1
|
Hofvander J, Qiu A, Lee K, Bilenky M, Carles A, Cao Q, Moksa M, Steif J, Su E, Sotiriou A, Goytain A, Hill LA, Singer S, Andrulis IL, Wunder JS, Mertens F, Banito A, Jones KB, Underhill TM, Nielsen TO, Hirst M. Synovial Sarcoma Chromatin Dynamics Reveal a Continuum in SS18:SSX Reprograming. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.14.594262. [PMID: 38798672 PMCID: PMC11118320 DOI: 10.1101/2024.05.14.594262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Synovial sarcoma (SyS) is an aggressive soft-tissue malignancy characterized by a pathognomonic chromosomal translocation leading to the formation of the SS18::SSX fusion oncoprotein. SS18::SSX associates with mammalian BAF complexes suggesting deregulation of chromatin architecture as the oncogenic driver in this tumour type. To examine the epigenomic state of SyS we performed comprehensive multi-omics analysis on 52 primary pre-treatment human SyS tumours. Our analysis revealed a continuum of epigenomic states across the cohort at fusion target genes independent of rare somatic genetic lesions. We identify cell-of-origin signatures defined by enhancer states and reveal unexpected relationships between H2AK119Ub1 and active marks. The number of bivalent promoters, dually marked by the repressive H3K27me3 and activating H3K4me3 marks, has strong prognostic value and outperforms tumor grade in predicting patient outcome. Finally, we identify SyS defining epigenomic features including H3K4me3 expansion associated with striking promoter DNA hypomethylation in which SyS displays the lowest mean methylation level of any sarcoma subtype. We explore these distinctive features as potential vulnerabilities in SyS and identify H3K4me3 inhibition as a promising therapeutic strategy.
Collapse
Affiliation(s)
- Jakob Hofvander
- Department of Microbiology and Immunology, Michael Smith Laboratories, UBC, Vancouver, Canada
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, Canada
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Alvin Qiu
- Department of Microbiology and Immunology, Michael Smith Laboratories, UBC, Vancouver, Canada
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, Canada
- Department of Pathology and Laboratory Medicine, UBC, Vancouver, Canada
| | - Kiera Lee
- Department of Microbiology and Immunology, Michael Smith Laboratories, UBC, Vancouver, Canada
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, Canada
- Department of Pathology and Laboratory Medicine, UBC, Vancouver, Canada
| | - Misha Bilenky
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, Canada
| | - Annaïck Carles
- Department of Microbiology and Immunology, Michael Smith Laboratories, UBC, Vancouver, Canada
| | - Qi Cao
- Department of Microbiology and Immunology, Michael Smith Laboratories, UBC, Vancouver, Canada
| | - Michelle Moksa
- Department of Microbiology and Immunology, Michael Smith Laboratories, UBC, Vancouver, Canada
| | - Jonathan Steif
- Department of Microbiology and Immunology, Michael Smith Laboratories, UBC, Vancouver, Canada
| | - Edmund Su
- Department of Microbiology and Immunology, Michael Smith Laboratories, UBC, Vancouver, Canada
| | - Afroditi Sotiriou
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, Germany
- Soft-Tissue Sarcoma Junior Research Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, University of Heidelberg, Germany
| | - Angela Goytain
- Department of Pathology and Laboratory Medicine, UBC, Vancouver, Canada
| | - Lesley A Hill
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sam Singer
- Sarcoma Biology Laboratory, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Irene L Andrulis
- University Musculoskeletal Oncology Unit, Mount Sinai Hospital, Toronto, Canada
| | - Jay S Wunder
- Lunefeld-Tanenbaum Research Institute, Sinai Health System and Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Fredrik Mertens
- Division of Clinical Genetics, Lund University and Skåne University Hospital, Lund, Sweden
| | - Ana Banito
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, Germany
- Soft-Tissue Sarcoma Junior Research Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kevin B Jones
- Department of Orthopaedics, University of Utah, Salt Lake City, Utah, United States of America
- Department of Oncological Sciences, Huntsman Cancer Institute, Salt Lake City, Utah, United States of America
| | - T Michael Underhill
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Torsten O Nielsen
- Department of Pathology and Laboratory Medicine, UBC, Vancouver, Canada
| | - Martin Hirst
- Department of Microbiology and Immunology, Michael Smith Laboratories, UBC, Vancouver, Canada
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, Canada
| |
Collapse
|
2
|
Lorzadeh A, Ye G, Sharma S, Jadhav U. DNA methylation-dependent and -independent binding of CDX2 directs activation of distinct developmental and homeostatic genes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.11.579850. [PMID: 38405700 PMCID: PMC10888781 DOI: 10.1101/2024.02.11.579850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Precise spatiotemporal and cell type-specific gene expression is essential for proper tissue development and function. Transcription factors (TFs) guide this process by binding to developmental stage-specific targets and establishing an appropriate enhancer landscape. In turn, DNA and chromatin modifications direct the genomic binding of TFs. However, how TFs navigate various chromatin features and selectively bind a small portion of the millions of possible genomic target loci is still not well understood. Here we show that Cdx2 - a pioneer TF that binds distinct targets in developing versus adult intestinal epithelial cells - has a preferential affinity for a non-canonical CpG-containing motif in vivo. A higher frequency of this motif at embryonic and fetal Cdx2 target loci and the specifically methylated state of the CpG during development allows selective Cdx2 binding and activation of developmental enhancers and linked genes. Conversely, demethylation at these enhancers prohibits ectopic Cdx2 binding in adult cells, where Cdx2 binds its canonical motif without a CpG. This differential Cdx2 binding allows for corecruitment of Ctcf and Hnf4, facilitating the establishment of intestinal superenhancers during development and enhancers mediating adult homeostatic functions, respectively. Induced gain of DNA methylation in the adult mouse epithelium or cultured cells causes ectopic recruitment of Cdx2 to the developmental target loci and facilitates cobinding of the partner TFs. Together, our results demonstrate that the differential CpG motif requirements for Cdx2 binding to developmental versus adult target sites allow it to navigate different DNA methylation profiles and activate cell type-specific genes at appropriate times.
Collapse
Affiliation(s)
- Alireza Lorzadeh
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USC
| | - George Ye
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USC
| | - Sweta Sharma
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USC
| | - Unmesh Jadhav
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USC
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USC
| |
Collapse
|
3
|
Pozner A, Li L, Verma SP, Wang S, Barrott JJ, Nelson ML, Yu JSE, Negri GL, Colborne S, Hughes CS, Zhu JF, Lambert SL, Carroll LS, Smith-Fry K, Stewart MG, Kannan S, Jensen B, John CM, Sikdar S, Liu H, Dang NH, Bourdage J, Li J, Vahrenkamp JM, Mortenson KL, Groundland JS, Wustrack R, Senger DL, Zemp FJ, Mahoney DJ, Gertz J, Zhang X, Lazar AJ, Hirst M, Morin GB, Nielsen TO, Shen PS, Jones KB. ASPSCR1-TFE3 reprograms transcription by organizing enhancer loops around hexameric VCP/p97. Nat Commun 2024; 15:1165. [PMID: 38326311 PMCID: PMC10850509 DOI: 10.1038/s41467-024-45280-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 01/18/2024] [Indexed: 02/09/2024] Open
Abstract
The t(X,17) chromosomal translocation, generating the ASPSCR1::TFE3 fusion oncoprotein, is the singular genetic driver of alveolar soft part sarcoma (ASPS) and some Xp11-rearranged renal cell carcinomas (RCCs), frustrating efforts to identify therapeutic targets for these rare cancers. Here, proteomic analysis identifies VCP/p97, an AAA+ ATPase with known segregase function, as strongly enriched in co-immunoprecipitated nuclear complexes with ASPSCR1::TFE3. We demonstrate that VCP is a likely obligate co-factor of ASPSCR1::TFE3, one of the only such fusion oncoprotein co-factors identified in cancer biology. Specifically, VCP co-distributes with ASPSCR1::TFE3 across chromatin in association with enhancers genome-wide. VCP presence, its hexameric assembly, and its enzymatic function orchestrate the oncogenic transcriptional signature of ASPSCR1::TFE3, by facilitating assembly of higher-order chromatin conformation structures demonstrated by HiChIP. Finally, ASPSCR1::TFE3 and VCP demonstrate co-dependence for cancer cell proliferation and tumorigenesis in vitro and in ASPS and RCC mouse models, underscoring VCP's potential as a novel therapeutic target.
Collapse
Affiliation(s)
- Amir Pozner
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, USA
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Li Li
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, USA
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Shiv Prakash Verma
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, USA
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Shuxin Wang
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Jared J Barrott
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, USA
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Mary L Nelson
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, USA
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Jamie S E Yu
- Department of Pathology, University of British Columbia, Vancouver, BC, Canada
| | - Gian Luca Negri
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - Shane Colborne
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | | | - Ju-Fen Zhu
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, USA
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Sydney L Lambert
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, USA
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Lara S Carroll
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, USA
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Kyllie Smith-Fry
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, USA
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Michael G Stewart
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, USA
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Sarmishta Kannan
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, USA
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Bodrie Jensen
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, USA
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Cini M John
- Department of Microbiology, Immunology and Infectious Disease, University of Calgary, Calgary, AB, Canada
| | - Saif Sikdar
- Department of Microbiology, Immunology and Infectious Disease, University of Calgary, Calgary, AB, Canada
| | - Hongrui Liu
- Department of Microbiology, Immunology and Infectious Disease, University of Calgary, Calgary, AB, Canada
| | - Ngoc Ha Dang
- Department of Oncology, Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jennifer Bourdage
- Department of Oncology, Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jinxiu Li
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, USA
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Jeffery M Vahrenkamp
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Katelyn L Mortenson
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - John S Groundland
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Rosanna Wustrack
- Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Donna L Senger
- Department of Oncology, Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Oncology, McGill University and Lady Davis Institute for Medical Research, Montreal, QC, Canada
| | - Franz J Zemp
- Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Douglas J Mahoney
- Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Jason Gertz
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Xiaoyang Zhang
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Alexander J Lazar
- Departments of Anatomic Pathology, Translational Molecular Pathology and Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Martin Hirst
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
- Department of Microbiology and Immunology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Gregg B Morin
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Torsten O Nielsen
- Department of Pathology, University of British Columbia, Vancouver, BC, Canada
| | - Peter S Shen
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Kevin B Jones
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, USA.
