1
|
Pun R, Kumari N, Monieb RH, Wagh S, North BJ. BubR1 and SIRT2: Insights into aneuploidy, aging, and cancer. Semin Cancer Biol 2024; 106-107:201-216. [PMID: 39490401 PMCID: PMC11625622 DOI: 10.1016/j.semcancer.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Aging is a significant risk factor for cancer which is due, in part, to heightened genomic instability. Mitotic surveillance proteins such as BubR1 play a pivotal role in ensuring accurate chromosomal segregation and preventing aneuploidy. BubR1 levels have been shown to naturally decline with age and its loss is associated with various age-related pathologies. Sirtuins, a class of NAD+-dependent deacylases, are implicated in cancer and genomic instability. Among them, SIRT2 acts as an upstream regulator of BubR1, offering a critical pathway that can potentially mitigate age-related diseases, including cancer. In this review, we explore BubR1 as a key regulator of cellular processes crucial for aging-related phenotypes. We delve into the intricate mechanisms through which BubR1 influences genomic stability and cellular senescence. Moreover, we highlight the role of NAD+ and SIRT2 in modulating BubR1 expression and function, emphasizing its potential as a therapeutic target. The interaction between BubR1 and SIRT2 not only serves as a fundamental regulatory pathway in cellular homeostasis but also represents a promising avenue for developing targeted therapies against age-related diseases, particularly cancer.
Collapse
Affiliation(s)
- Renju Pun
- Biomedical Sciences Department, Creighton University School of Medicine, Omaha, NE, USA
| | - Niti Kumari
- Biomedical Sciences Department, Creighton University School of Medicine, Omaha, NE, USA
| | - Rodaina Hazem Monieb
- Biomedical Sciences Department, Creighton University School of Medicine, Omaha, NE, USA
| | - Sachin Wagh
- Biomedical Sciences Department, Creighton University School of Medicine, Omaha, NE, USA
| | - Brian J North
- Biomedical Sciences Department, Creighton University School of Medicine, Omaha, NE, USA.
| |
Collapse
|
2
|
Geng A, Sun J, Tang H, Yu Y, Wang X, Zhang J, Wang X, Sun X, Zhou X, Gao N, Tan R, Xu Z, Jiang Y, Mao Z. SIRT2 promotes base excision repair by transcriptionally activating OGG1 in an ATM/ATR-dependent manner. Nucleic Acids Res 2024; 52:5107-5120. [PMID: 38554113 PMCID: PMC11109957 DOI: 10.1093/nar/gkae190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/10/2024] [Accepted: 03/11/2024] [Indexed: 04/01/2024] Open
Abstract
Sirtuin 2 (SIRT2) regulates the maintenance of genome integrity by targeting pathways of DNA damage response and homologous recombination repair. However, whether and how SIRT2 promotes base excision repair (BER) remain to be determined. Here, we found that independent of its catalytic activity SIRT2 interacted with the critical glycosylase OGG1 to promote OGG1 recruitment to its own promoter upon oxidative stress, thereby enhancing OGG1 promoter activity and increasing BER efficiency. Further studies revealed that SIRT2 was phosphorylated on S46 and S53 by ATM/ATR upon oxidative stress, and SIRT2 phosphorylation enhanced the SIRT2-OGG1 interaction and mediated the stimulatory effect of SIRT2 on OGG1 promoter activity. We also characterized 37 cancer-derived SIRT2 mutants and found that 5 exhibited the loss of the stimulatory effects on OGG1 transcription. Together, our data reveal that SIRT2 acts as a tumor suppressor by promoting OGG1 transcription and increasing BER efficiency in an ATM/ATR-dependent manner.
Collapse
Affiliation(s)
- Anke Geng
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jiahui Sun
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Huanyin Tang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yang Yu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Xiyue Wang
- School of Medicine, Tongji University, Shanghai 200092, China
| | - Jingyuan Zhang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Xiaona Wang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Xiaoxiang Sun
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Xiaofang Zhou
- Department of Oncology, Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Neng Gao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Rong Tan
- Department of Oncology, Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zhu Xu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Ying Jiang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Zhiyong Mao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- School of Medicine, Tongji University, Shanghai 200092, China
- Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| |
Collapse
|
3
|
Garmendia-Berges M, Sola-Sevilla N, Mera-Delgado MC, Puerta E. Age-Associated Changes of Sirtuin 2 Expression in CNS and the Periphery. BIOLOGY 2023; 12:1476. [PMID: 38132302 PMCID: PMC10741187 DOI: 10.3390/biology12121476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023]
Abstract
Sirtuin 2 (SIRT2), one of the seven members of the sirtuin family, has emerged as a potential regulator of aging and age-related pathologies since several studies have demonstrated that it shows age-related changes in humans and different animal models. A detailed analysis of the relevant works published to date addressing this topic shows that the changes that occur in SIRT2 with aging seem to be opposite in the brain and in the periphery. On the one hand, aging induces an increase in SIRT2 levels in the brain, which supports the notion that its pharmacological inhibition is beneficial in different neurodegenerative diseases. However, on the other hand, in the periphery, SIRT2 levels are reduced with aging while keeping its expression is protective against age-related peripheral inflammation, insulin resistance, and cardiovascular diseases. Thus, systemic administration of any known modulator of this enzyme would have conflicting outcomes. This review summarizes the currently available information on changes in SIRT2 expression in aging and the underlying mechanisms affected, with the aim of providing evidence to determine whether its pharmacological modulation could be an effective and safe pharmacological strategy for the treatment of age-related diseases.
Collapse
Affiliation(s)
- Maider Garmendia-Berges
- Pharmaceutical Sciences Department, Division of Pharmacology, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (M.G.-B.); (N.S.-S.); (M.M.-D.)
| | - Noemi Sola-Sevilla
- Pharmaceutical Sciences Department, Division of Pharmacology, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (M.G.-B.); (N.S.-S.); (M.M.-D.)
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| | - MCarmen Mera-Delgado
- Pharmaceutical Sciences Department, Division of Pharmacology, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (M.G.-B.); (N.S.-S.); (M.M.-D.)
| | - Elena Puerta
- Pharmaceutical Sciences Department, Division of Pharmacology, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (M.G.-B.); (N.S.-S.); (M.M.-D.)
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| |
Collapse
|
4
|
Wilcox N, Dumont M, González-Neira A, Carvalho S, Joly Beauparlant C, Crotti M, Luccarini C, Soucy P, Dubois S, Nuñez-Torres R, Pita G, Gardner EJ, Dennis J, Alonso MR, Álvarez N, Baynes C, Collin-Deschesnes AC, Desjardins S, Becher H, Behrens S, Bolla MK, Castelao JE, Chang-Claude J, Cornelissen S, Dörk T, Engel C, Gago-Dominguez M, Guénel P, Hadjisavvas A, Hahnen E, Hartman M, Herráez B, Jung A, Keeman R, Kiechle M, Li J, Loizidou MA, Lush M, Michailidou K, Panayiotidis MI, Sim X, Teo SH, Tyrer JP, van der Kolk LE, Wahlström C, Wang Q, Perry JRB, Benitez J, Schmidt MK, Schmutzler RK, Pharoah PDP, Droit A, Dunning AM, Kvist A, Devilee P, Easton DF, Simard J. Exome sequencing identifies breast cancer susceptibility genes and defines the contribution of coding variants to breast cancer risk. Nat Genet 2023; 55:1435-1439. [PMID: 37592023 PMCID: PMC10484782 DOI: 10.1038/s41588-023-01466-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/05/2023] [Indexed: 08/19/2023]
Abstract
Linkage and candidate gene studies have identified several breast cancer susceptibility genes, but the overall contribution of coding variation to breast cancer is unclear. To evaluate the role of rare coding variants more comprehensively, we performed a meta-analysis across three large whole-exome sequencing datasets, containing 26,368 female cases and 217,673 female controls. Burden tests were performed for protein-truncating and rare missense variants in 15,616 and 18,601 genes, respectively. Associations between protein-truncating variants and breast cancer were identified for the following six genes at exome-wide significance (P < 2.5 × 10-6): the five known susceptibility genes ATM, BRCA1, BRCA2, CHEK2 and PALB2, together with MAP3K1. Associations were also observed for LZTR1, ATR and BARD1 with P < 1 × 10-4. Associations between predicted deleterious rare missense or protein-truncating variants and breast cancer were additionally identified for CDKN2A at exome-wide significance. The overall contribution of coding variants in genes beyond the previously known genes is estimated to be small.
Collapse
Affiliation(s)
- Naomi Wilcox
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Martine Dumont
- Genomics Center, Centre Hospitalier Universitaire de Québec-Université Laval Research Center, Québec City, Quebec, Canada
| | - Anna González-Neira
- Human Genotyping Unit-CeGen, Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Sara Carvalho
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Charles Joly Beauparlant
- Genomics Center, Centre Hospitalier Universitaire de Québec-Université Laval Research Center, Québec City, Quebec, Canada
| | - Marco Crotti
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Craig Luccarini
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Penny Soucy
- Genomics Center, Centre Hospitalier Universitaire de Québec-Université Laval Research Center, Québec City, Quebec, Canada
| | - Stéphane Dubois
- Genomics Center, Centre Hospitalier Universitaire de Québec-Université Laval Research Center, Québec City, Quebec, Canada
| | - Rocio Nuñez-Torres
- Human Genotyping Unit-CeGen, Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Guillermo Pita
- Human Genotyping Unit-CeGen, Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Eugene J Gardner
- MRC Epidemiology Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Joe Dennis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - M Rosario Alonso
- Human Genotyping Unit-CeGen, Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Nuria Álvarez
- Human Genotyping Unit-CeGen, Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Caroline Baynes
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Annie Claude Collin-Deschesnes
- Genomics Center, Centre Hospitalier Universitaire de Québec-Université Laval Research Center, Québec City, Quebec, Canada
| | - Sylvie Desjardins
- Genomics Center, Centre Hospitalier Universitaire de Québec-Université Laval Research Center, Québec City, Quebec, Canada
| | - Heiko Becher
- Institute of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sabine Behrens
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Manjeet K Bolla
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Jose E Castelao
- Oncology and Genetics Unit, Instituto de Investigación Sanitaria Galicia Sur (IISGS), Xerencia de Xestion Integrada de Vigo-SERGAS, Vigo, Spain
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Cancer Epidemiology Group, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sten Cornelissen
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Thilo Dörk
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
| | - Christoph Engel
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
- LIFE-Leipzig Research Centre for Civilization Diseases, University of Leipzig, Leipzig, Germany
| | - Manuela Gago-Dominguez
- Cancer Genetics and Epidemiology Group, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS) Foundation, Complejo Hospitalario Universitario de Santiago, SERGAS, Santiago de Compostela, Spain
| | - Pascal Guénel
- Team 'Exposome and Heredity,' CESP, Gustave Roussy, INSERM, University Paris-Saclay, UVSQ, Villejuif, France
| | - Andreas Hadjisavvas
- Department of Cancer Genetics, Therapeutics and Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - Eric Hahnen
- Center for Familial Breast and Ovarian Cancer, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Integrated Oncology (CIO), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Mikael Hartman
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore City, Singapore
- Department of Surgery, National University Health System, Singapore City, Singapore
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore City, Singapore
| | - Belén Herráez
- Human Genotyping Unit-CeGen, Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Audrey Jung
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Renske Keeman
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Marion Kiechle
- Division of Gynaecology and Obstetrics, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany
| | - Jingmei Li
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore City, Singapore.
| | - Maria A Loizidou
- Department of Cancer Genetics, Therapeutics and Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - Michael Lush
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Kyriaki Michailidou
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Biostatistics Unit, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - Mihalis I Panayiotidis
- Department of Cancer Genetics, Therapeutics and Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - Xueling Sim
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore City, Singapore
| | - Soo Hwang Teo
- Breast Cancer Research Programme, Cancer Research Malaysia, Subang Jaya, Malaysia
- Department of Surgery, Faculty of Medicine, University of Malaya, UM Cancer Research Institute, Kuala Lumpur, Malaysia
| | - Jonathan P Tyrer
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Lizet E van der Kolk
- Family Cancer Clinic, The Netherlands Cancer Institute-Antoni van Leeuwenhoek hospital, Amsterdam, the Netherlands
| | - Cecilia Wahlström
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Qin Wang
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - John R B Perry
- MRC Epidemiology Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- Metabolic Research Laboratory, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Javier Benitez
- Human Genetics Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Marjanka K Schmidt
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek hospital, Amsterdam, the Netherlands
| | - Rita K Schmutzler
- Center for Familial Breast and Ovarian Cancer, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Integrated Oncology (CIO), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Paul D P Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Arnaud Droit
- Genomics Center, Centre Hospitalier Universitaire de Québec-Université Laval Research Center, Québec City, Quebec, Canada
- Département de Médecine Moléculaire, Faculté de Médecine, Centre Hospitalier Universitaire de Québec Research Center, Laval University, Québec City, Quebec, Canada
| | - Alison M Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Anders Kvist
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Peter Devilee
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK.
