic plasticity. Metabolic changes are often closely related to epigenetic changes, such as alterations in the expression or activity of epigenetically modified enzymes, which may exert a direct or an indirect influence on cellular metabolism. Therefore, exploring the mechanisms underlying epigenetic modifications regulating the reprogramming of tumor cell metabolism is important for further understanding tumor pathogenesis. Here, we mainly focus on the latest studies on epigenetic modifications related to cancer cell metabolism regulations, including changes in glucose, lipid and amino acid metabolism in the cancer context, and then emphasize the mechanisms related to tumor cell epigenetic modifications. Specifically, we discuss the role played by DNA methylation, chromatin remodeling, noncoding RNAs and histone lactylation in tumor growth and progression. Finally, we summarize the prospects of potential cancer therapeutic strategies based on metabolic reprogramming and epigenetic changes in tumor cells.
Collapse
Affiliation(s)
- Xuemeng Xu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- University of South China, Hengyang, 421001, Hunan, China
| | - Qiu Peng
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Xianjie Jiang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Shiming Tan
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Yiqing Yang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Wenjuan Yang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Yaqian Han
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Yuyu Chen
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Linda Oyang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Jinguan Lin
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Longzheng Xia
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Mingjing Peng
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Nayiyuan Wu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Yanyan Tang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Jinyun Li
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.
| | - Qianjin Liao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.
- Hunan Key Laboratory of Translational Radiation Oncology, 283 Tongzipo Road, Changsha, 410013, Hunan, China.
| | - Yujuan Zhou
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.
- Hunan Key Laboratory of Translational Radiation Oncology, 283 Tongzipo Road, Changsha, 410013, Hunan, China.
| |
Collapse
|
9
|
Salamini-Montemurri M, Lamas-Maceiras M, Lorenzo-Catoira L, Vizoso-Vázquez Á, Barreiro-Alonso A, Rodríguez-Belmonte E, Quindós-Varela M, Cerdán ME. Identification of lncRNAs Deregulated in Epithelial Ovarian Cancer Based on a Gene Expression Profiling Meta-Analysis. Int J Mol Sci 2023; 24:10798. [PMID: 37445988 PMCID: PMC10341812 DOI: 10.3390/ijms241310798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/19/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
Epithelial ovarian cancer (EOC) is one of the deadliest gynecological cancers worldwide, mainly because of its initially asymptomatic nature and consequently late diagnosis. Long non-coding RNAs (lncRNA) are non-coding transcripts of more than 200 nucleotides, whose deregulation is involved in pathologies such as EOC, and are therefore envisaged as future biomarkers. We present a meta-analysis of available gene expression profiling (microarray and RNA sequencing) studies from EOC patients to identify lncRNA genes with diagnostic and prognostic value. In this meta-analysis, we include 46 independent cohorts, along with available expression profiling data from EOC cell lines. Differential expression analyses were conducted to identify those lncRNAs that are deregulated in (i) EOC versus healthy ovary tissue, (ii) unfavorable versus more favorable prognosis, (iii) metastatic versus primary tumors, (iv) chemoresistant versus chemosensitive EOC, and (v) correlation to specific histological subtypes of EOC. From the results of this meta-analysis, we established a panel of lncRNAs that are highly correlated with EOC. The panel includes several lncRNAs that are already known and even functionally characterized in EOC, but also lncRNAs that have not been previously correlated with this cancer, and which are discussed in relation to their putative role in EOC and their potential use as clinically relevant tools.
Collapse
Affiliation(s)
- Martín Salamini-Montemurri
- Centro Interdisciplinar de Química e Bioloxía (CICA), As Carballeiras, s/n, Campus de Elviña, Universidade da Coruña, 15071 A Coruña, Spain
- Facultade de Ciencias, A Fraga, s/n, Campus de A Zapateira, Universidade da Coruña, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
| | - Mónica Lamas-Maceiras
- Centro Interdisciplinar de Química e Bioloxía (CICA), As Carballeiras, s/n, Campus de Elviña, Universidade da Coruña, 15071 A Coruña, Spain
- Facultade de Ciencias, A Fraga, s/n, Campus de A Zapateira, Universidade da Coruña, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
| | - Lidia Lorenzo-Catoira
- Centro Interdisciplinar de Química e Bioloxía (CICA), As Carballeiras, s/n, Campus de Elviña, Universidade da Coruña, 15071 A Coruña, Spain
- Facultade de Ciencias, A Fraga, s/n, Campus de A Zapateira, Universidade da Coruña, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
| | - Ángel Vizoso-Vázquez
- Centro Interdisciplinar de Química e Bioloxía (CICA), As Carballeiras, s/n, Campus de Elviña, Universidade da Coruña, 15071 A Coruña, Spain
- Facultade de Ciencias, A Fraga, s/n, Campus de A Zapateira, Universidade da Coruña, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
| | - Aida Barreiro-Alonso
- Centro Interdisciplinar de Química e Bioloxía (CICA), As Carballeiras, s/n, Campus de Elviña, Universidade da Coruña, 15071 A Coruña, Spain
- Facultade de Ciencias, A Fraga, s/n, Campus de A Zapateira, Universidade da Coruña, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
| | - Esther Rodríguez-Belmonte
- Centro Interdisciplinar de Química e Bioloxía (CICA), As Carballeiras, s/n, Campus de Elviña, Universidade da Coruña, 15071 A Coruña, Spain
- Facultade de Ciencias, A Fraga, s/n, Campus de A Zapateira, Universidade da Coruña, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
| | - María Quindós-Varela
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
- Complexo Hospitalario Universitario de A Coruña (CHUAC), Servizo Galego de Saúde (SERGAS), 15006 A Coruña, Spain
| | - M Esperanza Cerdán
- Centro Interdisciplinar de Química e Bioloxía (CICA), As Carballeiras, s/n, Campus de Elviña, Universidade da Coruña, 15071 A Coruña, Spain
- Facultade de Ciencias, A Fraga, s/n, Campus de A Zapateira, Universidade da Coruña, 15071 A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), As Xubias de Arriba 84, 15006 A Coruña, Spain
| |
Collapse
|
10
|
Shi W, Sethi G. Long noncoding RNAs induced control of ferroptosis: Implications in cancer progression and treatment. J Cell Physiol 2023; 238:880-895. [PMID: 36924057 DOI: 10.1002/jcp.30992] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/19/2023] [Accepted: 02/27/2023] [Indexed: 03/18/2023]
Abstract
A novel kind of nonapoptotic, iron-dependent cell death brought on by lipid peroxidation is known as ferroptosis. Numerous pathological processes, including neurotoxicity, neurological disorders, ischemia-reperfusion damage, and particularly cancer, have been demonstrated to be influenced by changes in the ferroptosis-regulating network. Recent studies have established the critical roles that ferroptosis can play in cancer development and the evolution of resistance to standard chemoradiotherapy, thus suggesting that ferroptosis may be a feasible therapeutic strategy for cancer management. Gene expression may be regulated at the transcriptional and posttranscriptional levels by long noncoding RNAs (lncRNAs). They have been implicated in tumorigenesis. Some lncRNAs participate in the biological process of ferroptosis, which represents an exciting alternative to regulate ferroptosis as a means of cancer therapy. Even though there is evidence that lncRNAs have a mechanistic role in the ferroptosis of cancer cells, research on the mechanism and potential treatments for these lncRNAs is still lacking. We elucidate the potential mechanisms by which lncRNAs modulate ferroptosis in cancer and examine the promise and challenges of employing lncRNAs as novel therapeutic targets in cancer.
Collapse
Affiliation(s)
- Wei Shi
- Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
11
|
Lv N, Shen S, Chen Q, Tong J. Long noncoding RNAs: glycolysis regulators in gynaecologic cancers. Cancer Cell Int 2023; 23:4. [PMID: 36639695 PMCID: PMC9838043 DOI: 10.1186/s12935-023-02849-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 01/05/2023] [Indexed: 01/15/2023] Open
Abstract
The three most common gynaecologic cancers that seriously threaten female lives and health are ovarian cancer, cervical cancer, and endometrial cancer. Glycolysis plays a vital role in gynaecologic cancers. Several long noncoding RNAs (lncRNAs) are known to function as oncogenic molecules. LncRNAs impact downstream target genes by acting as ceRNAs, guides, scaffolds, decoys, or signalling molecules. However, the role of glycolysis-related lncRNAs in regulating gynaecologic cancers remains poorly understood. In this review, we emphasize the functional roles of many lncRNAs that have been found to promote glycolysis in gynaecologic cancers and discuss reasonable strategies for future research.