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA.
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
4
|
Pozner A, Verma SP, Li L, Wang S, Barrott JJ, Nelson ML, Yu JSE, Negri GL, Colborne S, Hughes CS, Zhu JF, Lambert SL, Carroll LS, Smith-Fry K, Stewart MG, Kannan S, Jensen B, Mortenson KL, John C, Sikdar S, Liu H, Dang NH, Bourdage J, Li J, Vahrenkamp JM, Groundland JS, Wustrack R, Senger DL, Zemp FJ, Mahoney DJ, Gertz J, Zhang X, Lazar AJ, Hirst M, Morin GB, Nielsen TO, Shen PS, Jones KB. ASPSCR1-TFE3 reprograms transcription by organizing enhancer loops around hexameric VCP/p97. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.29.560242. [PMID: 37873234 PMCID: PMC10592841 DOI: 10.1101/2023.09.29.560242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The t(X,17) chromosomal translocation, generating the ASPSCR1-TFE3 fusion oncoprotein, is the singular genetic driver of alveolar soft part sarcoma (ASPS) and some Xp11-rearranged renal cell carcinomas (RCC), frustrating efforts to identify therapeutic targets for these rare cancers. Proteomic analysis showed that VCP/p97, an AAA+ ATPase with known segregase function, was strongly enriched in co-immunoprecipitated nuclear complexes with ASPSCR1-TFE3. We demonstrate that VCP is a likely obligate co-factor of ASPSCR1-TFE3, one of the only such fusion oncoprotein co-factors identified in cancer biology. Specifically, VCP co-distributed with ASPSCR1-TFE3 across chromatin in association with enhancers genome-wide. VCP presence, its hexameric assembly, and its enzymatic function orchestrated the oncogenic transcriptional signature of ASPSCR1-TFE3, by facilitating assembly of higher-order chromatin conformation structures as demonstrated by HiChIP. Finally, ASPSCR1-TFE3 and VCP demonstrated co-dependence for cancer cell proliferation and tumorigenesis in vitro and in ASPS and RCC mouse models, underscoring VCP's potential as a novel therapeutic target.
Collapse
|
5
|
Huang Y, Zhang J, Li X, Wu Z, Xie G, Wang Y, Liu Z, Jiao M, Zhang H, Shi B, Wang Y, Zhang Y. Chromatin accessibility memory of donor cells disrupts bovine somatic cell nuclear transfer blastocysts development. FASEB J 2023; 37:e23111. [PMID: 37531300 DOI: 10.1096/fj.202300131rrr] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 06/30/2023] [Accepted: 07/11/2023] [Indexed: 08/04/2023]
Abstract
The post-transfer developmental capacity of bovine somatic cell nuclear transfer (SCNT) blastocysts is reduced, implying that abnormalities in gene expression regulation are present at blastocyst stage. Chromatin accessibility, as an indicator for transcriptional regulatory elements mediating gene transcription activity, has heretofore been largely unexplored in SCNT embryos, especially at blastocyst stage. In the present study, single-cell sequencing assay for transposase-accessible chromatin (scATAC-seq) of in vivo and SCNT blastocysts were conducted to segregate lineages and demonstrate the aberrant chromatin accessibility of transcription factors (TFs) related to inner cell mass (ICM) development in SCNT blastocysts. Pseudotime analysis of lineage segregation further reflected dysregulated chromatin accessibility dynamics of TFs in the ICM of SCNT blastocysts compared to their in vivo counterparts. ATAC- and ChIP-seq results of SCNT donor cells revealed that the aberrant chromatin accessibility in the ICM of SCNT blastocysts was due to the persistence of chromatin accessibility memory at corresponding loci in the donor cells, with strong enrichment of trimethylation of histone H3 at lysine 4 (H3K4me3) at these loci. Correction of the aberrant chromatin accessibility through demethylation of H3K4me3 by KDM5B diminished the expression of related genes (e.g., BCL11B) and significantly improved the ICM proliferation in SCNT blastocysts. This effect was confirmed by knocking down BCL11B in SCNT embryos to down-regulate p21 and alleviate the inhibition of ICM proliferation. These findings expand our understanding of the chromatin accessibility abnormalities in SCNT blastocysts and BCL11B may be a potential target to improve SCNT efficiency.
Collapse
Affiliation(s)
- Yuemeng Huang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Engineering Center for Animal Embryo Technology, Yangling, China
| | - Jingcheng Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Engineering Center for Animal Embryo Technology, Yangling, China
| | - Xinmei Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Zhipei Wu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Guoxiang Xie
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yong Wang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Engineering Center for Animal Embryo Technology, Yangling, China
| | - Zhengqing Liu
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Engineering Center for Animal Embryo Technology, Yangling, China
| | - Mei Jiao
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Engineering Center for Animal Embryo Technology, Yangling, China
| | - Hexu Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Engineering Center for Animal Embryo Technology, Yangling, China
| | - Binqiang Shi
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Engineering Center for Animal Embryo Technology, Yangling, China
| | - Yu Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yong Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Engineering Center for Animal Embryo Technology, Yangling, China
| |
Collapse
|
6
|
Ellis SLS, Dada S, Nohara LL, Saranchova I, Munro L, Pfeifer CG, Eyford BA, Morova T, Williams DE, Cheng P, Lack NA, Andersen RJ, Jefferies WA. Curcuphenol possesses an unusual histone deacetylase enhancing activity that counters immune escape in metastatic tumours. Front Pharmacol 2023; 14:1119620. [PMID: 37637416 PMCID: PMC10449465 DOI: 10.3389/fphar.2023.1119620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 07/03/2023] [Indexed: 08/29/2023] Open
Abstract
Curcuphenol, a common component of the culinary spices, naturally found in marine invertebrates and plants, has been identified as a novel candidate for reversing immune escape by restoring expression of the antigen presentation machinery (APM) in invasive cancers, thereby resurrecting the immune recognition of metastatic tumours. Two synthetic curcuphenol analogues, were prepared by informed design that demonstrated consistent induction of APM expression in metastatic prostate and lung carcinoma cells. Both analogues were subsequently found to possess a previously undescribed histone deacetylase (HDAC)-enhancing activity. Remarkably, the H3K27ac ChIPseq analysis of curcuphenol-treated cells reveals that the induced epigenomic marks closely resemble the changes in genome-wide pattern observed with interferon-γ, a cytokine instrumental for orchestrating innate and adaptive immunity. These observations link dietary components to modifying epigenetic programs that modulate gene expression guiding poised immunity.
Collapse
Affiliation(s)
- Samantha L. S. Ellis
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Sarah Dada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
- Departments of Medical Genetics, Zoology, and Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Lilian L. Nohara
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Iryna Saranchova
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
- Departments of Medical Genetics, Zoology, and Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Lonna Munro
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
| | - Cheryl G. Pfeifer
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
| | - Brett A. Eyford
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Tunc Morova
- Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
| | - David E. Williams
- Departments of Chemistry and Earth Ocean, and Atmospheric Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Ping Cheng
- Departments of Chemistry and Earth Ocean, and Atmospheric Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Nathan A. Lack
- Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
- School of Medicine, Koç University, Istanbul, Türkiye
| | - Raymond J. Andersen
- Departments of Chemistry and Earth Ocean, and Atmospheric Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Wilfred A. Jefferies
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
- Departments of Medical Genetics, Zoology, and Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
7
|
Qiu Y, Feng D, Jiang W, Zhang T, Lu Q, Zhao M. 3D genome organization and epigenetic regulation in autoimmune diseases. Front Immunol 2023; 14:1196123. [PMID: 37346038 PMCID: PMC10279977 DOI: 10.3389/fimmu.2023.1196123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/17/2023] [Indexed: 06/23/2023] Open
Abstract
Three-dimensional (3D) genomics is an emerging field of research that investigates the relationship between gene regulatory function and the spatial structure of chromatin. Chromatin folding can be studied using chromosome conformation capture (3C) technology and 3C-based derivative sequencing technologies, including chromosome conformation capture-on-chip (4C), chromosome conformation capture carbon copy (5C), and high-throughput chromosome conformation capture (Hi-C), which allow scientists to capture 3D conformations from a single site to the entire genome. A comprehensive analysis of the relationships between various regulatory components and gene function also requires the integration of multi-omics data such as genomics, transcriptomics, and epigenomics. 3D genome folding is involved in immune cell differentiation, activation, and dysfunction and participates in a wide range of diseases, including autoimmune diseases. We describe hierarchical 3D chromatin organization in this review and conclude with characteristics of C-techniques and multi-omics applications of the 3D genome. In addition, we describe the relationship between 3D genome structure and the differentiation and maturation of immune cells and address how changes in chromosome folding contribute to autoimmune diseases.