| | - Jacques Simard
- Genomics Center, Centre Hospitalier Universitaire de Québec-Université Laval Research Center, Québec City, Quebec, Canada
| |
Collapse
|
5
|
Head PE, Kapoor-Vazirani P, Nagaraju GP, Zhang H, Rath S, Luong N, Haji-Seyed-Javadi R, Sesay F, Wang SY, Duong D, Daddacha W, Minten E, Song B, Danelia D, Liu X, Li S, Ortlund E, Seyfried N, Smalley D, Wang Y, Deng X, Dynan W, El-Rayes B, Davis A, Yu D. DNA-PK is activated by SIRT2 deacetylation to promote DNA double-strand break repair by non-homologous end joining. Nucleic Acids Res 2023; 51:7972-7987. [PMID: 37395399 PMCID: PMC10450170 DOI: 10.1093/nar/gkad549] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/02/2023] [Accepted: 06/27/2023] [Indexed: 07/04/2023] Open
Abstract
DNA-dependent protein kinase (DNA-PK) plays a critical role in non-homologous end joining (NHEJ), the predominant pathway that repairs DNA double-strand breaks (DSB) in response to ionizing radiation (IR) to govern genome integrity. The interaction of the catalytic subunit of DNA-PK (DNA-PKcs) with the Ku70/Ku80 heterodimer on DSBs leads to DNA-PK activation; however, it is not known if upstream signaling events govern this activation. Here, we reveal a regulatory step governing DNA-PK activation by SIRT2 deacetylation, which facilitates DNA-PKcs localization to DSBs and interaction with Ku, thereby promoting DSB repair by NHEJ. SIRT2 deacetylase activity governs cellular resistance to DSB-inducing agents and promotes NHEJ. SIRT2 furthermore interacts with and deacetylates DNA-PKcs in response to IR. SIRT2 deacetylase activity facilitates DNA-PKcs interaction with Ku and localization to DSBs and promotes DNA-PK activation and phosphorylation of downstream NHEJ substrates. Moreover, targeting SIRT2 with AGK2, a SIRT2-specific inhibitor, augments the efficacy of IR in cancer cells and tumors. Our findings define a regulatory step for DNA-PK activation by SIRT2-mediated deacetylation, elucidating a critical upstream signaling event initiating the repair of DSBs by NHEJ. Furthermore, our data suggest that SIRT2 inhibition may be a promising rationale-driven therapeutic strategy for increasing the effectiveness of radiation therapy.
Collapse
Affiliation(s)
- PamelaSara E Head
- Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine,Atlanta, GA 30322, USA
| | - Priya Kapoor-Vazirani
- Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine,Atlanta, GA 30322, USA
| | - Ganji P Nagaraju
- School of Medicine, Division of Hematology and Medical Oncology, University of Alabama, Birmingham, AL 35233, USA
| | - Hui Zhang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine,Atlanta, GA 30322, USA
| | - Sandip K Rath
- Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine,Atlanta, GA 30322, USA
| | - Nho C Luong
- Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine,Atlanta, GA 30322, USA
| | - Ramona Haji-Seyed-Javadi
- Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine,Atlanta, GA 30322, USA
| | - Fatmata Sesay
- Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine,Atlanta, GA 30322, USA
| | - Shi-Ya Wang
- Department of Radiation Oncology, UT Southwestern Medical School, Dallas, TX 75390, USA
| | - Duc M Duong
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Waaqo Daddacha
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA
| | - Elizabeth V Minten
- Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine,Atlanta, GA 30322, USA
| | - Boying Song
- Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine,Atlanta, GA 30322, USA
| | - Diana Danelia
- Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine,Atlanta, GA 30322, USA
| | - Xu Liu
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Shuyi Li
- Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine,Atlanta, GA 30322, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Eric A Ortlund
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Nicholas T Seyfried
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - David M Smalley
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Ya Wang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine,Atlanta, GA 30322, USA
| | - Xingming Deng
- Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine,Atlanta, GA 30322, USA
| | - William S Dynan
- Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine,Atlanta, GA 30322, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Bassel El-Rayes
- School of Medicine, Division of Hematology and Medical Oncology, University of Alabama, Birmingham, AL 35233, USA
| | - Anthony J Davis
- Department of Radiation Oncology, UT Southwestern Medical School, Dallas, TX 75390, USA
| | - David S Yu
- Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine,Atlanta, GA 30322, USA
| |
Collapse
|
6
|
Yates L, Tannous E, Morgan R, Burgers P, Zhang X. A DNA damage-induced phosphorylation circuit enhances Mec1 ATR Ddc2 ATRIP recruitment to Replication Protein A. Proc Natl Acad Sci U S A 2023; 120:e2300150120. [PMID: 36996117 PMCID: PMC10083555 DOI: 10.1073/pnas.2300150120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/24/2023] [Indexed: 03/31/2023] Open
Abstract
The cell cycle checkpoint kinase Mec1ATR and its integral partner Ddc2ATRIP are vital for the DNA damage and replication stress response. Mec1-Ddc2 "senses" single-stranded DNA (ssDNA) by being recruited to the ssDNA binding Replication Protein A (RPA) via Ddc2. In this study, we show that a DNA damage-induced phosphorylation circuit modulates checkpoint recruitment and function. We demonstrate that Ddc2-RPA interactions modulate the association between RPA and ssDNA and that Rfa1-phosphorylation aids in the further recruitment of Mec1-Ddc2. We also uncover an underappreciated role for Ddc2 phosphorylation that enhances its recruitment to RPA-ssDNA that is important for the DNA damage checkpoint in yeast. The crystal structure of a phosphorylated Ddc2 peptide in complex with its RPA interaction domain provides molecular details of how checkpoint recruitment is enhanced, which involves Zn2+. Using electron microscopy and structural modeling approaches, we propose that Mec1-Ddc2 complexes can form higher order assemblies with RPA when Ddc2 is phosphorylated. Together, our results provide insight into Mec1 recruitment and suggest that formation of supramolecular complexes of RPA and Mec1-Ddc2, modulated by phosphorylation, would allow for rapid clustering of damage foci to promote checkpoint signaling.
Collapse
Affiliation(s)
- Luke A. Yates
- Section of Structural Biology, Department of Infectious Disease, Imperial College London, South Kensington, LondonSW7 2AZ, United Kingdom
| | - Elias A. Tannous
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO63110
| | - R. Marc Morgan
- Department of Life Sciences, Centre for Structural Biology, Imperial College London, South Kensington, LondonSW7 2AZ, United Kingdom
| | - Peter M. Burgers
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO63110
| | - Xiaodong Zhang
- Section of Structural Biology, Department of Infectious Disease, Imperial College London, South Kensington, LondonSW7 2AZ, United Kingdom
| |
Collapse
|
7
|
Wang ZX, Li YL, Pu JL, Zhang BR. DNA Damage-Mediated Neurotoxicity in Parkinson’s Disease. Int J Mol Sci 2023; 24:ijms24076313. [PMID: 37047285 PMCID: PMC10093980 DOI: 10.3390/ijms24076313] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disease around the world; however, its pathogenesis remains unclear so far. Recent advances have shown that DNA damage and repair deficiency play an important role in the pathophysiology of PD. There is growing evidence suggesting that DNA damage is involved in the propagation of cellular damage in PD, leading to neuropathology under different conditions. Here, we reviewed the current work on DNA damage repair in PD. First, we outlined the evidence and causes of DNA damage in PD. Second, we described the potential pathways by which DNA damage mediates neurotoxicity in PD and discussed the precise mechanisms that drive these processes by DNA damage. In addition, we looked ahead to the potential interventions targeting DNA damage and repair. Finally, based on the current status of research, key problems that need to be addressed in future research were proposed.
Collapse
Affiliation(s)
| | | | - Jia-Li Pu
- Correspondence: (J.-L.P.); (B.-R.Z.); Tel./Fax: +86-571-87784752 (J.-L.P. & B.-R.Z.)
| | - Bao-Rong Zhang
- Correspondence: (J.-L.P.); (B.-R.Z.); Tel./Fax: +86-571-87784752 (J.-L.P. & B.-R.Z.)
| |
Collapse
|
8
|
Chevarin M, Alcantara D, Albuisson J, Collonge-Rame MA, Populaire C, Selmani Z, Baurand A, Sawka C, Bertolone G, Callier P, Duffourd Y, Jonveaux P, Bignon YJ, Coupier I, Cornelis F, Cordier C, Mozelle-Nivoix M, Rivière JB, Kuentz P, Thauvin C, Boidot R, Ghiringhelli F, O'Driscoll M, Faivre L, Nambot S. The "extreme phenotype approach" applied to male breast cancer allows the identification of rare variants of ATR as potential breast cancer susceptibility alleles. Oncotarget 2023; 14:111-125. [PMID: 36749285 PMCID: PMC9904323 DOI: 10.18632/oncotarget.28358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 01/23/2023] [Indexed: 02/08/2023] Open
Abstract
In oncogenetics, some patients could be considered as "extreme phenotypes", such as those with very early onset presentation or multiple primary malignancies, unusually high numbers of cancers of the same spectrum or rare cancer types in the same parental branch. For these cases, a genetic predisposition is very likely, but classical candidate gene panel analyses often and frustratingly remains negative. In the framework of the EX2TRICAN project, exploring unresolved extreme cancer phenotypes, we applied exome sequencing on rare familial cases with male breast cancer, identifying a novel pathogenic variant of ATR (p.Leu1808*). ATR has already been suspected as being a predisposing gene to breast cancer in women. We next identified 3 additional ATR variants in a cohort of both male and female with early onset and familial breast cancers (c.7762-2A>C; c.2078+1G>A; c.1A>G). Further molecular and cellular investigations showed impacts on transcripts for variants affecting splicing sites and reduction of ATR expression and phosphorylation of the ATR substrate CHEK1. This work further demonstrates the interest of an extended genetic analysis such as exome sequencing to identify very rare variants that can play a role in cancer predisposition in extreme phenotype cancer cases unexplained by classical cancer gene panels testing.
