1
|
Sim MJW, Long EO. The peptide selectivity model: Interpreting NK cell KIR-HLA-I binding interactions and their associations to human diseases. Trends Immunol 2024; 45:959-970. [PMID: 39578117 DOI: 10.1016/j.it.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/18/2024] [Accepted: 10/20/2024] [Indexed: 11/24/2024]
Abstract
Combinations of the highly polymorphic KIR and HLA-I genes are associated with numerous human diseases. Interpreting these associations requires a molecular understanding of the multiple killer-cell immunoglobulin-like receptor (KIR)-human leukocyte antigen-1 (HLA-I) receptor-ligand interactions on natural killer (NK) cells and identifying the salient features that underlie disease risk. We hypothesize that a critical discriminating factor in KIR-HLA-I interactions is the selective detection of HLA-I-bound peptides by KIRs. We propose a 'peptide selectivity model', where high-avidity KIR-HLA-I interactions reflect low selectivity for peptides conferring consistent NK cell inhibition across different tissue immunopeptidomes. Conversely, lower-avidity interactions (including those with activating KIRs) are more dependent on HLA-I-bound peptide sequence, requiring an appreciation of how HLA-I immunopeptidomes influence KIR binding and regulate NK cell function. Relevant to understanding NK cell function and pathology, we interpret known KIR-HLA-I combinations and their associations with certain human diseases in the context of this 'peptide selectivity model'.
Collapse
Affiliation(s)
- Malcolm J W Sim
- Centre for Immuno-Oncology, Nuffield Department of Medicine, University of Oxford, OX3 7DQ, UK.
| | - Eric O Long
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD, 20852, USA
| |
Collapse
|
2
|
Ross P, Hilton HG, Lodwick J, Slezak T, Guethlein LA, McMurtrey CP, Han AS, Nielsen M, Yong D, Dulberger CL, Nolan KT, Roy S, Castro CD, Hildebrand WH, Zhao M, Kossiakoff A, Parham P, Adams EJ. Molecular characterization of the archaic HLA-B*73:01 allele reveals presentation of a unique peptidome and skewed engagement by KIR2DL2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.25.625330. [PMID: 39651149 PMCID: PMC11623575 DOI: 10.1101/2024.11.25.625330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
HLA class I alleles of archaic origin may have been retained in modern humans because they provide immunity against diseases to which archaic humans had evolved resistance. According to this model, archaic introgressed alleles were somehow distinct from those that evolved in African populations. Here we show that HLA-B*73:01, a rare allotype with putative archaic origins, has a relatively rare peptide binding motif with an unusually long-tailed peptide length distribution. We also find that HLA-B*73:01 combines a restricted and unique peptidome with high-cell surface expression, characteristics that make it well-suited to combat one or a number of closely-related pathogens. Furthermore, a crystal structure of HLA-B*73:01 in complex with KIR2DL2 highlights differences from previously solved structures with HLA-C molecules. These molecular characteristics distinguish HLA-B*73:01 from other HLA class I alleles previously investigated and may have provided early modern human migrants that inherited this allele with a selective advantage as they colonized Europe and Asia.
Collapse
|
3
|
Pornratananont G, Tangprasittipap A, Hongeng S, Anurathapan U. Generation of integration-free human induced pluripotent stem cell line MURAi003-A derived from the peripheral blood mononuclear cells of a donor with homozygous Class I and Class II HLAs (A*11:01, B*46:01; C*01:02; DRB1*09:01; DQB1*03:03). Stem Cell Res 2024; 80:103514. [PMID: 39083857 DOI: 10.1016/j.scr.2024.103514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024] Open
Abstract
The human leukocyte antigen (HLA) system comprises cell-surface proteins responsible for the presentation of peptide antigens. HLAs play an essential role in the regulation of the human immune system, and their studies have been crucial to its understanding. To create a sustainable model for the investigation of HLAs, we successfully generated the human iPSC line MURAi003-A derived from the peripheral blood mononuclear cells of a donor with homozygous Class I and Class II HLAs (A*11:01, B*46:01; C*01:02; DRB1*09:01; DQB1*03:03) using non-integrative reprogramming episomes. MURAi003-A exhibited pluripotent stem cell characteristics with consistent demonstrations of pluripotency and expression of stem cell-associated markers.
Collapse
Affiliation(s)
- Gunn Pornratananont
- Program in Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Amornrat Tangprasittipap
- Office of Research, Academic Affairs and Innovations, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Suradej Hongeng
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Usanarat Anurathapan
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand.
| |
Collapse
|
4
|
Gupta S, Sgourakis NG. A structure-guided approach to predict MHC-I restriction of T cell receptors for public antigens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.04.597418. [PMID: 38895339 PMCID: PMC11185663 DOI: 10.1101/2024.06.04.597418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Peptides presented by class I major histocompatibility complex (MHC-I) proteins provide biomarkers for therapeutic targeting using T cell receptors (TCRs), TCR-mimicking antibodies (TMAs), or other engineered protein binders. Despite the extreme sequence diversity of the Human Leucocyte Antigen (HLA, the human MHC), a given TCR or TMA is restricted to recognize epitopic peptides in the context of a limited set of different HLA allotypes. Here, guided by our analysis of 96 TCR:pHLA complex structures in the Protein Data Bank (PDB), we identify TCR contact residues and classify 148 common HLA allotypes into T-cell cross-reactivity groups (T-CREGs) on the basis of their interaction surface features. Insights from our work have actionable value for resolving MHC-I restriction of TCRs, guiding therapeutic expansion of existing therapies, and informing the selection of peptide targets for forthcoming immunotherapy modalities.
Collapse
|
5
|
Jung ES, Ellinghaus D, Degenhardt F, Meguro A, Khor SS, Mucha S, Wendorff M, Juzenas S, Mizuki N, Tokunaga K, Kim SW, Lee MG, Schreiber S, Kim WH, Franke A, Cheon JH. Genome-wide association analysis reveals the associations of NPHP4, TYW1-AUTS2 and SEMA6D for Behçet's disease and HLA-B*46:01 for its intestinal involvement. Dig Liver Dis 2024; 56:994-1001. [PMID: 37977914 DOI: 10.1016/j.dld.2023.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Intestinal involvement in Behçet's disease (BD) is associated with poor prognosis and is more prevalent in East Asian than in Mediterranean populations. Identifying the genetic causes of intestinal BD is important for understanding the pathogenesis and for appropriate treatment of BD patients. METHODS We performed genome-wide association studies (GWAS) and imputation/replication genotyping of human leukocyte antigen (HLA) alleles for 1,689 Korean and Turkish patients with BD (including 379 patients with intestinal BD) and 2,327 healthy controls, followed by replication using 593 Japanese patients with BD (101 patients with intestinal BD) and 737 healthy controls. Stratified cross-phenotype analyses were performed for 1) overall BD, 2) intestinal BD, and 3) intestinal BD without association of overall BD. RESULTS We identified three novel genome-wide significant susceptibility loci including NPHP4 (rs74566205; P=1.36 × 10-8), TYW1-AUTS2 (rs60021986; P=1.14 × 10-9), and SEMA6D (rs4143322; P=5.54 × 10-9) for overall BD, and a new association with HLA-B*46:01 for intestinal BD (P=1.67 × 10-8) but not for BD without intestinal involvement. HLA peptide binding analysis revealed that Mycobacterial peptides, have a stronger binding affinity to HLA-B*46:01 compared to the known risk allele HLA-B*51:01. CONCLUSIONS HLA-B*46:01 is associated with the development of intestinal BD; NPHP4, TYW1-AUTS2, and SEMA6D are susceptibility loci for overall BD.
Collapse
Affiliation(s)
- Eun Suk Jung
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, South Korea; Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - David Ellinghaus
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Kiel, Germany.
| | - Frauke Degenhardt
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Akira Meguro
- Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Seik-Soon Khor
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo, Japan
| | - Sören Mucha
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Mareike Wendorff
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Simonas Juzenas
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Kiel, Germany; Institute of Biotechnology, Life Science Centre, Vilnius University, Vilnius, Lithuania
| | - Nobuhisa Mizuki
- Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Katsushi Tokunaga
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo, Japan
| | - Seung Won Kim
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, South Korea
| | - Min Goo Lee
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Stefan Schreiber
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Won Ho Kim
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, South Korea
| | - Andre Franke
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Jae Hee Cheon
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
6
|
Rettko NJ, Kirkemo LL, Wells JA. Secreted HLA-Fc fusion profiles immunopeptidome in hypoxic PDAC and cellular senescence. PNAS NEXUS 2023; 2:pgad400. [PMID: 38099269 PMCID: PMC10720946 DOI: 10.1093/pnasnexus/pgad400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/13/2023] [Indexed: 12/17/2023]
Abstract
Human leukocyte antigens (HLA) present peptides largely from intracellular proteins on cell surfaces. As these complexes can serve as biomarkers in disease, proper identification of peptides derived from disease-associated antigens and the corresponding presenting HLA is important for the design and execution of therapeutic strategies. Yet, current mass spectrometry methods for immunopeptidomic profiling require large and complex sample inputs, hindering the study of certain disease phenotypes and lowering confidence in peptide and allele identification. Here, we describe a secreted HLA (sHLA)-Fc fusion construct for simple single HLA allele profiling in hypoxic pancreatic ductal adenocarcinoma (PDAC) and cellular senescence. This method streamlines sample preparation, enables temporal control, and provides allele-restricted target identification. Over 30,000 unique HLA-associated peptides were identified across 2 different HLA alleles and 7 cell lines, with ∼9,300 peptides newly discovered. The sHLA-Fc fusion capture technology holds the potential to expedite immunopeptidomics and advance therapeutic interest in HLA-peptide complexes.