Collapse
Affiliation(s)
- Nengyuan Lv
- grid.268505.c0000 0000 8744 8924Department of the Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053 Zhejiang Province People’s Republic of China ,grid.13402.340000 0004 1759 700XDepartment of Obstetrics and Gynecology, Affiliated Hangzhou First People’s Hospital, Zhejiang University of Medicine, Hangzhou, 310006 Zhejiang Province People’s Republic of China
| | - Siyi Shen
- grid.268505.c0000 0000 8744 8924Department of the Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053 Zhejiang Province People’s Republic of China ,grid.13402.340000 0004 1759 700XDepartment of Obstetrics and Gynecology, Affiliated Hangzhou First People’s Hospital, Zhejiang University of Medicine, Hangzhou, 310006 Zhejiang Province People’s Republic of China
| | - Qianying Chen
- grid.268505.c0000 0000 8744 8924Department of the Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053 Zhejiang Province People’s Republic of China ,grid.13402.340000 0004 1759 700XDepartment of Obstetrics and Gynecology, Affiliated Hangzhou First People’s Hospital, Zhejiang University of Medicine, Hangzhou, 310006 Zhejiang Province People’s Republic of China
| | - Jinyi Tong
- grid.268505.c0000 0000 8744 8924Department of the Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053 Zhejiang Province People’s Republic of China ,grid.13402.340000 0004 1759 700XDepartment of Obstetrics and Gynecology, Affiliated Hangzhou First People’s Hospital, Zhejiang University of Medicine, Hangzhou, 310006 Zhejiang Province People’s Republic of China
| |
Collapse
|
12
|
Nadhan R, Dhanasekaran DN. Regulation of Tumor Metabolome by Long Non-Coding RNAs. J Mol Signal 2022. [DOI: 10.55233/1750-2187-16-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
13
|
Liao T, Lu Y, Li W, Wang K, Zhang Y, Luo Z, Ju Y, Ouyang M. Construction and validation of a glycolysis-related lncRNA signature for prognosis prediction in Stomach Adenocarcinoma. Front Genet 2022; 13:794621. [PMID: 36313430 PMCID: PMC9614251 DOI: 10.3389/fgene.2022.794621] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 09/20/2022] [Indexed: 01/12/2024] Open
Abstract
Background: Glycolysis is closely related to the occurrence and progression of gastric cancer (GC). Currently, there is no systematic study on using the glycolysis-related long non-coding RNA (lncRNA) as a model for predicting the survival time in patients with GC. Therefore, it was essential to develop a signature for predicting the survival based on glycolysis-related lncRNA in patients with GC. Materials and methods: LncRNA expression profiles, containing 375 stomach adenocarcinoma (STAD) samples, were obtained from The Cancer Genome Atlas (TCGA) database. The co-expression network of lncRNA and glycolysis-related genes was used to identify the glycolysis-related lncRNAs. The Kaplan-Meier survival analysis and univariate Cox regression analysis were used to detect the glycolysis-related lncRNA with prognostic significance. Then, Bayesian Lasso-logistic and multivariate Cox regression analyses were performed to screen the glycolysis-related lncRNA with independent prognostic significance and to develop the risk model. Patients were assigned into the low- and high-risk cohorts according to their risk scores. A nomogram model was constructed based on clinical information and risk scores. Gene Set Enrichment Analysis (GSEA) was performed to visualize the functional and pathway enrichment analyses of the glycolysis-related lncRNA. Finally, the robustness of the results obtained was verified in an internal validation data set. Results: Seven glycolysis-related lncRNAs (AL353804.1, AC010719.1, TNFRSF10A-AS1, AC005586.1, AL355574.1, AC009948.1, and AL161785.1) were obtained to construct a risk model for prognosis prediction in the STAD patients using Lasso regression and multivariate Cox regression analyses. The risk score was identified as an independent prognostic factor for the patients with STAD [HR = 1.315, 95% CI (1.056-1.130), p < 0.001] via multivariate Cox regression analysis. Receiver operating characteristic (ROC) curves were drawn and the area under curve (AUC) values of 1-, 3-, and 5-year overall survival (OS) were calculated to be 0.691, 0.717, and 0.723 respectively. Similar results were obtained in the validation data set. In addition, seven glycolysis-related lncRNAs were significantly enriched in the classical tumor processes and pathways including cell adhesion, positive regulation of vascular endothelial growth factor, leukocyte transendothelial migration, and JAK_STAT signaling pathway. Conclusion: The prognostic prediction model constructed using seven glycolysis-related lncRNA could be used to predict the prognosis in patients with STAD, which might help clinicians in the clinical treatment for STAD.
Collapse
Affiliation(s)
- Tianyou Liao
- Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde Foshan), Foshan, Guangdong, China
| | - Yan Lu
- Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde Foshan), Foshan, Guangdong, China
| | - Wangji Li
- Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde Foshan), Foshan, Guangdong, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Kang Wang
- Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde Foshan), Foshan, Guangdong, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Yanxiang Zhang
- Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde Foshan), Foshan, Guangdong, China
| | - Zhentao Luo
- Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde Foshan), Foshan, Guangdong, China
| | - Yongle Ju
- Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde Foshan), Foshan, Guangdong, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Manzhao Ouyang
- Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde Foshan), Foshan, Guangdong, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
14
|
Chen M, Lei N, Tian W, Li Y, Chang L. Recent advances of non-coding RNAs in ovarian cancer prognosis and therapeutics. Ther Adv Med Oncol 2022; 14:17588359221118010. [PMID: 35983027 PMCID: PMC9379276 DOI: 10.1177/17588359221118010] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 07/15/2022] [Indexed: 01/17/2023] Open
Abstract
Ovarian cancer (OC) is the third most common gynecological malignancy with the highest mortality worldwide. OC is usually diagnosed at an advanced stage, and the standard treatment is surgery combined with platinum or paclitaxel chemotherapy. However, chemoresistance inevitably appears coupled with the easy recurrence and poor prognosis. Thus, early diagnosis, predicting prognosis, and reducing chemoresistance are of great significance for controlling the progression and improving treatment effects of OC. Recently, much insight has been gained into the non-coding RNA (ncRNA) that is employed for RNAs but does not encode a protein, and many types of ncRNAs have been characterized including long-chain non-coding RNAs, microRNAs, and circular RNAs. Accumulating evidence indicates these ncRNAs play very active roles in OC progression and metastasis. In this review, we briefly discuss the ncRNAs as biomarkers for OC prognosis. We focus on the recent advances of ncRNAs as therapeutic targets in preventing OC metastasis, chemoresistance, immune escape, and metabolism. The novel strategies for ncRNAs-targeted therapy are also exploited for improving the survival of OC patients.
Collapse
Affiliation(s)
- Mengyu Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ningjing Lei
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Wanjia Tian
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yong Li
- Cancer Care Centre, St George Hospital, Level 2, Research and Education Centre, 4-10 South Street, Kogarah, NSW 2217, Australia
| | - Lei Chang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, No. 1 East Jianshe Road, Erqi District, Zhengzhou, Henan 450000, China
| |
Collapse
|
15
|
Ebrahimi N, Saremi J, Ghanaatian M, Yazdani E, Adelian S, Samsami S, Moradi N, Rostami Ravari N, Ahmadi A, Hamblin MR, Aref AR. The role of endoplasmic reticulum stress in the regulation of long noncoding RNAs in cancer. J Cell Physiol 2022; 237:3752-3767. [PMID: 35959643 DOI: 10.1002/jcp.30846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 07/17/2022] [Accepted: 07/19/2022] [Indexed: 11/09/2022]
Abstract
Cancer cells must overcome a variety of external and internal stresses to survive and proliferate. These unfavorable conditions include the accumulation of mutations, nutrient deficiency, oxidative stress, and hypoxia. These stresses can cause aggregation of misfolded proteins inside the endoplasmic reticulum. Under these conditions, the cell undergoes endoplasmic reticulum stress (ER-stress), and consequently initiates the unfolded protein response (UPR). Activation of the UPR triggers transcription factors and regulatory factors, including long noncoding RNAs (lncRNAs), which control the gene expression profile to maintain cellular stability and hemostasis. Recent investigations have shown that cancer cells can ensure their survival under adverse conditions by the UPR affecting the expression of lncRNAs. Therefore, understanding the relationship between lncRNA expression and ER stress could open new avenues, and suggest potential therapies to treat various types of cancer.
Collapse
Affiliation(s)
- Nasim Ebrahimi
- Genetics Division, Department of Cell and Molecular Biology and Microbiology, Faculty of Science and Technology, University of Isfahan, Isfahan, Iran
| | - Jamileh Saremi
- Research Center for Noncommunicable Diseases, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Masoud Ghanaatian
- Department of Microbiology, Islamic Azad University of Jahrom, Jahrom, Iran
| | - Elnaz Yazdani
- Department of Biology, Faculty of Science, University of Isfahan, Isfahan, Iran.,Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Samaneh Adelian
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Sahar Samsami
- Biotechnology Department of Fasa University of Medical Science, Fasa, Iran
| | - Neda Moradi
- Division of Biotechnology, Department of Cell and Molecular Biology and Microbiology, Nourdanesh Institute of Higher Education, University of Meymeh, Isfahan, Iran
| | - Nadi Rostami Ravari
- Department of Biology, Faculty of Science, Islamic Azad University, Kerman, Iran
| | - Amirhossein Ahmadi
- Department of Biological Science and Technology, Faculty of Nano and Bio Science and Technology, Persian Gulf University, Bushehr, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Amir Reza Aref
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Xsphera Biosciences, Translational Medicine group, 6 Tide Street, Boston, MA, 02210, USA
| |
Collapse
|
16
|
Parashar D, Singh A, Gupta S, Sharma A, Sharma MK, Roy KK, Chauhan SC, Kashyap VK. Emerging Roles and Potential Applications of Non-Coding RNAs in Cervical Cancer. Genes (Basel) 2022; 13:genes13071254. [PMID: 35886037 PMCID: PMC9317009 DOI: 10.3390/genes13071254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 12/06/2022] Open
Abstract
Cervical cancer (CC) is a preventable disease using proven interventions, specifically prophylactic vaccination, pervasive disease screening, and treatment, but it is still the most frequently diagnosed cancer in women worldwide. Patients with advanced or metastatic CC have a very dismal prognosis and current therapeutic options are very limited. Therefore, understanding the mechanism of metastasis and discovering new therapeutic targets are crucial. New sequencing tools have given a full visualization of the human transcriptome's composition. Non-coding RNAs (NcRNAs) perform various functions in transcriptional, translational, and post-translational processes through their interactions with proteins, RNA, and even DNA. It has been suggested that ncRNAs act as key regulators of a variety of biological processes, with their expression being tightly controlled under physiological settings. In recent years, and notably in the past decade, significant effort has been made to examine the role of ncRNAs in a variety of human diseases, including cancer. Therefore, shedding light on the functions of ncRNA will aid in our better understanding of CC. In this review, we summarize the emerging roles of ncRNAs in progression, metastasis, therapeutics, chemo-resistance, human papillomavirus (HPV) regulation, metabolic reprogramming, diagnosis, and as a prognostic biomarker of CC. We also discussed the role of ncRNA in the tumor microenvironment and tumor immunology, including cancer stem cells (CSCs) in CC. We also address contemporary technologies such as antisense oligonucleotides, CRISPR-Cas9, and exosomes, as well as their potential applications in targeting ncRNAs to manage CC.
Collapse
Affiliation(s)
- Deepak Parashar
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, MI 53226, USA
- Correspondence: (D.P.); (V.K.K.); Tel.: +1-414-439-8089 (D.P.); +1-956-296-1738 (V.K.K.)
| | - Anupam Singh
- Department of Biotechnology, GLA University, Mathura 281406, Uttar Pradesh, India; (A.S.); (S.G.)