Collapse
Affiliation(s)
- Martin Chevarin
- Inserm UMR 1231 GAD Génétique des Anomalies du Développement, Université de Bourgogne, Dijon, France
- Unité Fonctionnelle Innovation diagnostique dans les maladies rares, laboratoire de génétique chromosomique et moléculaire, Plateau Technique de Biologie, CHU Dijon Bourgogne, Dijon, France
| | - Diana Alcantara
- Human DNA Damage Response Disorders Group, University of Sussex, Genome Damage and Stability Centre, Brighton, United Kingdom
| | - Juliette Albuisson
- Service d’Oncogénétique, Centre Georges François Leclerc, Dijon, France
- Département de biologie et pathologie des tumeurs, Centre Georges François Leclerc, Dijon, France
| | | | - Céline Populaire
- Oncobiologie Génétique Bioinformatique, PCBio, CHU Besançon, Besançon, France
| | - Zohair Selmani
- Oncobiologie Génétique Bioinformatique, PCBio, CHU Besançon, Besançon, France
| | - Amandine Baurand
- Service d’Oncogénétique, Centre Georges François Leclerc, Dijon, France
- Centre de Génétique et Centre de Référence Maladies Rares Anomalies du Développement de l’Interrégion Est, Hôpital d’Enfants, CHU Dijon Bourgogne, Dijon, France
| | - Caroline Sawka
- Centre de Génétique et Centre de Référence Maladies Rares Anomalies du Développement de l’Interrégion Est, Hôpital d’Enfants, CHU Dijon Bourgogne, Dijon, France
| | - Geoffrey Bertolone
- Centre de Génétique et Centre de Référence Maladies Rares Anomalies du Développement de l’Interrégion Est, Hôpital d’Enfants, CHU Dijon Bourgogne, Dijon, France
| | - Patrick Callier
- Inserm UMR 1231 GAD Génétique des Anomalies du Développement, Université de Bourgogne, Dijon, France
- Unité Fonctionnelle Innovation diagnostique dans les maladies rares, laboratoire de génétique chromosomique et moléculaire, Plateau Technique de Biologie, CHU Dijon Bourgogne, Dijon, France
- Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement (FHU TRANSLAD), CHU Dijon Bourgogne et Université de Bourgogne-Franche Comté, Dijon, France
| | - Yannis Duffourd
- Inserm UMR 1231 GAD Génétique des Anomalies du Développement, Université de Bourgogne, Dijon, France
- Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement (FHU TRANSLAD), CHU Dijon Bourgogne et Université de Bourgogne-Franche Comté, Dijon, France
| | - Philippe Jonveaux
- Laboratoire de Génétique Médicale, INSERM U954, Hôpitaux de Brabois, Vandoeuvre les Nancy, France
| | - Yves-Jean Bignon
- Laboratoire d’Oncologie Moléculaire, Centre Jean Perrin, Clermont-Ferrand, France
| | | | - François Cornelis
- Université Bordeaux, IMB, UMR 5251, Talence, France
- Service d’imagerie diagnostique et interventionnelle de l’adulte, Hôpital Pellegrin, CHU de Bordeaux, France
| | | | | | - Jean-Baptiste Rivière
- Inserm UMR 1231 GAD Génétique des Anomalies du Développement, Université de Bourgogne, Dijon, France
- Centre de Génétique et Centre de Référence Maladies Rares Anomalies du Développement de l’Interrégion Est, Hôpital d’Enfants, CHU Dijon Bourgogne, Dijon, France
- Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement (FHU TRANSLAD), CHU Dijon Bourgogne et Université de Bourgogne-Franche Comté, Dijon, France
| | - Paul Kuentz
- Inserm UMR 1231 GAD Génétique des Anomalies du Développement, Université de Bourgogne, Dijon, France
- Oncobiologie Génétique Bioinformatique, PCBio, CHU Besançon, Besançon, France
- Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement (FHU TRANSLAD), CHU Dijon Bourgogne et Université de Bourgogne-Franche Comté, Dijon, France
| | - Christel Thauvin
- Inserm UMR 1231 GAD Génétique des Anomalies du Développement, Université de Bourgogne, Dijon, France
- Centre de Génétique et Centre de Référence Maladies Rares Anomalies du Développement de l’Interrégion Est, Hôpital d’Enfants, CHU Dijon Bourgogne, Dijon, France
| | - Romain Boidot
- Département de biologie et pathologie des tumeurs, Centre Georges François Leclerc, Dijon, France
| | - François Ghiringhelli
- Département d’oncologie médicale, INSERM LNC U1231, Centre Georges François Leclerc, Dijon, France
| | - Marc O'Driscoll
- Human DNA Damage Response Disorders Group, University of Sussex, Genome Damage and Stability Centre, Brighton, United Kingdom
| | - Laurence Faivre
- Inserm UMR 1231 GAD Génétique des Anomalies du Développement, Université de Bourgogne, Dijon, France
- Service d’Oncogénétique, Centre Georges François Leclerc, Dijon, France
- Centre de Génétique et Centre de Référence Maladies Rares Anomalies du Développement de l’Interrégion Est, Hôpital d’Enfants, CHU Dijon Bourgogne, Dijon, France
- Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement (FHU TRANSLAD), CHU Dijon Bourgogne et Université de Bourgogne-Franche Comté, Dijon, France
| | - Sophie Nambot
- Inserm UMR 1231 GAD Génétique des Anomalies du Développement, Université de Bourgogne, Dijon, France
- Service d’Oncogénétique, Centre Georges François Leclerc, Dijon, France
- Centre de Génétique et Centre de Référence Maladies Rares Anomalies du Développement de l’Interrégion Est, Hôpital d’Enfants, CHU Dijon Bourgogne, Dijon, France
- Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement (FHU TRANSLAD), CHU Dijon Bourgogne et Université de Bourgogne-Franche Comté, Dijon, France
| |
Collapse
|
9
|
Song H, Shen R, Mahasin H, Guo Y, Wang D. DNA replication: Mechanisms and therapeutic interventions for diseases. MedComm (Beijing) 2023; 4:e210. [PMID: 36776764 PMCID: PMC9899494 DOI: 10.1002/mco2.210] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 02/09/2023] Open
Abstract
Accurate and integral cellular DNA replication is modulated by multiple replication-associated proteins, which is fundamental to preserve genome stability. Furthermore, replication proteins cooperate with multiple DNA damage factors to deal with replication stress through mechanisms beyond their role in replication. Cancer cells with chronic replication stress exhibit aberrant DNA replication and DNA damage response, providing an exploitable therapeutic target in tumors. Numerous evidence has indicated that posttranslational modifications (PTMs) of replication proteins present distinct functions in DNA replication and respond to replication stress. In addition, abundant replication proteins are involved in tumorigenesis and development, which act as diagnostic and prognostic biomarkers in some tumors, implying these proteins act as therapeutic targets in clinical. Replication-target cancer therapy emerges as the times require. In this context, we outline the current investigation of the DNA replication mechanism, and simultaneously enumerate the aberrant expression of replication proteins as hallmark for various diseases, revealing their therapeutic potential for target therapy. Meanwhile, we also discuss current observations that the novel PTM of replication proteins in response to replication stress, which seems to be a promising strategy to eliminate diseases.
Collapse
Affiliation(s)
- Hao‐Yun Song
- School of Basic Medical SciencesLanzhou UniversityLanzhouGansuChina
| | - Rong Shen
- School of Basic Medical SciencesLanzhou UniversityLanzhouGansuChina
| | - Hamid Mahasin
- School of Basic Medical SciencesLanzhou UniversityLanzhouGansuChina
| | - Ya‐Nan Guo
- School of Basic Medical SciencesLanzhou UniversityLanzhouGansuChina
| | - De‐Gui Wang
- School of Basic Medical SciencesLanzhou UniversityLanzhouGansuChina
| |
Collapse
|
10
|
Kapoor-Vazirani P, Rath SK, Liu X, Shu Z, Bowen NE, Chen Y, Haji-Seyed-Javadi R, Daddacha W, Minten EV, Danelia D, Farchi D, Duong DM, Seyfried NT, Deng X, Ortlund EA, Kim B, Yu DS. SAMHD1 deacetylation by SIRT1 promotes DNA end resection by facilitating DNA binding at double-strand breaks. Nat Commun 2022; 13:6707. [PMID: 36344525 PMCID: PMC9640623 DOI: 10.1038/s41467-022-34578-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 10/29/2022] [Indexed: 11/09/2022] Open
Abstract
Sterile alpha motif and HD domain-containing protein 1 (SAMHD1) has a dNTPase-independent function in promoting DNA end resection to facilitate DNA double-strand break (DSB) repair by homologous recombination (HR); however, it is not known if upstream signaling events govern this activity. Here, we show that SAMHD1 is deacetylated by the SIRT1 sirtuin deacetylase, facilitating its binding with ssDNA at DSBs, to promote DNA end resection and HR. SIRT1 complexes with and deacetylates SAMHD1 at conserved lysine 354 (K354) specifically in response to DSBs. K354 deacetylation by SIRT1 promotes DNA end resection and HR but not SAMHD1 tetramerization or dNTPase activity. Mechanistically, K354 deacetylation by SIRT1 promotes SAMHD1 recruitment to DSBs and binding to ssDNA at DSBs, which in turn facilitates CtIP ssDNA binding, leading to promotion of genome integrity. These findings define a mechanism governing the dNTPase-independent resection function of SAMHD1 by SIRT1 deacetylation in promoting HR and genome stability.
Collapse
Affiliation(s)
- Priya Kapoor-Vazirani
- Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Sandip K Rath
- Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Xu Liu
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Zhen Shu
- Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Nicole E Bowen
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Yitong Chen
- Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Ramona Haji-Seyed-Javadi
- Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Waaqo Daddacha
- Department of Biochemistry and Molecular Biology, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Elizabeth V Minten
- Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Diana Danelia
- Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Daniela Farchi
- Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Duc M Duong
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Nicholas T Seyfried
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Xingming Deng
- Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Eric A Ortlund
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Baek Kim
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - David S Yu
- Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| |
Collapse
|
11
|
Wang HL, Chen Y, Wang YQ, Tao EW, Tan J, Liu QQ, Li CM, Tong XM, Gao QY, Hong J, Chen YX, Fang JY. Sirtuin5 protects colorectal cancer from DNA damage by keeping nucleotide availability. Nat Commun 2022; 13:6121. [PMID: 36253417 PMCID: PMC9576705 DOI: 10.1038/s41467-022-33903-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 10/07/2022] [Indexed: 12/24/2022] Open
Abstract
In our previous study, we reported that sirtuin5 (SIRT5), a member of the NAD+-dependent class III histone deacetylase family, is highly expressed in colorectal cancer (CRC). Herein we show that SIRT5 knockdown impairs the production of ribose-5-phosphate, which is essential for nucleotide synthesis, resulting in continuous and irreparable DNA damage and consequently leading to cell cycle arrest and enhanced apoptosis in CRC cells. These SIRT5 silencing-induced effects can be reversed by nucleoside supplementation. Mechanistically, SIRT5 activates transketolase (TKT), a key enzyme in the non-oxidative pentose phosphate pathway, in a demalonylation-dependent manner. Furthermore, TKT is essential for SIRT5-induced malignant phenotypes of CRC both in vivo and in vitro. Altogether, SIRT5 silencing induces DNA damage in CRC via post-translational modifications and inhibits tumor growth, suggesting that SIRT5 can serve as a promising target for CRC treatment.
Collapse
Affiliation(s)
- Hao-Lian Wang
- grid.16821.3c0000 0004 0368 8293State Key Laboratory for Oncogenes and Related Genes, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Chen
- grid.16821.3c0000 0004 0368 8293State Key Laboratory for Oncogenes and Related Genes, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yun-Qian Wang
- grid.16821.3c0000 0004 0368 8293State Key Laboratory for Oncogenes and Related Genes, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - En-Wei Tao
- grid.16821.3c0000 0004 0368 8293State Key Laboratory for Oncogenes and Related Genes, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Juan Tan
- grid.16821.3c0000 0004 0368 8293State Key Laboratory for Oncogenes and Related Genes, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qian-Qian Liu
- grid.16821.3c0000 0004 0368 8293State Key Laboratory for Oncogenes and Related Genes, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chun-Min Li
- grid.16821.3c0000 0004 0368 8293State Key Laboratory for Oncogenes and Related Genes, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xue-Mei Tong
- grid.16821.3c0000 0004 0368 8293Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qin-Yan Gao
- grid.16821.3c0000 0004 0368 8293State Key Laboratory for Oncogenes and Related Genes, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Hong
- grid.16821.3c0000 0004 0368 8293State Key Laboratory for Oncogenes and Related Genes, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ying-Xuan Chen
- grid.16821.3c0000 0004 0368 8293State Key Laboratory for Oncogenes and Related Genes, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jing-Yuan Fang
- grid.16821.3c0000 0004 0368 8293State Key Laboratory for Oncogenes and Related Genes, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
12
|
Zhu C, Dong X, Wang X, Zheng Y, Qiu J, Peng Y, Xu J, Chai Z, Liu C. Multiple Roles of SIRT2 in Regulating Physiological and Pathological Signal Transduction. Genet Res (Camb) 2022; 2022:9282484. [PMID: 36101744 PMCID: PMC9444453 DOI: 10.1155/2022/9282484] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 07/01/2022] [Accepted: 07/08/2022] [Indexed: 11/18/2022] Open
Abstract
Sirtuin 2 (SIRT2), as a member of the sirtuin family, has representative features of evolutionarily highly conserved nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase activity. In addition, SIRT2, as the only sirtuin protein colocalized with tubulin in the cytoplasm, has its own functions and characteristics. In recent years, studies have increasingly shown that SIRT2 can participate in the regulation of gene expression and regulate signal transduction in the metabolic pathway mainly through its post-translational modification of target genes; thus, SIRT2 has become a key centre in the metabolic pathway and participates in the pathological process of metabolic disorder-related diseases. In this paper, it is discussed that SIRT2 can regulate all aspects of gene expression, including epigenetic modification, replication, transcription and translation, and post-translational modification, which enables SIRT2 to participate in energy metabolism in life activities, and it is clarified that SIRT2 is involved in metabolic process-specific signal transduction mechanisms. Therefore, SIRT2 can be involved in metabolic disorder-related inflammation and oxidative stress, thereby triggering the occurrence of metabolic disorder-related diseases, such as neurodegenerative diseases, tumours, diabetes, and cardiovascular diseases. Currently, although the role of SIRT2 in some diseases is still controversial, given the multiple roles of SIRT2 in regulating physiological and pathological signal transduction, SIRT2 has become a key target for disease treatment. It is believed that with increasing research, the clinical application of SIRT2 will be promoted.
