1
|
Petracchini S, Hamaoui D, Doye A, Asnacios A, Fage F, Vitiello E, Balland M, Janel S, Lafont F, Gupta M, Ladoux B, Gilleron J, Maia TM, Impens F, Gagnoux-Palacios L, Daugaard M, Sorensen PH, Lemichez E, Mettouchi A. Optineurin links Hace1-dependent Rac ubiquitylation to integrin-mediated mechanotransduction to control bacterial invasion and cell division. Nat Commun 2022; 13:6059. [PMID: 36229487 PMCID: PMC9561704 DOI: 10.1038/s41467-022-33803-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 09/30/2022] [Indexed: 12/24/2022] Open
Abstract
Extracellular matrix (ECM) elasticity is perceived by cells via focal adhesion structures, which transduce mechanical cues into chemical signalling to conform cell behavior. Although the contribution of ECM compliance to the control of cell migration or division is extensively studied, little is reported regarding infectious processes. We study this phenomenon with the extraintestinal Escherichia coli pathogen UTI89. We show that UTI89 takes advantage, via its CNF1 toxin, of integrin mechanoactivation to trigger its invasion into cells. We identify the HACE1 E3 ligase-interacting protein Optineurin (OPTN) as a protein regulated by ECM stiffness. Functional analysis establishes a role of OPTN in bacterial invasion and integrin mechanical coupling and for stimulation of HACE1 E3 ligase activity towards the Rac1 GTPase. Consistent with a role of OPTN in cell mechanics, OPTN knockdown cells display defective integrin-mediated traction force buildup, associated with limited cellular invasion by UTI89. Nevertheless, OPTN knockdown cells display strong mechanochemical adhesion signalling, enhanced Rac1 activation and increased cyclin D1 translation, together with enhanced cell proliferation independent of ECM stiffness. Together, our data ascribe a new function to OPTN in mechanobiology.
Collapse
Affiliation(s)
- Serena Petracchini
- grid.508487.60000 0004 7885 7602Institut Pasteur, Université Paris Cité, CNRS UMR6047, INSERM U1306, Unité des Toxines Bactériennes, F-75015 Paris, France
| | - Daniel Hamaoui
- grid.462370.40000 0004 0620 5402Université Côte d’Azur, INSERM, C3M, Team Microbial Toxins in Host-Pathogen Interactions, Nice, France ,Equipe Labellisée Ligue Contre le Cancer, Nice, France
| | - Anne Doye
- grid.462370.40000 0004 0620 5402Université Côte d’Azur, INSERM, C3M, Team Microbial Toxins in Host-Pathogen Interactions, Nice, France ,Equipe Labellisée Ligue Contre le Cancer, Nice, France
| | - Atef Asnacios
- grid.463714.3Université Paris Cité, CNRS, Laboratoire Matière et Systèmes Complexes, UMR7057, F-75013 Paris, France
| | - Florian Fage
- grid.463714.3Université Paris Cité, CNRS, Laboratoire Matière et Systèmes Complexes, UMR7057, F-75013 Paris, France
| | - Elisa Vitiello
- grid.462689.70000 0000 9272 9931Université Grenoble Alpes, CNRS, LiPhy, F-38000 Grenoble, France
| | - Martial Balland
- grid.462689.70000 0000 9272 9931Université Grenoble Alpes, CNRS, LiPhy, F-38000 Grenoble, France
| | - Sebastien Janel
- grid.410463.40000 0004 0471 8845Université de Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017, CIIL—Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Frank Lafont
- grid.410463.40000 0004 0471 8845Université de Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017, CIIL—Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Mukund Gupta
- grid.461913.80000 0001 0676 2143Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Benoit Ladoux
- grid.461913.80000 0001 0676 2143Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Jerôme Gilleron
- grid.462370.40000 0004 0620 5402Université Côte d’Azur, INSERM, C3M, Team Cellular and Molecular Pathophysiology of Obesity and Diabetes, Nice, France
| | - Teresa M. Maia
- grid.511525.7VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium ,grid.5342.00000 0001 2069 7798Department of Biomolecular Medicine, Ghent University, Ghent, Belgium ,grid.11486.3a0000000104788040VIB Proteomics Core, VIB, Ghent, Belgium