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura 281406, Uttar Pradesh, India; (A.S.); (S.G.)
| | - Aishwarya Sharma
- Sri Siddhartha Medical College and Research Center, Tumkur 572107, Karnataka, India;
| | - Manish K. Sharma
- Department of Biotechnology, IP College, Bulandshahr 203001, Uttar Pradesh, India;
| | - Kuldeep K. Roy
- Department of Pharmaceutical Sciences, School of Health Sciences and Technology, UPES, Dehradun 248007, Uttarakhand, India;
| | - Subhash C. Chauhan
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA;
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Vivek K. Kashyap
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA;
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- Correspondence: (D.P.); (V.K.K.); Tel.: +1-414-439-8089 (D.P.); +1-956-296-1738 (V.K.K.)
| |
Collapse
|
17
|
Yao ZT, Yang YM, Sun MM, He Y, Liao L, Chen KS, Li B. New insights into the interplay between long non-coding RNAs and RNA-binding proteins in cancer. Cancer Commun (Lond) 2022; 42:117-140. [PMID: 35019235 PMCID: PMC8822594 DOI: 10.1002/cac2.12254] [Citation(s) in RCA: 136] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/30/2021] [Indexed: 12/11/2022] Open
Abstract
With the development of proteomics and epigenetics, a large number of RNA‐binding proteins (RBPs) have been discovered in recent years, and the interaction between long non‐coding RNAs (lncRNAs) and RBPs has also received increasing attention. It is extremely important to conduct in‐depth research on the lncRNA‐RBP interaction network, especially in the context of its role in the occurrence and development of cancer. Increasing evidence has demonstrated that lncRNA‐RBP interactions play a vital role in cancer progression; therefore, targeting these interactions could provide new insights for cancer drug discovery. In this review, we discussed how lncRNAs can interact with RBPs to regulate their localization, modification, stability, and activity and discussed the effects of RBPs on the stability, transport, transcription, and localization of lncRNAs. Moreover, we explored the regulation and influence of these interactions on lncRNAs, RBPs, and downstream pathways that are related to cancer development, such as N6‐methyladenosine (m6A) modification of lncRNAs. In addition, we discussed how the lncRNA‐RBP interaction network regulates cancer cell phenotypes, such as proliferation, apoptosis, metastasis, drug resistance, immunity, tumor environment, and metabolism. Furthermore, we summarized the therapeutic strategies that target the lncRNA‐RBP interaction network. Although these treatments are still in the experimental stage and various theories and processes are still being studied, we believe that these strategies may provide new ideas for cancer treatment.
Collapse
Affiliation(s)
- Zi-Ting Yao
- Ministry of Education Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Yan-Ming Yang
- Ministry of Education Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Miao-Miao Sun
- Department of Pathology, Henan Key Laboratory of Tumor Pathology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China
| | - Yan He
- Ministry of Education Key Laboratory of Tumor Molecular Biology and Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, 510632, P. R. China.,Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510700, P. R. China
| | - Long Liao
- Ministry of Education Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, Guangdong, 510632, P. R. China.,Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510700, P. R. China
| | - Kui-Sheng Chen
- Department of Pathology, Henan Key Laboratory of Tumor Pathology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China
| | - Bin Li
- Ministry of Education Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, Guangdong, 510632, P. R. China.,Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510700, P. R. China
| |
Collapse
|
18
|
Chen Z, Hu Z, Sui Q, Huang Y, Zhao M, Li M, Liang J, Lu T, Zhan C, Lin Z, Sun F, Wang Q, Tan L. LncRNA FAM83A-AS1 facilitates tumor proliferation and the migration via the HIF-1α/ glycolysis axis in lung adenocarcinoma. Int J Biol Sci 2022; 18:522-535. [PMID: 35002507 PMCID: PMC8741836 DOI: 10.7150/ijbs.67556] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/14/2021] [Indexed: 12/17/2022] Open
Abstract
Background: Lung adenocarcinoma (LUAD), the major subtype of lung cancer, is among the leading cause of cancer-related death worldwide. Energy-related metabolic reprogramming metabolism is a hallmark of cancer shared by numerous cancer types, including LUAD. Nevertheless, the functional pathways and molecular mechanism by which FAM83A-AS1 acts in metabolic reprogramming in lung adenocarcinoma have not been fully elucidated. Methods: We used transwell, wound-healing scratch assay, and metabolic assays to explore the effect of FAM83A-AS1 in LUAD cell lines. Western blotting, Co-IP assays, and ubiquitination assays were used to detect the effects of FAM83A-AS1 on HIF-1α expression, degradation, and its binding to VHL. Moreover, an in vivo subcutaneous tumor formation assay was used to detect the effect of FAM83A-AS1 on LUAD. Results: Herein, we identified FAM83A-AS1 as a metabolism-related lncRNA, which was highly correlated with glycolysis, hypoxia, and OXPHOS pathways in LUAD patients using bioinformatics analysis. In addition, we uncovered that FAM83A-AS1 could promote the migration and invasion of LUAD cells, as well as influence the stemness of LUAD cells in vivo and vitro. Moreover, FAM83A-AS1 was shown to promote glycolysis in LUAD cell lines in vitro and in vivo, and was found to influence the expression of genes related to glucose metabolism. Besides, we revealed that FAM83A-AS1 could affect glycolysis by regulating HIF-1α degradation. Finally, we found that FAM83A-AS1 knockdown could inhibit tumor growth and suppress the expression of HIF-1α and glycolysis-related genes in vivo. Conclusion: Our study demonstrates that FAM83A-AS1 contributes to LUAD proliferation and stemness via the HIF-1α/glycolysis axis, making it a potential biomarker and therapeutic target in LUAD patients.
Collapse
Affiliation(s)
- Zhencong Chen
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, China
| | - Zhengyang Hu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, China
| | - Qihai Sui
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, China
| | - Yiwei Huang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, China
| | - Mengnan Zhao
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, China
| | - Ming Li
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, China
| | - Jiaqi Liang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, China
| | - Tao Lu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, China
| | - Cheng Zhan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, China
| | - Zongwu Lin
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, China
| | - Fenghao Sun
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, China
| | - Qun Wang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, China
| | - Lijie Tan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai, 200032, China
| |
Collapse
|
19
|
Abstract
Recently an explosion in the discovery of long noncoding RNAs (lncRNAs) was obtained by high-throughput sequencing. Genome-wide transcriptome analyses, in conjugation with research for epigenetic modifications of chromatins, identified a novel type of non-protein coding transcripts longer than 200 nucleotides named lncRNAs . They are gradually emerging as functional and critical participants in many physiological processes. Here we gave an overview of the characteristics, biological functions, and working mechanism for this new class of noncoding RNA molecules.
Collapse
|
20
|
Sabol M, Calleja-Agius J, Di Fiore R, Suleiman S, Ozcan S, Ward MP, Ozretić P. (In)Distinctive Role of Long Non-Coding RNAs in Common and Rare Ovarian Cancers. Cancers (Basel) 2021; 13:cancers13205040. [PMID: 34680193 PMCID: PMC8534192 DOI: 10.3390/cancers13205040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 02/05/2023] Open
Abstract
Rare ovarian cancers (ROCs) are OCs with an annual incidence of fewer than 6 cases per 100,000 women. They affect women of all ages, but due to their low incidence and the potential clinical inexperience in management, there can be a delay in diagnosis, leading to a poor prognosis. The underlying causes for these tumors are varied, but generally, the tumors arise due to alterations in gene/protein expression in cellular processes that regulate normal proliferation and its checkpoints. Dysregulation of the cellular processes that lead to cancer includes gene mutations, epimutations, non-coding RNA (ncRNA) regulation, posttranscriptional and posttranslational modifications. Long non-coding RNA (lncRNA) are defined as transcribed RNA molecules, more than 200 nucleotides in length which are not translated into proteins. They regulate gene expression through several mechanisms and therefore add another level of complexity to the regulatory mechanisms affecting tumor development. Since few studies have been performed on ROCs, in this review we summarize the mechanisms of action of lncRNA in OC, with an emphasis on ROCs.
Collapse
Affiliation(s)
- Maja Sabol
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, HR-10000 Zagreb, Croatia;
| | - Jean Calleja-Agius
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, MSD 2080 Msida, Malta; (J.C.-A.); (R.D.F.); (S.S.)
| | - Riccardo Di Fiore
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, MSD 2080 Msida, Malta; (J.C.-A.); (R.D.F.); (S.S.)
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Sherif Suleiman
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, MSD 2080 Msida, Malta; (J.C.-A.); (R.D.F.); (S.S.)
| | - Sureyya Ozcan
- Department of Chemistry, Middle East Technical University (METU), 06800 Ankara, Turkey;
- Cancer Systems Biology Laboratory (CanSyl), Middle East Technical University (METU), 06800 Ankara, Turkey
| | - Mark P. Ward
- Department of Histopathology, Trinity St James’s Cancer Institute, Emer Casey Molecular Pathology Laboratory, Trinity College Dublin and Coombe Women’s and Infants University Hospital, D08 RX0X Dublin, Ireland;
| | - Petar Ozretić
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, HR-10000 Zagreb, Croatia;
- Correspondence: ; Tel.: +385-(1)-4571292
| |
Collapse
|
21
|
lncRNA cytoskeleton regulator RNA (CYTOR): Diverse functions in metabolism, inflammation and tumorigenesis, and potential applications in precision oncology. Genes Dis 2021; 10:415-429. [DOI: 10.1016/j.gendis.2021.08.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 08/20/2021] [Indexed: 12/19/2022] Open
|
22
|
Qi F, Du X, Zhao Z, Zhang D, Huang M, Bai Y, Yang B, Qin W, Xia J. Tumor Mutation Burden-Associated LINC00638/miR-4732-3p/ULBP1 Axis Promotes Immune Escape via PD-L1 in Hepatocellular Carcinoma. Front Oncol 2021; 11:729340. [PMID: 34568062 PMCID: PMC8456090 DOI: 10.3389/fonc.2021.729340] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/24/2021] [Indexed: 12/11/2022] Open
Abstract
Tumor mutation burden (TMB) is associated with immune infiltration, while its underlying mechanism in hepatocellular carcinoma (HCC) remains unclear. A long noncoding RNA (lncRNA)-related competitive endogenous RNA (ceRNA) network can regulate various tumor behaviors, and research about its correlation with TMB and immune infiltration is warranted. Data were downloaded from TCGA and ArrayExpress databases. Cox analysis and machine learning algorithms were employed to establish a lncRNA-based prognostic model for HCC. We then developed a nomogram model to predict overall survival and odds of death for HCC patients. The association of this prognostic model with TMB and immune infiltration was also analyzed. In addition, a ceRNA network was constructed by using DIANA-LncBasev2 and the starBase database and verified by luciferase reporter and colocalization analysis. Multiplex immunofluorescence was applied to determine the correlation between ULBP1 and PD-L1. An eight-lncRNA (SLC25A30-AS1, HPN-AS1, LINC00607, USP2-AS1, HCG20, LINC00638, MKLN1-AS and LINC00652) prognostic score model was constructed for HCC, which was highly associated with TMB and immune infiltration. Next, we constructed a ceRNA network, LINC00638/miR-4732-3p/ULBP1, that may be responsible for NK cell infiltration in HCC with high TMB. However, patients with high ULBP1 possessed a poorer prognosis. Using multiplex immunofluorescence, we found a significant correlation between ULBP1 and PD-L1 in HCC, and patients with high ULBP1 and PD-L1 had the worst prognosis. In brief, the eight-lncRNA model is a reliable tool to predict the prognosis of HCC patients. The LINC00638/miR-4732-3p/ULBP1 axis may regulate immune escape via PD-L1 in HCC with high TMB.