Collapse
Affiliation(s)
- Changhui Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Weifang Medical University, Weifang 261053, Shandong, China
- Medical Research Center, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China
| | - Xue Dong
- Department of Education, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China
| | - Xiwei Wang
- Department of Anesthesiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China
| | - Yingying Zheng
- Medical Research Center, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China
| | - Juanjuan Qiu
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250014, China
| | - Yanling Peng
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250014, China
| | - Jiajun Xu
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250014, China
| | - Zhengbin Chai
- Department of Clinical Laboratory Medicine, Shandong Public Health Clinical Center, Shandong University, Jinan 250102, China
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Chunyan Liu
- Medical Research Center, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China
| |
Collapse
|
13
|
Kim JM. Molecular Link between DNA Damage Response and Microtubule Dynamics. Int J Mol Sci 2022; 23:ijms23136986. [PMID: 35805981 PMCID: PMC9266319 DOI: 10.3390/ijms23136986] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 11/16/2022] Open
Abstract
Microtubules are major components of the cytoskeleton that play important roles in cellular processes such as intracellular transport and cell division. In recent years, it has become evident that microtubule networks play a role in genome maintenance during interphase. In this review, we highlight recent advances in understanding the role of microtubule dynamics in DNA damage response and repair. We first describe how DNA damage checkpoints regulate microtubule organization and stability. We then highlight how microtubule networks are involved in the nuclear remodeling following DNA damage, which leads to changes in chromosome organization. Lastly, we discuss how microtubule dynamics participate in the mobility of damaged DNA and promote consequent DNA repair. Together, the literature indicates the importance of microtubule dynamics in genome organization and stability during interphase.
Collapse
Affiliation(s)
- Jung Min Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju 58128, Korea
| |
Collapse
|
14
|
Minten EV, Yu DS. Protocol for in vitro lysine deacetylation to test putative substrates of class III deacetylases. STAR Protoc 2022; 3:101313. [PMID: 35496786 PMCID: PMC9038758 DOI: 10.1016/j.xpro.2022.101313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- Elizabeth V. Minten
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
- Corresponding author
| | - David S. Yu
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Corresponding author
| |
Collapse
|
15
|
Ruszkiewicz JA, Bürkle A, Mangerich A. Fueling genome maintenance: On the versatile roles of NAD + in preserving DNA integrity. J Biol Chem 2022; 298:102037. [PMID: 35595095 PMCID: PMC9194868 DOI: 10.1016/j.jbc.2022.102037] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 12/13/2022] Open
Abstract
NAD+ is a versatile biomolecule acting as a master regulator and substrate in various cellular processes, including redox regulation, metabolism, and various signaling pathways. In this article, we concisely and critically review the role of NAD+ in mechanisms promoting genome maintenance. Numerous NAD+-dependent reactions are involved in the preservation of genome stability, the cellular DNA damage response, and other pathways regulating nucleic acid metabolism, such as gene expression and cell proliferation pathways. Of note, NAD+ serves as a substrate to ADP-ribosyltransferases, sirtuins, and potentially also eukaryotic DNA ligases, all of which regulate various aspects of DNA integrity, damage repair, and gene expression. Finally, we critically analyze recent developments in the field as well as discuss challenges associated with therapeutic actions intended to raise NAD+ levels.
Collapse
Affiliation(s)
- Joanna A Ruszkiewicz
- Molecular Toxicology Group, Department of Biology, University of Konstanz, Konstanz, Germany.
| | - Alexander Bürkle
- Molecular Toxicology Group, Department of Biology, University of Konstanz, Konstanz, Germany.
| | - Aswin Mangerich
- Molecular Toxicology Group, Department of Biology, University of Konstanz, Konstanz, Germany.
| |
Collapse
|
16
|
Quantitative proteomic analysis of the lysine acetylome reveals diverse SIRT2 substrates. Sci Rep 2022; 12:3822. [PMID: 35264593 PMCID: PMC8907344 DOI: 10.1038/s41598-022-06793-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 02/02/2022] [Indexed: 12/24/2022] Open
Abstract
Sirtuin 2 (SIRT2) is a NAD+-dependent deacetylase, which regulates multiple biological processes, including genome maintenance, aging, tumor suppression, and metabolism. While a number of substrates involved in these processes have been identified, the global landscape of the SIRT2 acetylome remains unclear. Using a label-free quantitative proteomic approach following enrichment for acetylated peptides from SIRT2-depleted and SIRT2-overexpressing HCT116 human colorectal cancer cells, we identified a total of 2,846 unique acetylation sites from 1414 proteins. 896 sites from 610 proteins showed a > 1.5-fold increase in acetylation with SIRT2 knockdown, and 509 sites from 361 proteins showed a > 1.5-fold decrease in acetylation with SIRT2 overexpression, with 184 proteins meeting both criteria. Sequence motif analyses identified several site-specific consensus sequence motifs preferentially recognized by SIRT2, most commonly KxxxxK(ac). Gene Ontology, KEGG, and MetaCore pathway analyses identified SIRT2 substrates involved in diverse pathways, including carbon metabolism, glycolysis, spliceosome, RNA transport, RNA binding, transcription, DNA damage response, the cell cycle, and colorectal cancer. Collectively, our findings expand on the number of known acetylation sites, substrates, and cellular pathways targeted by SIRT2, providing support for SIRT2 in regulating networks of proteins in diverse pathways and opening new avenues of investigation into SIRT2 function.
Collapse
|
17
|
Taneja A, Ravi V, Hong JY, Lin H, Sundaresan NR. Emerging roles of Sirtuin 2 in cardiovascular diseases. FASEB J 2021; 35:e21841. [PMID: 34582046 DOI: 10.1096/fj.202100490r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/07/2021] [Accepted: 07/23/2021] [Indexed: 11/11/2022]
Abstract
Sirtuins are a family of NAD+ -dependent deacetylases implicated in a wide variety of age-associated pathologies, including cardiovascular disorders. Among the seven mammalian sirtuins, SIRT2 modulates various cellular processes through the deacetylation or deacylation of their target proteins. Notably, the levels of SIRT2 in the heart decline with age and other pathological conditions, leading to cardiovascular dysfunction. In the present review, we discuss the emerging roles of SIRT2 in cardiovascular dysfunction and heart failure associated with factors like age, hypertension, oxidative stress, and diabetes. We also discuss the potential of using inhibitors to study the unexplored role of SIRT2 in the heart. While SIRT2 undoubtedly plays a crucial role in the cardiovascular system, its functions are only beginning to be understood, making it an attractive candidate for further research in the field.
Collapse
Affiliation(s)
- Arushi Taneja
- Department of Microbiology and Cell Biology, Cardiovascular and Muscle Research Laboratory, Indian Institute of Science, Bengaluru, India
| | - Venkatraman Ravi
- Department of Microbiology and Cell Biology, Cardiovascular and Muscle Research Laboratory, Indian Institute of Science, Bengaluru, India
| | - Jun Young Hong
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Hening Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA.,Howard Hughes Medical Institute, Cornell University, Ithaca, NY, USA
| | - Nagalingam Ravi Sundaresan
- Department of Microbiology and Cell Biology, Cardiovascular and Muscle Research Laboratory, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
18
|
Wang M, Lin H. Understanding the Function of Mammalian Sirtuins and Protein Lysine Acylation. Annu Rev Biochem 2021; 90:245-285. [PMID: 33848425 DOI: 10.1146/annurev-biochem-082520-125411] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Protein lysine acetylation is an important posttranslational modification that regulates numerous biological processes. Targeting lysine acetylation regulatory factors, such as acetyltransferases, deacetylases, and acetyl-lysine recognition domains, has been shown to have potential for treating human diseases, including cancer and neurological diseases. Over the past decade, many other acyl-lysine modifications, such as succinylation, crotonylation, and long-chain fatty acylation, have also been investigated and shown to have interesting biological functions. Here, we provide an overview of the functions of different acyl-lysine modifications in mammals. We focus on lysine acetylation as it is well characterized, and principles learned from acetylation are useful for understanding the functions of other lysine acylations. We pay special attention to the sirtuins, given that the study of sirtuins has provided a great deal of information about the functions of lysine acylation. We emphasize the regulation of sirtuins to illustrate that their regulation enables cells to respond to various signals and stresses.
Collapse
Affiliation(s)
- Miao Wang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA;
| | - Hening Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA; .,Howard Hughes Medical Institute, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
19
|
Minten EV, Kapoor-Vazirani P, Li C, Zhang H, Balakrishnan K, Yu DS. SIRT2 promotes BRCA1-BARD1 heterodimerization through deacetylation. Cell Rep 2021; 34:108921. [PMID: 33789098 PMCID: PMC8108010 DOI: 10.1016/j.celrep.2021.108921] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 02/08/2021] [Accepted: 03/09/2021] [Indexed: 01/04/2023] Open
Abstract
The breast cancer type I susceptibility protein (BRCA1) and BRCA1-associated RING domain protein I (BARD1) heterodimer promote genome integrity through pleiotropic functions, including DNA double-strand break (DSB) repair by homologous recombination (HR). BRCA1-BARD1 heterodimerization is required for their mutual stability, HR function, and role in tumor suppression; however, the upstream signaling events governing BRCA1-BARD1 heterodimerization are unclear. Here, we show that SIRT2, a sirtuin deacetylase and breast tumor suppressor, promotes BRCA1-BARD1 heterodimerization through deacetylation. SIRT2 complexes with BRCA1-BARD1 and deacetylates conserved lysines in the BARD1 RING domain, interfacing BRCA1, which promotes BRCA1-BARD1 heterodimerization and consequently BRCA1-BARD1 stability, nuclear retention, and localization to DNA damage sites, thus contributing to efficient HR. Our findings define a mechanism for regulation of BRCA1-BARD1 heterodimerization through SIRT2 deacetylation, elucidating a critical upstream signaling event directing BRCA1-BARD1 heterodimerization, which facilitates HR and tumor suppression, and delineating a role for SIRT2 in directing DSB repair by HR. Minten et al. show that SIRT2, a sirtuin deacetylase and tumor suppressor protein, promotes BRCA1-BARD1 heterodimerization through deacetylation of BARD1 at conserved lysines within its RING domain. These findings elucidate a critical upstream signaling event directing BRCA1-BARD1 heterodimerization, which facilitates HR and tumor suppression.
Collapse
Affiliation(s)
- Elizabeth V Minten
- Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Priya Kapoor-Vazirani
- Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Chunyang Li
- Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Hui Zhang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Kamakshi Balakrishnan
- Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - David S Yu
- Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
20
|
Yasuda T, Takizawa K, Ui A, Hama M, Kagawa W, Sugasawa K, Tajima K. Human SIRT2 and SIRT3 deacetylases function in DNA homologous recombinational repair. Genes Cells 2021; 26:328-335. [PMID: 33624391 DOI: 10.1111/gtc.12842] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 02/04/2021] [Accepted: 02/19/2021] [Indexed: 12/14/2022]
Abstract
SIRT2 and SIRT3 protein deacetylases maintain genome integrity and stability. However, their mechanisms for maintaining the genome remain unclear. To examine the roles of SIRT2 and SIRT3 in DSB repair, I-SceI-based GFP reporter assays for HR, single-strand annealing (SSA) and nonhomologous end joining (NHEJ) repair were performed under SIRT2- or SIRT3-depleted conditions. SIRT2 or SIRT3 depletion inhibited HR repair equally to RAD52 depletion, but did not affect SSA and NHEJ repairs. SIRT2 or SIRT3 depletion disturbed the recruitment of RAD51 to DSB sites, an essential step for RAD51-dependent HR repair, but not directly through RAD52 deacetylation. SIRT2 or SIRT3 depletion decreased the colocalization of γH2AX foci with RPA1, and thus, they might be involved in initiating DSB end resection for the recruitment of RAD51 to DSB sites at an early step in HR repair. These results show the novel underlying mechanism of the SIRT2 and SIRT3 functions in HR for genome stability.
Collapse
Affiliation(s)
- Takeshi Yasuda
- National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Sciences and Technology (QST), Chiba, Japan
| | - Kazuya Takizawa
- National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Sciences and Technology (QST), Chiba, Japan
| | - Ayako Ui
- Department of Molecular Oncology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.,Division of Dynamic Proteome in Cancer and Aging, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Michio Hama
- National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Sciences and Technology (QST), Chiba, Japan
| | - Wataru Kagawa
- Program in Chemistry and Life Science, Department of Interdisciplinary Science and Engineering, School of Science and Engineering, Meisei University, Hino, Japan
| | - Kaoru Sugasawa
- Biosignal Research Center, and Graduate School of Science, Kobe University, Kobe, Japan
| | - Katsushi Tajima
- National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Sciences and Technology (QST), Chiba, Japan
| |
Collapse
|
21
|
Chen Y, Geng A, Zhang W, Qian Z, Wan X, Jiang Y, Mao Z. Fight to the bitter end: DNA repair and aging. Ageing Res Rev 2020; 64:101154. [PMID: 32977059 DOI: 10.1016/j.arr.2020.101154] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/05/2020] [Accepted: 08/19/2020] [Indexed: 12/11/2022]
Abstract
DNA carries the genetic information that directs complex biological processes; thus, maintaining a stable genome is critical for individual growth and development and for human health. DNA repair is a fundamental and conserved mechanism responsible for mending damaged DNA and restoring genomic stability, while its deficiency is closely related to multiple human disorders. In recent years, remarkable progress has been made in the field of DNA repair and aging. Here, we will extensively discuss the relationship among DNA damage, DNA repair, aging and aging-associated diseases based on the latest research. In addition, the possible role of DNA repair in several potential rejuvenation strategies will be discussed. Finally, we will also review the emerging methods that may facilitate future research on DNA repair.