Collapse
Affiliation(s)
- Nicholas J Rettko
- Department of Pharmaceutical Chemistry, University of California SanFrancisco, San Francisco, CA 94158, USA
| | - Lisa L Kirkemo
- Department of Pharmaceutical Chemistry, University of California SanFrancisco, San Francisco, CA 94158, USA
| | - James A Wells
- Department of Pharmaceutical Chemistry, University of California SanFrancisco, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California SanFrancisco, San Francisco, CA 94158, USA
| |
Collapse
|
7
|
Wang R, Sun Y, Kuang BH, Yan X, Lei J, Lin YX, Tian J, Li Y, Xie X, Chen T, Zhang H, Zeng YX, Zhao J, Feng L. HLA-Bw4 in association with KIR3DL1 favors natural killer cell-mediated protection against severe COVID-19. Emerg Microbes Infect 2023; 12:2185467. [PMID: 36849422 PMCID: PMC10013568 DOI: 10.1080/22221751.2023.2185467] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Replicating SARS-CoV-2 has been shown to degrade HLA class I on target cells to evade the cytotoxic T-cell (CTL) response. HLA-I downregulation can be sensed by NK cells to unleash killer cell immunoglobulin-like receptor (KIR)-mediated self-inhibition by the cognate HLA-I ligands. Here, we investigated the impact of HLA and KIR genotypes and HLA-KIR combinations on COVID-19 outcome. We found that the peptide affinities of HLA alleles were not correlated with COVID-19 severity. The predicted poor binders for SARS-CoV-2 peptides belong to HLA-B subtypes that encode KIR ligands, including Bw4 and C1 (introduced by B*46:01), which have a small F pocket and cannot accommodate SARS-CoV-2 CTL epitopes. However, HLA-Bw4 weak binders were beneficial for COVID-19 outcome, and individuals lacking the HLA-Bw4 motif were at higher risk for serious illness from COVID-19. The presence of the HLA-Bw4 and KIR3DL1 combination had a 58.8% lower risk of developing severe COVID-19 (OR = 0.412, 95% CI = 0.187-0.904, p = 0.02). This suggests that HLA-Bw4 alleles that impair their ability to load SARS-CoV-2 peptides will become targets for NK-mediated destruction. Thus, we proposed that the synergistic responsiveness of CTLs and NK cells can efficiently control SARS-CoV-2 infection and replication, and NK-cell-mediated anti-SARS-CoV-2 immune responses being mostly involved in severe infection when the level of ORF8 is high enough to degrade HLA-I. The HLA-Bw4/KIR3DL1 genotype may be particularly important for East Asians undergoing COVID-19 who are enriched in HLA-Bw4-inhibitory KIR interactions and carry a high frequency of HLA-Bw4 alleles that bind poorly to coronavirus peptides.
Collapse
Affiliation(s)
- Ruihua Wang
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Ying Sun
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Bo-Hua Kuang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xiao Yan
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China.,Department of Biochemistry, School of Medicine, Sun Yat-sen University, Shenzhen, People's Republic of China
| | - Jinju Lei
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Yu-Xin Lin
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Jinxiu Tian
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Yating Li
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Xiaoduo Xie
- Department of Biochemistry, School of Medicine, Sun Yat-sen University, Shenzhen, People's Republic of China
| | - Tao Chen
- State Key Laboratory of Respiratory Disease at People's Hospital of Yangjiang, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Hui Zhang
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yi-Xin Zeng
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease at People's Hospital of Yangjiang, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Lin Feng
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| |
Collapse
|
8
|
Rettko NJ, Kirkemo LL, Wells JA. Secreted HLA Fc-Fusion Profiles Immunopeptidome in Hypoxic PDAC and Cellular Senescence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.10.536290. [PMID: 37090675 PMCID: PMC10120625 DOI: 10.1101/2023.04.10.536290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Human leukocyte antigens (HLA) display peptides largely from intracellular proteins on the surface of cells in major histocompatibility complex (MHC)-peptide complexes. These complexes provide a biological window into the cell, and peptides derived from disease-associated antigens can serve as biomarkers and therapeutic targets. Thus, proper identification of peptides and the corresponding presenting HLA allele in disease phenotypes is important for the design and execution of therapeutic strategies using engineered T-cell receptors or antibodies. Yet, current mass spectrometry methods for profiling the immunopeptidome typically require large and complex sample inputs, complicating the study of several disease phenotypes and lowering the confidence of both peptide and allele identification. Here, we describe a novel secreted HLA (sHLA) Fc-fusion construct that allows for simple peptide identification from single HLA alleles in two important disease models: hypoxic pancreatic ductal adenocarcinoma (PDAC) and cellular senescence. We identify hypoxia and senescence-associated peptides that could act as future targets for immunotherapy. More generally, the method streamlines the time between sample preparation and injection from days to hours, yielding allele-restricted target identification in a temporally controlled manner. Overall, this method identified >30,000 unique HLA-associated peptides across two different HLA alleles and seven cell lines. Notably, ∼9,300 of these unique HLA-associated peptides had previously not been identified in the Immune Epitope Database. We believe the sHLA Fc-fusion capture technology will accelerate the study of the immunopeptidome as therapeutic interest in HLA-peptide complexes increases in cancer and beyond.
Collapse
|
9
|
Silva NDSB, Souza ADS, Andrade HDS, Pereira RN, Castro CFB, Vince N, Limou S, Naslavsky MS, Zatz M, Duarte YADO, Mendes-Junior CT, Castelli EDC. Immunogenetics of HLA-B: SNP, allele, and haplotype diversity in populations from different continents and ancestry backgrounds. HLA 2023; 101:634-646. [PMID: 37005006 DOI: 10.1111/tan.15043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 03/21/2023] [Accepted: 03/21/2023] [Indexed: 04/04/2023]
Abstract
HLA-B is among the most variable gene in the human genome. This gene encodes a key molecule for antigen presentation to CD8+ T lymphocytes and NK cell modulation. Despite the myriad of studies evaluating its coding region (with an emphasis on exons 2 and 3), few studies evaluated introns and regulatory sequences in real population samples. Thus, HLA-B variability is probably underestimated. We applied a bioinformatics pipeline tailored for HLA genes on 5347 samples from 80 different populations, which includes more than 1000 admixed Brazilians, to evaluate the HLA-B variability (SNPs, indels, MNPs, alleles, and haplotypes) in exons, introns, and regulatory regions. We observed 610 variable sites throughout HLA-B; the most frequent variants are shared worldwide. However, the haplotype distribution is geographically structured. We detected 920 full-length haplotypes (exons, introns, and untranslated regions) encoding 239 different protein sequences. HLA-B gene diversity is higher in admixed populations and Europeans while lower in African ancestry individuals. Each HLA-B allele group is associated with specific promoter sequences. This HLA-B variation resource may improve HLA imputation accuracy and disease-association studies and provide evolutionary insights regarding HLA-B genetic diversity in human populations.