Collapse
Affiliation(s)
- Feng Qi
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Oncology, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Xiaojing Du
- Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai, China.,The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhiying Zhao
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ding Zhang
- The Medical Department, 3D Medicines Inc., Shanghai, China
| | - Mengli Huang
- The Medical Department, 3D Medicines Inc., Shanghai, China
| | - Yuezong Bai
- The Medical Department, 3D Medicines Inc., Shanghai, China
| | - Biwei Yang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wenxing Qin
- Department of Oncology, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Jinglin Xia
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.,The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
23
|
Huang P, Zhu S, Liang X, Zhang Q, Luo X, Liu C, Song L. Regulatory Mechanisms of LncRNAs in Cancer Glycolysis: Facts and Perspectives. Cancer Manag Res 2021; 13:5317-5336. [PMID: 34262341 PMCID: PMC8275123 DOI: 10.2147/cmar.s314502] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/19/2021] [Indexed: 12/24/2022] Open
Abstract
Cancer cells exhibit distinct metabolic characteristics that employ glycolysis to provide energy and intermediary metabolites. This aberrant metabolic phenotype favors cancer progression. LncRNAs are transcripts longer than 200 nucleotides that do not encode proteins. LncRNAs contribute to cancer progression and therapeutic resistance and affect aerobic glycolysis via multiple mechanisms, including modulating glycolytic transporters and enzymes. Further, dysregulated signaling pathways are vital for glycolysis. In this review, we highlight regulatory mechanisms for lncRNAs in aerobic glycolysis that provide novel insights into cancer development. Moreover, a comprehensive understanding of the regulatory mechanisms of lncRNAs in aerobic glycolysis can provide new strategies for clinical cancer management.
Collapse
Affiliation(s)
- Peng Huang
- Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, People's Republic of China
| | - Shaomi Zhu
- Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, People's Republic of China
| | - Xin Liang
- Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, People's Republic of China
| | - Qinxiu Zhang
- Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, People's Republic of China
| | - Xiaohong Luo
- Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, People's Republic of China
| | - Chi Liu
- Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, People's Republic of China
| | - Linjiang Song
- Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, People's Republic of China
| |
Collapse
|
24
|
Takeiwa T, Ikeda K, Horie-Inoue K, Inoue S. Mechanisms of Apoptosis-Related Long Non-coding RNAs in Ovarian Cancer. Front Cell Dev Biol 2021; 9:641963. [PMID: 33996797 PMCID: PMC8117355 DOI: 10.3389/fcell.2021.641963] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/06/2021] [Indexed: 12/24/2022] Open
Abstract
Ovarian cancer is a health-threatening malignancy of ovary in female reproductive systems and one of the most common gynecological malignancies worldwide. Due to rare early symptoms, ovarian cancers are often diagnosed at advanced stages and exhibit poor prognosis. Thus, efforts have been paid to develop alternative diagnostic and therapeutic strategies for the disease. Recent studies have presented that some long non-coding RNAs (lncRNAs) play roles in apoptosis of ovarian cancer cells through various mechanisms involved in the regulation of transcription factors, histone modification complexes, miRNAs, and protein stability. Because evasion of apoptosis in cancer cells facilitates to promote tumor progression and therapy resistance, apoptosis regulatory mechanisms of lncRNAs may be promising new targets in ovarian cancer. In this review, we introduce the recent findings in regard to the molecular mechanisms of apoptosis-related lncRNAs in ovarian cancer cells.
Collapse
Affiliation(s)
- Toshihiko Takeiwa
- Division of Systems Medicine & Gene Therapy, Saitama Medical University, Saitama, Japan
| | - Kazuhiro Ikeda
- Division of Systems Medicine & Gene Therapy, Saitama Medical University, Saitama, Japan
| | - Kuniko Horie-Inoue
- Division of Systems Medicine & Gene Therapy, Saitama Medical University, Saitama, Japan
| | - Satoshi Inoue
- Division of Systems Medicine & Gene Therapy, Saitama Medical University, Saitama, Japan.,Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| |
Collapse
|
25
|
Li X, Wang F, Xu X, Zhang J, Xu G. The Dual Role of STAT1 in Ovarian Cancer: Insight Into Molecular Mechanisms and Application Potentials. Front Cell Dev Biol 2021; 9:636595. [PMID: 33834023 PMCID: PMC8021797 DOI: 10.3389/fcell.2021.636595] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/01/2021] [Indexed: 01/06/2023] Open
Abstract
The signal transducer and activator of transcription 1 (STAT1) is a transducer protein and acts as a transcription factor but its role in ovarian cancer (OC) is not completely understood. Practically, there are two-faced effects of STAT1 on tumorigenesis in different kinds of cancers. Existing evidence reveals that STAT1 has both tumor-suppressing and tumor-promoting functions involved in angiogenesis, cell proliferation, migration, invasion, apoptosis, drug resistance, stemness, and immune responses mainly through interacting and regulating target genes at multiple levels. The canonical STAT1 signaling pathway shows that STAT1 is phosphorylated and activated by the receptor-activated kinases such as Janus kinase in response to interferon stimulation. The STAT1 signaling can also be crosstalk with other signaling such as transforming growth factor-β signaling involved in cancer cell behavior. OC is often diagnosed at an advanced stage due to symptomless or atypical symptoms and the lack of effective detection at an early stage. Furthermore, patients with OC often develop chemoresistance and recurrence. This review focuses on the multi-faced role of STAT1 and highlights the molecular mechanisms and biological functions of STAT1 in OC.
Collapse
Affiliation(s)
- Xin Li
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fanchen Wang
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaolin Xu
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jinguo Zhang
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Guoxiong Xu
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
26
|
Balihodzic A, Barth DA, Prinz F, Pichler M. Involvement of Long Non-Coding RNAs in Glucose Metabolism in Cancer. Cancers (Basel) 2021; 13:977. [PMID: 33652661 PMCID: PMC7956509 DOI: 10.3390/cancers13050977] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/21/2021] [Accepted: 02/23/2021] [Indexed: 12/12/2022] Open
Abstract
The rapid and uncontrolled proliferation of cancer cells is supported by metabolic reprogramming. Altered glucose metabolism supports cancer growth and progression. Compared with normal cells, cancer cells show increased glucose uptake, aerobic glycolysis and lactate production. Byproducts of adjusted glucose metabolism provide additional benefits supporting hallmark capabilities of cancer cells. Long non-coding RNAs (lncRNAs) are a heterogeneous group of transcripts of more than 200 nucleotides in length. They regulate numerous cellular processes, primarily through physical interaction with other molecules. Dysregulated lncRNAs are involved in all hallmarks of cancer including metabolic alterations. They may upregulate metabolic enzymes, modulate the expression of oncogenic or tumor-suppressive genes and disturb metabolic signaling pathways favoring cancer progression. Thus, lncRNAs are not only potential clinical biomarkers for cancer diagnostics and prediction but also possible therapeutic targets. This review summarizes the lncRNAs involved in cancer glucose metabolism and highlights their underlying molecular mechanisms.
Collapse
Affiliation(s)
- Amar Balihodzic
- Research Unit of Non-Coding RNAs and Genome Editing, Division of Oncology, Department of Internal Medicine, Comprehensive Cancer Center Graz, Medical University of Graz, 8036 Graz, Austria; (A.B.); (D.A.B.); (F.P.)
- BioTechMed-Graz, 8010 Graz, Austria
| | - Dominik A. Barth
- Research Unit of Non-Coding RNAs and Genome Editing, Division of Oncology, Department of Internal Medicine, Comprehensive Cancer Center Graz, Medical University of Graz, 8036 Graz, Austria; (A.B.); (D.A.B.); (F.P.)
| | - Felix Prinz
- Research Unit of Non-Coding RNAs and Genome Editing, Division of Oncology, Department of Internal Medicine, Comprehensive Cancer Center Graz, Medical University of Graz, 8036 Graz, Austria; (A.B.); (D.A.B.); (F.P.)
| | - Martin Pichler
- Research Unit of Non-Coding RNAs and Genome Editing, Division of Oncology, Department of Internal Medicine, Comprehensive Cancer Center Graz, Medical University of Graz, 8036 Graz, Austria; (A.B.); (D.A.B.); (F.P.)
- BioTechMed-Graz, 8010 Graz, Austria
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
27
|
Fu Y, Liu Q, Bao Q, Wen J, Liu Z, Hu Y, He G, Peng C, Xu Y, Zhang W. Development and analysis of long non-coding RNA-associated competing endogenous RNA network for osteosarcoma metastasis. Hereditas 2021; 158:9. [PMID: 33593435 PMCID: PMC7887822 DOI: 10.1186/s41065-021-00174-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 02/08/2021] [Indexed: 11/25/2022] Open
Abstract
Background Osteosarcoma is the primary bone malignant neoplasm that often develops metastasis. Increasing evidences have shown that non-coding RNAs (ncRNAs) relate to the progression of osteosarcoma. However, the ncRNAs’ roles in osteosarcoma metastasis are still unknown. Methods Differentially expressed (DE) RNAs were identified from Gene Expression Omnibus (GEO) database. Protein-protein interaction (PPI) of DE messenger RNAs (DEmRNAs) was built through STRING database. The target mRNAs and long ncRNAs (lncRNAs) of microRNAs (miRNA) were predicted through miRDB, Targetscan and Genecode databases, which then cross-checked with previously obtained DERNAs to construct competing endogenous RNA (ceRNA) network. All networks were visualized via Cytoscape and the hub RNAs were screened out through Cytoscape plug-in Cytohubba. The gene functional and pathway analyses were performed through DAVID and MirPath databases. The survival analyses of hub RNAs were obtained through Kaplan-Meier (KM) survival curves. Results Five hundred sixty-four DEmRNAs, 16 DElncRNAs and 22 DEmiRNAs were screened out. GO functional and KEGG pathway analyses showed that DERNAs were significantly associated with tumor metastasis. The ceRNA network including 6 lncRNAs, 55 mRNAs and 20 miRNAs were constructed and the top 10 hub RNAs were obtained. Above all, PI3K/AKT signaling pathway was identified as the most important osteosarcoma metastasis-associated pathway and its hub ceRNA module was constructed. The survival analyses showed that the RNAs in hub ceRNA module closely related to osteosarcoma patients’ prognosis. Conclusions The current study provided a new perspective on osteosarcoma metastasis. More importantly, the RNAs in hub ceRNA module might act as the novel therapeutic targets and prognostic factors for osteosarcoma patients. Supplementary Information The online version contains supplementary material available at 10.1186/s41065-021-00174-0.