Collapse
|
22
|
Wang W, Im J, Kim S, Jang S, Han Y, Yang KM, Kim SJ, Dhanasekaran DN, Song YS. ROS-Induced SIRT2 Upregulation Contributes to Cisplatin Sensitivity in Ovarian Cancer. Antioxidants (Basel) 2020; 9:antiox9111137. [PMID: 33207824 PMCID: PMC7698236 DOI: 10.3390/antiox9111137] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 01/22/2023] Open
Abstract
Cisplatin resistance remains a significant obstacle for improving the clinical outcome of ovarian cancer patients. Recent studies have demonstrated that cisplatin is an important inducer of intracellullar reactive oxygen species (ROS), triggering cancer cell death. Sirtuin 2 (SIRT2), a member of class III NAD+ dependent histone deacetylases (HDACs), has been reported to be involved in regulating cancer hallmarks including drug response. In this study, we aimed to identify the role of SIRT2 in oxidative stress and cisplatin response in cancer. Two ovarian cancer cell lines featuring different sensitivities to cisplatin were used in this study. We found different expression patterns of SIRT2 in cisplatin-sensitive (A2780/S) and cisplatin-resistant (A2780/CP) cancer cells with cisplatin treatment, where SIRT2 expression was augmented only in A2780/S cells. Furthermore, cisplatin-induced ROS generation was responsible for the upregulation of SIRT2 in A2780/S cells, whereas overexpression of SIRT2 significantly enhanced the sensitivity of cisplatin-resistant counterpart cells to cisplatin. Our study proposes that targeting SIRT2 may provide new strategies to potentiate platinum-based chemotherapy in ovarian cancer patients.
Collapse
Affiliation(s)
- Wenyu Wang
- Interdisciplinary Program in Cancer Biology, Seoul National University College of Medicine, Seoul 03080, Korea;
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea; (J.I.); (S.J.); (Y.H.)
| | - Jihye Im
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea; (J.I.); (S.J.); (Y.H.)
- WCU Biomodulation, Department of Agricultural Biotechnology, Seoul National University, Seoul 03080, Korea
| | - Soochi Kim
- Department of Neurology and Neurological Sciences, Stanford University, School of Medicine, Stanford, CA 94305-5101, USA;
| | - Suin Jang
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea; (J.I.); (S.J.); (Y.H.)
- WCU Biomodulation, Department of Agricultural Biotechnology, Seoul National University, Seoul 03080, Korea
| | - Youngjin Han
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea; (J.I.); (S.J.); (Y.H.)
- WCU Biomodulation, Department of Agricultural Biotechnology, Seoul National University, Seoul 03080, Korea
| | - Kyung-Min Yang
- Precision Medicine Research Center, Advanced Institute of Convergence Technology, Seoul National University, Suwon, Gyeonggi-do 16229, Korea; (K.-M.Y.); (S.-J.K.)
| | - Seong-Jin Kim
- Precision Medicine Research Center, Advanced Institute of Convergence Technology, Seoul National University, Suwon, Gyeonggi-do 16229, Korea; (K.-M.Y.); (S.-J.K.)
- Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Suwon, Gyeonggi-do 16229, Korea
- MedPacto Inc., 92, Myeongdal-ro, Seocho-gu, Seoul 06668, Korea
| | - Danny N. Dhanasekaran
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
- Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Yong Sang Song
- Interdisciplinary Program in Cancer Biology, Seoul National University College of Medicine, Seoul 03080, Korea;
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea; (J.I.); (S.J.); (Y.H.)
- WCU Biomodulation, Department of Agricultural Biotechnology, Seoul National University, Seoul 03080, Korea
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Korea
- Correspondence: ; Tel.: +82-2-2072-2822
| |
Collapse
|
23
|
Gross KM, Zhou W, Breindel JL, Ouyang J, Jin DX, Sokol ES, Gupta PB, Huber K, Zou L, Kuperwasser C. Loss of Slug Compromises DNA Damage Repair and Accelerates Stem Cell Aging in Mammary Epithelium. Cell Rep 2020; 28:394-407.e6. [PMID: 31291576 DOI: 10.1016/j.celrep.2019.06.043] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 04/16/2019] [Accepted: 06/11/2019] [Indexed: 12/27/2022] Open
Abstract
DNA damage activates checkpoints that limit the replicative potential of stem cells, including differentiation. These checkpoints protect against cancer development but also promote tissue aging. Because mice lacking Slug/Snai2 exhibit limited stem cell activity, including luminobasal differentiation, and are protected from mammary cancer, we reasoned that Slug might regulate DNA damage checkpoints in mammary epithelial cells. Here, we show that Slug facilitates efficient execution of RPA32-mediated DNA damage response (DDR) signaling. Slug deficiency leads to delayed phosphorylation of ataxia telangiectasia mutated and Rad3-related protein (ATR) and its effectors RPA32 and CHK1. This leads to impaired RAD51 recruitment to DNA damage sites and persistence of unresolved DNA damage. In vivo, Slug/Snai2 loss leads to increased DNA damage and premature aging of mammary epithelium. Collectively, our work demonstrates that the mammary stem cell regulator Slug controls DDR checkpoints by dually inhibiting differentiation and facilitating DDR repair, and its loss causes unresolved DNA damage and accelerated aging.
Collapse
Affiliation(s)
- Kayla M Gross
- Department of Developmental, Molecular, & Chemical Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111, USA; Raymond and Beverly Sackler Convergence Laboratory, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Wenhui Zhou
- Department of Developmental, Molecular, & Chemical Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111, USA; Raymond and Beverly Sackler Convergence Laboratory, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Jerrica L Breindel
- Department of Biomedical Sciences, Quinnipiac University, Hamden, CT 06518, USA
| | - Jian Ouyang
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Dexter X Jin
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Ethan S Sokol
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Piyush B Gupta
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Kathryn Huber
- Department of Radiation Oncology, Tufts Medical Center, Boston, MA 02111, USA
| | - Lee Zou
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Charlotte Kuperwasser
- Department of Developmental, Molecular, & Chemical Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111, USA; Raymond and Beverly Sackler Convergence Laboratory, Tufts University School of Medicine, Boston, MA 02111, USA.
| |
Collapse
|
24
|
Zhang L, Kim S, Ren X. The Clinical Significance of SIRT2 in Malignancies: A Tumor Suppressor or an Oncogene? Front Oncol 2020; 10:1721. [PMID: 33014852 PMCID: PMC7506103 DOI: 10.3389/fonc.2020.01721] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 07/31/2020] [Indexed: 12/28/2022] Open
Abstract
Sirtuin 2 (SIRT2) is a member of the sirtuin protein family. It is a Class III histone deacetylase (HDACs) and predominantly localized to the cytosol. SIRT2 deacetylates histones and a number of non-histone proteins and plays a pivotal role in various physiologic processes. Previously, SIRT2 has been considered indispensable during carcinogenesis; however, there is now a significant controversy regarding whether SIRT2 is an oncogene or a tumor suppressor. The purpose of this review is to summarize the physiological functions of SIRT2 and its mechanisms in cancer. We will focus on five malignancies (breast cancer, non-small cell lung cancer, hepatocellular carcinoma, colorectal cancer, and glioma) to describe the current status of SIRT2 research and discuss the clinical evaluation of SIRT2 expression and the use of SIRT2 inhibitors.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center of Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Sungjune Kim
- Department of Radiation Oncology and Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Xiubao Ren
- National Clinical Research Center of Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China.,Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| |
Collapse
|
25
|
Ryu NM, Kim JM. The role of the α-tubulin acetyltransferase αTAT1 in the DNA damage response. J Cell Sci 2020; 133:jcs.246702. [PMID: 32788234 DOI: 10.1242/jcs.246702] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/27/2020] [Indexed: 11/20/2022] Open
Abstract
Lysine 40 acetylation of α-tubulin (Ac-α-tubulin), catalyzed by the acetyltransferase αTAT1, marks stabilized microtubules. Recently, there is growing evidence to suggest crosstalk between the DNA damage response (DDR) and microtubule organization; we therefore investigated whether αTAT1 is involved in the DDR. Following treatment with DNA-damaging agents, increased levels of Ac-α-tubulin were detected. We also observed significant induction of Ac-α-tubulin after depletion of DNA repair proteins, suggesting that αTAT1 is positively regulated in response to DNA damage. Intriguingly, αTAT1 depletion decreased DNA damage-induced replication protein A (RPA) phosphorylation and foci formation. Moreover, DNA damage-induced cell cycle arrest was significantly delayed in αTAT1-depleted cells, indicating defective checkpoint activation. The checkpoint defects seen upon αTAT1 deficiency were restored by expression of wild-type αTAT1, but not by αTAT1-D157N (a catalytically inactive αTAT1), indicating that the role of αTAT1 in the DDR is dependent on enzymatic activity. Furthermore, αTAT1-depleted direct repeat GFP (DR-GFP) U2OS cells had a significant decrease in the frequency of homologous recombination repair. Collectively, our results suggest that αTAT1 may play an essential role in DNA damage checkpoints and DNA repair through its acetyltransferase activity.
Collapse
Affiliation(s)
- Na Mi Ryu
- Department of Pharmacology, Chonnam National University Medical School, Jellanamdo, 58128, Republic of Korea
| | - Jung Min Kim
- Department of Pharmacology, Chonnam National University Medical School, Jellanamdo, 58128, Republic of Korea
| |
Collapse
|
26
|
DNA Damage Response and Metabolic Reprogramming in Health and Disease. Trends Genet 2020; 36:777-791. [PMID: 32684438 DOI: 10.1016/j.tig.2020.06.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 01/08/2023]
Abstract
Nuclear DNA damage contributes to cellular malfunction and the premature onset of age-related diseases, including cancer. Until recently, the canonical DNA damage response (DDR) was thought to represent a collection of nuclear processes that detect, signal and repair damaged DNA. However, recent evidence suggests that beyond nuclear events, the DDR rewires an intricate network of metabolic circuits, fine-tunes protein synthesis, trafficking, and secretion as well as balances growth with defense strategies in response to genotoxic insults. In this review, we discuss how the active DDR signaling mobilizes extranuclear and systemic responses to promote cellular homeostasis and organismal survival in health and disease.
Collapse
|
27
|
Choi YJ, Kang MH, Hong K, Kim JH. Tubastatin A inhibits HDAC and Sirtuin activity rather than being a HDAC6-specific inhibitor in mouse oocytes. Aging (Albany NY) 2020; 11:1759-1777. [PMID: 30913540 PMCID: PMC6461172 DOI: 10.18632/aging.101867] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 03/08/2019] [Indexed: 12/14/2022]
Abstract
Tubastatin A (TubA) is a highly selective histone deacetylase 6 (HDAC6) inhibitor. As expected, mouse germinal vesicle oocytes fail to extrude the first polar body following TubA treatment. However, a previous study demonstrated that homozygous Hdac6 knockout (KO) mice can be viable and fertile. Therefore, we asked whether TubA is indeed a specific inhibitor of HDAC6 activity. RNA-sequencing and in silico analysis demonstrated that the TubA-treated group presented significant changes in the expression of Hdac subfamily genes such as Hdac6, 10, and 11, and Sirtuin 2, 5, 6, and 7. Additionally, gene expression related to the p53, MAPK, Wnt, and Notch signaling pathways in the TubA-treated group were increased significantly; in contrast, gene expression related to metabolism, DNA replication, and oxidative phosphorylation was decreased significantly. Furthermore, gene expression related to cell cycle, cell structure, pyrimidine metabolism, pentose phosphate pathway, mitochondrial activation, proteasome pathway, RNA polymerase, DNA replication, cyclin-dependent kinase, nucleolar activity, and MI arrest were significantly decreased, indicating that TubA-induced abnormal meiotic maturation and oocyte senescence may be due to the combined effects of HDAC and Sirtuin inhibition, and not HDAC6 inhibition alone. Thus, we believed that this system could provide a model for monitoring the effects of TubA on mouse oocytes.