| | - Francis Impens
- grid.511525.7VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium ,grid.5342.00000 0001 2069 7798Department of Biomolecular Medicine, Ghent University, Ghent, Belgium ,grid.11486.3a0000000104788040VIB Proteomics Core, VIB, Ghent, Belgium
| | - Laurent Gagnoux-Palacios
- grid.461605.0Université Côte d’Azur, CNRS, INSERM, Institut de Biologie Valrose (iBV), 06108 Nice, France
| | - Mads Daugaard
- grid.412541.70000 0001 0684 7796Vancouver Prostate Centre, Vancouver, BC V6H 3Z6 Canada ,grid.17091.3e0000 0001 2288 9830Department of Urologic Sciences, University of British Columbia, Vancouver, BC Canada
| | - Poul H. Sorensen
- grid.17091.3e0000 0001 2288 9830Department of Molecular Oncology, BC Cancer Research Center, University of British Columbia, Vancouver, BC V5Z1L3 Canada
| | - Emmanuel Lemichez
- grid.508487.60000 0004 7885 7602Institut Pasteur, Université Paris Cité, CNRS UMR6047, INSERM U1306, Unité des Toxines Bactériennes, F-75015 Paris, France ,grid.462370.40000 0004 0620 5402Université Côte d’Azur, INSERM, C3M, Team Microbial Toxins in Host-Pathogen Interactions, Nice, France ,Equipe Labellisée Ligue Contre le Cancer, Nice, France
| | - Amel Mettouchi
- grid.508487.60000 0004 7885 7602Institut Pasteur, Université Paris Cité, CNRS UMR6047, INSERM U1306, Unité des Toxines Bactériennes, F-75015 Paris, France ,grid.462370.40000 0004 0620 5402Université Côte d’Azur, INSERM, C3M, Team Microbial Toxins in Host-Pathogen Interactions, Nice, France ,Equipe Labellisée Ligue Contre le Cancer, Nice, France
| |
Collapse
|
2
|
Zhou S, Cai X, Zhang Y, Chen Q, Yang X, Wang K, Jian L, Liu J. DNA nanotubes in coacervate microdroplets as biomimetic cytoskeletons modulate the liquid fluidic properties of protocells. J Mater Chem B 2022; 10:8322-8329. [PMID: 36168959 DOI: 10.1039/d2tb01451c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Coacervate microdroplets, formed via liquid-liquid phase separation, have been proposed as a compartment model for the construction of artificial cells or organelles. However, these microsystems are very fragile and demonstrate liquid-like fluidity. Here, an artificial cytoskeleton based on DNA nanotubes was constructed in coacervate microdroplets to modulate the liquid fluidic properties of the microdroplets. The coacervate microdroplets were obtained from the association of oppositely charged polyelectrolytes through liquid-liquid phase separation, and DNA nanotubes were constructed by molecular tile self-assembly from six clip sequences. The DNA nanotubes were efficiently sequestered in the liquid coacervate microdroplets, and the rigid structure of the DNA nanotubes was capable of modulating the liquid fluidic properties of the coacervate protocell models, as indicated by coalescence imaging and atomic force microscopy analysis. Therefore, artificial cytoskeletons made from DNA nanotubes worked in modulating the liquid fluidic properties of coacervate microdroplets, in a manner akin to the cytoskeleton in the cell. DNA cytoskeletons have the potential to become an ideal platform with which how the liquid fluidic properties of cells are modulated by their cytoskeletons can be investigated, and the cell-sized coacervate microdroplets containing artificial cytoskeletons might be critical in developing a stable liquid-phase protocell model.
Collapse
Affiliation(s)
- Shaohong Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, P. R. China.
| | - Xueer Cai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, P. R. China.
| | - Yanwen Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, P. R. China.
| | - Qiaoshu Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, P. R. China.
| | - Xiaohai Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, P. R. China.