Collapse
Affiliation(s)
- Nayane Dos Santos Brito Silva
- Molecular Genetics and Bioinformatics Laboratory, School of Medicine, São Paulo State University - Unesp, Botucatu, São Paulo, Brazil
- INSERM, Ecole Centrale Nantes, Center for Research in Transplantation and Translational Immunology, Nantes Université, UMR 1064, F-44000, Nantes, France
| | - Andreia da Silva Souza
- Molecular Genetics and Bioinformatics Laboratory, School of Medicine, São Paulo State University - Unesp, Botucatu, São Paulo, Brazil
| | - Heloisa de Souza Andrade
- Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo (USP), São Paulo, São Paulo, Brazil
| | - Raphaela Neto Pereira
- Molecular Genetics and Bioinformatics Laboratory, School of Medicine, São Paulo State University - Unesp, Botucatu, São Paulo, Brazil
| | - Camila Ferreira Bannwart Castro
- Molecular Genetics and Bioinformatics Laboratory, School of Medicine, São Paulo State University - Unesp, Botucatu, São Paulo, Brazil
- UniFSP, Centro Universitário Sudoeste Paulista, Itapetininga, São Paulo, Brazil
| | - Nicolas Vince
- INSERM, Ecole Centrale Nantes, Center for Research in Transplantation and Translational Immunology, Nantes Université, UMR 1064, F-44000, Nantes, France
| | - Sophie Limou
- INSERM, Ecole Centrale Nantes, Center for Research in Transplantation and Translational Immunology, Nantes Université, UMR 1064, F-44000, Nantes, France
| | - Michel Satya Naslavsky
- Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo (USP), São Paulo, São Paulo, Brazil
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, São Paulo, Brazil
- Hospital Israelita Albert Einstein, São Paulo, São Paulo, Brazil
| | - Mayana Zatz
- Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo (USP), São Paulo, São Paulo, Brazil
- Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, São Paulo, Brazil
| | | | - Celso Teixeira Mendes-Junior
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Erick da Cruz Castelli
- Molecular Genetics and Bioinformatics Laboratory, School of Medicine, São Paulo State University - Unesp, Botucatu, São Paulo, Brazil
| |
Collapse
|
10
|
Lin F, Lin X, Fu B, Xiong Y, Zaky MY, Wu H. Functional studies of HLA and its role in SARS-CoV-2: Stimulating T cell response and vaccine development. Life Sci 2023; 315:121374. [PMID: 36621539 PMCID: PMC9815883 DOI: 10.1016/j.lfs.2023.121374] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
In the biological immune process, the major histocompatibility complex (MHC) plays an indispensable role in the expression of HLA molecules in the human body when viral infection activates the T-cell response to remove the virus. Since the first case of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in 2019, how to address and prevent SARS-CoV-2 has become a common problem facing all mankind. The T-cell immune response activated by MHC peptides is a way to construct a defense line and reduce the transmission and harm of the virus. Presentation of SARS-CoV-2 antigen is associated with different types of HLA phenotypes, and different HLA phenotypes induce different immune responses. The prediction of SARS-CoV-2 mutation information and the design of vaccines based on HLAs can effectively activate autoimmunity and cope with virus mutations, which can provide some references for the prevention and treatment of SARS-CoV-2.
Collapse
Affiliation(s)
- Feng Lin
- School of Life Sciences, Chongqing University, Shapingba, Chongqing, China
| | - Xiaoyuan Lin
- School of Life Sciences, Chongqing University, Shapingba, Chongqing, China.
| | - Beibei Fu
- School of Life Sciences, Chongqing University, Shapingba, Chongqing, China
| | - Yan Xiong
- School of Life Sciences, Chongqing University, Shapingba, Chongqing, China
| | - Mohamed Y Zaky
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt; Department of Oncology and Department of Biomedical and Clinical Science, Faculty of Medicine, Linköping University, Sweden
| | - Haibo Wu
- School of Life Sciences, Chongqing University, Shapingba, Chongqing, China.
| |
Collapse
|
11
|
Li SS, Hickey A, Shangguan S, Ehrenberg PK, Geretz A, Butler L, Kundu G, Apps R, Creegan M, Clifford RJ, Pinyakorn S, Eller LA, Luechai P, Gilbert PB, Holtz TH, Chitwarakorn A, Sacdalan C, Kroon E, Phanuphak N, de Souza M, Ananworanich J, O'Connell RJ, Robb ML, Michael NL, Vasan S, Thomas R. HLA-B∗46 associates with rapid HIV disease progression in Asian cohorts and prominent differences in NK cell phenotype. Cell Host Microbe 2022; 30:1173-1185.e8. [PMID: 35841889 DOI: 10.1016/j.chom.2022.06.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/17/2022] [Accepted: 06/09/2022] [Indexed: 12/12/2022]
Abstract
Human leukocyte antigen (HLA) alleles have been linked to HIV disease progression and attributed to differences in cytotoxic T lymphocyte (CTL) epitope representation. These findings are largely based on treatment-naive individuals of European and African ancestry. We assessed HLA associations with HIV-1 outcomes in 1,318 individuals from Thailand and found HLA-B∗46:01 (B∗46) associated with accelerated disease in three independent cohorts. B∗46 had no detectable effect on HIV-specific T cell responses, but this allele is unusual in containing an HLA-C epitope that binds inhibitory receptors on natural killer (NK) cells. Unbiased transcriptomic screens showed increased NK cell activation in people with HIV, without B∗46, and simultaneous single-cell profiling of surface proteins and transcriptomes revealed a NK cell subset primed for increased responses in the absence of B∗46. These findings support a role for NK cells in HIV pathogenesis, revealed by the unique properties of the B∗46 allele common only in Asia.
Collapse
Affiliation(s)
- Shuying S Li
- Fred Hutchinson Cancer Center, Vaccine and Infectious Disease Division, Seattle, WA 98104, USA
| | - Andrew Hickey
- Division of HIV Prevention, U.S. Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; Thailand Ministry of Public Health, U.S. Centers for Disease Control and Prevention Collaboration, Nonthaburi 11000, Thailand
| | - Shida Shangguan
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Philip K Ehrenberg
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Aviva Geretz
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Lauryn Butler
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Gautam Kundu
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Richard Apps
- Center for Human Immunology, National Institutes of Health, Bethesda, MD 20892, USA
| | - Matthew Creegan
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Robert J Clifford
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Suteeraporn Pinyakorn
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Leigh Anne Eller
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Pikunchai Luechai
- Division of HIV Prevention, U.S. Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; Thailand Ministry of Public Health, U.S. Centers for Disease Control and Prevention Collaboration, Nonthaburi 11000, Thailand
| | - Peter B Gilbert
- Fred Hutchinson Cancer Center, Vaccine and Infectious Disease Division, Seattle, WA 98104, USA
| | - Timothy H Holtz
- Division of HIV Prevention, U.S. Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; Thailand Ministry of Public Health, U.S. Centers for Disease Control and Prevention Collaboration, Nonthaburi 11000, Thailand; Office of AIDS Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anupong Chitwarakorn
- Department of Disease Control, Thailand Ministry of Public Health, Nonthaburi 11000, Thailand
| | - Carlo Sacdalan
- Institute of HIV Research and Innovation, Bangkok 10330, Thailand
| | - Eugène Kroon
- Institute of HIV Research and Innovation, Bangkok 10330, Thailand
| | | | - Mark de Souza
- Institute of HIV Research and Innovation, Bangkok 10330, Thailand
| | - Jintanat Ananworanich
- Department of Global Health, Amsterdam Medical Center, University of Amsterdam, 1105 BP Amsterdam, the Netherlands
| | | | - Merlin L Robb
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Nelson L Michael
- Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Sandhya Vasan
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Rasmi Thomas
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA.
| |
Collapse
|
12
|
Pollock NR, Harrison GF, Norman PJ. Immunogenomics of Killer Cell Immunoglobulin-Like Receptor (KIR) and HLA Class I: Coevolution and Consequences for Human Health. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:1763-1775. [PMID: 35561968 PMCID: PMC10038757 DOI: 10.1016/j.jaip.2022.04.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 12/12/2022]
Abstract
Interactions of killer cell immunoglobin-like receptors (KIR) with human leukocyte antigens (HLA) class I regulate effector functions of key cytotoxic cells of innate and adaptive immunity. The extreme diversity of this interaction is genetically determined, having evolved in the ever-changing environment of pathogen exposure. Diversity of KIR and HLA genes is further facilitated by their independent segregation on separate chromosomes. That fetal implantation relies on many of the same types of immune cells as infection control places certain constraints on the evolution of KIR interactions with HLA. Consequently, specific inherited combinations of receptors and ligands may predispose to specific immune-mediated diseases, including autoimmunity. Combinatorial diversity of KIR and HLA class I can also differentiate success rates of immunotherapy directed to these diseases. Progress toward both etiopathology and predicting response to therapy is being achieved through detailed characterization of the extent and consequences of the combinatorial diversity of KIR and HLA. Achieving these goals is more tractable with the development of integrated analyses of molecular evolution, function, and pathology that will establish guidelines for understanding and managing risks. Here, we present what is known about the coevolution of KIR with HLA class I and the impact of their complexity on immune function and homeostasis.