Collapse
Affiliation(s)
- Yueqi Qiu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Delong Feng
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Wenjuan Jiang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Tingting Zhang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences, Nanjing, China
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Qianjin Lu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences, Nanjing, China
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ming Zhao
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences, Nanjing, China
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
8
|
Ren J, Liu Y, Zhu X, Wang X, Li Y, Liu Y, Hu W, Zhang X, Wang J. OCRFinder: a noise-tolerance machine learning method for accurately estimating open chromatin regions. Front Genet 2023; 14:1184744. [PMID: 37323658 PMCID: PMC10267440 DOI: 10.3389/fgene.2023.1184744] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 05/19/2023] [Indexed: 06/17/2023] Open
Abstract
Open chromatin regions are the genomic regions associated with basic cellular physiological activities, while chromatin accessibility is reported to affect gene expressions and functions. A basic computational problem is to efficiently estimate open chromatin regions, which could facilitate both genomic and epigenetic studies. Currently, ATAC-seq and cfDNA-seq (plasma cell-free DNA sequencing) are two popular strategies to detect OCRs. As cfDNA-seq can obtain more biomarkers in one round of sequencing, it is considered more effective and convenient. However, in processing cfDNA-seq data, due to the dynamically variable chromatin accessibility, it is quite difficult to obtain the training data with pure OCRs or non-OCRs, and leads to a noise problem for either feature-based approaches or learning-based approaches. In this paper, we propose a learning-based OCR estimation approach with a noise-tolerance design. The proposed approach, named OCRFinder, incorporates the ideas of ensemble learning framework and semi-supervised strategy to avoid potential overfitting of noisy labels, which are the false positives on OCRs and non-OCRs. Compared to different noise control strategies and state-of-the-art approaches, OCRFinder achieved higher accuracies and sensitivities in the experiments. In addition, OCRFinder also has an excellent performance in ATAC-seq or DNase-seq comparison experiments.
Collapse
Affiliation(s)
- Jiayi Ren
- School of Computer Science and Technology, Xi’an Jiaotong University, Xi’an, China
- Shaanxi Engineering Research Center of Medical and Health Big Data, Xi’an Jiaotong University, Xi’an, China
| | - Yuqian Liu
- School of Computer Science and Technology, Xi’an Jiaotong University, Xi’an, China
- Shaanxi Engineering Research Center of Medical and Health Big Data, Xi’an Jiaotong University, Xi’an, China
| | - Xiaoyan Zhu
- School of Computer Science and Technology, Xi’an Jiaotong University, Xi’an, China
- Shaanxi Engineering Research Center of Medical and Health Big Data, Xi’an Jiaotong University, Xi’an, China
| | - Xuwen Wang
- School of Computer Science and Technology, Xi’an Jiaotong University, Xi’an, China
- Shaanxi Engineering Research Center of Medical and Health Big Data, Xi’an Jiaotong University, Xi’an, China
| | - Yifei Li
- School of Computer Science and Technology, Xi’an Jiaotong University, Xi’an, China
- Shaanxi Engineering Research Center of Medical and Health Big Data, Xi’an Jiaotong University, Xi’an, China
| | - Yuxin Liu
- School of Computer Science and Technology, Xi’an Jiaotong University, Xi’an, China
- Shaanxi Engineering Research Center of Medical and Health Big Data, Xi’an Jiaotong University, Xi’an, China
| | - Wenqing Hu
- School of Computer Science and Technology, Xi’an Jiaotong University, Xi’an, China
- Shaanxi Engineering Research Center of Medical and Health Big Data, Xi’an Jiaotong University, Xi’an, China
| | - Xuanping Zhang
- School of Computer Science and Technology, Xi’an Jiaotong University, Xi’an, China
- Shaanxi Engineering Research Center of Medical and Health Big Data, Xi’an Jiaotong University, Xi’an, China
| | - Jiayin Wang
- School of Computer Science and Technology, Xi’an Jiaotong University, Xi’an, China
- Shaanxi Engineering Research Center of Medical and Health Big Data, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
9
|
Henikoff S, Ahmad K. In situ tools for chromatin structural epigenomics. Protein Sci 2022; 31:e4458. [PMID: 36170035 PMCID: PMC9601787 DOI: 10.1002/pro.4458] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/19/2022] [Accepted: 09/22/2022] [Indexed: 12/14/2022]
Abstract
Technological progress over the past 15 years has fueled an explosion in genome-wide chromatin profiling tools that take advantage of low-cost short-read sequencing technologies to map particular chromatin features. Here, we survey the recent development of epigenomic tools that provide precise positions of chromatin proteins genome-wide in intact cells or nuclei. Some profiling tools are based on tethering Micrococcal Nuclease to chromatin proteins of interest in situ, whereas others similarly tether Tn5 transposase to integrate DNA sequencing adapters (tagmentation) and so eliminate the need for library preparation. These in situ cleavage and tagmentation tools have gained in popularity over the past few years, with many protocol enhancements and adaptations for single-cell and spatial chromatin profiling. The application of experimental and computational tools to address problems in gene regulation, eukaryotic development, and human disease are helping to define the emerging field of chromatin structural epigenomics.
Collapse
Affiliation(s)
- Steven Henikoff
- Fred Hutchinson Cancer CenterSeattleWashingtonUSA
- Howard Hughes Medical InstituteChevy ChaseMarylandUSA
| | - Kami Ahmad
- Fred Hutchinson Cancer CenterSeattleWashingtonUSA
| |
Collapse
|
10
|
Lorzadeh A, Hammond C, Wang F, Knapp DJHF, Wong JC, Zhu JYA, Cao Q, Heravi-Moussavi A, Carles A, Wong M, Sharafian Z, Steif J, Moksa M, Bilenky M, Lavoie PM, Eaves CJ, Hirst M. Polycomb contraction differentially regulates terminal human hematopoietic differentiation programs. BMC Biol 2022; 20:104. [PMID: 35550087 PMCID: PMC9102747 DOI: 10.1186/s12915-022-01315-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/28/2022] [Indexed: 12/05/2022] Open
Abstract
Background Lifelong production of the many types of mature blood cells from less differentiated progenitors is a hierarchically ordered process that spans multiple cell divisions. The nature and timing of the molecular events required to integrate the environmental signals, transcription factor activity, epigenetic modifications, and changes in gene expression involved are thus complex and still poorly understood. To address this gap, we generated comprehensive reference epigenomes of 8 phenotypically defined subsets of normal human cord blood. Results We describe a striking contraction of H3K27me3 density in differentiated myelo-erythroid cells that resembles a punctate pattern previously ascribed to pluripotent embryonic stem cells. Phenotypically distinct progenitor cell types display a nearly identical repressive H3K27me3 signature characterized by large organized chromatin K27-modification domains that are retained by mature lymphoid cells but lost in terminally differentiated monocytes and erythroblasts. We demonstrate that inhibition of polycomb group members predicted to control large organized chromatin K27-modification domains influences lymphoid and myeloid fate decisions of primary neonatal hematopoietic progenitors in vitro. We further show that a majority of active enhancers appear in early progenitors, a subset of which are DNA hypermethylated and become hypomethylated and induced during terminal differentiation. Conclusion Primitive human hematopoietic cells display a unique repressive H3K27me3 signature that is retained by mature lymphoid cells but is lost in monocytes and erythroblasts. Intervention data implicate that control of this chromatin state change is a requisite part of the process whereby normal human hematopoietic progenitor cells make lymphoid and myeloid fate decisions. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01315-1.
Collapse
Affiliation(s)
- A Lorzadeh
- Department of Microbiology and Immunology, Michael Smith Laboratories, UBC, Vancouver, Canada
| | - C Hammond
- Terry Fox Laboratory, BC Cancer, Vancouver, Canada.,Department of Medicine, UBC, Vancouver, Canada
| | - F Wang
- Terry Fox Laboratory, BC Cancer, Vancouver, Canada.,Department of Medical Genetics, UBC, Vancouver, Canada
| | - D J H F Knapp
- Terry Fox Laboratory, BC Cancer, Vancouver, Canada.,Department of Medicine, UBC, Vancouver, Canada
| | - J Ch Wong
- Department of Microbiology and Immunology, Michael Smith Laboratories, UBC, Vancouver, Canada
| | - J Y A Zhu
- Department of Microbiology and Immunology, Michael Smith Laboratories, UBC, Vancouver, Canada
| | - Q Cao
- Department of Microbiology and Immunology, Michael Smith Laboratories, UBC, Vancouver, Canada
| | - A Heravi-Moussavi
- Canada's Michael Smith Genome Science Centre, BC Cancer, Vancouver, Canada
| | - A Carles
- Department of Microbiology and Immunology, Michael Smith Laboratories, UBC, Vancouver, Canada
| | - M Wong
- Department of Microbiology and Immunology, Michael Smith Laboratories, UBC, Vancouver, Canada
| | - Z Sharafian
- BC Children's Hospital Research Institute, Department of Pediatrics, UBC, Vancouver, Canada
| | - J Steif
- Department of Microbiology and Immunology, Michael Smith Laboratories, UBC, Vancouver, Canada
| | - M Moksa
- Department of Microbiology and Immunology, Michael Smith Laboratories, UBC, Vancouver, Canada
| | - M Bilenky
- Canada's Michael Smith Genome Science Centre, BC Cancer, Vancouver, Canada
| | - P M Lavoie
- BC Children's Hospital Research Institute, Department of Pediatrics, UBC, Vancouver, Canada
| | - C J Eaves
- Terry Fox Laboratory, BC Cancer, Vancouver, Canada.,Department of Medicine, UBC, Vancouver, Canada.,Department of Medical Genetics, UBC, Vancouver, Canada
| | - M Hirst
- Department of Microbiology and Immunology, Michael Smith Laboratories, UBC, Vancouver, Canada. .,Canada's Michael Smith Genome Science Centre, BC Cancer, Vancouver, Canada.
| |
Collapse
|
11
|
Whole-genome methods to define DNA and histone accessibility and long-range interactions in chromatin. Biochem Soc Trans 2022; 50:199-212. [PMID: 35166326 PMCID: PMC9847230 DOI: 10.1042/bst20210959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/30/2021] [Accepted: 01/24/2022] [Indexed: 02/08/2023]
Abstract
Defining the genome-wide chromatin landscape has been a goal of experimentalists for decades. Here we review highlights of these efforts, from seminal experiments showing discontinuities in chromatin structure related to gene activation to extensions of these methods elucidating general features of chromatin related to gene states by exploiting deep sequencing methods. We also review chromatin conformational capture methods to identify patterns in long-range interactions between genomic loci.