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, P. R. China.
| | - Lixin Jian
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, P. R. China.
| | - Jianbo Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, P. R. China.
| |
Collapse
|
3
|
Ain U, Firdaus H. Parvin: A hub of intracellular signalling pathways regulating cellular behaviour and disease progression. Acta Histochem 2022; 124:151935. [PMID: 35932544 DOI: 10.1016/j.acthis.2022.151935] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 11/15/2022]
Abstract
α-actinin superfamily houses the family of parvins, comprising α, β and γ isoforms in the vertebrates and a single orthologue in the invertebrates. Parvin as an adaptor protein is a member of the ternary IPP-complex including Integrin Linked Kinase (ILK) and particularly-interesting-Cys-His-rich protein (PINCH). Each of the complex proteins showed a conserved lineage and was principally used by the evolutionarily primitive integrin-adhesome machinery to regulate cellular behaviour and signalling pathways. Parvin facilitated integrin mediated integration of the extracellular matrix with cytoskeletal framework culminating in regulation of cellular adhesion and spreading, cytoskeleton reorganisation and cell survival. Studies have established role of parvin in pregnancy, lactation, matrix degradation, blood vessel formation and in several diseases such as cancer, NAFLD and cardiac diseases etc. This review narrates the history of parvin discovery, its elaborate gene structure and conservation across phyla including cellular expression, localisation and interacting partners in vertebrates as well as invertebrates. The review further discusses how parvin acts as an epicentre of signalling pathways, its associated mutants and diseased conditions.
Collapse
Affiliation(s)
- Ushashi Ain
- Department of Life Sciences, Central University of Jharkhand, CTI Campus, Ratu-Lohardaga Road, Ranchi 835205, India
| | - Hena Firdaus
- Department of Life Sciences, Central University of Jharkhand, CTI Campus, Ratu-Lohardaga Road, Ranchi 835205, India.
| |
Collapse
|
4
|
Nikou S, Arbi M, Dimitrakopoulos FID, Kalogeropoulou A, Geramoutsou C, Zolota V, Kalofonos HP, Taraviras S, Lygerou Z, Bravou V. Ras suppressor-1 (RSU1) exerts a tumor suppressive role with prognostic significance in lung adenocarcinoma. Clin Exp Med 2022:10.1007/s10238-022-00847-8. [PMID: 35729367 DOI: 10.1007/s10238-022-00847-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 05/25/2022] [Indexed: 11/03/2022]
Abstract
Ras suppressor-1 (RSU1), originally described as a suppressor of Ras oncogenic transformation, localizes to focal adhesions interacting with the ILK-PINCH-PARVIN (IPP) complex that exerts a well-established oncogenic role in cancer. However, RSU1 implication in lung cancer is currently unknown. Our study aims to address the role of RSU1 in lung adenocarcinoma (LUADC). We here show that RSU1 protein expression by immunohistochemistry is downregulated in LUADC human tissue samples and represents a significant prognostic indicator. In silico analysis of gene chip and RNA seq data validated our findings. Depletion of RSU1 by siRNA in lung cancer cells promotes anchorage-independent cell growth, cell motility and epithelial to mesenchymal transition (EMT). Silencing of RSU1 also alters IPP complex expression in lung cancer cells. The p29 RSU1 truncated isoform is detected in lung cancer cells, and its expression is downregulated upon RSU1 silencing, whereas it is overexpressed upon ILK overexpression. These findings suggest that RSU1 exerts a tumor suppressive role with prognostic significance in LUADC.