Collapse
Affiliation(s)
- Nicholas R Pollock
- Division of Biomedical Informatics and Personalized Medicine and Department of Immunology and Microbiology, Anschutz Medical Campus, University of Colorado, Aurora, Colo
| | - Genelle F Harrison
- Division of Biomedical Informatics and Personalized Medicine and Department of Immunology and Microbiology, Anschutz Medical Campus, University of Colorado, Aurora, Colo
| | - Paul J Norman
- Division of Biomedical Informatics and Personalized Medicine and Department of Immunology and Microbiology, Anschutz Medical Campus, University of Colorado, Aurora, Colo.
| |
Collapse
|
13
|
Osoegawa K, Marsh SGE, Holdsworth R, Heidt S, Fischer G, Murphey C, Maiers M, Fernández Viňa MA. A new strategy for systematically classifying HLA alleles into serological specificities. HLA 2022; 100:193-231. [PMID: 35538616 DOI: 10.1111/tan.14662] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/30/2022] [Accepted: 05/08/2022] [Indexed: 11/30/2022]
Abstract
HLA serological specificities were defined by the reactivity of HLA molecules with sets of sera and monoclonal antibodies. Many recently identified alleles defined by molecular typing lack their serotype assignment. We surveyed the literature describing the correlation of the reactivity of serologic reagents with AA residues. 20 - 25 AA residues determining epitopes (DEP) that correlated with 82 WHO serologic specificities were identified for HLA class I loci. Thirteen DEP each located in the beta-1 domains that correlated with 24 WHO serologic specificities were identified for HLA-DRB1 and -DQB1 loci. The designation of possible HLA-DPB1, -DQA1, -DPA1, and additional serological specificities that result from epitopes defined by residues located at both -DQA1 and -DQB1 subunits were also examined. HATS software was developed for automated serotype assignments to HLA alleles in one of the three hierarchical matching criteria: 1) all DEP (FULL); 2) selected DEP specific to each serological specificities (SEROTYPE); 3) one AA mismatch with one or more SEROTYPES (INCOMPLETE). Results were validated by evaluating the alleles whose serotypes do not correspond to the first field of the allele name listed in the HLA dictionary. Additional 85 and 21 DEP patterns that do not correspond to any WHO serologic specificities for common HLA class I and DRB1 alleles were identified, respectively. A comprehensive antibody identification panel would allow for accurate unacceptable antigen listing and compatibility predictions in solid organ transplantations. We propose that antibody-screening panels should include all serologic specificities identified in this study. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Kazutoyo Osoegawa
- Histocompatibility and Immunogenetics Laboratory, Stanford Blood Center, Palo Alto, CA, USA
| | - Steven G E Marsh
- Anthony Nolan Research Institute & UCL Cancer Institute, Royal Free Campus, London, United Kingdom
| | | | - Sebastiaan Heidt
- Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands
| | - Gottfried Fischer
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Vienna, Vienna, Austria
| | - Cathi Murphey
- Histocompatibility and Immunogenetics Laboratory at Southwest Immunodiagnostics, Inc, San Antonio, TX, USA
| | - Martin Maiers
- Innovation, National Marrow Donor Program, Minneapolis, MN, USA
| | - Marcelo A Fernández Viňa
- Histocompatibility and Immunogenetics Laboratory, Stanford Blood Center, Palo Alto, CA, USA.,Department of Pathology, Stanford University School of Medicine, Palo Alto, CA, USA
| |
Collapse
|
14
|
Rueda JC, Arcos-Burgos M, Santos AM, Martin-Arsanios D, Villota-Erazo C, Reyes V, Bernal-Macías S, Peláez-Ballestas I, Cardiel MH, Londono J. Human Genetic Host Factors and Its Role in the Pathogenesis of Chikungunya Virus Infection. Front Med (Lausanne) 2022; 9:654395. [PMID: 35252226 PMCID: PMC8888679 DOI: 10.3389/fmed.2022.654395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 01/25/2022] [Indexed: 11/13/2022] Open
Abstract
Chikungunya virus (CHIKV) is an alphavirus from the Togaviridae family that causes acute arthropathy in humans. It is an arthropod-borne virus transmitted initially by the Aedes (Ae) aegypti and after 2006's epidemic in La Reunion by Ae albopictus due to an adaptive mutation of alanine for valine in the position 226 of the E1 glycoprotein genome (A226V). The first isolated cases of CHIKV were reported in Tanzania, however since its arrival to the Western Hemisphere in 2013, the infection became a pandemic. After a mosquito bite from an infected viremic patient the virus replicates eliciting viremia, fever, rash, myalgia, arthralgia, and arthritis. After the acute phase, CHIKV infection can progress to a chronic stage where rheumatic symptoms can last for several months to years. Although there is a great number of studies on the pathogenesis of CHIKV infection not only in humans but also in animal models, there still gaps in the proper understanding of the disease. To this date, it is unknown why a percentage of patients do not develop clinical symptoms despite having been exposed to the virus and developing an adaptive immune response. Also, controversy stills exist on the pathogenesis of chronic joint symptoms. It is known that host immune response to an infectious disease is reflected on patient's symptoms. At the same time, it is now well-established that host genetic variation is an important component of the varied onset, severity, and outcome of infectious disease. It is essential to understand the interaction between the aetiological agent and the host to know the chronic sequelae of the disease. The present review summarizes the current findings on human host genetics and its relationship with immune response in CHIKV infection.
Collapse
Affiliation(s)
- Juan C. Rueda
- Faculty of Medicine and Engineering, Universidad de La Sabana, Chía, Colombia
- Grupo de Espondiloartropatías, Rheumatology Department, Universidad de La Sabana, Chía, Colombia
| | - Mauricio Arcos-Burgos
- Grupo de Investigación en Psiquiatría (GIPSI), Departamento de Psiquiatría, Faculty of Medicine, Instituto de Investigaciones Médicas, Universidad de Antioquia, Medellín, Colombia
| | - Ana M. Santos
- Grupo de Espondiloartropatías, Rheumatology Department, Universidad de La Sabana, Chía, Colombia
| | - Daniel Martin-Arsanios
- Grupo de Espondiloartropatías, Rheumatology Department, Universidad de La Sabana, Chía, Colombia
| | - Catalina Villota-Erazo
- Grupo de Espondiloartropatías, Rheumatology Department, Universidad de La Sabana, Chía, Colombia
- Rheumatology Department, Hospital Militar Central, Bogotá, Colombia
| | - Viviana Reyes
- Grupo de Espondiloartropatías, Rheumatology Department, Universidad de La Sabana, Chía, Colombia
- Rheumatology Department, Hospital Militar Central, Bogotá, Colombia
| | - Santiago Bernal-Macías
- Grupo de Espondiloartropatías, Rheumatology Department, Universidad de La Sabana, Chía, Colombia
- Rheumatology Department, Hospital Militar Central, Bogotá, Colombia
| | | | | | - John Londono
- Grupo de Espondiloartropatías, Rheumatology Department, Universidad de La Sabana, Chía, Colombia
- Rheumatology Department, Hospital Militar Central, Bogotá, Colombia
- *Correspondence: John Londono
| |
Collapse
|
15
|
Chaisri S, Jayaraman J, Mongkolsapaya J, Duangchinda T, Jumniansong A, Trowsdale J, Traherne JA, Leelayuwat C. KIR copy number variations in dengue-infected patients from northeastern Thailand. Hum Immunol 2022; 83:328-334. [DOI: 10.1016/j.humimm.2022.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 12/16/2021] [Accepted: 01/07/2022] [Indexed: 11/04/2022]
|
16
|
Shukla N, Prasad A, Kanga U, Suravajhala R, Nigam VK, Kishor PBK, Polavarapu R, Chaubey G, Singh KK, Suravajhala P. SARS-CoV-2 transgressing LncRNAs uncovers the known unknowns. Physiol Genomics 2021; 53:433-440. [PMID: 34492207 PMCID: PMC8562947 DOI: 10.1152/physiolgenomics.00075.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 12/21/2022] Open
Abstract
SARS-CoV-2 harbors many known unknown regions in the form of hypothetical open reading frames (ORFs). Although the mechanisms underlying the disease pathogenesis are not clearly understood, molecules such as long noncoding RNAs (lncRNAs) play a key regulatory role in the viral pathogenesis from endocytosis. We asked whether or not the lncRNAs in the host are associated with the viral proteins and argue that lncRNA-mRNAs molecules related to viral infection may regulate SARS-CoV-2 pathogenesis. Toward the end of the perspective, we provide challenges and insights into investigating these transgression pathways.