Collapse
Affiliation(s)
- Yun-Jung Choi
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul 143-701, Republic of Korea
| | - Min-Hee Kang
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul 143-701, Republic of Korea
| | - Kwonho Hong
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul 143-701, Republic of Korea
| | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul 143-701, Republic of Korea
| |
Collapse
|
28
|
SIRT2 Affects Primary Cilia Formation by Regulating mTOR Signaling in Retinal Pigmented Epithelial Cells. Int J Mol Sci 2020; 21:ijms21062240. [PMID: 32213867 PMCID: PMC7139600 DOI: 10.3390/ijms21062240] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 03/18/2020] [Accepted: 03/20/2020] [Indexed: 12/12/2022] Open
Abstract
SIRT2, a member of the Class III HDAC family, participates in diverse cellular processes and regulates several pathological conditions. Although a few reports show that SIRT2 regulates the cell cycle, the causes and outcomes of SIRT2-dependent cell proliferation remain unclear. Here, we examined the effects of SIRT2 suppression in human RPE1 cells using siRNA targeting SIRT2, and AK-1, a SIRT2-specific inhibitor. The number of primary cilia in SIRT2-suppressed cells increased under serum-present conditions. Suppressing SIRT2 induced cell cycle arrest at G0/G1 phase by inactivating mammalian target of rapamycin (mTOR) signaling, possibly through mTORC1. Treatment with torin 1, an inhibitor of mTORC1/mTORC2, yielded results similar to those observed after SIRT2 suppression. However, SIRT2 suppression did not affect primary cilia formation or mTOR signaling following serum starvation. This suggests that SIRT2 acts as a critical sensor that links growth factor-dependent signal transduction and primary cilia formation by regulating the cell cycle.
Collapse
|
29
|
Petr MA, Tulika T, Carmona-Marin LM, Scheibye-Knudsen M. Protecting the Aging Genome. Trends Cell Biol 2020; 30:117-132. [DOI: 10.1016/j.tcb.2019.12.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/27/2019] [Accepted: 12/02/2019] [Indexed: 12/15/2022]
|
30
|
Onn L, Portillo M, Ilic S, Cleitman G, Stein D, Kaluski S, Shirat I, Slobodnik Z, Einav M, Erdel F, Akabayov B, Toiber D. SIRT6 is a DNA double-strand break sensor. eLife 2020; 9:51636. [PMID: 31995034 PMCID: PMC7051178 DOI: 10.7554/elife.51636] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 01/23/2020] [Indexed: 12/18/2022] Open
Abstract
DNA double-strand breaks (DSB) are the most deleterious type of DNA damage. In this work, we show that SIRT6 directly recognizes DNA damage through a tunnel-like structure that has high affinity for DSB. SIRT6 relocates to sites of damage independently of signaling and known sensors. It activates downstream signaling for DSB repair by triggering ATM recruitment, H2AX phosphorylation and the recruitment of proteins of the homologous recombination and non-homologous end joining pathways. Our findings indicate that SIRT6 plays a previously uncharacterized role as a DNA damage sensor, a critical factor in initiating the DNA damage response (DDR). Moreover, other Sirtuins share some DSB-binding capacity and DDR activation. SIRT6 activates the DDR before the repair pathway is chosen, and prevents genomic instability. Our findings place SIRT6 as a sensor of DSB, and pave the road to dissecting the contributions of distinct DSB sensors in downstream signaling. DNA is a double-stranded molecule in which the two strands run in opposite directions, like the lanes on a two-lane road. Also like a road, DNA can be damaged by use and adverse conditions. Double-strand breaks – where both strands of DNA snap at once – are the most dangerous type of DNA damage, so cells have systems in place to rapidly detect and repair this kind of damage. There are three confirmed sensors for double-strand break in human cells. A fourth protein, known as SIRT6, arrives within five seconds of DNA damage, and was known to make the DNA more accessible so that it can be repaired. However, it was unclear whether SIRT6 could detect the double-strand break itself, or whether it was recruited to the damage by another double-strand break sensor. To address this issue, Onn et al. blocked the three other sensors in human cells and watched the response to DNA damage. Even when all the other sensors were inactive, SIRT6 still arrived at damaged DNA and activated the DNA damage response. To find out how SIRT6 sensed DNA damage, Onn et al. examined how purified SIRT6 interacts with different kinds of DNA. This revealed that SIRT6 sticks to broken DNA ends, especially if the end of one strand slightly overhangs the other – a common feature of double-strand breaks. A closer look at the structure of the SIRT6 protein revealed that it contains a narrow tube, which fits over the end of one broken DNA strand. When both strands break at once, two SIRT6 molecules cap the broken ends, joining together to form a pair. This pair not only protects the open ends of the DNA from further damage, it also sends signals to initiating repairs. In this way, SIRT6 could be thought of acting like a paramedic who arrives first on the scene of an accident and works to treat the injured while waiting for more specialized help to arrive. Understanding the SIRT6 sensor could improve knowledge about how cells repair their DNA. SIRT6 arrives before the cell chooses how to fix its broken DNA, so studying it further could reveal how that critical decision happens. This is important for medical research because DNA damage builds up in age-related diseases like cancer and neurodegeneration. In the long term, these findings can help us develop new treatments that target different types of DNA damage sensors.
Collapse
Affiliation(s)
- Lior Onn
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.,The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Miguel Portillo
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.,The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Stefan Ilic
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Gal Cleitman
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.,The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Daniel Stein
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.,The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Shai Kaluski
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.,The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ido Shirat
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.,The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Zeev Slobodnik
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.,The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Monica Einav
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.,The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Fabian Erdel
- Division of Chromatin Networks, German Cancer Research Center (DKFZ), BioQuant, Heidelberg, Germany.,Centre de Biologie Intégrative, CNRS UPS, Toulouse, France
| | - Barak Akabayov
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Debra Toiber
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.,The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
31
|
Li C, Zhou Y, Rychahou P, Weiss HL, Lee EY, Perry CL, Barrett TA, Wang Q, Evers BM. SIRT2 Contributes to the Regulation of Intestinal Cell Proliferation and Differentiation. Cell Mol Gastroenterol Hepatol 2020; 10:43-57. [PMID: 31954883 PMCID: PMC7210478 DOI: 10.1016/j.jcmgh.2020.01.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIMS Intestinal mucosa undergoes a continual process of proliferation, differentiation, and apoptosis. Disruption of this homeostasis is associated with disorders such as inflammatory bowel disease (IBD). We investigated the role of Sirtuin 2 (SIRT2), a NAD-dependent protein deacetylase, in intestinal epithelial cell (IEC) proliferation and differentiation and the mechanism by which SIRT2 contributes to maintenance of intestinal cell homeostasis. METHODS IECs were collected from SIRT2-deficient mice and patients with IBD. Expression of SIRT2, differentiation markers (mucin2, intestinal alkaline phosphatase, villin, Na,K-ATPase, and lysozyme) and Wnt target genes (EPHB2, AXIN2, and cyclin D1) was determined by western blot, real-time RT-PCR, or immunohistochemical (IHC) staining. IECs were treated with TNF or transfected with siRNA targeting SIRT2. Proliferation was determined by villus height and crypt depth, and Ki67 and cyclin D1 IHC staining. For studies using organoids, intestinal crypts were isolated. RESULTS Increased SIRT2 expression was localized to the more differentiated region of the intestine. In contrast, SIRT2 deficiency impaired proliferation and differentiation and altered stemness in the small intestinal epithelium ex vivo and in vivo. SIRT2-deficient mice showed decreased intestinal enterocyte and goblet cell differentiation but increased the Paneth cell lineage and increased proliferation of IECs. Moreover, we found that SIRT2 inhibits Wnt/β-catenin signaling, which critically regulates IEC proliferation and differentiation. Consistent with a distinct role for SIRT2 in maintenance of gut homeostasis, intestinal mucosa from IBD patients exhibited decreased SIRT2 expression. CONCLUSION We demonstrate that SIRT2, which is decreased in intestinal tissues from IBD patients, regulates Wnt-β-catenin signaling and is important for maintenance of IEC proliferation and differentiation.
Collapse
Affiliation(s)
- Chang Li
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky
| | - Yuning Zhou
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky
| | - Piotr Rychahou
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky,Department of Surgery, University of Kentucky, Lexington, Kentucky
| | - Heidi L. Weiss
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky
| | - Eun Y. Lee
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky,Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, Kentucky
| | - Courtney L. Perry
- Department of Internal Medicine, University of Kentucky, Lexington, Kentucky
| | - Terrence A. Barrett
- Department of Internal Medicine, University of Kentucky, Lexington, Kentucky
| | - Qingding Wang
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky,Department of Surgery, University of Kentucky, Lexington, Kentucky,Qingding Wang, PhD, Markey Cancer Center, University of Kentucky, 800 Rose Street, CC140, Lexington, KY 40536-0293. fax: (859) 323-2074.
| | - B. Mark Evers
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky,Department of Surgery, University of Kentucky, Lexington, Kentucky,Correspondence Address correspondence to: B. Mark Evers, MD, Markey Cancer Center, University of Kentucky, 800 Rose Street, CC140, Lexington, KY 40536-0293. fax: (859) 323-2074.
| |
Collapse
|
32
|
Zhang X, Brachner A, Kukolj E, Slade D, Wang Y. SIRT2 deacetylates GRASP55 to facilitate post-mitotic Golgi assembly. J Cell Sci 2019; 132:jcs232389. [PMID: 31604796 PMCID: PMC6857597 DOI: 10.1242/jcs.232389] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 10/01/2019] [Indexed: 01/25/2023] Open
Abstract
Sirtuin 2 (SIRT2) is an NAD-dependent sirtuin deacetylase that regulates microtubule and chromatin dynamics, gene expression and cell cycle progression, as well as nuclear envelope reassembly. Recent proteomic analyses have identified Golgi proteins as SIRT2 interactors, indicating that SIRT2 may also play a role in Golgi structure formation. Here, we show that SIRT2 depletion causes Golgi fragmentation and impairs Golgi reassembly at the end of mitosis. SIRT2 interacts with the Golgi reassembly stacking protein GRASP55 (also known as GORASP2) in mitosis when GRASP55 is highly acetylated on K50. Expression of wild-type and the K50R acetylation-deficient mutant of GRASP55, but not the K50Q acetylation-mimetic mutant, in GRASP55 and GRASP65 (also known as GORASP1) double-knockout cells, rescued the Golgi structure and post-mitotic Golgi reassembly. Acetylation-deficient GRASP55 exhibited a higher self-interaction efficiency, a property required for Golgi structure formation. These results demonstrate that SIRT2 regulates Golgi structure by modulating GRASP55 acetylation levels.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 4110 Biological Sciences Building, 1105 North University Avenue, Ann Arbor, MI 48109-1085, USA
| | - Andreas Brachner
- Department of Biochemistry, Max Perutz Labs, University of Vienna, Vienna Biocenter, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Eva Kukolj
- Department of Biochemistry, Max Perutz Labs, University of Vienna, Vienna Biocenter, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Dea Slade
- Department of Biochemistry, Max Perutz Labs, University of Vienna, Vienna Biocenter, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Yanzhuang Wang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 4110 Biological Sciences Building, 1105 North University Avenue, Ann Arbor, MI 48109-1085, USA
| |
Collapse
|
33
|
Wang Y, Yang J, Hong T, Chen X, Cui L. SIRT2: Controversy and multiple roles in disease and physiology. Ageing Res Rev 2019; 55:100961. [PMID: 31505260 DOI: 10.1016/j.arr.2019.100961] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/11/2019] [Accepted: 09/04/2019] [Indexed: 12/21/2022]
Abstract
Sirtuin 2 (SIRT2) is an NAD+-dependent deacetylase that was under studied compared to other sirtuin family members. SIRT2 is the only sirtuin protein which is predominantly found in the cytoplasm but is also found in the mitochondria and in the nucleus. Recently, accumulating evidence has uncovered a growing number of substrates and additional detailed functions of SIRT2 in a wide range of biological processes, marking its crucial role. Here, we give a comprehensive profile of the crucial physiological functions of SIRT2 and its role in neurological diseases, cancers, and other diseases. This review summarizes the functions of SIRT2 in the nervous system, mitosis regulation, genome integrity, cell differentiation, cell homeostasis, aging, infection, inflammation, oxidative stress, and autophagy. SIRT2 inhibition rescues neurodegenerative disease symptoms and hence SIRT2 is a potential therapeutic target for neurodegenerative disease. SIRT2 is undoubtedly dysfunctional in cancers and plays a dual-faced role in different types of cancers, and although its mechanism is unresolved, SIRT2 remains a promising therapeutic target for certain cancers. In future, the continued rapid growth in SIRT2 research will help clarify its role in human health and disease, and promote the progress of this target in clinical practice.