Collapse
|
12
|
Zhao W, Qiao L, Yan S, Nie Q, Zhang L. Mathematical modeling of histone modifications reveals the formation mechanism and function of bivalent chromatin. iScience 2021; 24:102732. [PMID: 34278251 PMCID: PMC8261666 DOI: 10.1016/j.isci.2021.102732] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/23/2021] [Accepted: 06/08/2021] [Indexed: 01/09/2023] Open
Abstract
Bivalent chromatin is characterized by occupation of both activating and repressive histone modifications. Here, we develop a mathematical model that involves antagonistic histone modifications H3K4me3 and H3K27me3 to capture the key features of bivalent chromatin. Three necessary conditions for the emergence of bivalent chromatin are identified, including advantageous methylating activity over demethylating activity, frequent noise conversions of modifications, and sufficient nonlinearity. The first condition is further confirmed by analyzing the existing experimental data. Investigation of the composition of bivalent chromatin reveals that bivalent nucleosomes carrying both H3K4me3 and H3K27me3 account for no more than half of nucleosomes at the bivalent chromatin domain. We identify that bivalent chromatin not only allows transitions to multiple states but also serves as a stepping stone to facilitate a stepwise transition between repressive chromatin state and activating chromatin state and thus elucidate crucial roles of bivalent chromatin in mediating phenotypical plasticity during cell fate determination. Emergence of bivalency needs advantageous writing activity over erasing activity Emergence of bivalency is facilitated by noise and nonlinearity The proportion of bivalent nucleosomes at bivalent chromatin is no more than 50% Bivalent chromatin facilitates chromatin state transitions
Collapse
Affiliation(s)
- Wei Zhao
- Beijing International Center for Mathematical Research, Peking University, Beijing 100871, China.,Center for Quantitative Biology, Peking University, Beijing 100871, China
| | - Lingxia Qiao
- Beijing International Center for Mathematical Research, Peking University, Beijing 100871, China
| | - Shiyu Yan
- Center for Quantitative Biology, Peking University, Beijing 100871, China
| | - Qing Nie
- Department of Mathematics and Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA 92697, USA
| | - Lei Zhang
- Beijing International Center for Mathematical Research, Peking University, Beijing 100871, China.,Center for Quantitative Biology, Peking University, Beijing 100871, China
| |
Collapse
|
13
|
Lorzadeh A, Romero-Wolf M, Goel A, Jadhav U. Epigenetic Regulation of Intestinal Stem Cells and Disease: A Balancing Act of DNA and Histone Methylation. Gastroenterology 2021; 160:2267-2282. [PMID: 33775639 PMCID: PMC8169626 DOI: 10.1053/j.gastro.2021.03.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/10/2021] [Accepted: 03/23/2021] [Indexed: 02/08/2023]
Abstract
Genetic mutations or regulatory failures underlie cellular malfunction in many diseases, including colorectal cancer and inflammatory bowel diseases. However, mutational defects alone fail to explain the complexity of such disorders. Epigenetic regulation-control of gene action through chemical and structural changes of chromatin-provides a platform to integrate multiple extracellular inputs and prepares the cellular genome for appropriate gene expression responses. Coregulation by polycomb repressive complex 2-mediated trimethylation of lysine 27 on histone 3 and DNA methylation has emerged as one of the most influential epigenetic controls in colorectal cancer and many other diseases, but molecular details remain inadequate. Here we review the molecular interplay of these epigenetic features in relation to gastrointestinal development, homeostasis, and disease biology. We discuss other epigenetic mechanisms pertinent to the balance of trimethylation of lysine 27 on histone 3 and DNA methylation and their actions in gastrointestinal cancers. We also review the current molecular understanding of chromatin control in the pathogenesis of inflammatory bowel diseases.
Collapse
Affiliation(s)
- Alireza Lorzadeh
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Maile Romero-Wolf
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Unmesh Jadhav
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California; Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California.
| |
Collapse
|
14
|
Feng Y, Liu X, Pauklin S. 3D chromatin architecture and epigenetic regulation in cancer stem cells. Protein Cell 2021; 12:440-454. [PMID: 33453053 PMCID: PMC8160035 DOI: 10.1007/s13238-020-00819-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/05/2020] [Indexed: 12/29/2022] Open
Abstract
Dedifferentiation of cell identity to a progenitor-like or stem cell-like state with increased cellular plasticity is frequently observed in cancer formation. During this process, a subpopulation of cells in tumours acquires a stem cell-like state partially resembling to naturally occurring pluripotent stem cells that are temporarily present during early embryogenesis. Such characteristics allow these cancer stem cells (CSCs) to give rise to the whole tumour with its entire cellular heterogeneity and thereby support metastases formation while being resistant to current cancer therapeutics. Cancer development and progression are demarcated by transcriptional dysregulation. In this article, we explore the epigenetic mechanisms shaping gene expression during tumorigenesis and cancer stem cell formation, with an emphasis on 3D chromatin architecture. Comparing the pluripotent stem cell state and epigenetic reprogramming to dedifferentiation in cellular transformation provides intriguing insight to chromatin dynamics. We suggest that the 3D chromatin architecture could be used as a target for re-sensitizing cancer stem cells to therapeutics.
Collapse
Affiliation(s)
- Yuliang Feng
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences Old Road, University of Oxford, Oxford, OX3 7LD, UK
| | - Xingguo Liu
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Hefei Institute of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, 510530, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Siim Pauklin
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences Old Road, University of Oxford, Oxford, OX3 7LD, UK.
| |
Collapse
|
15
|
Wang J, Chen L, Zhang X, Tong Y, Zheng T. OCRDetector: Accurately Detecting Open Chromatin Regions via Plasma Cell-Free DNA Sequencing Data. Int J Mol Sci 2021; 22:ijms22115802. [PMID: 34071577 PMCID: PMC8198695 DOI: 10.3390/ijms22115802] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/19/2021] [Accepted: 05/26/2021] [Indexed: 11/16/2022] Open
Abstract
Open chromatin regions (OCRs) are special regions of the human genome that can be accessed by DNA regulatory elements. Several studies have reported that a series of OCRs are associated with mechanisms involved in human diseases, such as cancers. Identifying OCRs using ATAC-seq or DNase-seq is often expensive. It has become popular to detect OCRs from plasma cell-free DNA (cfDNA) sequencing data, because both the fragmentation modes of cfDNA and the sequencing coverage in OCRs are significantly different from those in other regions. However, it is a challenging computational problem to accurately detect OCRs from plasma cfDNA-seq data, as multiple factors—e.g., sequencing and mapping bias, insufficient read depth, etc.—often mislead the computational model. In this paper, we propose a novel bioinformatics pipeline, OCRDetector, for detecting OCRs from whole-genome cfDNA sequencing data. The pipeline calculates the window protection score (WPS) waveform and the cfDNA sequencing coverage. To validate the proposed pipeline, we compared the percentage overlap of our OCRs with those obtained by other methods. The experimental results show that 81% of the TSS regions of housekeeping genes are detected, and our results have obvious tissue specificity. In addition, the overlap percentage between our OCRs and the high-confidence OCRs obtained by ATAC-seq or DNase-seq is greater than 70%.
Collapse
|
16
|
Marr LT, Ocampo J, Clark DJ, Hayes JJ. Global histone protein surface accessibility in yeast indicates a uniformly loosely packed genome with canonical nucleosomes. Epigenetics Chromatin 2021; 14:5. [PMID: 33430969 PMCID: PMC7802155 DOI: 10.1186/s13072-020-00381-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/28/2020] [Indexed: 01/09/2023] Open
Abstract
Background The vast majority of methods available to characterize genome-wide chromatin structure exploit differences in DNA accessibility to nucleases or chemical crosslinking. We developed a novel method to gauge genome-wide accessibility of histone protein surfaces within nucleosomes by assessing reactivity of engineered cysteine residues with a thiol-specific reagent, biotin-maleimide (BM). Results Yeast nuclei were obtained from cells expressing the histone mutant H2B S116C, in which a cysteine resides near the center of the external flat protein surface of the nucleosome. BM modification revealed that nucleosomes are generally equivalently accessible throughout the S. cerevisiae genome, including heterochromatic regions, suggesting limited, higher-order chromatin structures in which this surface is obstructed by tight nucleosome packing. However, we find that nucleosomes within 500 bp of transcription start sites exhibit the greatest range of accessibility, which correlates with the density of chromatin remodelers. Interestingly, accessibility is not well correlated with RNA polymerase density and thus the level of gene expression. We also investigated the accessibility of cysteine mutations designed to detect exposure of histone surfaces internal to the nucleosome thought to be accessible in actively transcribed genes: H3 102, is at the H2A–H2B dimer/H3–H4 tetramer interface, and H3 A110C, resides at the H3–H3 interface. However, in contrast to the external surface site, we find that neither of these internal sites were found to be appreciably exposed. Conclusions Overall, our finding that nucleosomes surfaces within S. cerevisiae chromatin are equivalently accessible genome-wide is consistent with a globally uncompacted chromatin structure lacking substantial higher-order organization. However, we find modest differences in accessibility that correlate with chromatin remodelers but not transcription, suggesting chromatin poised for transcription is more accessible than actively transcribed or intergenic regions. In contrast, we find that two internal sites remain inaccessible, suggesting that such non-canonical nucleosome species generated during transcription are rapidly and efficiently converted to canonical nucleosome structure and thus not widely present in native chromatin.