Collapse
Affiliation(s)
- Sofia Nikou
- Department of Anatomy-Histology-Embryology, Medical School, University of Patras, 26504, Patras, Greece
| | - Marina Arbi
- Department of General Biology, Medical School, University of Patras, 26504, Patras, Greece
| | - Foteinos-Ioannis D Dimitrakopoulos
- Molecular Oncology Laboratory, Division of Oncology, Department of Medicine, Medical School, University of Patras, 26504, Patras, Greece
| | - Argiro Kalogeropoulou
- Department of Physiology, School of Medicine, University of Patras, 26504, Rio, Patras, Greece
| | - Christina Geramoutsou
- Department of Anatomy-Histology-Embryology, Medical School, University of Patras, 26504, Patras, Greece
| | - Vasiliki Zolota
- Department of Anatomy-Histology-Embryology, Medical School, University of Patras, 26504, Patras, Greece.,Department of Pathology, University Hospital of Patras, 26504, Patras, Greece
| | - Haralabos P Kalofonos
- Molecular Oncology Laboratory, Division of Oncology, Department of Medicine, Medical School, University of Patras, 26504, Patras, Greece.,Division of Oncology, Department of Internal Medicine, University Hospital of Patras, 26504, Rio Patras, Greece
| | - Stavros Taraviras
- Department of Physiology, School of Medicine, University of Patras, 26504, Rio, Patras, Greece
| | - Zoi Lygerou
- Department of General Biology, Medical School, University of Patras, 26504, Patras, Greece
| | - Vasiliki Bravou
- Department of Anatomy-Histology-Embryology, Medical School, University of Patras, 26504, Patras, Greece.
| |
Collapse
|
5
|
Mierke CT, Hayn A, Fischer T. PINCH1 Promotes Fibroblast Migration in Extracellular Matrices and Influences Their Mechanophenotype. Front Cell Dev Biol 2022; 10:869563. [PMID: 35652097 PMCID: PMC9149598 DOI: 10.3389/fcell.2022.869563] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/15/2022] [Indexed: 11/13/2022] Open
Abstract
Cell migration performs a critical function in numerous physiological processes, including tissue homeostasis or wound healing after tissue injury, as well as pathological processes that include malignant progression of cancer. The efficiency of cell migration and invasion appears to be based on the mechano-phenotype of the cytoskeleton. The properties of the cytoskeleton depend on internal cytoskeletal and external environmental factors. A reason for this are connections between the cell and its local matrix microenvironment, which are established by cell-matrix adhesion receptors. Upon activation, focal adhesion proteins such as PINCH1 are recruited to sites where focal adhesions form. PINCH1 specifically couples through interactions with ILK, which binds to cell matrix receptors and the actomyosin cytoskeleton. However, the role of PINCH1 in cell mechanics regulating cellular motility in 3D collagen matrices is still unclear. PINCH1 is thought to facilitate 3D motility by regulating cellular mechanical properties, such as stiffness. In this study, PINCH1 wild-type and knock-out cells were examined for their ability to migrate in dense extracellular 3D matrices. Indeed, PINCH1 wild-type cells migrated more numerously and deeper in 3D matrices, compared to knock-out cells. Moreover, cellular deformability was determined, e.g., elastic modulus (stiffness). PINCH1 knock-out cells are more deformable (compliable) than PINCH1 wild-type cells. Migration of both PINCH1−/− cells and PINCH1fl/fl cells was decreased by Latrunculin A inhibition of actin polymerization, suggesting that actin cytoskeletal differences are not responsible for the discrepancy in invasiveness of the two cell types. However, the mechanical phenotype of PINCH1−/− cells may be reflected by Latrunculin A treatment of PINCH1fl/fl cells, as they exhibit resembling deformability to untreated PINCH1−/− cells. Moreover, an apparent mismatch exists between the elongation of the long axis and the contraction of the short axis between PINCH1fl/fl cells and PINCH1−/− cells following Latrunculin A treatment. There is evidence of this indicating a shift in the proxy values for Poisson’s ratio in PINCH1−/− cells compared with PINCH1fl/fl cells. This is probably attributable to modifications in cytoskeletal architecture. The non-muscle myosin II inhibitor Blebbistatin also reduced the cell invasiveness in 3D extracellular matrices but instead caused a stiffening of the cells. Finally, PINCH1 is apparently essential for providing cellular mechanical stiffness through the actin cytoskeleton, which regulates 3D motility.