Collapse
Affiliation(s)
- Nidhi Shukla
- Department of Biotechnology and Bioinformatics, Birla Institute of Scientific Research, Jaipur, India
- Department of Chemistry, Manipal University Jaipur, Jaipur, India
| | - Anchita Prasad
- Department of Bioengineering, Birla Institute of Technology Mesra, Ranchi, India
| | - Uma Kanga
- Department of Transplant Immunology and Immunogenetics, AIIMS, New Delhi, India
| | | | - Vinod Kumar Nigam
- Department of Bioengineering, Birla Institute of Technology Mesra, Ranchi, India
| | - P B Kavi Kishor
- Department of Biotechnology, Vignan's Foundation for Science, Technology & Research (VFSTR), Guntur, India
| | | | - Gyaneshwer Chaubey
- Cytogenetics Lab, Department of Zoology, Banaras Hindu University, Varanasi, India
| | - Keshav K Singh
- Department of Genetics, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Prashanth Suravajhala
- Department of Biotechnology and Bioinformatics, Birla Institute of Scientific Research, Jaipur, India
- Bioclues Organization, Hyderabad, India
- Amrita School of Biotechnology, Amrita University, Amritapuri, Kerala, India
| |
Collapse
|
17
|
Hanna J, Tipparaju P, Mulherkar T, Lin E, Mischley V, Kulkarni R, Bolton A, Byrareddy SN, Jain P. Risk Factors Associated with the Clinical Outcomes of COVID-19 and Its Variants in the Context of Cytokine Storm and Therapeutics/Vaccine Development Challenges. Vaccines (Basel) 2021; 9:938. [PMID: 34452063 PMCID: PMC8402745 DOI: 10.3390/vaccines9080938] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/08/2021] [Accepted: 08/17/2021] [Indexed: 12/17/2022] Open
Abstract
The recent appearance of SARS-CoV-2 is responsible for the ongoing coronavirus disease 2019 (COVID-19) pandemic and has brought to light the importance of understanding this highly pathogenic agent to prevent future pandemics. This virus is from the same single-stranded positive-sense RNA family, Coronaviridae, as two other epidemic-causing viruses, SARS-CoV-1 and MERS-CoV. During this pandemic, one crucial focus highlighted by WHO has been to understand the risk factors that may contribute to disease severity and predict COVID-19 outcomes. In doing so, it is imperative to understand the virology of SARS-CoV-2 and the immunological response eliciting the clinical manifestation and progression of COVID-19. In this review, we provide clinical data-based analyses of how multiple risk factors (such as sex, race, HLA genotypes, blood groups, vitamin D deficiency, obesity, smoking, and asthma) contribute to the inflammatory overactivation and cytokine storm (frequently seen in COVID-19 patients) with a focus on the IL-6 pathway. We also draw comparisons to the virulence and pathophysiology of SARS and MERS to establish parallels in immune response and discuss the potential for therapeutic approaches that may limit disease progression in patients with higher risk profiles than others. Moreover, we cover the latest information on approved or upcoming COVID-19 vaccines. This paper also provides perspective on emerging variants and associated opportunistic infections such as black molds and fungus that have added to mortality in some parts of the world, such as India. This compilation of existing COVID-19 studies and data will provide an excellent referencing tool for the research, clinical, and public health communities.
Collapse
Affiliation(s)
- John Hanna
- Department of Microbiology and Immunology, Drexel University College of Medicine Philadelphia, 2900 Queen Lane, Philadelphia, PA 19129, USA; (J.H.); (P.T.); (T.M.); (E.L.); (V.M.); (R.K.); (A.B.)
| | - Padmavathi Tipparaju
- Department of Microbiology and Immunology, Drexel University College of Medicine Philadelphia, 2900 Queen Lane, Philadelphia, PA 19129, USA; (J.H.); (P.T.); (T.M.); (E.L.); (V.M.); (R.K.); (A.B.)
| | - Tania Mulherkar
- Department of Microbiology and Immunology, Drexel University College of Medicine Philadelphia, 2900 Queen Lane, Philadelphia, PA 19129, USA; (J.H.); (P.T.); (T.M.); (E.L.); (V.M.); (R.K.); (A.B.)
| | - Edward Lin
- Department of Microbiology and Immunology, Drexel University College of Medicine Philadelphia, 2900 Queen Lane, Philadelphia, PA 19129, USA; (J.H.); (P.T.); (T.M.); (E.L.); (V.M.); (R.K.); (A.B.)
| | - Victoria Mischley
- Department of Microbiology and Immunology, Drexel University College of Medicine Philadelphia, 2900 Queen Lane, Philadelphia, PA 19129, USA; (J.H.); (P.T.); (T.M.); (E.L.); (V.M.); (R.K.); (A.B.)
| | - Ratuja Kulkarni
- Department of Microbiology and Immunology, Drexel University College of Medicine Philadelphia, 2900 Queen Lane, Philadelphia, PA 19129, USA; (J.H.); (P.T.); (T.M.); (E.L.); (V.M.); (R.K.); (A.B.)
| | - Aliyah Bolton
- Department of Microbiology and Immunology, Drexel University College of Medicine Philadelphia, 2900 Queen Lane, Philadelphia, PA 19129, USA; (J.H.); (P.T.); (T.M.); (E.L.); (V.M.); (R.K.); (A.B.)
| | - Siddappa N. Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Pooja Jain
- Department of Microbiology and Immunology, Drexel University College of Medicine Philadelphia, 2900 Queen Lane, Philadelphia, PA 19129, USA; (J.H.); (P.T.); (T.M.); (E.L.); (V.M.); (R.K.); (A.B.)
| |
Collapse
|
18
|
Vittoraki AG, Fylaktou A, Tarassi K, Tsinaris Z, Siorenta A, Petasis GC, Gerogiannis D, Lehmann C, Carmagnat M, Doxiadis I, Iniotaki AG, Theodorou I. Hidden Patterns of Anti-HLA Class I Alloreactivity Revealed Through Machine Learning. Front Immunol 2021; 12:670956. [PMID: 34386000 PMCID: PMC8353326 DOI: 10.3389/fimmu.2021.670956] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 07/12/2021] [Indexed: 11/13/2022] Open
Abstract
Detection of alloreactive anti-HLA antibodies is a frequent and mandatory test before and after organ transplantation to determine the antigenic targets of the antibodies. Nowadays, this test involves the measurement of fluorescent signals generated through antibody-antigen reactions on multi-beads flow cytometers. In this study, in a cohort of 1,066 patients from one country, anti-HLA class I responses were analyzed on a panel of 98 different antigens. Knowing that the immune system responds typically to "shared" antigenic targets, we studied the clustering patterns of antibody responses against HLA class I antigens without any a priori hypothesis, applying two unsupervised machine learning approaches. At first, the principal component analysis (PCA) projections of intra-locus specific responses showed that anti-HLA-A and anti-HLA-C were the most distantly projected responses in the population with the anti-HLA-B responses to be projected between them. When PCA was applied on the responses against antigens belonging to a single locus, some already known groupings were confirmed while several new cross-reactive patterns of alloreactivity were detected. Anti-HLA-A responses projected through PCA suggested that three cross-reactive groups accounted for about 70% of the variance observed in the population, while anti-HLA-B responses were mainly characterized by a distinction between previously described Bw4 and Bw6 cross-reactive groups followed by several yet undocumented or poorly described ones. Furthermore, anti-HLA-C responses could be explained by two major cross-reactive groups completely overlapping with previously described C1 and C2 allelic groups. A second feature-based analysis of all antigenic specificities, projected as a dendrogram, generated a robust measure of allelic antigenic distances depicting bead-array defined cross reactive groups. Finally, amino acid combinations explaining major population specific cross-reactive groups were described. The interpretation of the results was based on the current knowledge of the antigenic targets of the antibodies as they have been characterized either experimentally or computationally and appear at the HLA epitope registry.
Collapse
Affiliation(s)
- Angeliki G Vittoraki
- Immunology Department & National Tissue Typing Center, General Hospital of Athens "G. Gennimatas", Athens, Greece
| | - Asimina Fylaktou
- National Peripheral Histocompatibility Center, Immunology Department, Hippokration General Hospital, Thessaloniki, Greece
| | - Katerina Tarassi
- Immunology-Histocompatibility Department, "Evangelismos" General Hospital, Athens, Greece
| | - Zafeiris Tsinaris
- National Peripheral Histocompatibility Center, Immunology Department, Hippokration General Hospital, Thessaloniki, Greece
| | - Alexandra Siorenta
- Immunology Department & National Tissue Typing Center, General Hospital of Athens "G. Gennimatas", Athens, Greece
| | - George Ch Petasis
- National Peripheral Histocompatibility Center, Immunology Department, Hippokration General Hospital, Thessaloniki, Greece
| | - Demetris Gerogiannis
- Department of Computer Science & Engineering , University of Ioannina, Ioannina, Greece
| | - Claudia Lehmann
- Laboratory for Transplantation Immunology, Institute for Transfusion Medicine, University Hospital Leipzig, Leipzig, Germany
| | | | - Ilias Doxiadis
- Laboratory for Transplantation Immunology, Institute for Transfusion Medicine, University Hospital Leipzig, Leipzig, Germany
| | - Aliki G Iniotaki
- Nephrology and Transplantation Unit, Medical School of Athens, Laikon Hospital, Athens, Greece
| | - Ioannis Theodorou
- Laboratoire d'Immunologie, Hôpital St. Louis, Paris, France.,Centre d'Immunologie et des Maladies Infectieuses UPMC UMRS CR7-Inserm U1135-CNRS ERL, Paris, France
| |
Collapse
|
19
|
Desterke C, Turhan AG, Bennaceur-Griscelli A, Griscelli F. HLA-dependent heterogeneity and macrophage immunoproteasome activation during lung COVID-19 disease. J Transl Med 2021; 19:290. [PMID: 34225749 PMCID: PMC8256232 DOI: 10.1186/s12967-021-02965-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/27/2021] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The worldwide pandemic caused by the SARS-CoV-2 virus is characterized by significant and unpredictable heterogeneity in symptoms that remains poorly understood. METHODS Transcriptome and single cell transcriptome of COVID19 lung were integrated with deeplearning analysis of MHC class I immunopeptidome against SARS-COV2 proteome. RESULTS An analysis of the transcriptomes of lung samples from COVID-19 patients revealed that activation of MHC class I antigen presentation in these tissues was correlated with the amount of SARS-CoV-2 RNA present. Similarly, a positive relationship was detected in these samples between the level of SARS-CoV-2 and the expression of a genomic cluster located in the 6p21.32 region (40 kb long, inside the MHC-II cluster) that encodes constituents of the immunoproteasome. An analysis of single-cell transcriptomes of bronchoalveolar cells highlighted the activation of the immunoproteasome in CD68 + M1 macrophages of COVID-19 patients in addition to a PSMB8-based trajectory in these cells that featured an activation of defense response during mild cases of the disease, and an impairment of alveolar clearance mechanisms during severe COVID-19. By examining the binding affinity of the SARS-CoV-2 immunopeptidome with the most common HLA-A, -B, and -C alleles worldwide, we found higher numbers of stronger presenters in type A alleles and in Asian populations, which could shed light on why this disease is now less widespread in this part of the world. CONCLUSIONS HLA-dependent heterogeneity in macrophage immunoproteasome activation during lung COVID-19 disease could have implications for efforts to predict the response to HLA-dependent SARS-CoV-2 vaccines in the global population.