Collapse
Affiliation(s)
- Yucheng Fu
- Department of Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, PR China
| | - Qi Liu
- Department of Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, PR China
| | - Qiyuan Bao
- Department of Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, PR China
| | - Junxiang Wen
- Department of Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, PR China
| | - Zhuochao Liu
- Department of Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, PR China
| | - Yuehao Hu
- Department of Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, PR China
| | - Guoyu He
- Department of Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, PR China
| | - Cheng Peng
- Department of Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, PR China
| | - Yiqi Xu
- Department of Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, PR China
| | - Weibin Zhang
- Department of Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, PR China.
| |
Collapse
|
28
|
Emerging roles of non-coding RNAs in the metabolic reprogramming of tumor-associated macrophages. Immunol Lett 2021; 232:27-34. [PMID: 33577913 DOI: 10.1016/j.imlet.2021.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/03/2021] [Accepted: 02/06/2021] [Indexed: 01/09/2023]
Abstract
Macrophages are the most common immune cells in the tumor microenvironment, and tumor-associated macrophages play an important role in cancer development. Metabolic reprogramming is important for the functional plasticity of macrophages. Studies investigating the relevance of non-coding RNAs (ncRNAs) in human cancer found that ncRNAs can regulate the metabolism of cancer cells and tumor-associated macrophages. NcRNAs include short ncRNAs, long ncRNAs (lncRNAs), and circular RNAs (circRNAs). The most common short ncRNAs are microRNAs, which regulate glucose, lipid, and amino acid metabolism in macrophages by acting on metabolism-related pathways and targeting metabolism-related enzymes and proteins, and are therefore involved in cancer progression. The role of lncRNAs and circRNAs in the metabolism of tumor-associated macrophages remains unclear. LncRNAs affect the glucose metabolism of macrophages, whereas their role in lipid and amino acid metabolism is not clear. CircRNAs regulate amino acid metabolism in macrophages. The roles of ncRNAs in energy metabolism and the underlying mechanisms need to be investigated further. Here, we summarize recent findings on the involvement of ncRNAs in metabolic reprogramming in tumor-associated macrophages, which affect the tumor microenvironment and play important roles in the development of cancer. Improving our understanding of the effects of ncRNAs on metabolic reprogramming of tumor-associated macrophages may facilitate the development of effective clinical therapies.
Collapse
|
29
|
Zarisfi M, Nguyen T, Nedrow JR, Le A. The Heterogeneity Metabolism of Renal Cell Carcinomas. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1311:117-126. [PMID: 34014538 DOI: 10.1007/978-3-030-65768-0_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
According to data from the American Cancer Society, cancer is one of the deadliest health problems globally. Annually, renal cell carcinoma (RCC) causes more than 100,000 deaths worldwide [1-4], posing an urgent need to develop effective treatments to increase patient survival outcomes. New therapies are expected to address a major factor contributing to cancer's resistance to standard therapies: oncogenic heterogeneity. Gene expression can vary tremendously among different types of cancers, different patients of the same tumor type, and even within individual tumors; various metabolic phenotypes can emerge, making singletherapy approaches insufficient. Novel strategies targeting the diverse metabolism of cancers aim to overcome this obstacle. Though some have yielded positive results, it remains a challenge to uncover all of the distinct metabolic profiles of RCC. In the quest to overcome this obstacle, the metabolic oriented research focusing on these cancers has offered freshly new perspectives, which are expected to contribute heavily to the development of new treatments.
Collapse
Affiliation(s)
- Mohammadreza Zarisfi
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tu Nguyen
- University of California, Los Angeles (UCLA) David Geffen School of Medicine, Los Angeles, CA, USA
| | - Jessie R Nedrow
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anne Le
- Department of Pathology and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD, USA.
| |
Collapse
|
30
|
Lu Q, Guo P, Liu A, Ares I, Martínez-Larrañaga MR, Wang X, Anadón A, Martínez MA. The role of long noncoding RNA in lipid, cholesterol, and glucose metabolism and treatment of obesity syndrome. Med Res Rev 2020; 41:1751-1774. [PMID: 33368430 DOI: 10.1002/med.21775] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 11/13/2020] [Accepted: 12/12/2020] [Indexed: 02/06/2023]
Abstract
Obesity syndromes, characterized by abnormal lipid, cholesterol, and glucose metabolism, are detrimental to human health and cause many diseases, including obesity and type II diabetes. Increasing evidence has shown that long noncoding RNA (lncRNA), transcripts longer than 200 nucleotides that are not translated into proteins, play an important role in regulating abnormal metabolism in obesity syndromes. For the first time, we systematically summarize how lncRNA is involved in complex obesity metabolic syndromes, including the regulation of lipid, cholesterol, and glucose metabolism. Moreover, we discuss lncRNA involvement in food intake that mediates obesity syndromes. Furthermore, this review might shed new light on a lncRNA-based strategy for the prevention and treatment of obesity syndromes. Recent investigations support that lncRNA is a novel molecular target of obesity syndromes and should be emphasized. Namely, lncRNA plays a crucial role in the development of obesity syndrome process. Various lncRNAs are involved in the process of lipid, cholesterol, and glucose metabolism by regulating gene transcription, signaling pathway, and epigenetic modification of metabolism-related genes, proteins, and enzymes. Food intake could also induce abnormal expression of lncRNA associated with obesity syndrome, especially high-fat diet. Notably, some nanomolecules and natural extracts may target lncRNAs, associated with obesity syndrome, as a potential treatment for obesity syndromes.
Collapse
Affiliation(s)
- Qirong Lu
- National Reference Laboratory of Veterinary Drug Residues (HZAU), MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China.,MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Pu Guo
- National Reference Laboratory of Veterinary Drug Residues (HZAU), MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China.,MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Aimei Liu
- National Reference Laboratory of Veterinary Drug Residues (HZAU), MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China.,MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Irma Ares
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, and Research Institute Hospital 12 de Octubre (i+12), Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - María-Rosa Martínez-Larrañaga
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, and Research Institute Hospital 12 de Octubre (i+12), Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU), MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China.,MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China.,Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, and Research Institute Hospital 12 de Octubre (i+12), Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Arturo Anadón
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, and Research Institute Hospital 12 de Octubre (i+12), Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - María-Aránzazu Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, and Research Institute Hospital 12 de Octubre (i+12), Universidad Complutense de Madrid (UCM), Madrid, Spain
| |
Collapse
|
31
|
Pei C, Gong X, Zhang Y. LncRNA MALAT-1 promotes growth and metastasis of epithelial ovarian cancer via sponging microrna-22. Am J Transl Res 2020; 12:6977-6987. [PMID: 33312345 PMCID: PMC7724350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/22/2020] [Indexed: 06/12/2023]
Abstract
LncRNAs and miRNAs are emerging players in epithelial ovarian cancer (EOC). LncRNA MALAT-1 and miR-22 play vital roles in the onset and development of multiple cancers. Both of them are abnormally expressed in ovarian cancer, but the molecular basis for their involvement in EOC is unclear. In this study, we found MALAT-1 was up-regulated but miR-22 was down-regulated in EOC tissues and cell lines when compared to normal ovarian epithelial cell line IOSE80. Both of MALAT-1shRNA and miR-22 mimics inhibited ovarian cell proliferation, migration, and invasion, while simultaneously overexpressing MALAT-1 and miR-22 largely canceled out this inhibitory effect. Consistently, MALAT-1 silencing and miR-22 overexpression restrained tumor growth and metastasis to lungs in nude mice, which could be largely counteracted by co-overexpressing MALAT-1 and miR-22. Mechanistically, MALAT-1 targeted and sponged miR-22, counteracting its inhibitory effect on c-myc and c-myc-mediated epithelial-mesenchymal transition. Our findings for the first time demonstrated that MALAT-1 supports EOC progression through sponging miR-22, providing a novel insight into the role of MALAT-1 in ovarian cancer.
Collapse
Affiliation(s)
- Chenlin Pei
- Department of Obstetrics, Xiangya Hospital, Central South UniversityChangsha, Hunan Province, China
| | - Xuejun Gong
- Department of Biliary Pancreatic Surgery, Xiangya Hospital, Central South UniversityChangsha, Hunan Province, China
| | - Yi Zhang
- Department of Obstetrics, Xiangya Hospital, Central South UniversityChangsha, Hunan Province, China
| |
Collapse
|
32
|
Oncul S, Amero P, Rodriguez-Aguayo C, Calin GA, Sood AK, Lopez-Berestein G. Long non-coding RNAs in ovarian cancer: expression profile and functional spectrum. RNA Biol 2020; 17:1523-1534. [PMID: 31847695 PMCID: PMC7567512 DOI: 10.1080/15476286.2019.1702283] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/31/2019] [Accepted: 11/04/2019] [Indexed: 12/16/2022] Open
Abstract
Long non-coding RNAs (lncRNAs), initially recognized as byproducts of the transcription process, have been proven to play crucial modulatory roles in preserving overall homoeostasis of cells and tissues. Furthermore, aberrant levels of these transcripts have been shown to contribute many diseases, including cancer. Among these, many aspects of ovarian cancer biology have been found to be regulated by lncRNAs, including cancer initiation, progression and dissemination. In this review, we summarize recent studies to highlight the various roles of lncRNAs in ovary in normal and pathological conditions, immune system, diagnosis, prognosis, and therapy. We address lncRNAs that have been extensively studied in ovarian cancer and their contribution to cellular dynamics.