Collapse
|
6
|
Junion G, Jagla K. Diversification of muscle types in Drosophila embryos. Exp Cell Res 2022; 410:112950. [PMID: 34838813 DOI: 10.1016/j.yexcr.2021.112950] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 12/31/2022]
Abstract
Drosophila embryonic somatic muscles represent a simple and tractable model system to study the gene regulatory networks that control diversification of cell types. Somatic myogenesis in Drosophila is initiated by intrinsic action of the mesodermal master gene twist, which activates a cascade of transcriptional outputs including myogenic differentiation factor Mef2, which triggers all aspects of the myogenic differentiation program. In parallel, the expression of a combinatorial code of identity transcription factors (iTFs) defines discrete particular features of each muscle fiber, such as number of fusion events, and specific attachment to tendon cells or innervation, thus ensuring diversification of muscle types. Here, we take the example of a subset of lateral transverse (LT) muscles and discuss how the iTF code and downstream effector genes progressively define individual LT properties such as fusion program, attachment and innervation. We discuss new challenges in the field including the contribution of posttranscriptional and epitranscriptomic regulation of gene expression in the diversification of cell types.
Collapse
Affiliation(s)
- Guillaume Junion
- Genetics Reproduction and Development Institute (iGReD), CNRS UMR6293, INSERM U1103, University of Clermont Auvergne, Clermont-Ferrand, France
| | - Krzysztof Jagla
- Genetics Reproduction and Development Institute (iGReD), CNRS UMR6293, INSERM U1103, University of Clermont Auvergne, Clermont-Ferrand, France.
| |
Collapse
|
7
|
Garcia-Marin J, Griera-Merino M, Matamoros-Recio A, de Frutos S, Rodríguez-Puyol M, Alajarín R, Vaquero JJ, Rodríguez-Puyol D. Tripeptides as Integrin-Linked Kinase Modulating Agents Based on a Protein-Protein Interaction with α-Parvin. ACS Med Chem Lett 2021; 12:1656-1662. [PMID: 34790291 PMCID: PMC8591738 DOI: 10.1021/acsmedchemlett.1c00183] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/13/2021] [Indexed: 01/01/2023] Open
Abstract
![]()
Integrin-linked
kinase (ILK) has emerged as a controversial pseudokinase
protein that plays a crucial role in the signaling process initiated
by integrin-mediated signaling. However, ILK also exhibits a scaffolding
protein function inside cells, controlling cytoskeletal dynamics,
and has been related to non-neoplastic diseases such as chronic kidney
disease (CKD). Although this protein always acts as a heterotrimeric
complex bound to PINCH and parvin adaptor proteins, the role of parvin
proteins is currently not well understood. Using in silico approaches
for the design, we have generated and prepared a set of new tripeptides
mimicking an α-parvin segment. These derivatives exhibit activity
in phenotypic assays in an ILK-dependent manner without altering kinase
activity, thus allowing the generation of new chemical probes and
drug candidates with interesting ILK-modulating activities.