Collapse
Affiliation(s)
- Christophe Desterke
- INSERM UA9- University Paris-Saclay, 94800, Villejuif, France
- University Paris Saclay, Faculty of Medicine, 94275, Le Kremlin Bicêtre, France
| | - Ali G Turhan
- INSERM UA9- University Paris-Saclay, 94800, Villejuif, France
- ESTeam Paris Sud, INGESTEM National IPSC Infrastructure, University Paris-Saclay, 94800, Villejuif, France
- Division of Hematology, Kremlin-Bicetre Hospital, 94270, Kremlin Bicetre, France
- University Paris Saclay, Faculty of Medicine, 94275, Le Kremlin Bicêtre, France
| | - Annelise Bennaceur-Griscelli
- INSERM UA9- University Paris-Saclay, 94800, Villejuif, France
- ESTeam Paris Sud, INGESTEM National IPSC Infrastructure, University Paris-Saclay, 94800, Villejuif, France
- Division of Hematology, Kremlin-Bicetre Hospital, 94270, Kremlin Bicetre, France
- University Paris Saclay, Faculty of Medicine, 94275, Le Kremlin Bicêtre, France
| | - Frank Griscelli
- INSERM UA9- University Paris-Saclay, 94800, Villejuif, France.
- ESTeam Paris Sud, INGESTEM National IPSC Infrastructure, University Paris-Saclay, 94800, Villejuif, France.
- University of Paris, Faculty Sorbonne Paris Cité, Faculté Des Sciences Pharmaceutiques Et Biologiques, Paris, France.
- Department of Biopathology, Gustave-Roussy Cancer Institute, 94800, Villejuif, France.
- INSERM UA9, Institut André Lwoff, Hôpital Paul Brousse, Bâtiment A CNRS, 7 rue Guy Moquet, 94802, Villejuif, France.
| |
Collapse
|
20
|
Tao S, He Y, Kichula KM, Wang J, He J, Norman PJ, Zhu F. High-Resolution Analysis Identifies High Frequency of KIR-A Haplotypes and Inhibitory Interactions of KIR With HLA Class I in Zhejiang Han. Front Immunol 2021; 12:640334. [PMID: 33995358 PMCID: PMC8121542 DOI: 10.3389/fimmu.2021.640334] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 04/07/2021] [Indexed: 12/24/2022] Open
Abstract
Killer cell immunoglobulin-like receptors (KIR) interact with human leukocyte antigen (HLA) class I molecules, modulating critical NK cell functions in the maintenance of human health. Characterizing the distribution and characteristics of KIR and HLA allotype diversity across defined human populations is thus essential for understanding the multiple associations with disease, and for directing therapies. In this study of 176 Zhejiang Han individuals from Southeastern China, we describe diversity of the highly polymorphic KIR and HLA class I genes at high resolution. KIR-A haplotypes, which carry four inhibitory receptors specific for HLA-A, B or C, are known to associate with protection from infection and some cancers. We show the Chinese Southern Han from Zhejiang are characterized by a high frequency of KIR-A haplotypes and a high frequency of C1 KIR ligands. Accordingly, interactions of inhibitory KIR2DL3 with C1+HLA are more frequent in Zhejiang Han than populations outside East Asia. Zhejiang Han exhibit greater diversity of inhibitory than activating KIR, with three-domain inhibitory KIR exhibiting the greatest degree of polymorphism. As distinguished by gene copy number and allele content, 54 centromeric and 37 telomeric haplotypes were observed. We observed 6% of the population to have KIR haplotypes containing large-scale duplications or deletions that include complete genes. A unique truncated haplotype containing only KIR2DL4 in the telomeric region was also identified. An additional feature is the high frequency of HLA-B*46:01, which may have arisen due to selection pressure from infectious disease. This study will provide further insight into the role of KIR and HLA polymorphism in disease susceptibility of Zhejiang Chinese.
Collapse
Affiliation(s)
- Sudan Tao
- Blood Center of Zhejiang Province, Key Laboratory of Blood Safety Research of Zhejiang Province, Hangzhou, China
| | - Yanmin He
- Blood Center of Zhejiang Province, Key Laboratory of Blood Safety Research of Zhejiang Province, Hangzhou, China
| | - Katherine M. Kichula
- Division of Biomedical Informatics and Personalized Medicine, and Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Jielin Wang
- Blood Center of Zhejiang Province, Key Laboratory of Blood Safety Research of Zhejiang Province, Hangzhou, China
| | - Ji He
- Blood Center of Zhejiang Province, Key Laboratory of Blood Safety Research of Zhejiang Province, Hangzhou, China
| | - Paul J. Norman
- Division of Biomedical Informatics and Personalized Medicine, and Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Faming Zhu
- Blood Center of Zhejiang Province, Key Laboratory of Blood Safety Research of Zhejiang Province, Hangzhou, China
| |
Collapse
|
21
|
Loubser S, Da Costa Dias B, Shalekoff S, Gentle NL, Tiemessen CT. Lack of association of KIR2DL1-R 245 and KIR2DL1-C 245 with HIV-1 control in black South Africans with HLA-C2. Hum Immunol 2021; 82:600-607. [PMID: 33906789 DOI: 10.1016/j.humimm.2021.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 03/26/2021] [Accepted: 04/12/2021] [Indexed: 11/30/2022]
Abstract
Activating/inhibitory Killer-cell Immunoglobulin-like Receptors (KIRs) partly regulate Natural Killer (NK) cells. KIR2DL1 allotypes with cysteine at position-245 (KIR2DL1-C245) express at lower levels and demonstrate weaker inhibitory signaling compared to allotypes with arginine at position-245 (KIR2DL1-R245). The functional consequence of either allotype in infectious diseases is unknown. Since NK cells mediate antiviral immunity, we investigated KIR2DL1-R245 and KIR2DL1-C245 in association with HIV-1 virological control in untreated immunocompetent black South Africans. Allotype carriage, determined by KIR2DL1 sequencing, was similar between uninfected South Africans (n = 104) and other black African populations, but differed significantly from Europeans, while no significant differences were noted between uninfected and HIV-1-infected individuals (n = 52). KIR2DL1 expression, measured by flow cytometry, in uninfected individuals showed higher KIR2DL1-R245 expression compared to KIR2DL1-C245 in white donors (n = 27), while black donors (n = 21) generally expressed lower levels of both allotypes. KIR2DL1 expression was reduced in HLA-C2 carriers, most evident in black HLA-C2/C2 donors. KIR2DL1-R245 and KIR2DL1-C245 did not associate with viral load when HLA-C2 ligands were present, however in HLA-C1 homozygotes, individuals with only KIR2DL1-R245, showed lower viral loads compared to carriers of both allotypes. The lack of association of KIR2DL1-R245 or KIR2DL1-C245 with HIV-1 control in HLA-C2 carriers may relate to lower KIR2DL1 expression levels in a population with high HLA-C2 prevalence.