Collapse
Affiliation(s)
- Yan Wang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China; Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Jingqi Yang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Tingting Hong
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xiongjin Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Lili Cui
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
| |
Collapse
|
34
|
Liu Q, Gao J, Zhao C, Guo Y, Wang S, Shen F, Xing X, Luo Y. To control or to be controlled? Dual roles of CDK2 in DNA damage and DNA damage response. DNA Repair (Amst) 2019; 85:102702. [PMID: 31731257 DOI: 10.1016/j.dnarep.2019.102702] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 09/09/2019] [Accepted: 09/13/2019] [Indexed: 02/04/2023]
Abstract
CDK2 (cyclin-dependent kinase 2), a member of the CDK family, has been shown to play a role in many cellular activities including cell cycle progression, apoptosis and senescence. Recently, accumulating evidence indicates that CDK2 is involved in DNA damage and DNA repair response (DDR). When DNA is damaged by internal or external genotoxic stresses, CDK2 activity is required for proper DNA repair in vivo and in vitro, whereas inactivation of CDK2 by siRNA techniques or by inhibitors could result in DNA damage and stimulate DDR. Hence, CDK2 seems to play dual roles in DNA damage and DDR. On one aspect, it is activated and stimulates DDR to repair DNA damage when DNA damage occurs; on the other hand, its inactivation directly leads to DNA damage and evokes DDR. Here, we describe the roles of CDK2 in DNA damage and DDR, and discuss the potential application of CDK2 inhibitors as anti-cancer agents.
Collapse
Affiliation(s)
- Qi Liu
- The Research Center for Medical Genomics, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Science, China Medical University, Shenyang, Liaoning Province, PR China
| | - Jinlan Gao
- The Research Center for Medical Genomics, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Science, China Medical University, Shenyang, Liaoning Province, PR China
| | - Chenyang Zhao
- The Research Center for Medical Genomics, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Science, China Medical University, Shenyang, Liaoning Province, PR China
| | - Yingying Guo
- The Research Center for Medical Genomics, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Science, China Medical University, Shenyang, Liaoning Province, PR China
| | - Shiquan Wang
- The Research Center for Medical Genomics, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Science, China Medical University, Shenyang, Liaoning Province, PR China
| | - Fei Shen
- The Research Center for Medical Genomics, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Science, China Medical University, Shenyang, Liaoning Province, PR China
| | - Xuesha Xing
- The Research Center for Medical Genomics, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Science, China Medical University, Shenyang, Liaoning Province, PR China
| | - Yang Luo
- The Research Center for Medical Genomics, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Science, China Medical University, Shenyang, Liaoning Province, PR China.
| |
Collapse
|
35
|
Current role of mammalian sirtuins in DNA repair. DNA Repair (Amst) 2019; 80:85-92. [DOI: 10.1016/j.dnarep.2019.06.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/29/2019] [Indexed: 01/20/2023]
|
36
|
Chen G, Luo Y, Warncke K, Sun Y, Yu DS, Fu H, Behera M, Ramalingam SS, Doetsch PW, Duong DM, Lammers M, Curran WJ, Deng X. Acetylation regulates ribonucleotide reductase activity and cancer cell growth. Nat Commun 2019; 10:3213. [PMID: 31324785 PMCID: PMC6642173 DOI: 10.1038/s41467-019-11214-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 06/25/2019] [Indexed: 12/26/2022] Open
Abstract
Ribonucleotide reductase (RNR) catalyzes the de novo synthesis of deoxyribonucleoside diphosphates (dNDPs) to provide dNTP precursors for DNA synthesis. Here, we report that acetylation and deacetylation of the RRM2 subunit of RNR acts as a molecular switch that impacts RNR activity, dNTP synthesis, and DNA replication fork progression. Acetylation of RRM2 at K95 abrogates RNR activity by disrupting its homodimer assembly. RRM2 is directly acetylated by KAT7, and deacetylated by Sirt2, respectively. Sirt2, which level peak in S phase, sustains RNR activity at or above a threshold level required for dNTPs synthesis. We also find that radiation or camptothecin-induced DNA damage promotes RRM2 deacetylation by enhancing Sirt2-RRM2 interaction. Acetylation of RRM2 at K95 results in the reduction of the dNTP pool, DNA replication fork stalling, and the suppression of tumor cell growth in vitro and in vivo. This study therefore identifies acetylation as a regulatory mechanism governing RNR activity.
Collapse
Affiliation(s)
- Guo Chen
- Departments of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, 1365C Clifton Road NE, Atlanta, GA, 30322, USA
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, 510632, Guangzhou, Guangdong, China
| | - Yin Luo
- Department of Pharmacology, Emory University School of Medicine and Winship Cancer Institute of Emory University, 1510 Clifton Rd. NE, Atlanta, GA, 30322, USA
| | - Kurt Warncke
- Department of Physics, Emory University, 400 Dowman Drive, Atlanta, GA, 30322, USA
| | - Youwei Sun
- Departments of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, 1365C Clifton Road NE, Atlanta, GA, 30322, USA
| | - David S Yu
- Departments of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, 1365C Clifton Road NE, Atlanta, GA, 30322, USA
| | - Haian Fu
- Department of Pharmacology, Emory University School of Medicine and Winship Cancer Institute of Emory University, 1510 Clifton Rd. NE, Atlanta, GA, 30322, USA
| | - Madhusmita Behera
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, 1365C Clifton Road NE, Atlanta, GA, 30322, USA
| | - Suresh S Ramalingam
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, 1365C Clifton Road NE, Atlanta, GA, 30322, USA
| | - Paul W Doetsch
- Laboratory of Genome Integrity and Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Duc M Duong
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Rd. NE, Atlanta, GA, 30322, USA
| | - Michael Lammers
- Institute of Biochemistry, Synthetic and Structural Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, Greifswald, 17487, Germany
| | - Walter J Curran
- Departments of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, 1365C Clifton Road NE, Atlanta, GA, 30322, USA
| | - Xingming Deng
- Departments of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, 1365C Clifton Road NE, Atlanta, GA, 30322, USA.
| |
Collapse
|
37
|
Minten EV, Yu DS. DNA Repair: Translation to the Clinic. Clin Oncol (R Coll Radiol) 2019; 31:303-310. [PMID: 30876709 DOI: 10.1016/j.clon.2019.02.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 02/18/2019] [Accepted: 02/20/2019] [Indexed: 12/18/2022]
Abstract
It has been well established that an accumulation of mutations in DNA, whether caused by external sources (e.g. ultraviolet light, radioactivity) or internal sources (e.g. metabolic by-products, such as reactive oxygen species), has the potential to cause a cell to undergo carcinogenesis and increase the risk for the development of cancer. Therefore, it is critically important for a cell to have the capacity to properly respond to and repair DNA damage as it occurs. The DNA damage response (DDR) describes a collection of DNA repair pathways that aid in the protection of genomic integrity by detecting myriad types of DNA damage and initiating the correct DNA repair pathway. In many instances, a deficiency in the DDR, whether inherited or spontaneously assumed, can increase the risk of carcinogenesis and ultimately tumorigenesis through the accumulation of mutations that fail to be properly repaired. Interestingly, although disruption of the DDR can lead to the initial genomic instability that can ultimately cause carcinogenesis, the DDR has also proven to be an invaluable target for anticancer drugs and therapies. Making matters more complicated, the DDR is also involved in the resistance to first-line cancer therapy. In this review, we will consider therapies already in use in the clinic and ongoing research into other avenues of treatment that target DNA repair pathways in cancer.
Collapse
Affiliation(s)
- E V Minten
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - D S Yu
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
38
|
Kosciuk T, Wang M, Hong JY, Lin H. Updates on the epigenetic roles of sirtuins. Curr Opin Chem Biol 2019; 51:18-29. [PMID: 30875552 DOI: 10.1016/j.cbpa.2019.01.023] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/09/2019] [Accepted: 01/25/2019] [Indexed: 12/18/2022]
Abstract
Sirtuins are a class of enzyme with NAD+-dependent protein lysine deacylase activities. They were initially discovered to regulate transcription and life span via histone deacetylase activities. Later studies expanded their activities to other proteins and acyl lysine modifications. Through deacylating various substrate proteins, they regulate many biological processes, including transcription, DNA repair and genome stability, metabolism, and signal transduction. Here, we review recent understandings of the epigenetic functions (broadly defined to include transcriptional, post-transcriptional regulation, and DNA repair) of mammalian sirtuins. Because of the important functions of sirtuins, their own regulation is of great interest and is also discussed.
Collapse
Affiliation(s)
- Tatsiana Kosciuk
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Miao Wang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Jun Young Hong
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Hening Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA; Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
39
|
Lu Y, Tao F, Zhou MT, Tang KF. The signaling pathways that mediate the anti-cancer effects of caloric restriction. Pharmacol Res 2019; 141:512-520. [PMID: 30641278 DOI: 10.1016/j.phrs.2019.01.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/31/2018] [Accepted: 01/11/2019] [Indexed: 02/07/2023]
Abstract
Caloric restriction (CR) has been shown to promote longevity and ameliorate aging-associated diseases, including cancer. Extensive research over recent decades has revealed that CR reduces IGF-1/PI3K/AKT signaling and increases sirtuin signaling. We recently found that CR also enhances ALDOA/DNA-PK/p53 signaling. In the present review, we summarize the molecular mechanisms underlying the modulation of the IGF-1/PI3K/AKT pathway, sirtuin signaling, and the ALDOA/DNA-PK/p53 pathway by CR. We also summarize the evidence concerning the roles of these signaling pathways in carcinogenesis, and discuss how they are regulated by CR. Finally, we discuss the crosstalk between these signaling pathways.
Collapse
Affiliation(s)
- Yiyi Lu
- Department of Dermato-Venereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China
| | - Fengxing Tao
- Department of Dermato-Venereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China
| | - Meng-Tao Zhou
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang, China.
| | - Kai-Fu Tang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang, China; Digestive Cancer Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang, China.
| |
Collapse
|
40
|
SAMHD1 Promotes DNA End Resection to Facilitate DNA Repair by Homologous Recombination. Cell Rep 2018; 20:1921-1935. [PMID: 28834754 DOI: 10.1016/j.celrep.2017.08.008] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 07/05/2017] [Accepted: 07/28/2017] [Indexed: 12/28/2022] Open
Abstract
DNA double-strand break (DSB) repair by homologous recombination (HR) is initiated by CtIP/MRN-mediated DNA end resection to maintain genome integrity. SAMHD1 is a dNTP triphosphohydrolase, which restricts HIV-1 infection, and mutations are associated with Aicardi-Goutières syndrome and cancer. We show that SAMHD1 has a dNTPase-independent function in promoting DNA end resection to facilitate DSB repair by HR. SAMHD1 deficiency or Vpx-mediated degradation causes hypersensitivity to DSB-inducing agents, and SAMHD1 is recruited to DSBs. SAMHD1 complexes with CtIP via a conserved C-terminal domain and recruits CtIP to DSBs to facilitate end resection and HR. Significantly, a cancer-associated mutant with impaired CtIP interaction, but not dNTPase-inactive SAMHD1, fails to rescue the end resection impairment of SAMHD1 depletion. Our findings define a dNTPase-independent function for SAMHD1 in HR-mediated DSB repair by facilitating CtIP accrual to promote DNA end resection, providing insight into how SAMHD1 promotes genome integrity.
Collapse
|
41
|
The SIRT2 Deacetylase Stabilizes Slug to Control Malignancy of Basal-like Breast Cancer. Cell Rep 2017; 17:1302-1317. [PMID: 27783945 DOI: 10.1016/j.celrep.2016.10.006] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 09/06/2016] [Accepted: 10/02/2016] [Indexed: 12/14/2022] Open
Abstract
Overabundance of Slug protein is common in human cancer and represents an important determinant underlying the aggressiveness of basal-like breast cancer (BLBC). Despite its importance, this transcription factor is rarely mutated in BLBC, and the mechanism of its deregulation in cancer remains unknown. Here, we report that Slug undergoes acetylation-dependent protein degradation and identify the deacetylase SIRT2 as a key mediator of this post-translational mechanism. SIRT2 inhibition rapidly destabilizes Slug, whereas SIRT2 overexpression extends Slug stability. We show that SIRT2 deacetylates Slug protein at lysine residue K116 to prevent Slug degradation. Interestingly, SIRT2 is frequently amplified and highly expressed in BLBC. Genetic depletion and pharmacological inactivation of SIRT2 in BLBC cells reverse Slug stabilization, cause the loss of clinically relevant pathological features of BLBC, and inhibit tumor growth. Our results suggest that targeting SIRT2 may be a rational strategy for diminishing Slug abundance and its associated malignant traits in BLBC.