Collapse
Affiliation(s)
- Javier Garcia-Marin
- Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, Alcalá de Henares 28805, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Ctra. Colmenar Viejo, km. 9100, Madrid 28034, Spain
- Instituto de Investigación Química Andrés Manuel del Río (IQAR), Universidad de Alcalá, Alcalá de Henares 28805, Spain
| | - Mercedes Griera-Merino
- Departamento de Biología de Sistemas, Universidad de Alcalá, Alcalá de Henares 28805, Spain
- Graphenano Medical Care, S.L, Yecla 30510, Spain
| | - Alejandra Matamoros-Recio
- Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, Alcalá de Henares 28805, Spain
| | - Sergio de Frutos
- Departamento de Biología de Sistemas, Universidad de Alcalá, Alcalá de Henares 28805, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Ctra. Colmenar Viejo, km. 9100, Madrid 28034, Spain
- Fundación Renal Iñigo Álvarez de Toledo (FRIAT) y Instituto de Salud Carlos III (REDinREN), Madrid 28029, Spain
| | - Manuel Rodríguez-Puyol
- Departamento de Biología de Sistemas, Universidad de Alcalá, Alcalá de Henares 28805, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Ctra. Colmenar Viejo, km. 9100, Madrid 28034, Spain
- Fundación Renal Iñigo Álvarez de Toledo (FRIAT) y Instituto de Salud Carlos III (REDinREN), Madrid 28029, Spain
| | - Ramón Alajarín
- Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, Alcalá de Henares 28805, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Ctra. Colmenar Viejo, km. 9100, Madrid 28034, Spain
- Instituto de Investigación Química Andrés Manuel del Río (IQAR), Universidad de Alcalá, Alcalá de Henares 28805, Spain
| | - Juan J. Vaquero
- Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, Alcalá de Henares 28805, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Ctra. Colmenar Viejo, km. 9100, Madrid 28034, Spain
- Instituto de Investigación Química Andrés Manuel del Río (IQAR), Universidad de Alcalá, Alcalá de Henares 28805, Spain
| | - Diego Rodríguez-Puyol
- Fundación de Investigación Biomédica, Unidad de Nefrología del Hospital Príncipe de Asturias y Departamento de Medicina y Especialidades Médicas, Universidad de Alcalá, Alcalá de Henares 28805, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Ctra. Colmenar Viejo, km. 9100, Madrid 28034, Spain
- Fundación Renal Iñigo Álvarez de Toledo (FRIAT) y Instituto de Salud Carlos III (REDinREN), Madrid 28029, Spain
| |
Collapse
|
8
|
Kadry YA, Calderwood DA. Chapter 22: Structural and signaling functions of integrins. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2020; 1862:183206. [PMID: 31991120 PMCID: PMC7063833 DOI: 10.1016/j.bbamem.2020.183206] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 02/06/2023]
Abstract
The integrin family of transmembrane adhesion receptors is essential for sensing and adhering to the extracellular environment. Integrins are heterodimers composed of non-covalently associated α and β subunits that engage extracellular matrix proteins and couple to intracellular signaling and cytoskeletal complexes. Humans have 24 different integrin heterodimers with differing ligand binding specificities and non-redundant functions. Complex structural rearrangements control the ability of integrins to engage ligands and to activate diverse downstream signaling networks, modulating cell adhesion and dynamics, processes which are crucial for metazoan life and development. Here we review the structural and signaling functions of integrins focusing on recent advances which have enhanced our understanding of how integrins are activated and regulated, and the cytoplasmic signaling networks downstream of integrins.
Collapse
Affiliation(s)
- Yasmin A Kadry
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, United States of America
| | - David A Calderwood
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, United States of America; Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, United States of America..
| |
Collapse
|
9
|
Guzmán-Ruiz R, Tercero-Alcázar C, Rabanal-Ruiz Y, Díaz-Ruiz A, El Bekay R, Rangel-Zuñiga OA, Navarro-Ruiz MC, Molero L, Membrives A, Ruiz-Rabelo JF, Pandit A, López-Miranda J, Tinahones FJ, Malagón MM. Adipose tissue depot-specific intracellular and extracellular cues contributing to insulin resistance in obese individuals. FASEB J 2020; 34:7520-7539. [PMID: 32293066 PMCID: PMC7384030 DOI: 10.1096/fj.201902703r] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 03/10/2020] [Accepted: 03/22/2020] [Indexed: 12/12/2022]
Abstract
Adipose tissue dysregulation in obesity strongly influences systemic metabolic homeostasis and is often linked to insulin resistance (IR). However, the molecular mechanisms underlying adipose tissue dysfunction in obesity are not fully understood. Herein, a proteomic analysis of subcutaneous (SC) and omental (OM) fat from lean subjects and obese individuals with different degrees of insulin sensitivity was performed to identify adipose tissue biomarkers related to obesity‐associated metabolic disease. Our results suggest that dysregulation of both adipose tissue extracellular matrix (ECM) organization and intracellular trafficking processes may be associated with IR in obesity. Thus, abnormal accumulation of the small leucine‐rich proteoglycan, lumican, as observed in SC fat of IR obese individuals, modifies collagen I organization, impairs adipogenesis and activates stress processes [endoplasmic reticulum and oxidative stress] in adipocytes. In OM fat, IR is associated with increased levels of the negative regulator of the Rab family of small GTPases, GDI2, which alters lipid storage in adipocytes by inhibiting insulin‐stimulated binding of the Rab protein, Rab18, to lipid droplets. Together, these results indicate that lumican and GDI2 might play depot‐dependent, pathogenic roles in obesity‐associated IR. Our findings provide novel insights into the differential maladaptive responses of SC and OM adipose tissue linking obesity to IR.