Collapse
Affiliation(s)
- Shayne Loubser
- Centre for HIV and STIs, National Institute for Communicable Diseases, National Health Laboratory Services, 1 Modderfontein Road, Johannesburg 2131, South Africa; Faculty of Health Sciences, University of the Witwatersrand, 1 Jan Smuts Avenue, Johannesburg 2000, South Africa
| | - Bianca Da Costa Dias
- Centre for HIV and STIs, National Institute for Communicable Diseases, National Health Laboratory Services, 1 Modderfontein Road, Johannesburg 2131, South Africa; Faculty of Health Sciences, University of the Witwatersrand, 1 Jan Smuts Avenue, Johannesburg 2000, South Africa
| | - Sharon Shalekoff
- Centre for HIV and STIs, National Institute for Communicable Diseases, National Health Laboratory Services, 1 Modderfontein Road, Johannesburg 2131, South Africa; Faculty of Health Sciences, University of the Witwatersrand, 1 Jan Smuts Avenue, Johannesburg 2000, South Africa
| | - Nikki L Gentle
- School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, 1 Jan Smuts Avenue, Johannesburg 2000, South Africa
| | - Caroline T Tiemessen
- Centre for HIV and STIs, National Institute for Communicable Diseases, National Health Laboratory Services, 1 Modderfontein Road, Johannesburg 2131, South Africa; Faculty of Health Sciences, University of the Witwatersrand, 1 Jan Smuts Avenue, Johannesburg 2000, South Africa.
| |
Collapse
|
22
|
Tao S, Kichula KM, Harrison GF, Farias TDJ, Palmer WH, Leaton LA, Hajar CGN, Zefarina Z, Edinur HA, Zhu F, Norman PJ. The combinatorial diversity of KIR and HLA class I allotypes in Peninsular Malaysia. Immunology 2021; 162:389-404. [PMID: 33283280 PMCID: PMC7968402 DOI: 10.1111/imm.13289] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/18/2020] [Accepted: 11/21/2020] [Indexed: 12/16/2022] Open
Abstract
Killer cell immunoglobulin-like receptors (KIRs) interact with polymorphic human leucocyte antigen (HLA) class I molecules, modulating natural killer (NK) cell functions and affecting both the susceptibility and outcome of immune-mediated diseases. The KIR locus is highly diverse in gene content, copy number and allelic polymorphism within individuals and across geographical populations. To analyse currently under-represented Asian and Pacific populations, we investigated the combinatorial diversity of KIR and HLA class I in 92 unrelated Malay and 75 Malaysian Chinese individuals from the Malay Peninsula. We identified substantial allelic and structural diversity of the KIR locus in both populations and characterized novel variations at each analysis level. The Malay population is more diverse than Malay Chinese, likely representing a unique history including admixture with immigrating populations spanning several thousand years. Characterizing the Malay population are KIR haplotypes with large structural variants present in 10% individuals, and KIR and HLA alleles previously identified in Austronesian populations. Despite the differences in ancestries, the proportion of HLA allotypes that serve as KIR ligands is similar in each population. The exception is a significantly reduced frequency of interactions of KIR2DL1 with C2+ HLA-C in the Malaysian Chinese group, caused by the low frequency of C2+ HLA. One likely implication is a greater protection from preeclampsia, a pregnancy disorder associated with KIR2DL1, which shows higher incidence in the Malay than in the Malaysian Chinese. This first complete, high-resolution, characterization of combinatorial diversity of KIR and HLA in Malaysians will form a valuable reference for future clinical and population studies.
Collapse
Affiliation(s)
- Sudan Tao
- Division of Biomedical Informatics and Personalized MedicineDepartment of Immunology and MicrobiologyUniversity of Colorado Anschutz Medical CampusAuroraCOUSA
- Blood Center of Zhejiang ProvinceKey Laboratory of Blood Safety Research of Zhejiang ProvinceHangzhouZhejiangChina
| | - Katherine M. Kichula
- Division of Biomedical Informatics and Personalized MedicineDepartment of Immunology and MicrobiologyUniversity of Colorado Anschutz Medical CampusAuroraCOUSA
| | - Genelle F. Harrison
- Division of Biomedical Informatics and Personalized MedicineDepartment of Immunology and MicrobiologyUniversity of Colorado Anschutz Medical CampusAuroraCOUSA
| | - Ticiana Della Justina Farias
- Division of Biomedical Informatics and Personalized MedicineDepartment of Immunology and MicrobiologyUniversity of Colorado Anschutz Medical CampusAuroraCOUSA
| | - William H. Palmer
- Division of Biomedical Informatics and Personalized MedicineDepartment of Immunology and MicrobiologyUniversity of Colorado Anschutz Medical CampusAuroraCOUSA
| | - Laura Ann Leaton
- Division of Biomedical Informatics and Personalized MedicineDepartment of Immunology and MicrobiologyUniversity of Colorado Anschutz Medical CampusAuroraCOUSA
| | | | - Zulkafli Zefarina
- School of Medical SciencesUniversiti Sains Malaysia, Health CampusKelantanMalaysia
| | - Hisham Atan Edinur
- School of Health SciencesUniversiti Sains Malaysia, Health CampusKelantanMalaysia
| | - Faming Zhu
- Blood Center of Zhejiang ProvinceKey Laboratory of Blood Safety Research of Zhejiang ProvinceHangzhouZhejiangChina
| | - Paul J. Norman
- Division of Biomedical Informatics and Personalized MedicineDepartment of Immunology and MicrobiologyUniversity of Colorado Anschutz Medical CampusAuroraCOUSA
| |
Collapse
|
23
|
Kaufman J. From Chickens to Humans: The Importance of Peptide Repertoires for MHC Class I Alleles. Front Immunol 2020; 11:601089. [PMID: 33381122 PMCID: PMC7767893 DOI: 10.3389/fimmu.2020.601089] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/30/2020] [Indexed: 12/21/2022] Open
Abstract
In humans, killer immunoglobulin-like receptors (KIRs), expressed on natural killer (NK) and thymus-derived (T) cells, and their ligands, primarily the classical class I molecules of the major histocompatibility complex (MHC) expressed on nearly all cells, are both polymorphic. The variation of this receptor-ligand interaction, based on which alleles have been inherited, is known to play crucial roles in resistance to infectious disease, autoimmunity, and reproduction in humans. However, not all the variation in response is inherited, since KIR binding can be affected by a portion of the peptide bound to the class I molecules, with the particular peptide presented affecting the NK response. The extent to which the large multigene family of chicken immunoglobulin-like receptors (ChIRs) is involved in functions similar to KIRs is suspected but not proven. However, much is understood about the two MHC-I molecules encoded in the chicken MHC. The BF2 molecule is expressed at a high level and is thought to be the predominant ligand of cytotoxic T lymphocytes (CTLs), while the BF1 molecule is expressed at a much lower level if at all and is thought to be primarily a ligand for NK cells. Recently, a hierarchy of BF2 alleles with a suite of correlated properties has been defined, from those expressed at a high level on the cell surface but with a narrow range of bound peptides to those expressed at a lower level on the cell surface but with a very wide repertoire of bound peptides. Interestingly, there is a similar hierarchy for human class I alleles, although the hierarchy is not as wide. It is a question whether KIRs and ChIRs recognize class I molecules with bound peptide in a similar way, and whether fastidious to promiscuous hierarchy of class I molecules affect both T and NK cell function. Such effects might be different from those predicted by the similarities of peptide-binding based on peptide motifs, as enshrined in the idea of supertypes. Since the size of peptide repertoire can be very different for alleles with similar peptide motifs from the same supertype, the relative importance of these two properties may be testable.
Collapse
Affiliation(s)
- Jim Kaufman
- School of Biological Sciences, Institute for Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom.,Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
24
|
Wang H, Nakajima T, Ito Y, Naito H, Zhao N, Li H, Qiu X, Xia L, Chen J, Wu Q, Li L, Huang H, Yanagiba Y, Qu H, Yatsuya H, Kamijima M. Increased risk of occupational trichloroethylene hypersensitivity syndrome at exposure levels higher than 15 mg/L of urinary trichloroacetic acid, regardless of whether the patients had the HLA-B*13:01 allele. ENVIRONMENTAL RESEARCH 2020; 191:109972. [PMID: 32758551 DOI: 10.1016/j.envres.2020.109972] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/18/2020] [Accepted: 07/17/2020] [Indexed: 06/11/2023]
Abstract
Occupational trichloroethylene (TCE) exposure can cause hypersensitivity syndrome (TCE-HS). The human leukocyte antigen (HLA)-B*13:01 is reportedly an important allele involved in TCE-HS onset. However, the threshold exposure level causing TCE-HS in relation to HLA-B*13:01 remains unknown. We conducted a case-control study comprising 37 TCE-HS patients and 97 age- and sex-matched TCE-tolerant controls from the Han Chinese population. Urine and blood of patients were collected on the first day of hospitalization, and those of controls were collected at the end of their shifts. Urinary trichloroacetic acid (TCA) was measured as an exposure marker, and end-of-shift levels in the patients were estimated using the biological half-life of 83.7 h. HLA-B genotype was identified using DNA from blood. Crude odds ratios (ORs) for TCE-HS in the groups with urinary TCA concentration >15 mg/L to ≤50 mg/L and of >50 mg/L were 21.9 [95% confidence interval (CI) 4.2-114.1] and 27.6 (6.1-125.8), respectively, when the group with urinary TCA ≤15 mg/L was used as a reference. The frequency of HLA-B*13:01, the most common allele in the patients, was 62.2% (23/37), which was significantly higher than 17.5% (17/97) in the TCE-tolerant controls, with a crude OR of 8.4 (3.1-22.6). The mutually-adjusted ORs for urinary TCA >15 to ≤50 mg/L, >50 mg/L, and for HLA-B*13:01 were 33.4 (4.1-270.8), 34.0 (5.3-217.1), and 11.0 (2.4-50.7), respectively. In conclusion, reduction of TCE exposure to ≤15 mg/L is required for TCE-HS prevention because urinary TCA concentration >15 mg/L showed increased risk of TCE-HS, regardless of whether the patients had the HLA-B*13:01 allele.