Collapse
Affiliation(s)
- Luke T Marr
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Josefina Ocampo
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI-CONICET), C1428ADN, Buenos Aires, Argentina
| | - David J Clark
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20892, USA
| | - Jeffrey J Hayes
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, 14642, USA.
| |
Collapse
|
17
|
Zhang X, Jeong M, Huang X, Wang XQ, Wang X, Zhou W, Shamim MS, Gore H, Himadewi P, Liu Y, Bochkov ID, Reyes J, Doty M, Huang YH, Jung H, Heikamp E, Aiden AP, Li W, Su J, Aiden EL, Goodell MA. Large DNA Methylation Nadirs Anchor Chromatin Loops Maintaining Hematopoietic Stem Cell Identity. Mol Cell 2020; 78:506-521.e6. [PMID: 32386543 DOI: 10.1016/j.molcel.2020.04.018] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 01/06/2020] [Accepted: 04/15/2020] [Indexed: 12/22/2022]
Abstract
Higher-order chromatin structure and DNA methylation are implicated in multiple developmental processes, but their relationship to cell state is unknown. Here, we find that large (>7.3 kb) DNA methylation nadirs (termed "grand canyons") can form long loops connecting anchor loci that may be dozens of megabases (Mb) apart, as well as inter-chromosomal links. The interacting loci cover a total of ∼3.5 Mb of the human genome. The strongest interactions are associated with repressive marks made by the Polycomb complex and are diminished upon EZH2 inhibitor treatment. The data are suggestive of the formation of these loops by interactions between repressive elements in the loci, forming a genomic subcompartment, rather than by cohesion/CTCF-mediated extrusion. Interestingly, unlike previously characterized subcompartments, these interactions are present only in particular cell types, such as stem and progenitor cells. Our work reveals that H3K27me3-marked large DNA methylation grand canyons represent a set of very-long-range loops associated with cellular identity.
Collapse
Affiliation(s)
- Xiaotian Zhang
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA; Center for Epigenetics, Van Andel Institute, Grand Rapids, MI, USA.
| | - Mira Jeong
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
| | - Xingfan Huang
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX, USA; Center for Theoretical Biological Physics & Department of Computer Science, Rice University, Houston, TX, USA
| | - Xue Qing Wang
- Center for Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Xinyu Wang
- Institute of Biomedical Big Data, Wenzhou Medical University, Wenzhou, China
| | - Wanding Zhou
- Center for Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Muhammad S Shamim
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX, USA; Medical Student Training Program, Baylor College of Medicine, Houston, TX, USA; Center for Theoretical Biological Physics & Department of Computer Science, Rice University, Houston, TX, USA
| | - Haley Gore
- Center for Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Pamela Himadewi
- Center for Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Yushuai Liu
- Center for Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Ivan D Bochkov
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Jaime Reyes
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Madison Doty
- Molecular Genetic Technology Program, School of Health Professions, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yung-Hsin Huang
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA; Developmental Biology Program, Baylor College of Medicine, Houston, TX, USA
| | - Haiyoung Jung
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA; Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Korea, USA
| | - Emily Heikamp
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Aviva Presser Aiden
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX, USA; Developmental Biology Program, Baylor College of Medicine, Houston, TX, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Wei Li
- Department of Bioinformatics, Biological Chemistry, University of California, Irvine CA, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Jianzhong Su
- Institute of Biomedical Big Data, Wenzhou Medical University, Wenzhou, China
| | - Erez Lieberman Aiden
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX, USA; Center for Theoretical Biological Physics & Department of Computer Science, Rice University, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Shanghai Institute for Advanced Immunochemical Studies, Shanghai Tech University, Shanghai, China.
| | - Margaret A Goodell
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
18
|
Carles A, Trigo-Gonzalez G, Cao Q, Cheng SWG, Moksa M, Bilenky M, Huntsman DG, Morin GB, Hirst M. The Pathognomonic FOXL2 C134W Mutation Alters DNA-Binding Specificity. Cancer Res 2020; 80:3480-3491. [PMID: 32641414 DOI: 10.1158/0008-5472.can-20-0104] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/04/2020] [Accepted: 06/30/2020] [Indexed: 11/16/2022]
Abstract
The somatic missense point mutation c.402C>G (p.C134W) in the FOXL2 transcription factor is pathognomonic for adult-type granulosa cell tumors (AGCT) and a diagnostic marker for this tumor type. However, the molecular consequences of this mutation and its contribution to the mechanisms of AGCT pathogenesis remain unclear. To explore these mechanisms, we engineered V5-FOXL2WT- and V5-FOXL2C134W-inducible isogenic cell lines and performed chromatin immunoprecipitation sequencing and transcriptome profiling. FOXL2C134W associated with the majority of the FOXL2 wild-type DNA elements as well as a large collection of unique elements genome wide. This model enabled confirmation of altered DNA-binding specificity for FOXL2C134W and identification of unique targets of FOXL2C134W including SLC35F2, whose expression increased sensitivity to YM155. Our results suggest FOXL2C134W drives AGCT by altering the binding affinity of FOXL2-containing complexes to engage an oncogenic transcriptional program. SIGNIFICANCE: A mechanistic understanding of FOXL2C134W-induced regulatory state alterations drives discovery of a rationally designed therapeutic strategy.
Collapse
Affiliation(s)
- Annaïck Carles
- Department of Microbiology and Immunology, Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Genny Trigo-Gonzalez
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Qi Cao
- Department of Microbiology and Immunology, Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - S-W Grace Cheng
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada
| | - Michelle Moksa
- Department of Microbiology and Immunology, Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Misha Bilenky
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada
| | - David G Huntsman
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Molecular Oncology, BC Cancer, Vancouver, British Columbia, Canada.,Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Gregg B Morin
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada. .,Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Martin Hirst
- Department of Microbiology and Immunology, Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada. .,Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada
| |
Collapse
|
19
|
DeVorkin L, Pavey N, Carleton G, Comber A, Ho C, Lim J, McNamara E, Huang H, Kim P, Zacharias LG, Mizushima N, Saitoh T, Akira S, Beckham W, Lorzadeh A, Moksa M, Cao Q, Murthy A, Hirst M, DeBerardinis RJ, Lum JJ. Autophagy Regulation of Metabolism Is Required for CD8 + T Cell Anti-tumor Immunity. Cell Rep 2020; 27:502-513.e5. [PMID: 30970253 DOI: 10.1016/j.celrep.2019.03.037] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 02/14/2019] [Accepted: 03/08/2019] [Indexed: 12/22/2022] Open
Abstract
Autophagy is a cell survival process essential for the regulation of immune responses to infections. However, the role of T cell autophagy in anti-tumor immunity is less clear. Here, we demonstrate a cell-autonomous role for autophagy in the regulation of CD8+ T-cell-mediated control of tumors. Mice deficient for the essential autophagy genes Atg5, Atg14, or Atg16L1 display a dramatic impairment in the growth of syngeneic tumors. Moreover, T cells lacking Atg5 have a profound shift to an effector memory phenotype and produce greater amounts of interferon-γ (IFN-γ) and tumor necrosis factor α (TNF-α). Mechanistically, Atg5-/- CD8+ T cells exhibit enhanced glucose metabolism that results in alterations in histone methylation, increases in H3K4me3 density, and transcriptional upregulation of both metabolic and effector target genes. Nonetheless, glucose restriction is sufficient to suppress Atg5-dependent increases in effector function. Thus, autophagy-dependent changes in CD8+ T cell metabolism directly regulate anti-tumor immunity.
Collapse
Affiliation(s)
- Lindsay DeVorkin
- Trev and Joyce Deeley Research Centre, BC Cancer, Victoria, BC, Canada
| | - Nils Pavey
- Trev and Joyce Deeley Research Centre, BC Cancer, Victoria, BC, Canada
| | - Gillian Carleton
- Trev and Joyce Deeley Research Centre, BC Cancer, Victoria, BC, Canada; Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Alexandra Comber
- Trev and Joyce Deeley Research Centre, BC Cancer, Victoria, BC, Canada
| | - Cally Ho
- Trev and Joyce Deeley Research Centre, BC Cancer, Victoria, BC, Canada; Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Junghyun Lim
- Department of Cancer Immunology, Genentech, Inc., South San Francisco, CA, USA
| | - Erin McNamara
- Department of In Vivo Pharmacology, Genentech, Inc., South San Francisco, CA, USA
| | - Haochu Huang
- Department of In Vivo Pharmacology, Genentech, Inc., South San Francisco, CA, USA
| | - Paul Kim
- Trev and Joyce Deeley Research Centre, BC Cancer, Victoria, BC, Canada; Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Lauren G Zacharias
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Noboru Mizushima
- Department of Biochemistry and Molecular Biology, Graduate School and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tatsuya Saitoh
- Division of Inflammation Biology, Institute for Enzyme Research, Tokushima University, Tokushima, Japan
| | - Shizuo Akira
- Department of Host Defense, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Wayne Beckham
- BC Cancer-Vancouver Island Centre, Medical Physics, Victoria, BC, Canada; Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada
| | - Alireza Lorzadeh
- Department of Microbiology and Immunology and Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Michelle Moksa
- Department of Microbiology and Immunology and Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Qi Cao
- Department of Microbiology and Immunology and Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Aditya Murthy
- Department of Cancer Immunology, Genentech, Inc., South San Francisco, CA, USA
| | - Martin Hirst
- Department of Microbiology and Immunology and Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada; Canada's Michael Smith Genome Science Center, BC Cancer, Vancouver, BC, Canada
| | - Ralph J DeBerardinis
- Children's Medical Center Research Institute, Department of Pediatrics and McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Julian J Lum
- Trev and Joyce Deeley Research Centre, BC Cancer, Victoria, BC, Canada; Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada.