Collapse
Affiliation(s)
- Rocío Guzmán-Ruiz
- Department of Cell Biology, Physiology, and Immunology, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), University of Córdoba, Reina Sofia University Hospital, Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Carmen Tercero-Alcázar
- Department of Cell Biology, Physiology, and Immunology, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), University of Córdoba, Reina Sofia University Hospital, Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Yoana Rabanal-Ruiz
- Department of Cell Biology, Physiology, and Immunology, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), University of Córdoba, Reina Sofia University Hospital, Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Alberto Díaz-Ruiz
- Department of Cell Biology, Physiology, and Immunology, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), University of Córdoba, Reina Sofia University Hospital, Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Rajaa El Bekay
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain.,Unidad de Gestión Clínica de Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario, University of Málaga, Málaga, Spain
| | - Oriol A Rangel-Zuñiga
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain.,Lipids and Atherosclerosis Unit, IMIBIC, Reina Sofia University Hospital, University of Córdoba, Córdoba, Spain
| | - M Carmen Navarro-Ruiz
- Department of Cell Biology, Physiology, and Immunology, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), University of Córdoba, Reina Sofia University Hospital, Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Laura Molero
- Department of Cell Biology, Physiology, and Immunology, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), University of Córdoba, Reina Sofia University Hospital, Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Membrives
- Unidad de Gestión Clínica de Cirugía General y Digestivo, Sección de Obesidad, IMIBIC, Reina Sofia University Hospital, Córdoba, Spain
| | - Juan F Ruiz-Rabelo
- Unidad de Gestión Clínica de Cirugía General y Digestivo, Sección de Obesidad, IMIBIC, Reina Sofia University Hospital, Córdoba, Spain
| | - Abhay Pandit
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland, Galway, Ireland
| | - José López-Miranda
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain.,Lipids and Atherosclerosis Unit, IMIBIC, Reina Sofia University Hospital, University of Córdoba, Córdoba, Spain
| | - Francisco J Tinahones
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain.,Department of Endocrinology and Nutrition, Virgen de la Victoria Hospital (IBIMA), University of Málaga, Málaga, Spain
| | - María M Malagón
- Department of Cell Biology, Physiology, and Immunology, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), University of Córdoba, Reina Sofia University Hospital, Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
10
|
Crawford M, Leclerc V, Barr K, Dagnino L. Essential Role for Integrin-Linked Kinase in Melanoblast Colonization of the Skin. J Invest Dermatol 2019; 140:425-434.e10. [PMID: 31330146 DOI: 10.1016/j.jid.2019.07.681] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 06/21/2019] [Accepted: 07/02/2019] [Indexed: 01/16/2023]
Abstract
Melanocytes are pigment-producing cells found in the skin and other tissues. Alterations in the melanocyte lineage give rise to a plethora of human diseases, from neurocristopathies and pigmentation disorders to melanoma. During embryogenesis, neural crest cell subsets give rise to two waves of melanoblasts, which migrate dorsolaterally, hone to the skin, and differentiate into melanocytes. However, the mechanisms that govern colonization of the skin by the first wave of melanoblasts are poorly understood. Here we report that targeted inactivation of the integrin-linked kinase gene in first wave melanoblasts causes defects in the ability of these cells to form long pseudopods, to migrate, and to proliferate in vivo. As a result, integrin-linked kinase-deficient melanoblasts fail to populate normally the developing epidermis and hair follicles. We also show that defects in motility and dendricity occur upon integrin-linked kinase gene inactivation in mature melanocytes, causing abnormalities in cell responses to the extracellular matrix substrates collagen I and laminin 332. Significantly, the ability to form long protrusions in mutant cells in response to collagen is restored in the presence of constitutively active Rac1, suggesting that an integrin-linked kinase-Rac1 nexus is likely implicated in melanocytic cell establishment, dendricity, and functions in the skin.