Collapse
Affiliation(s)
- Selin Oncul
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Biochemistry, Faculty of Pharmacy, The University of Hacettepe, Ankara, Turkey
| | - Paola Amero
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cristian Rodriguez-Aguayo
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - George A. Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anil K. Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Gabriel Lopez-Berestein
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
33
|
Ghafouri-Fard S, Shoorei H, Taheri M. The Role of Long Non-coding RNAs in Cancer Metabolism: A Concise Review. Front Oncol 2020; 10:555825. [PMID: 33123468 PMCID: PMC7573295 DOI: 10.3389/fonc.2020.555825] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 08/24/2020] [Indexed: 02/06/2023] Open
Abstract
Dysregulation of metabolic pathways in cancer cells is regarded as a hallmark of cancer. Identification of these abnormalities in cancer cells dates back to more than six decades, far before discovery of oncogenes and tumor suppressor genes. Based on the importance of these pathways, several researchers have aimed at modulation of these functions to intervene with the pathogenic course of cancer. Numerous genes have been shown to participate in the regulation of metabolic pathways, thus aberrant expression of these genes can be involved in the pathogenesis of cancer. The recent decade has experienced a significant attention toward the role of long non-coding RNAs (lncRNAs) in the biological functions. These transcripts regulate expression of genes at several levels, therefore influencing the activity of cancer-related pathways. Among the most affected pathways are those modulating glucose homeostasis, as well as amino acid and lipid metabolism. Moreover, critical roles of lncRNAs in regulation of mitochondrial function potentiate these transcripts as novel targets for cancer treatment. In the current review, we summarize the most recent literature regarding the role of lncRNAs in the cancer metabolism and their significance in the design of therapeutic modalities.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
34
|
Fathi Dizaji B. Strategies to target long non-coding RNAs in cancer treatment: progress and challenges. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2020. [DOI: 10.1186/s43042-020-00074-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Abstract
Background
Long non-coding RNAs are important regulators of gene expression and diverse biological processes. Their aberrant expression contributes to a verity of diseases including cancer development and progression, providing them with great potential to be diagnostic and prognostic biomarkers and therapeutic targets. Therefore, they can have a key role in personalized cancer medicine.
This review aims at introducing possible strategies to target long ncRNAs therapeutically in cancer. Also, chemical modification of nucleic acid-based therapeutics to improve their pharmacological properties is explained. Then, approaches for the systematic delivery of reagents into the tumor cells or organs are briefly discussed, followed by describing obstacles to the expansion of the therapeutics.
Main text
Long ncRNAs function as oncogenes or tumor suppressors, whose activity can modulate all hallmarks of cancer. They are expressed in a very restricted spatial and temporal pattern and can be easily detected in the cells or biological fluids of patients. These properties make them excellent targets for the development of anticancer drugs. Targeting methods aim to attenuate oncogenic lncRNAs or interfere with lncRNA functions to prevent carcinogenesis. Numerous strategies including suppression of oncogenic long ncRNAs, alternation of their epigenetic effects, interfering with their function, restoration of downregulated or lost long ncRNAs, and recruitment of long ncRNAs regulatory elements and expression patterns are recommended for targeting long ncRNAs therapeutically in cancer. These approaches have shown inhibitory effects on malignancy. In this regard, proliferation, migration, and invasion of tumor cells have been inhibited and apoptosis has been induced in different cancer cells in vitro and in vivo. Downregulation of oncogenic long ncRNAs and upregulation of some growth factors (e.g., neurotrophic factor) have been achieved.
Conclusions
Targeting long non-coding RNAs therapeutically in cancer and efficient and safe delivery of the reagents have been rarely addressed. Only one clinical trial involving lncRNAs has been reported. Among different technologies, RNAi is the most commonly used and effective tool to target lncRNAs. However, other technologies need to be examined and further research is essential to put lncRNAs into clinical practice.
Collapse
|
35
|
Liu X, Feng S, Zhang XD, Li J, Zhang K, Wu M, Thorne RF. Non-coding RNAs, metabolic stress and adaptive mechanisms in cancer. Cancer Lett 2020; 491:60-69. [PMID: 32726612 DOI: 10.1016/j.canlet.2020.06.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/12/2020] [Accepted: 06/28/2020] [Indexed: 12/18/2022]
Abstract
Metabolic reprogramming in cancer describes the multifaceted alterations in metabolism that contribute to tumorigenesis. Major determinants of metabolic phenotypes are the changes in signalling pathways associated with oncogenic activation together with cues from the tumor microenvironment. Therein, depleted oxygen and nutrient levels elicit metabolic stress, requiring cancer cells to engage adaptive mechanisms. Non-coding RNAs (ncRNAs) act as regulatory elements within metabolic pathways and their widespread dysregulation in cancer contributes to altered metabolic phenotypes. Indeed, ncRNAs are the regulatory accomplices of many prominent effectors of metabolic reprogramming including c-MYC and HIFs that are activated by metabolic stress. By example, this review illustrates the range of ncRNAs mechanisms impacting these effectors throughout their DNA-RNA-protein lifecycle along with presenting the mechanistic roles of ncRNAs in adaptive responses to glucose, glutamine and lipid deprivation. We also discuss the facultative activation of metabolic enzymes by ncRNAs, a phenomenon which may reflect a broad but currently invisible level of metabolic regulation. Finally, the translational challenges associated with ncRNA discoveries are discussed, emphasizing the gaps in knowledge together with importance of understanding the molecular basis of ncRNA regulatory mechanisms.
Collapse
Affiliation(s)
- Xiaoying Liu
- Translational Research Institute of Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Molecular Pathology Centre, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450053, China; School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Shanshan Feng
- Key Laboratory of Regenerative Medicine, Ministry of Education, Department of Developmental & Regenerative Biology, School of Life Science and Technology, Jinan University, Guangzhou, China
| | - Xu Dong Zhang
- Translational Research Institute of Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Molecular Pathology Centre, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450053, China; School of Biomedical Sciences & Pharmacy, University of Newcastle, Newcastle, NSW, Australia
| | - Jinming Li
- Translational Research Institute of Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Molecular Pathology Centre, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450053, China
| | - Kaiguang Zhang
- The First Affiliated Hospital of University of Science and Technology of China, Hefei, 230027, China.
| | - Mian Wu
- Translational Research Institute of Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Molecular Pathology Centre, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450053, China; The First Affiliated Hospital of University of Science and Technology of China, Hefei, 230027, China; Key Laboratory of Stem Cell Differentiation & Modification, School of Clinical Medicine, Henan University, Zhengzhou, China.
| | - Rick F Thorne
- Translational Research Institute of Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Molecular Pathology Centre, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450053, China; School of Environmental & Life Sciences, University of Newcastle, NSW, Australia.
| |
Collapse
|
36
|
Darwiche N. Epigenetic mechanisms and the hallmarks of cancer: an intimate affair. Am J Cancer Res 2020; 10:1954-1978. [PMID: 32774995 PMCID: PMC7407342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023] Open
Abstract
Epigenetic mechanisms comprising DNA methylation, histone modifications, and noncoding RNAs affect chromatin structure and regulate gene expression. These mechanisms control normal embryonic development and adult life and their deregulation contributes to several diseases including cancer. The process of tumorigenesis is complex and results from the evolution of different "hallmarks of cancer". Hanahan and Weinberg presented in 2000 and 2011 seminal contributions in the cancer field, first the six hallmarks of cancer and a decade later two additional hallmarks and two enabling characteristics were added. Here, we surmise that epigenetic mechanisms regulate and contribute to every single hallmark in cancer, and thus represent the hallmark of hallmarks in tumorigenesis. Focusing on epigenetics as a major hallmark in cancer formation has profound preventive, therapeutic, and clinical implications.
Collapse
Affiliation(s)
- Nadine Darwiche
- Department of Biochemistry and Molecular Genetics, American University of Beirut Beirut, Lebanon
| |
Collapse
|
37
|
Interactome analysis reveals that lncRNA HULC promotes aerobic glycolysis through LDHA and PKM2. Nat Commun 2020; 11:3162. [PMID: 32572027 PMCID: PMC7308313 DOI: 10.1038/s41467-020-16966-3] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 05/26/2020] [Indexed: 12/31/2022] Open
Abstract
Interacting with proteins is a crucial way for long noncoding RNAs (lncRNAs) to exert their biological responses. Here we report a high throughput strategy to characterize lncRNA interacting proteins in vivo by combining tobramycin affinity purification and mass spectrometric analysis (TOBAP-MS). Using this method, we identify 140 candidate binding proteins for lncRNA highly upregulated in liver cancer (HULC). Intriguingly, HULC directly binds to two glycolytic enzymes, lactate dehydrogenase A (LDHA) and pyruvate kinase M2 (PKM2). Mechanistic study suggests that HULC functions as an adaptor molecule that enhances the binding of LDHA and PKM2 to fibroblast growth factor receptor type 1 (FGFR1), leading to elevated phosphorylation of these two enzymes and consequently promoting glycolysis. This study provides a convenient method to study lncRNA interactome in vivo and reveals a unique mechanism by which HULC promotes Warburg effect by orchestrating the enzymatic activities of glycolytic enzymes. Here the authors present a quantitative proteomics strategy to identify long noncoding RNA (lncRNA)-binding proteins and demonstrate its application by characterizing the lncRNA HULC (highly upregulated in liver cancer), which is shown to interact with glycolytic enzymes and modulate their activity.
Collapse
|
38
|
Abstract
Long noncoding RNAs (lncRNAs) have multiple functions in the regulation of cellular homeostasis. In recent years, numerous studies have shown that tumor-associated lncRNAs play key roles in promoting and maintaining tumor initiation and progression by shaping the tumor microenvironment through changing tumor cell intrinsic properties. Here, we focus on the roles of lncRNAs in cancer immunology. In the first part, we provide an overview of the roles played by lncRNAs and their deregulation in cancer at the cancer cell- and tumor microenvironment-associated immune cell levels. We go on to describe preclinical strategies for targeting lncRNAs, particularly highlighting the effects on tumor microenvironments. We then discuss the possibility of combining lncRNA targeting and tumor immune checkpoint inhibitor antibodies to treat cancer.
Collapse
|
39
|
Abstract
Introduction: Ovarian carcinoma (OC) is the leading cause of death in women with gynecologic cancers. Most patients are diagnosed at an advanced stage with a low five-year survival rate of 20-30%. Discovering novel biomarkers for early detection and outcome prediction of OC is an urgent medical need. miRNAs, a group of small non-coding RNAs, play critical roles in multiple biologic processes and cancer pathogenesis.Areas covered: We provide an in-depth look at the functions of miRNAs in OC, particularly focusing on their roles in chemoresistance and metastasis in OC. We also discuss the biological and clinical significance of miRNAs in exosomes and expand on long non-coding RNA which acts as ceRNA of miRNAs.Expert opinion: miRNAs participate in many biological processes including proliferation, apoptosis, chemoresistance, metastasis, epithelial-mesenchymal transition, and cancer stem cell. They will substantially contribute to our understanding of OC pathogenesis. Given their resistance to the degradation of ribonucleases and availability in plasma exosomes, miRNAs may serve as emerging biomarkers for cancer detection, therapeutic assessment, and prognostic prediction. Being a messenger, exosomal miRNAs are crucial for the crosstalk between cancer cells and stromal cells in tumor microenvironment.