| |
Collapse
|
20
|
Schneider E, Pochert N, Ruess C, MacPhee L, Escano L, Miller C, Krowiorz K, Delsing Malmberg E, Heravi-Moussavi A, Lorzadeh A, Ashouri A, Grasedieck S, Sperb N, Kumar Kopparapu P, Iben S, Staffas A, Xiang P, Rösler R, Kanduri M, Larsson E, Fogelstrand L, Döhner H, Döhner K, Wiese S, Hirst M, Keith Humphries R, Palmqvist L, Kuchenbauer F, Rouhi A. MicroRNA-708 is a novel regulator of the Hoxa9 program in myeloid cells. Leukemia 2019; 34:1253-1265. [DOI: 10.1038/s41375-019-0651-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 10/09/2019] [Accepted: 11/13/2019] [Indexed: 12/31/2022]
|
21
|
Mukiza TO, Protacio RU, Davidson MK, Steiner WW, Wahls WP. Diverse DNA Sequence Motifs Activate Meiotic Recombination Hotspots Through a Common Chromatin Remodeling Pathway. Genetics 2019; 213:789-803. [PMID: 31511300 PMCID: PMC6827382 DOI: 10.1534/genetics.119.302679] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 09/04/2019] [Indexed: 02/07/2023] Open
Abstract
In meiosis, multiple different DNA sequence motifs help to position homologous recombination at hotspots in the genome. How do the seemingly disparate cis-acting regulatory modules each promote locally the activity of the basal recombination machinery? We defined molecular mechanisms of action for five different hotspot-activating DNA motifs (M26, CCAAT, Oligo-C, 4095, 4156) located independently at the same site within the ade6 locus of the fission yeast Schizosaccharomyces pombe Each motif promoted meiotic recombination (i.e., is active) within this context, and this activity required the respective binding proteins (transcription factors Atf1, Pcr1, Php2, Php3, Php5, Rst2). High-resolution analyses of chromatin structure by nucleosome scanning assays revealed that each motif triggers the displacement of nucleosomes surrounding the hotspot motif in meiosis. This chromatin remodeling required the respective sequence-specific binding proteins, was constitutive for two motifs, and was enhanced meiotically for three others. Hotspot activity of each motif strongly required the ATP-dependent chromatin remodeling enzyme Snf22 (Snf2/Swi2), with lesser dependence on Gcn5, Mst2, and Hrp3. These findings support a model in which most meiotic recombination hotspots are positioned by the binding of transcription factors to their respective DNA sites. The functional redundancy of multiple, sequence-specific protein-DNA complexes converges upon shared chromatin remodeling pathways that help provide the basal recombination machinery (Spo11/Rec12 complex) access to its DNA substrates within chromatin.
Collapse
Affiliation(s)
- Tresor O Mukiza
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205-7199
| | - Reine U Protacio
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205-7199
| | - Mari K Davidson
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205-7199
| | - Walter W Steiner
- Department of Biology, Niagara University, Lewiston, New York 14109
| | - Wayne P Wahls
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205-7199
| |
Collapse
|
22
|
Abstract
Physical access to DNA is a highly dynamic property of chromatin that plays an essential role in establishing and maintaining cellular identity. The organization of accessible chromatin across the genome reflects a network of permissible physical interactions through which enhancers, promoters, insulators and chromatin-binding factors cooperatively regulate gene expression. This landscape of accessibility changes dynamically in response to both external stimuli and developmental cues, and emerging evidence suggests that homeostatic maintenance of accessibility is itself dynamically regulated through a competitive interplay between chromatin-binding factors and nucleosomes. In this Review, we examine how the accessible genome is measured and explore the role of transcription factors in initiating accessibility remodelling; our goal is to illustrate how chromatin accessibility defines regulatory elements within the genome and how these epigenetic features are dynamically established to control gene expression.
Collapse
Affiliation(s)
- Sandy L Klemm
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Zohar Shipony
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - William J Greenleaf
- Department of Genetics, Stanford University, Stanford, CA, USA. .,Department of Applied Physics, Stanford University, Stanford, CA, USA. .,Chan Zuckerberg BioHub, San Francisco, CA, USA.
| |
Collapse
|
23
|
Synthetic modeling reveals HOXB genes are critical for the initiation and maintenance of human leukemia. Nat Commun 2019; 10:2913. [PMID: 31266935 PMCID: PMC6606637 DOI: 10.1038/s41467-019-10510-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 05/15/2019] [Indexed: 12/23/2022] Open
Abstract
Mechanistic studies in human cancer have relied heavily on cell lines and mouse models, but are limited by in vitro adaptation and species context issues, respectively. More recent efforts have utilized patient-derived xenografts; however, these are hampered by variable genetic background, inability to study early events, and practical issues with availability/reproducibility. We report here an efficient, reproducible model of T-cell leukemia in which lentiviral transduction of normal human cord blood yields aggressive leukemia that appears indistinguishable from natural disease. We utilize this synthetic model to uncover a role for oncogene-induced HOXB activation which is operative in leukemia cells-of-origin and persists in established tumors where it defines a novel subset of patients distinct from other known genetic subtypes and with poor clinical outcome. We show further that anterior HOXB genes are specifically activated in human T-ALL by an epigenetic mechanism and confer growth advantage in both pre-leukemia cells and established clones.
Collapse
|
24
|
Sneppen K, Ringrose L. Theoretical analysis of Polycomb-Trithorax systems predicts that poised chromatin is bistable and not bivalent. Nat Commun 2019; 10:2133. [PMID: 31086177 PMCID: PMC6513952 DOI: 10.1038/s41467-019-10130-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 04/12/2019] [Indexed: 12/15/2022] Open
Abstract
Polycomb (PcG) and Trithorax (TrxG) group proteins give stable epigenetic memory of silent and active gene expression states, but also allow poised states in pluripotent cells. Here we systematically address the relationship between poised, active and silent chromatin, by integrating 73 publications on PcG/TrxG biochemistry into a mathematical model comprising 144 nucleosome modification states and 8 enzymatic reactions. Our model predicts that poised chromatin is bistable and not bivalent. Bivalent chromatin, containing opposing active and silent modifications, is present as an unstable background population in all system states, and different subtypes co-occur with active and silent chromatin. In contrast, bistability, in which the system switches frequently between stable active and silent states, occurs under a wide range of conditions at the transition between monostable active and silent system states. By proposing that bistability and not bivalency is associated with poised chromatin, this work has implications for understanding the molecular nature of pluripotency. Polycomb and Trithorax group proteins regulate silent and active gene expression states, but also allow poised states in pluripotent cells. Here the authors present a mathematical model that integrates data on Polycomb/ Trithorax biochemistry into a single coherent framework which predicts that poised chromatin is not bivalent as previously proposed, but is bistable, meaning that the system switches frequently between stable active and silent states.
Collapse
Affiliation(s)
- Kim Sneppen
- Center for Models of Life, Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100, Copenhagen, Denmark.
| | - Leonie Ringrose
- Integrated Research Institute for Life Sciences, Humboldt-Universität zu Berlin, Philippstrasse 13, Haus 22, 10115, Berlin, Germany.
| |
Collapse
|
25
|
Schlesinger S, Meshorer E. Open Chromatin, Epigenetic Plasticity, and Nuclear Organization in Pluripotency. Dev Cell 2019; 48:135-150. [DOI: 10.1016/j.devcel.2019.01.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 10/30/2018] [Accepted: 12/31/2018] [Indexed: 12/27/2022]
|
26
|
Giambra V, Gusscott S, Gracias D, Song R, Lam SH, Panelli P, Tyshchenko K, Jenkins CE, Hoofd C, Lorzadeh A, Carles A, Hirst M, Eaves CJ, Weng AP. Epigenetic Restoration of Fetal-like IGF1 Signaling Inhibits Leukemia Stem Cell Activity. Cell Stem Cell 2018; 23:714-726.e7. [PMID: 30269902 DOI: 10.1016/j.stem.2018.08.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 06/15/2018] [Accepted: 08/30/2018] [Indexed: 12/13/2022]
Abstract
Acute leukemias are aggressive malignancies of developmentally arrested hematopoietic progenitors. We sought here to explore the possibility that changes in hematopoietic stem/progenitor cells during development might alter the biology of leukemias arising from this tissue compartment. Using a mouse model of acute T cell leukemia, we found that leukemias generated from fetal liver (FL) and adult bone marrow (BM) differed dramatically in their leukemia stem cell activity with FL leukemias showing markedly reduced serial transplantability as compared to BM leukemias. We present evidence that this difference is due to NOTCH1-driven autocrine IGF1 signaling, which is active in FL cells but restrained in BM cells by EZH2-dependent H3K27 trimethylation. Further, we confirmed this mechanism is operative in human disease and show that enforced IGF1 signaling effectively limits leukemia stem cell activity. These findings demonstrate that resurrecting dormant fetal programs in adult cells may represent an alternate therapeutic approach in human cancer.