Collapse
Affiliation(s)
- Melissa Crawford
- Department of Physiology and Pharmacology, Children's Health Research Institute, Lawson Health Research Institute, London, Ontario, Canada
| | - Valerie Leclerc
- Department of Physiology and Pharmacology, Children's Health Research Institute, Lawson Health Research Institute, London, Ontario, Canada
| | - Kevin Barr
- Department of Physiology and Pharmacology, Children's Health Research Institute, Lawson Health Research Institute, London, Ontario, Canada
| | - Lina Dagnino
- Department of Physiology and Pharmacology, Children's Health Research Institute, Lawson Health Research Institute, London, Ontario, Canada; Department of Oncology, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
11
|
Integrin intracellular machinery in action. Exp Cell Res 2019; 378:226-231. [PMID: 30853446 DOI: 10.1016/j.yexcr.2019.03.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 03/03/2019] [Accepted: 03/06/2019] [Indexed: 02/06/2023]
Abstract
Integrin-mediated adhesion to the extracellular matrix involves a surprisingly large number of intracellular proteins, the integrin-associated proteins (IAPs), which are a fraction of the total integrin adhesome. In this review we discuss how genetic approaches have improved our understanding of how each IAP contributes to integrin function, especially in the context of building a functional organism during development. We then begin the process of assembling IAP roles together into an integrated mechanism.
Collapse
|
12
|
Mechanical forces during muscle development. Mech Dev 2017; 144:92-101. [DOI: 10.1016/j.mod.2016.11.003] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 11/20/2016] [Accepted: 11/21/2016] [Indexed: 01/09/2023]
|
13
|
Giakoumakis NN, Rapsomaniki MA, Lygerou Z. Analysis of Protein Kinetics Using Fluorescence Recovery After Photobleaching (FRAP). Methods Mol Biol 2017; 1563:243-267. [PMID: 28324613 DOI: 10.1007/978-1-4939-6810-7_16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fluorescence recovery after photobleaching (FRAP) is a cutting-edge live-cell functional imaging technique that enables the exploration of protein dynamics in individual cells and thus permits the elucidation of protein mobility, function, and interactions at a single-cell level. During a typical FRAP experiment, fluorescent molecules in a defined region of interest within the cell are bleached by a short and powerful laser pulse, while the recovery of the fluorescence in the region is monitored over time by time-lapse microscopy. FRAP experimental setup and image acquisition involve a number of steps that need to be carefully executed to avoid technical artifacts. Equally important is the subsequent computational analysis of FRAP raw data, to derive quantitative information on protein diffusion and binding parameters. Here we present an integrated in vivo and in silico protocol for the analysis of protein kinetics using FRAP. We focus on the most commonly encountered challenges and technical or computational pitfalls and their troubleshooting so that valid and robust insight into protein dynamics within living cells is gained.
Collapse
Affiliation(s)
| | - Maria Anna Rapsomaniki
- Laboratory of Biology, School of Medicine, University of Patras, GR26500 Rio, Patras, Greece.,IBM Research Zurich, Säumerstrasse 4, CH-8803, Rüschlikon, Switzerland
| | - Zoi Lygerou
- Laboratory of Biology, School of Medicine, University of Patras, GR26500 Rio, Patras, Greece.
| |
Collapse
|