Collapse
Affiliation(s)
- Huilin Zhang
- Department of Surgical Pathology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Bingjian Lu
- Department of Surgical Pathology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
40
|
Georgakopoulos-Soares I, Chartoumpekis DV, Kyriazopoulou V, Zaravinos A. EMT Factors and Metabolic Pathways in Cancer. Front Oncol 2020; 10:499. [PMID: 32318352 PMCID: PMC7154126 DOI: 10.3389/fonc.2020.00499] [Citation(s) in RCA: 210] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 03/19/2020] [Indexed: 12/11/2022] Open
Abstract
The epithelial-mesenchymal transition (EMT) represents a biological program during which epithelial cells lose their cell identity and acquire a mesenchymal phenotype. EMT is normally observed during organismal development, wound healing and tissue fibrosis. However, this process can be hijacked by cancer cells and is often associated with resistance to apoptosis, acquisition of tissue invasiveness, cancer stem cell characteristics, and cancer treatment resistance. It is becoming evident that EMT is a complex, multifactorial spectrum, often involving episodic, transient or partial events. Multiple factors have been causally implicated in EMT including transcription factors (e.g., SNAIL, TWIST, ZEB), epigenetic modifications, microRNAs (e.g., miR-200 family) and more recently, long non-coding RNAs. However, the relevance of metabolic pathways in EMT is only recently being recognized. Importantly, alterations in key metabolic pathways affect cancer development and progression. In this review, we report the roles of key EMT factors and describe their interactions and interconnectedness. We introduce metabolic pathways that are involved in EMT, including glycolysis, the TCA cycle, lipid and amino acid metabolism, and characterize the relationship between EMT factors and cancer metabolism. Finally, we present therapeutic opportunities involving EMT, with particular focus on cancer metabolic pathways.
Collapse
Affiliation(s)
- Ilias Georgakopoulos-Soares
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, United States.,Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, United States
| | - Dionysios V Chartoumpekis
- Service of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,Division of Endocrinology, Department of Internal Medicine, School of Medicine, University of Patras, Patras, Greece
| | - Venetsana Kyriazopoulou
- Division of Endocrinology, Department of Internal Medicine, School of Medicine, University of Patras, Patras, Greece
| | - Apostolos Zaravinos
- College of Medicine, Member of QU Health, Qatar University, Doha, Qatar.,Department of Life Sciences European University Cyprus, Nicosia, Cyprus
| |
Collapse
|
41
|
Zhou S, Xu A, Song T, Gao F, Sun H, Kong X. lncRNA MIAT Regulates Cell Growth, Migration, and Invasion Through Sponging miR-150-5p in Ovarian Cancer. Cancer Biother Radiopharm 2020; 35:650-660. [PMID: 32186927 DOI: 10.1089/cbr.2019.3259] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Background: MIAT (myocardial infarction-associated transcript) regulates cell proliferation, apoptosis, and metastasis in several cancers. In this study, the authors aimed to explore the role of MIAT in ovarian cancer. Materials and Methods: The expression of MIAT in ovarian cancer subtypes, normal human ovarian surface epithelial and ovarian cancer cell lines was measured by qualitative real-time polymerase chain reaction (qRT-PCR). OVCAR3 and SKOV3 cells were transfected with MIAT overexpression plasmid or siMIAT. The cell growth ability was then evaluated by CCK-8 and colony formation assays. The cell migration and invasion rate were separately measured by wound-healing and transwell assays. The levels of epithelial-mesenchymal transition (EMT)-associated markers were evaluated by Western blotting. MIAT sponging miR-150-5p was predicted by starBase and confirmed by dual-luciferase reporter assays. The expression of miR-150-5p in OVCAR3 and SKOV3 cells with MIAT overexpression or knockdown, and in ovarian cancer subtypes was also measured by qRT-PCR. Further analyses confirmed the role of MIAT sponging miR-150-5p in ovarian cancer cells. Results: MIAT was highly expressed in mesenchymal subtype ovarian cancer tissues and ovarian cancer cells. In OVCAR3 and SKOV3 cells, overexpression of MIAT promoted, and knockdown of MIAT suppressed the cell growth, migration, invasion, and EMT. miR-150-5p was sponged and regulated by MIAT. miR-150-5p was downregulated in mesenchymal subtype ovarian cancer. Suppression of cell migration, invasion, and EMT caused by miR-150-5p overexpression was rescued by MIAT overexpression. Conclusions: MIAT acts as an oncogene in ovarian cancer cells through sponging miR-150-5p. MIAT or miR-150-5p expression might be a potential prognostic biomarker for ovarian cancer patients. MIAT and miR-150-5p are potential therapeutic targets in treatment of ovarian cancer.
Collapse
Affiliation(s)
- Suiyang Zhou
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Aili Xu
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Tiefang Song
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Fei Gao
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Haizhu Sun
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xianchao Kong
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
42
|
Lin W, Zhou Q, Wang CQ, Zhu L, Bi C, Zhang S, Wang X, Jin H. LncRNAs regulate metabolism in cancer. Int J Biol Sci 2020; 16:1194-1206. [PMID: 32174794 PMCID: PMC7053319 DOI: 10.7150/ijbs.40769] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 01/18/2020] [Indexed: 12/11/2022] Open
Abstract
Metabolic reprogramming is a hallmark of cancer. Mammalian genome is characterized by pervasive transcription, generating abundant non-coding RNAs (ncRNAs). Long non-coding RNAs (lncRNAs) are freshly discovered functional ncRNAs exerting extensive regulatory impact through diverse mechanisms. Emerging studies have revealed widespread roles of lncRNAs in the regulation of various cellular activities, including metabolic pathways. In this review, we summarize the latest advances regarding the regulatory roles of lncRNAs in cancer metabolism, particularly their roles in mitochondrial function, glucose, glutamine, and lipid metabolism. Moreover, we discuss the clinical application and challenges of targeting lncRNAs in cancer metabolism. Understanding the complex and special behavior of lncRNAs will allow a better depiction of cancer metabolic networks and permit the development of lncRNA-based clinical therapies by targeting cancer metabolism.
Collapse
Affiliation(s)
- Wenyu Lin
- Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, China
| | - Qiyin Zhou
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, China
| | - Chao-Qun Wang
- Department of Pathology, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang 322100, Zhejiang, China
| | - Liyuan Zhu
- Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, China
| | - Chao Bi
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, Zhejiang, China
| | - Shuzhen Zhang
- Department of Obstetrics and Gynecology, Zhejiang Xiaoshan Hospital, Hangzhou 311201, Zhejiang, China
| | - Xian Wang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, China
| | - Hongchuan Jin
- Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, China
| |
Collapse
|
43
|
Huang Y, Guo Q, Ding XP, Wang X. Mechanism of long noncoding RNAs as transcriptional regulators in cancer. RNA Biol 2020; 17:1680-1692. [PMID: 31888402 DOI: 10.1080/15476286.2019.1710405] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Dysregulation of gene expression, often interpreted by gene transcription as an endpoint response, is tightly associated with human cancer. Long noncoding RNAs (lncRNAs), derived from the noncoding elements in the genome and appeared no less than 200nt in length, have emerged as a novel class of pivotal regulatory component. Recently, great attention has been paid to the cancer-related lncRNAs and growing evidence have shown that lncRNAs act as key transcriptional regulators in cancer cells through diverse mechanisms. Here, we focus on the nucleus-expressed lncRNAs and summarize their molecular mechanisms in transcriptional control during tumorigenesis and cancer metastasis. Six major mechanisms will be discussed in this review: association with transcriptional factor, modulating DNA methylation or histone modification enzyme, influencing on chromatin remodelling complex, facilitating chromosomal looping, interaction with RNA polymerase and direct association with promoter.
Collapse
Affiliation(s)
- Yan Huang
- Department of Geriatrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China , Hefei, Anhui, China.,Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China , Hefei, China
| | - Qi Guo
- Department of Geriatrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China , Hefei, Anhui, China.,Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China , Hefei, China
| | - Xi-Ping Ding
- Department of Geriatrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China , Hefei, Anhui, China
| | - Xiangting Wang
- Department of Geriatrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China , Hefei, Anhui, China.,Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China , Hefei, China
| |
Collapse
|
44
|
Zhang TN, Wang W, Yang N, Huang XM, Liu CF. Regulation of Glucose and Lipid Metabolism by Long Non-coding RNAs: Facts and Research Progress. Front Endocrinol (Lausanne) 2020; 11:457. [PMID: 32765426 PMCID: PMC7381111 DOI: 10.3389/fendo.2020.00457] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/10/2020] [Indexed: 12/17/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are a type of non-coding RNA with a length that exceeds 200 nucleotides. Previous studies have shown that lncRNAs play an important role in the pathogenesis of various diseases. Research in both animal models and humans has begun to unravel the profound complexity of lncRNAs and demonstrated that lncRNAs exert direct effects on glucose and lipid metabolism both in vivo and in vitro. Such research has elucidated the regulatory role of lncRNAs in glucose and lipid metabolism in human disease. lncRNAs mediate glucose and lipid metabolism under physiological and pathological conditions and contribute to various metabolism disorders. This review provides an update on our understanding of the regulatory role of lncRNAs in glucose and lipid metabolism in various diseases. As our understanding of the function of lncRNAs improves, the future is promising for the development of new diagnostic biomarkers that utilize lncRNAs and treatments that target lncRNAs to improve clinical outcomes.