Collapse
|
42
|
Saldivar JC, Cortez D, Cimprich KA. The essential kinase ATR: ensuring faithful duplication of a challenging genome. Nat Rev Mol Cell Biol 2017; 18:622-636. [PMID: 28811666 DOI: 10.1038/nrm.2017.67] [Citation(s) in RCA: 582] [Impact Index Per Article: 72.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
One way to preserve a rare book is to lock it away from all potential sources of damage. Of course, an inaccessible book is also of little use, and the paper and ink will continue to degrade with age in any case. Like a book, the information stored in our DNA needs to be read, but it is also subject to continuous assault and therefore needs to be protected. In this Review, we examine how the replication stress response that is controlled by the kinase ataxia telangiectasia and Rad3-related (ATR) senses and resolves threats to DNA integrity so that the DNA remains available to read in all of our cells. We discuss the multiple data that have revealed an elegant yet increasingly complex mechanism of ATR activation. This involves a core set of components that recruit ATR to stressed replication forks, stimulate kinase activity and amplify ATR signalling. We focus on the activities of ATR in the control of cell cycle checkpoints, origin firing and replication fork stability, and on how proper regulation of these processes is crucial to ensure faithful duplication of a challenging genome.
Collapse
Affiliation(s)
- Joshua C Saldivar
- Department of Chemical and Systems Biology, Stanford University School of Medicine, 318 Campus Drive, Stanford, California 94305-5441, USA
| | - David Cortez
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, Tennessee 37232, USA
| | - Karlene A Cimprich
- Department of Chemical and Systems Biology, Stanford University School of Medicine, 318 Campus Drive, Stanford, California 94305-5441, USA
| |
Collapse
|
43
|
Bournique E, Dall'Osto M, Hoffmann JS, Bergoglio V. Role of specialized DNA polymerases in the limitation of replicative stress and DNA damage transmission. Mutat Res 2017; 808:62-73. [PMID: 28843435 DOI: 10.1016/j.mrfmmm.2017.08.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 08/08/2017] [Accepted: 08/09/2017] [Indexed: 01/31/2023]
Abstract
Replication stress is a strong and early driving force for genomic instability and tumor development. Beside replicative DNA polymerases, an emerging group of specialized DNA polymerases is involved in the technical assistance of the replication machinery in order to prevent replicative stress and its deleterious consequences. During S-phase, altered progression of the replication fork by endogenous or exogenous impediments induces replicative stress, causing cells to reach mitosis with genomic regions not fully duplicated. Recently, specific mechanisms to resolve replication intermediates during mitosis with the aim of limiting DNA damage transmission to daughter cells have been identified. In this review, we detail the two major actions of specialized DNA polymerases that limit DNA damage transmission: the prevention of replicative stress by non-B DNA replication and the recovery of stalled replication forks.
Collapse
Affiliation(s)
- Elodie Bournique
- CRCT, Université de Toulouse, Inserm, CNRS, UPS Equipe Labellisée Ligue Contre le Cancer, Laboratoire d'Excellence Toulouse Cancer, 2 Avenue Hubert Curien, 31037, Toulouse, France
| | - Marina Dall'Osto
- CRCT, Université de Toulouse, Inserm, CNRS, UPS Equipe Labellisée Ligue Contre le Cancer, Laboratoire d'Excellence Toulouse Cancer, 2 Avenue Hubert Curien, 31037, Toulouse, France
| | - Jean-Sébastien Hoffmann
- CRCT, Université de Toulouse, Inserm, CNRS, UPS Equipe Labellisée Ligue Contre le Cancer, Laboratoire d'Excellence Toulouse Cancer, 2 Avenue Hubert Curien, 31037, Toulouse, France
| | - Valérie Bergoglio
- CRCT, Université de Toulouse, Inserm, CNRS, UPS Equipe Labellisée Ligue Contre le Cancer, Laboratoire d'Excellence Toulouse Cancer, 2 Avenue Hubert Curien, 31037, Toulouse, France.
| |
Collapse
|
44
|
Head PE, Zhang H, Bastien AJ, Koyen AE, Withers AE, Daddacha WB, Cheng X, Yu DS. Sirtuin 2 mutations in human cancers impair its function in genome maintenance. J Biol Chem 2017; 292:9919-9931. [PMID: 28461331 DOI: 10.1074/jbc.m116.772566] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 04/27/2017] [Indexed: 02/01/2023] Open
Abstract
mutations in genome maintenance and tumor suppression.
Collapse
Affiliation(s)
| | - Hui Zhang
- From the Departments of Radiation Oncology and
| | | | | | | | | | - Xiaodong Cheng
- Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - David S Yu
- From the Departments of Radiation Oncology and
| |
Collapse
|
45
|
Abstract
Aging is characterized by a cumulative loss of genome integrity, which involves chromatin reorganization, transcriptional dysregulation and the accumulation of DNA damage. Sirtuins participate in the protection against these aging processes by promoting genome homeostasis in response to cellular stress. We recently reported that SirT7−/− mice suffer from partial embryonic lethality and a progeroid like phenotype. At the cellular level, SIRT7 depletion results in the impaired repair of DNA double-strand breaks (DSBs), one the most dangerous DNA lesions, leading to genome instability. SIRT7 is recruited to DSBs, where it specifically deacetylates histone H3 at lysine 18 and affects the focal accumulation of the DNA damage response factor 53BP1, thus influencing the efficiency of repair. Here, we integrate our findings with the current knowledge on the mode of action of other sirtuin family members in DNA repair. We emphasize their capacity to regulate chromatin structure as a response to DNA damage within the constraints imposed by cellular status.
Collapse
Affiliation(s)
- Berta N Vazquez
- a Rutgers University, Department of Genetics , Human Genetics Institute of New Jersey , Piscataway , NJ , USA
| | - Joshua K Thackray
- a Rutgers University, Department of Genetics , Human Genetics Institute of New Jersey , Piscataway , NJ , USA
| | - Lourdes Serrano
- a Rutgers University, Department of Genetics , Human Genetics Institute of New Jersey , Piscataway , NJ , USA
| |
Collapse
|
46
|
Schiedel M, Robaa D, Rumpf T, Sippl W, Jung M. The Current State of NAD + -Dependent Histone Deacetylases (Sirtuins) as Novel Therapeutic Targets. Med Res Rev 2017; 38:147-200. [PMID: 28094444 DOI: 10.1002/med.21436] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/24/2016] [Accepted: 11/14/2016] [Indexed: 12/19/2022]
Abstract
Sirtuins are NAD+ -dependent protein deacylases that cleave off acetyl, as well as other acyl groups, from the ε-amino group of lysines in histones and other substrate proteins. Seven sirtuin isotypes (Sirt1-7) have been identified in mammalian cells. As sirtuins are involved in the regulation of various physiological processes such as cell survival, cell cycle progression, apoptosis, DNA repair, cell metabolism, and caloric restriction, a dysregulation of their enzymatic activity has been associated with the pathogenesis of neoplastic, metabolic, infectious, and neurodegenerative diseases. Thus, sirtuins are promising targets for pharmaceutical intervention. Growing interest in a modulation of sirtuin activity has prompted the discovery of several small molecules, able to inhibit or activate certain sirtuin isotypes. Herein, we give an update to our previous review on the topic in this journal (Schemies, 2010), focusing on recent developments in sirtuin biology, sirtuin modulators, and their potential as novel therapeutic agents.
Collapse
Affiliation(s)
- Matthias Schiedel
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Dina Robaa
- Department of Pharmaceutical Chemistry, Martin-Luther Universität Halle-Wittenberg, Halle/Saale, Germany
| | - Tobias Rumpf
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Wolfgang Sippl
- Department of Pharmaceutical Chemistry, Martin-Luther Universität Halle-Wittenberg, Halle/Saale, Germany
| | - Manfred Jung
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| |
Collapse
|
47
|
Mei Z, Zhang X, Yi J, Huang J, He J, Tao Y. Sirtuins in metabolism, DNA repair and cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:182. [PMID: 27916001 PMCID: PMC5137222 DOI: 10.1186/s13046-016-0461-5] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 11/19/2016] [Indexed: 12/12/2022]
Abstract
The mammalian sirtuin family has attracted tremendous attention over the past few years as stress adaptors and post-translational modifier. They have involved in diverse cellular processes including DNA repair, energy metabolism, and tumorigenesis. Notably, genomic instability and metabolic reprogramming are two of characteristic hallmarks in cancer. In this review, we summarize current knowledge on the functions of sirtuins mainly regarding DNA repair and energy metabolism, and further discuss the implication of sirtuins in cancer specifically by regulating genome integrity and cancer-related metabolism.
Collapse
Affiliation(s)
- Zhen Mei
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China.,Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
| | - Xian Zhang
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China.,Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
| | - Jiarong Yi
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China.,Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
| | - Junjie Huang
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China.,Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
| | - Jian He
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China.,Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
| | - Yongguang Tao
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China. .,Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China.
| |
Collapse
|
48
|
Kaufmann T, Kukolj E, Brachner A, Beltzung E, Bruno M, Kostrhon S, Opravil S, Hudecz O, Mechtler K, Warren G, Slade D. SIRT2 regulates nuclear envelope reassembly through ANKLE2 deacetylation. J Cell Sci 2016; 129:4607-4621. [PMID: 27875273 PMCID: PMC5201015 DOI: 10.1242/jcs.192633] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 11/09/2016] [Indexed: 12/18/2022] Open
Abstract
Sirtuin 2 (SIRT2) is an NAD-dependent deacetylase known to regulate microtubule dynamics and cell cycle progression. SIRT2 has also been implicated in the pathology of cancer, neurodegenerative diseases and progeria. Here, we show that SIRT2 depletion or overexpression causes nuclear envelope reassembly defects. We link this phenotype to the recently identified regulator of nuclear envelope reassembly ANKLE2. ANKLE2 acetylation at K302 and phosphorylation at S662 are dynamically regulated throughout the cell cycle by SIRT2 and are essential for normal nuclear envelope reassembly. The function of SIRT2 therefore extends beyond the regulation of microtubules to include the regulation of nuclear envelope dynamics.
Collapse
Affiliation(s)
- Tanja Kaufmann
- Department of Biochemistry, Max F. Perutz Laboratories, University of Vienna, Dr Bohr-Gasse 9, Vienna 1030, Austria.,Department of Molecular Biotechnology, University of Applied Sciences FH Campus Wien, Helmut-Qualtinger-Gasse 2, 1030 Vienna, Austria
| | - Eva Kukolj
- Department of Biochemistry, Max F. Perutz Laboratories, University of Vienna, Dr Bohr-Gasse 9, Vienna 1030, Austria
| | - Andreas Brachner
- Department of Biochemistry, Max F. Perutz Laboratories, University of Vienna, Dr Bohr-Gasse 9, Vienna 1030, Austria
| | - Etienne Beltzung
- Department of Biochemistry, Max F. Perutz Laboratories, University of Vienna, Dr Bohr-Gasse 9, Vienna 1030, Austria
| | - Melania Bruno
- Department of Biochemistry, Max F. Perutz Laboratories, University of Vienna, Dr Bohr-Gasse 9, Vienna 1030, Austria
| | - Sebastian Kostrhon
- Department of Biochemistry, Max F. Perutz Laboratories, University of Vienna, Dr Bohr-Gasse 9, Vienna 1030, Austria
| | - Susanne Opravil
- Institute of Molecular Pathology, Dr Bohr-Gasse 7, Vienna 1030, Austria
| | - Otto Hudecz
- Institute of Molecular Pathology, Dr Bohr-Gasse 7, Vienna 1030, Austria
| | - Karl Mechtler
- Institute of Molecular Pathology, Dr Bohr-Gasse 7, Vienna 1030, Austria
| | - Graham Warren
- Department of Biochemistry, Max F. Perutz Laboratories, University of Vienna, Dr Bohr-Gasse 9, Vienna 1030, Austria
| | - Dea Slade
- Department of Biochemistry, Max F. Perutz Laboratories, University of Vienna, Dr Bohr-Gasse 9, Vienna 1030, Austria
| |
Collapse
|
49
|
Affiliation(s)
- Hui Zhang
- a Department of Radiation Oncology , Emory University School of Medicine , Atlanta , GA , USA
| | - PamelaSara E Head
- a Department of Radiation Oncology , Emory University School of Medicine , Atlanta , GA , USA
| | - David S Yu
- a Department of Radiation Oncology , Emory University School of Medicine , Atlanta , GA , USA
| |
Collapse
|