Collapse
Affiliation(s)
- Vincenzo Giambra
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada; Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo (FG), Italy.
| | - Samuel Gusscott
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Deanne Gracias
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Raymond Song
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Sonya H Lam
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Patrizio Panelli
- Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo (FG), Italy
| | | | | | - Catherine Hoofd
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Alireza Lorzadeh
- Michael Smith Laboratories and Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Annaick Carles
- Michael Smith Laboratories and Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Martin Hirst
- Michael Smith Laboratories and Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Connie J Eaves
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Andrew P Weng
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada.
| |
Collapse
|
27
|
Hui T, Cao Q, Wegrzyn-Woltosz J, O'Neill K, Hammond CA, Knapp DJHF, Laks E, Moksa M, Aparicio S, Eaves CJ, Karsan A, Hirst M. High-Resolution Single-Cell DNA Methylation Measurements Reveal Epigenetically Distinct Hematopoietic Stem Cell Subpopulations. Stem Cell Reports 2018; 11:578-592. [PMID: 30078558 PMCID: PMC6093082 DOI: 10.1016/j.stemcr.2018.07.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 07/08/2018] [Accepted: 07/09/2018] [Indexed: 02/06/2023] Open
Abstract
Increasing evidence of functional and transcriptional heterogeneity in phenotypically similar cells examined individually has prompted interest in obtaining parallel methylome data. We describe the development and application of such a protocol to index-sorted murine and human hematopoietic cells that are highly enriched in their content of functionally defined stem cells. Utilizing an optimized single-cell bisulfite sequencing protocol, we obtained quantitative DNA methylation measurements of up to 5.7 million CpGs in single hematopoietic cells. In parallel, we developed an analytical strategy (PDclust) to define single-cell DNA methylation states through pairwise comparisons of single-CpG methylation measurements. PDclust revealed that a single-cell epigenetic state can be described by a small (<1%) stochastically sampled fraction of CpGs and that these states are reflective of cell identity and state. Using relationships revealed by PDclust, we derive near complete methylomes for epigenetically distinct subpopulations of hematopoietic cells enriched for functional stem cell content.
Collapse
Affiliation(s)
- Tony Hui
- Department of Microbiology and Immunology and Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 1L3, Canada
| | - Qi Cao
- Department of Microbiology and Immunology and Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Joanna Wegrzyn-Woltosz
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 1L3, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 2B5, Canada
| | - Kieran O'Neill
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 1L3, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 2B5, Canada; Terry Fox Laboratory, BC Cancer, Vancouver, BC V5Z 1L3, Canada
| | - Colin A Hammond
- Terry Fox Laboratory, BC Cancer, Vancouver, BC V5Z 1L3, Canada; Department of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - David J H F Knapp
- Terry Fox Laboratory, BC Cancer, Vancouver, BC V5Z 1L3, Canada; Department of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Emma Laks
- Department of Molecular Oncology, BC Cancer, Vancouver, BC V5Z 1L3, Canada
| | - Michelle Moksa
- Department of Microbiology and Immunology and Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Samuel Aparicio
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 2B5, Canada; Department of Molecular Oncology, BC Cancer, Vancouver, BC V5Z 1L3, Canada
| | - Connie J Eaves
- Terry Fox Laboratory, BC Cancer, Vancouver, BC V5Z 1L3, Canada; Department of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 3N1, Canada
| | - Aly Karsan
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 1L3, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 2B5, Canada; Terry Fox Laboratory, BC Cancer, Vancouver, BC V5Z 1L3, Canada
| | - Martin Hirst
- Department of Microbiology and Immunology and Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 1L3, Canada.
| |
Collapse
|
28
|
Single-cell analysis identifies a CD33 + subset of human cord blood cells with high regenerative potential. Nat Cell Biol 2018; 20:710-720. [PMID: 29802403 DOI: 10.1038/s41556-018-0104-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 04/13/2018] [Indexed: 12/15/2022]
Abstract
Elucidation of the identity and diversity of mechanisms that sustain long-term human blood cell production remains an important challenge. Previous studies indicate that, in adult mice, this property is vested in cells identified uniquely by their ability to clonally regenerate detectable, albeit highly variable levels and types, of mature blood cells in serially transplanted recipients. From a multi-parameter analysis of the molecular features of very primitive human cord blood cells that display long-term cell outputs in vitro and in immunodeficient mice, we identified a prospectively separable CD33+CD34+CD38-CD45RA-CD90+CD49f+ phenotype with serially transplantable, but diverse, cell output profiles. Single-cell measurements of the mitogenic response, and the transcriptional, DNA methylation and 40-protein content of this and closely related phenotypes revealed subtle but consistent differences both within and between each subset. These results suggest that multiple regulatory mechanisms combine to maintain different cell output activities of human blood cell precursors with high regenerative potential.
Collapse
|
29
|
Inhibition of Methyltransferase Setd7 Allows the In Vitro Expansion of Myogenic Stem Cells with Improved Therapeutic Potential. Cell Stem Cell 2018; 22:177-190.e7. [PMID: 29395054 DOI: 10.1016/j.stem.2017.12.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 10/04/2017] [Accepted: 12/14/2017] [Indexed: 12/30/2022]
Abstract
The development of cell therapy for repairing damaged or diseased skeletal muscle has been hindered by the inability to significantly expand immature, transplantable myogenic stem cells (MuSCs) in culture. To overcome this limitation, a deeper understanding of the mechanisms regulating the transition between activated, proliferating MuSCs and differentiation-primed, poorly engrafting progenitors is needed. Here, we show that methyltransferase Setd7 facilitates such transition by regulating the nuclear accumulation of β-catenin in proliferating MuSCs. Genetic or pharmacological inhibition of Setd7 promotes in vitro expansion of MuSCs and increases the yield of primary myogenic cell cultures. Upon transplantation, both mouse and human MuSCs expanded with a Setd7 small-molecule inhibitor are better able to repopulate the satellite cell niche, and treated mouse MuSCs show enhanced therapeutic potential in preclinical models of muscular dystrophy. Thus, Setd7 inhibition may help bypass a key obstacle in the translation of cell therapy for muscle disease.
Collapse
|
30
|
Lorzadeh A, Lopez Gutierrez R, Jackson L, Moksa M, Hirst M. Generation of Native Chromatin Immunoprecipitation Sequencing Libraries for Nucleosome Density Analysis. J Vis Exp 2017. [PMID: 29286469 PMCID: PMC5755553 DOI: 10.3791/56085] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
We present a modified native chromatin immunoprecipitation sequencing (ChIP-seq) experimental protocol compatible with a Gaussian mixture distribution based analysis methodology (nucleosome density ChIP-seq; ndChIP-seq) that enables the generation of combined measurements of micrococcal nuclease (MNase) accessibility with histone modification genome-wide. Nucleosome position and local density, and the posttranslational modification of their histone subunits, act in concert to regulate local transcription states. Combinatorial measurements of nucleosome accessibility with histone modification generated by ndChIP-seq allows for the simultaneous interrogation of these features. The ndChIP-seq methodology is applicable to small numbers of primary cells inaccessible to cross-linking based ChIP-seq protocols. Taken together, ndChIP-seq enables the measurement of histone modification in combination with local nucleosome density to obtain new insights into shared mechanisms that regulate RNA transcription within rare primary cell populations.
Collapse
Affiliation(s)
- Alireza Lorzadeh
- Department of Microbiology and Immunology, Michael Smith Laboratories Centre for High-Throughput Biology, University of British Columbia
| | - Rodrigo Lopez Gutierrez
- Department of Microbiology and Immunology, Michael Smith Laboratories Centre for High-Throughput Biology, University of British Columbia
| | - Linda Jackson
- Department of Microbiology and Immunology, Michael Smith Laboratories Centre for High-Throughput Biology, University of British Columbia
| | - Michelle Moksa
- Department of Microbiology and Immunology, Michael Smith Laboratories Centre for High-Throughput Biology, University of British Columbia
| | - Martin Hirst
- Department of Microbiology and Immunology, Michael Smith Laboratories Centre for High-Throughput Biology, University of British Columbia; Canada's Michael Smith Genome Science Center, BC Cancer Agency;
| |
Collapse
|
31
|
Schneider E, Staffas A, Röhner L, Malmberg ED, Ashouri A, Krowiorz K, Pochert N, Miller C, Wei SY, Arabanian L, Buske C, Döhner H, Bullinger L, Fogelstrand L, Heuser M, Döhner K, Xiang P, Ruschmann J, Petriv OI, Heravi-Moussavi A, Hansen CL, Hirst M, Humphries RK, Rouhi A, Palmqvist L, Kuchenbauer F. Micro-ribonucleic acid-155 is a direct target of Meis1, but not a driver in acute myeloid leukemia. Haematologica 2017; 103:246-255. [PMID: 29217774 PMCID: PMC5792269 DOI: 10.3324/haematol.2017.177485] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 11/30/2017] [Indexed: 12/15/2022] Open
Abstract
Micro-ribonucleic acid-155 (miR-155) is one of the first described oncogenic miRNAs. Although multiple direct targets of miR-155 have been identified, it is not clear how it contributes to the pathogenesis of acute myeloid leukemia. We found miR-155 to be a direct target of Meis1 in murine Hoxa9/Meis1 induced acute myeloid leukemia. The additional overexpression of miR-155 accelerated the formation of acute myeloid leukemia in Hoxa9 as well as in Hoxa9/Meis1 cells in vivo. However, in the absence or following the removal of miR-155, leukemia onset and progression were unaffected. Although miR-155 accelerated growth and homing in addition to impairing differentiation, our data underscore the pathophysiological relevance of miR-155 as an accelerator rather than a driver of leukemogenesis. This further highlights the complexity of the oncogenic program of Meis1 to compensate for the loss of a potent oncogene such as miR-155. These findings are highly relevant to current and developing approaches for targeting miR-155 in acute myeloid leukemia.