Collapse
Affiliation(s)
- Tie-Ning Zhang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Tie-Ning Zhang
| | - Wei Wang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ni Yang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xin-Mei Huang
- Department of Endocrinology, the Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
- Department of Obstetrics and Gynecology, Yale University School of Medicine, New Haven, CT, United States
- Xin-Mei Huang
| | - Chun-Feng Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
- Chun-Feng Liu
| |
Collapse
|
45
|
Zhang R, Liu Y, Liu H, Chen W, Fan HN, Zhang J, Zhu JS. The long non-coding RNA SNHG12 promotes gastric cancer by activating the phosphatidylinositol 3-kinase/AKT pathway. Aging (Albany NY) 2019; 11:10902-10922. [PMID: 31808752 PMCID: PMC6932881 DOI: 10.18632/aging.102493] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 11/17/2019] [Indexed: 12/14/2022]
Abstract
Long non-coding RNAs contribute to the development of human cancers. We compared the long non-coding RNA levels in gastric cancer (GC) and para-cancerous tissues in the Gene Expression Omnibus, and found that small nucleolar RNA host gene 12 (SNHG12) was upregulated in GC tissues. Fluorescence in situ hybridization confirmed that SNHG12 is overexpressed in GC tissues. We then used data from The Cancer Genome Atlas to assess the association of SNHG12 expression with the clinicopathological characteristics and prognosis of GC patients and found that higher SNHG12 expression was associated with a greater tumor invasion depth and poorer survival. In vitro, silencing SNHG12 suppressed GC cell proliferation, migration and invasion, but induced apoptosis and cell cycle arrest. Overexpressing SNHG12 had the opposite effects. In xenografted mice, knocking down SNHG12 reduced GC tumor growth. Taken together, cancer pathway microarray and bioinformatics analyses, RNA pulldown assays, Western blotting and immunohistochemistry revealed that SNHG12 induces GC tumorigenesis by activating the phosphatidylinositol 3-kinase/AKT pathway. SNHG12 may thus be a useful marker for predicting poor survival in GC patients.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Yuan Liu
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Hui Liu
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Wei Chen
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Hui-Ning Fan
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Jing Zhang
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Jin-Shui Zhu
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| |
Collapse
|
46
|
Wang Y, Lu JH, Wu QN, Jin Y, Wang DS, Chen YX, Liu J, Luo XJ, Meng Q, Pu HY, Wang YN, Hu PS, Liu ZX, Zeng ZL, Zhao Q, Deng R, Zhu XF, Ju HQ, Xu RH. LncRNA LINRIS stabilizes IGF2BP2 and promotes the aerobic glycolysis in colorectal cancer. Mol Cancer 2019; 18:174. [PMID: 31791342 PMCID: PMC6886219 DOI: 10.1186/s12943-019-1105-0] [Citation(s) in RCA: 334] [Impact Index Per Article: 55.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 11/12/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) play nonnegligible roles in the epigenetic regulation of cancer cells. This study aimed to identify a specific lncRNA that promotes the colorectal cancer (CRC) progression and could be a potential therapeutic target. METHODS We screened highly expressed lncRNAs in human CRC samples compared with their matched adjacent normal tissues. The proteins that interact with LINRIS (Long Intergenic Noncoding RNA for IGF2BP2 Stability) were confirmed by RNA pull-down and RNA immunoprecipitation (RIP) assays. The proliferation and metabolic alteration of CRC cells with LINRIS inhibited were tested in vitro and in vivo. RESULTS LINRIS was upregulated in CRC tissues from patients with poor overall survival (OS), and LINRIS inhibition led to the impaired CRC cell line growth. Moreover, knockdown of LINRIS resulted in a decreased level of insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2), a newly found N6-methyladenosine (m6A) 'reader'. LINRIS blocked K139 ubiquitination of IGF2BP2, maintaining its stability. This process prevented the degradation of IGF2BP2 through the autophagy-lysosome pathway (ALP). Therefore, knockdown of LINRIS attenuated the downstream effects of IGF2BP2, especially MYC-mediated glycolysis in CRC cells. In addition, the transcription of LINRIS could be inhibited by GATA3 in CRC cells. In vivo experiments showed that the inhibition of LINRIS suppressed the proliferation of tumors in orthotopic models and in patient-derived xenograft (PDX) models. CONCLUSION LINRIS is an independent prognostic biomarker for CRC. The LINRIS-IGF2BP2-MYC axis promotes the progression of CRC and is a promising therapeutic target.
Collapse
Affiliation(s)
- Yun Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jia-Huan Lu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Qi-Nian Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ying Jin
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - De-Shen Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yan-Xing Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jia Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiao-Jing Luo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qi Meng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Heng-Ying Pu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ying-Nan Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Pei-Shan Hu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ze-Xian Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhao-Lei Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qi Zhao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Rong Deng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiao-Feng Zhu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Huai-Qiang Ju
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.
- Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, China.
| | - Rui-Hua Xu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China.
- Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, China.
| |
Collapse
|
47
|
The concentration of ceruloplasmin in blood of tumor-bearing rats after administration of a dirhenium(III) compound and cisplatin. UKRAINIAN BIOCHEMICAL JOURNAL 2019. [DOI: 10.15407/ubj91.06.079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
48
|
Wang B, Wang XP. Does Ceruloplasmin Defend Against Neurodegenerative Diseases? Curr Neuropharmacol 2019; 17:539-549. [PMID: 29737252 PMCID: PMC6712297 DOI: 10.2174/1570159x16666180508113025] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 04/10/2018] [Accepted: 05/04/2018] [Indexed: 12/11/2022] Open
Abstract
Ceruloplasmin (CP) is the major copper transport protein in plasma, mainly produced by the liver. Glyco-sylphosphatidylinositol-linked CP (GPI-CP) is the predominant form expressed in astrocytes of the brain. A growing body of evidence has demonstrated that CP is an essential protein in the body with multiple functions such as regulating the home-ostasis of copper and iron ions, ferroxidase activity, oxidizing organic amines, and preventing the formation of free radicals. In addition, as an acute-phase protein, CP is induced during inflammation and infection. The fact that patients with genetic disorder aceruloplasminemia do not suffer from tissue copper deficiency, but rather from disruptions in iron metabolism shows essential roles of CP in iron metabolism rather than copper. Furthermore, abnormal metabolism of metal ions and ox-idative stress are found in other neurodegenerative diseases, such as Wilson’s disease, Alzheimer’s disease and Parkinson’s disease. Brain iron accumulation and decreased activity of CP have been shown to be associated with neurodegeneration. We hypothesize that CP may play a protective role in neurodegenerative diseases. However, whether iron accumulation is a cause or a result of neurodegeneration remains unclear. Further research on molecular mechanisms is required before a con-sensus can be reached regarding a neuroprotective role for CP in neurodegeneration. This review article summarizes
the main physiological functions of CP and the current knowledge of its role in neurodegenerative diseases.
Collapse
Affiliation(s)
- Bo Wang
- Shanghai General Hospital of Nanjing Medical University, Shanghai, 200080, China.,Department of Neurology Baoshan Branch, Shanghai General Hospital, Shanghai, 200940, China
| | - Xiao-Ping Wang
- Shanghai General Hospital of Nanjing Medical University, Shanghai, 200080, China.,Department of Neurology, Shanghai Tong- Ren Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, 200080, China
| |
Collapse
|
49
|
Liu Y, Ye F. Construction and integrated analysis of crosstalking ceRNAs networks in laryngeal squamous cell carcinoma. PeerJ 2019; 7:e7380. [PMID: 31367490 PMCID: PMC6657684 DOI: 10.7717/peerj.7380] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 06/29/2019] [Indexed: 12/11/2022] Open
Abstract
Background Laryngeal squamous cell carcinoma (LSCC) is one of the most common malignant tumours of the head and neck. Recent evidence has demonstrated that lncRNAs play important roles in tumour progression and could be used as biomarkers for early diagnosis, prognosis, and potential therapeutic targets. The "competitive endogenous RNA (ceRNA)" hypothesis states that lncRNAs competitively bind to miRNAs through their intramolecular miRNA reaction elements (MREs) to construct a wide range of ceRNA regulatory networks. This study aims to predict the role of ceRNA network in LSCC, for advancing the understanding of underlying mechanisms of tumorigenesis. Material and Methods In this study, the functions of lncRNAs as ceRNAs in LSCC and their prognostic significance were investigated via comprehensive integrated expression profiles data of lncRNAs, mRNAs, and miRNAs obtained from The Cancer Genome Atlas (TCGA). Protein-protein interaction, gene ontology, pathway, and Kaplan-Meier curves analysis were used to profile the expression and function of altered RNAs in LSCC. Results As a result, 889 lncRNAs, 55 miRNAs and 1946 mRNAs were found to be differentially expressed in LSCC. These altered mRNAs were mainly involved in extracellular matrix organization, calcium signaling, and metabolic pathways. To study the regulatory function of lncRNAs, an lncRNA-mediated ceRNA network was constructed. This ceRNA network included 61 lncRNAs, seven miRNAs and seven target mRNAs. Of these RNAs, lncRNAs (TSPEAR-AS, CASK-AS1, MIR137HG, PART1, LSAMP-AS1), miRNA (has-mir-210) and mRNAs (HOXC13, STC2, DIO1, FOXD4L1) had a significant effect on the prognosis of LSCC. Conclusion The results of this study broaden the understanding of the mechanisms by which lncRNAs are involved in tumorigenesis. Furthermore, five lncRNAs (TSPEAR-AS, CASK-AS1, MIR137HG, PART1, LSAMP-AS1) were identified as potential prognostic biomarkers and therapeutic targets for LSCC. These results provide a basis for further experimental and clinical research.
Collapse
Affiliation(s)
- Yuehui Liu
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, People's Republic of China
| | - Fan Ye
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, People's Republic of China
| |
Collapse
|
50
|
LncRNAs with miRNAs in regulation of gastric, liver, and colorectal cancers: updates in recent years. Appl Microbiol Biotechnol 2019; 103:4649-4677. [PMID: 31062053 DOI: 10.1007/s00253-019-09837-5] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 04/07/2019] [Accepted: 04/08/2019] [Indexed: 12/15/2022]
Abstract
Long noncoding RNA (lncRNA) is a kind of RNAi molecule composed of hundreds to thousands of nucleotides. There are several major types of functional lncRNAs which participate in some important cellular pathways. LncRNA-RNA interaction controls mRNA translation and degradation or serves as a microRNA (miRNA) sponge for silencing. LncRNA-protein interaction regulates protein activity in transcriptional activation and silencing. LncRNA guide, decoy, and scaffold regulate transcription regulators of enhancer or repressor region of the coding genes for alteration of expression. LncRNA plays a role in cellular responses including the following activities: regulation of chromatin structural modification and gene expression for epigenetic and cell function control, promotion of hematopoiesis and maturation of immunity, cell programming in stem cell and somatic cell development, modulation of pathogen infection, switching glycolysis and lipid metabolism, and initiation of autoimmune diseases. LncRNA, together with miRNA, are considered the critical elements in cancer development. It has been demonstrated that tumorigenesis could be driven by homeostatic imbalance of lncRNA/miRNA/cancer regulatory factors resulting in biochemical and physiological alterations inside the cells. Cancer-driven lncRNAs with other cellular RNAs, epigenetic modulators, or protein effectors may change gene expression level and affect the viability, immortality, and motility of the cells that facilitate cancer cell cycle rearrangement, angiogenesis, proliferation, and metastasis. Molecular medicine will be the future trend for development. LncRNA/miRNA could be one of the potential candidates in this category. Continuous studies in lncRNA functional discrepancy between cancer cells and normal cells and regional and rational genetic differences of lncRNA profiles are critical for clinical research which is beneficial for clinical practice.
Collapse
|