Collapse
Affiliation(s)
- Edith Schneider
- Department of Internal Medicine III, University Hospital of Ulm, Germany
| | - Anna Staffas
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Sweden
| | - Linda Röhner
- Department of Internal Medicine III, University Hospital of Ulm, Germany
| | - Erik D Malmberg
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Sweden
| | | | - Kathrin Krowiorz
- Department of Internal Medicine III, University Hospital of Ulm, Germany
| | - Nicole Pochert
- Department of Internal Medicine III, University Hospital of Ulm, Germany
| | - Christina Miller
- Department of Internal Medicine III, University Hospital of Ulm, Germany
| | - Stella Yuan Wei
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Sweden.,Department of Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Laleh Arabanian
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Sweden
| | - Christian Buske
- Institute of Experimental Cancer Research, Comprehensive Cancer Centre Ulm, Germany
| | - Hartmut Döhner
- Department of Internal Medicine III, University Hospital of Ulm, Germany
| | - Lars Bullinger
- Department of Internal Medicine III, University Hospital of Ulm, Germany
| | - Linda Fogelstrand
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Sweden.,Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Michael Heuser
- Department of Hematology, Homeostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Germany
| | - Konstanze Döhner
- Department of Internal Medicine III, University Hospital of Ulm, Germany
| | - Ping Xiang
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Jens Ruschmann
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Oleh I Petriv
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada
| | - Alireza Heravi-Moussavi
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Carl L Hansen
- Centre for High-Throughput Biology, University of British Columbia, Vancouver, BC, Canada
| | - Martin Hirst
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, Canada.,Centre for High-Throughput Biology, University of British Columbia, Vancouver, BC, Canada
| | - R Keith Humphries
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Arefeh Rouhi
- Department of Internal Medicine III, University Hospital of Ulm, Germany
| | - Lars Palmqvist
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Sweden.,Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Florian Kuchenbauer
- Department of Internal Medicine III, University Hospital of Ulm, Germany .,Institute of Experimental Cancer Research, Comprehensive Cancer Centre Ulm, Germany
| |
Collapse
|
32
|
Daugherty AC, Yeo RW, Buenrostro JD, Greenleaf WJ, Kundaje A, Brunet A. Chromatin accessibility dynamics reveal novel functional enhancers in C. elegans. Genome Res 2017. [PMID: 29141961 DOI: 10.1101/088732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Chromatin accessibility, a crucial component of genome regulation, has primarily been studied in homogeneous and simple systems, such as isolated cell populations or early-development models. Whether chromatin accessibility can be assessed in complex, dynamic systems in vivo with high sensitivity remains largely unexplored. In this study, we use ATAC-seq to identify chromatin accessibility changes in a whole animal, the model organism Caenorhabditis elegans, from embryogenesis to adulthood. Chromatin accessibility changes between developmental stages are highly reproducible, recapitulate histone modification changes, and reveal key regulatory aspects of the epigenomic landscape throughout organismal development. We find that over 5000 distal noncoding regions exhibit dynamic changes in chromatin accessibility between developmental stages and could thereby represent putative enhancers. When tested in vivo, several of these putative enhancers indeed drive novel cell-type- and temporal-specific patterns of expression. Finally, by integrating transcription factor binding motifs in a machine learning framework, we identify EOR-1 as a unique transcription factor that may regulate chromatin dynamics during development. Our study provides a unique resource for C. elegans, a system in which the prevalence and importance of enhancers remains poorly characterized, and demonstrates the power of using whole organism chromatin accessibility to identify novel regulatory regions in complex systems.
Collapse
Affiliation(s)
- Aaron C Daugherty
- Department of Genetics, Stanford University, Stanford, California 94305, USA
| | - Robin W Yeo
- Department of Genetics, Stanford University, Stanford, California 94305, USA
| | - Jason D Buenrostro
- Department of Genetics, Stanford University, Stanford, California 94305, USA
| | - William J Greenleaf
- Department of Genetics, Stanford University, Stanford, California 94305, USA
- Department of Applied Physics, Stanford University, Stanford, California 94305, USA
| | - Anshul Kundaje
- Department of Genetics, Stanford University, Stanford, California 94305, USA
- Department of Computer Science, Stanford University, Stanford, California 94305, USA
| | - Anne Brunet
- Department of Genetics, Stanford University, Stanford, California 94305, USA
- Glenn Laboratories for the Biology of Aging, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
33
|
Chromatin accessibility dynamics reveal novel functional enhancers in C. elegans. Genome Res 2017; 27:2096-2107. [PMID: 29141961 PMCID: PMC5741055 DOI: 10.1101/gr.226233.117] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 09/13/2017] [Indexed: 12/16/2022]
Abstract
Chromatin accessibility, a crucial component of genome regulation, has primarily been studied in homogeneous and simple systems, such as isolated cell populations or early-development models. Whether chromatin accessibility can be assessed in complex, dynamic systems in vivo with high sensitivity remains largely unexplored. In this study, we use ATAC-seq to identify chromatin accessibility changes in a whole animal, the model organism Caenorhabditis elegans, from embryogenesis to adulthood. Chromatin accessibility changes between developmental stages are highly reproducible, recapitulate histone modification changes, and reveal key regulatory aspects of the epigenomic landscape throughout organismal development. We find that over 5000 distal noncoding regions exhibit dynamic changes in chromatin accessibility between developmental stages and could thereby represent putative enhancers. When tested in vivo, several of these putative enhancers indeed drive novel cell-type- and temporal-specific patterns of expression. Finally, by integrating transcription factor binding motifs in a machine learning framework, we identify EOR-1 as a unique transcription factor that may regulate chromatin dynamics during development. Our study provides a unique resource for C. elegans, a system in which the prevalence and importance of enhancers remains poorly characterized, and demonstrates the power of using whole organism chromatin accessibility to identify novel regulatory regions in complex systems.
Collapse
|
34
|
Abstract
Noncoding DNA regions have central roles in human biology, evolution, and disease. ChromHMM helps to annotate the noncoding genome using epigenomic information across one or multiple cell types. It combines multiple genome-wide epigenomic maps, and uses combinatorial and spatial mark patterns to infer a complete annotation for each cell type. ChromHMM learns chromatin-state signatures using a multivariate hidden Markov model (HMM) that explicitly models the combinatorial presence or absence of each mark. ChromHMM uses these signatures to generate a genome-wide annotation for each cell type by calculating the most probable state for each genomic segment. ChromHMM provides an automated enrichment analysis of the resulting annotations to facilitate the functional interpretations of each chromatin state. ChromHMM is distinguished by its modeling emphasis on combinations of marks, its tight integration with downstream functional enrichment analyses, its speed, and its ease of use. Chromatin states are learned, annotations are produced, and enrichments are computed within 1 d.
Collapse
|
35
|
Albert M, Kalebic N, Florio M, Lakshmanaperumal N, Haffner C, Brandl H, Henry I, Huttner WB. Epigenome profiling and editing of neocortical progenitor cells during development. EMBO J 2017; 36:2642-2658. [PMID: 28765163 DOI: 10.15252/embj.201796764] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 06/27/2017] [Accepted: 07/03/2017] [Indexed: 01/09/2023] Open
Abstract
The generation of neocortical neurons from neural progenitor cells (NPCs) is primarily controlled by transcription factors binding to DNA in the context of chromatin. To understand the complex layer of regulation that orchestrates different NPC types from the same DNA sequence, epigenome maps with cell type resolution are required. Here, we present genomewide histone methylation maps for distinct neural cell populations in the developing mouse neocortex. Using different chromatin features, we identify potential novel regulators of cortical NPCs. Moreover, we identify extensive H3K27me3 changes between NPC subtypes coinciding with major developmental and cell biological transitions. Interestingly, we detect dynamic H3K27me3 changes on promoters of several crucial transcription factors, including the basal progenitor regulator Eomes We use catalytically inactive Cas9 fused with the histone methyltransferase Ezh2 to edit H3K27me3 at the Eomes locus in vivo, which results in reduced Tbr2 expression and lower basal progenitor abundance, underscoring the relevance of dynamic H3K27me3 changes during neocortex development. Taken together, we provide a rich resource of neocortical histone methylation data and outline an approach to investigate its contribution to the regulation of selected genes during neocortical development.
Collapse
Affiliation(s)
- Mareike Albert
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Nereo Kalebic
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Marta Florio
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | - Christiane Haffner
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Holger Brandl
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Ian Henry
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Wieland B Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
36
|
Vitamin C-induced epigenomic remodelling in IDH1 mutant acute myeloid leukaemia. Leukemia 2017; 32:11-20. [PMID: 28663574 PMCID: PMC5770587 DOI: 10.1038/leu.2017.171] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 04/19/2017] [Accepted: 05/16/2017] [Indexed: 12/17/2022]
Abstract
The genomes of myeloid malignancies are characterized by epigenomic abnormalities. Heterozygous, inactivating ten-eleven translocation 2 (TET2) mutations and neomorphic isocitrate dehydrogenase (IDH) mutations are recurrent and mutually exclusive in acute myeloid leukaemia genomes. Ascorbic acid (vitamin C) has been shown to stimulate the catalytic activity of TET2 in vitro and thus we sought to explore its effect in a leukaemic model expressing IDH1R132H. Vitamin C treatment induced an IDH1R132H-dependent reduction in cell proliferation and an increase in expression of genes involved in leukocyte differentiation. Vitamin C induced differentially methylated regions that displayed a significant overlap with enhancers implicated in myeloid differentiation and were enriched in sequence elements for the haematopoietic transcription factors CEBPβ, HIF1α, RUNX1 and PU.1. Chromatin immunoprecipitation sequencing of PU.1 and RUNX1 revealed a significant loss of PU.1 and increase of RUNX1-bound DNA elements accompanied by their demethylation following vitamin C treatment. In addition, vitamin C induced an increase in H3K27ac flanking sites bound by RUNX1. On the basis of these data we propose a model of vitamin C-induced epigenetic remodelling of transcription factor-binding sites driving differentiation in a leukaemic model.
Collapse
|
37
|
The International Human Epigenome Consortium: A Blueprint for Scientific Collaboration and Discovery. Cell 2017; 167:1145-1149. [PMID: 27863232 DOI: 10.1016/j.cell.2016.11.007] [Citation(s) in RCA: 246] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The International Human Epigenome Consortium (IHEC) coordinates the generation of a catalog of high-resolution reference epigenomes of major primary human cell types. The studies now presented (see the Cell Press IHEC web portal at http://www.cell.com/consortium/IHEC) highlight the coordinated achievements of IHEC teams to gather and interpret comprehensive epigenomic datasets to gain insights in the epigenetic control of cell states relevant for human health and disease. PAPERCLIP.
Collapse
|