Collapse
Affiliation(s)
- Hailan Wang
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, 510300, Guangzhou, PR China.
| | - Tamie Nakajima
- Department of Life and Health Sciences, Chubu University, 487-8501, Kasugai, Japan.
| | - Yuki Ito
- Department of Occupational and Environmental Health, Nagoya City University Graduate School of Medical Sciences, 467-8601, Nagoya, Japan.
| | - Hisao Naito
- Department of Public Health, Fujita Health University School of Medicine, 470-1192, Toyoake, Japan.
| | - Na Zhao
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, 510300, Guangzhou, PR China.
| | - Hongling Li
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, 510300, Guangzhou, PR China.
| | - Xinxiang Qiu
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, 510300, Guangzhou, PR China.
| | - Lihua Xia
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, 510300, Guangzhou, PR China.
| | - Jiabin Chen
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, 510300, Guangzhou, PR China.
| | - Qifeng Wu
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, 510300, Guangzhou, PR China.
| | - Laiyu Li
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, 510300, Guangzhou, PR China.
| | - Hanlin Huang
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, 510300, Guangzhou, PR China.
| | - Yukie Yanagiba
- National Institute of Occupational Safety and Health, 214-8585, Kawasaki, Japan.
| | - Hongyung Qu
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, 510300, Guangzhou, PR China.
| | - Hiroshi Yatsuya
- Department of Public Health, Fujita Health University School of Medicine, 470-1192, Toyoake, Japan.
| | - Michihiro Kamijima
- Department of Occupational and Environmental Health, Nagoya City University Graduate School of Medical Sciences, 467-8601, Nagoya, Japan.
| |
Collapse
|
25
|
Debnath M, Banerjee M, Berk M. Genetic gateways to COVID-19 infection: Implications for risk, severity, and outcomes. FASEB J 2020; 34:8787-8795. [PMID: 32525600 PMCID: PMC7300732 DOI: 10.1096/fj.202001115r] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/10/2020] [Accepted: 05/12/2020] [Indexed: 01/05/2023]
Abstract
The dynamics, such as transmission, spatial epidemiology, and clinical course of Coronavirus Disease-2019 (COVID-19) have emerged as the most intriguing features and remain incompletely understood. The genetic landscape of an individual in particular, and a population in general seems to play a pivotal role in shaping the above COVID-19 dynamics. Considering the implications of host genes in the entry and replication of SARS-CoV-2 and in mounting the host immune response, it appears that multiple genes might be crucially involved in the above processes. Herein, we propose three potentially important genetic gateways to COVID-19 infection; these could explain at least in part the discrepancies of its spread, severity, and mortality. The variations within Angiotensin-converting enzyme 2 (ACE2) gene might constitute the first genetic gateway, influencing the spatial transmission dynamics of COVID-19. The Human Leukocyte Antigen locus, a master regulator of immunity against infection seems to be crucial in influencing susceptibility and severity of COVID-19 and can be the second genetic gateway. The genes regulating Toll-like receptor and complement pathways and subsequently cytokine storm induced exaggerated inflammatory pathways seem to underlie the severity of COVID-19, and such genes might represent the third genetic gateway. Host-pathogen interaction is a complex event and some additional genes might also contribute to the dynamics of COVID-19. Overall, these three genetic gateways proposed here might be the critical host determinants governing the risk, severity, and outcome of COVID-19. Genetic variations within these gateways could be key in influencing geographical discrepancies of COVID-19.
Collapse
Affiliation(s)
- Monojit Debnath
- Department of Human GeneticsNational Institute of Mental Health and NeurosciencesBangaloreIndia
| | - Moinak Banerjee
- Human Molecular Genetics LaboratoryRajiv Gandhi Centre for BiotechnologyThiruvanathapuramIndia
| | - Michael Berk
- IMPACT ‐ the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon HealthDeakin UniversityGeelongVICAustralia
- Florey Institute for Neuroscience and Mental Health, Department of Psychiatry and Orygen, The National Centre of Excellence in Youth Mental HealthThe University of MelbourneMelbourneVICAustralia
| |
Collapse
|
26
|
Serçinoğlu O, Ozbek P. Sequence-structure-function relationships in class I MHC: A local frustration perspective. PLoS One 2020; 15:e0232849. [PMID: 32421728 PMCID: PMC7233585 DOI: 10.1371/journal.pone.0232849] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/22/2020] [Indexed: 12/22/2022] Open
Abstract
Class I Major Histocompatibility Complex (MHC) binds short antigenic peptides with the help of Peptide Loading Complex (PLC), and presents them to T-cell Receptors (TCRs) of cytotoxic T-cells and Killer-cell Immunglobulin-like Receptors (KIRs) of Natural Killer (NK) cells. With more than 10000 alleles, human MHC (Human Leukocyte Antigen, HLA) is the most polymorphic protein in humans. This allelic diversity provides a wide coverage of peptide sequence space, yet does not affect the three-dimensional structure of the complex. Moreover, TCRs mostly interact with HLA in a common diagonal binding mode, and KIR-HLA interaction is allele-dependent. With the aim of establishing a framework for understanding the relationships between polymorphism (sequence), structure (conserved fold) and function (protein interactions) of the human MHC, we performed here a local frustration analysis on pMHC homology models covering 1436 HLA I alleles. An analysis of local frustration profiles indicated that (1) variations in MHC fold are unlikely due to minimally-frustrated and relatively conserved residues within the HLA peptide-binding groove, (2) high frustration patches on HLA helices are either involved in or near interaction sites of MHC with the TCR, KIR, or tapasin of the PLC, and (3) peptide ligands mainly stabilize the F-pocket of HLA binding groove.
Collapse
Affiliation(s)
- Onur Serçinoğlu
- Department of Bioengineering, Recep Tayyip Erdogan University, Faculty of Engineering, Fener, Rize, Turkey
| | - Pemra Ozbek
- Department of Bioengineering, Marmara University, Faculty of Engineering, Goztepe, Istanbul, Turkey
- * E-mail:
| |
Collapse
|
27
|
Shen M, Lim SWD, Tan ES, Oon HH, Ren EC. HLA Correlations with Clinical Phenotypes and Risk of Metabolic Comorbidities in Singapore Chinese Psoriasis Patients. Mol Diagn Ther 2020; 23:751-760. [PMID: 31473973 DOI: 10.1007/s40291-019-00423-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Psoriasis is a systemic, chronic inflammatory disease that not only afflicts the skin but is also associated with cardiovascular disease and metabolic syndrome. The strongest susceptibility loci for the disease is within the human leukocyte antigen (HLA) complex, though specific HLA allelic associations vary between populations. OBJECTIVE Our objective was to investigate HLA associations with clinical phenotypes of psoriasis and metabolic syndrome in Chinese psoriasis cases. METHODS We conducted an observational case-control study in Singapore with a cohort of psoriasis cases consecutively recruited from an outpatient specialist dermatological center (n = 120) compared with 130 healthy controls. RESULTS Significant HLA associations with psoriasis were observed with HLA-A*02:07, B*46:01, C*01:02, and C*06:02. The three-locus haplotype of A*02:07-C*01:02-B*46:01 was also significant (odds ratio [OR] 3.07; p = 9.47 × 10-5). We also observed an association between nail psoriasis and HLA-A*02:07 carriers (OR 4.50; p = 0.002), whereas C*06:02 carriers were less prone to have nail involvement (OR 0.16; p = 0.004). HLA-A*02:07 was also identified as a possible risk allele for hypertension (OR 2.90; p < 0.05), and C*01:02 was a possible risk allele for dyslipidemia (OR 3.36; p < 0.05), both known to be common comorbidities in patients with psoriasis. CONCLUSION Our results demonstrate the growing importance of discerning population-specific clinical phenotypes and their association with certain HLA alleles in psoriasis.
Collapse
Affiliation(s)
- Meixin Shen
- Singapore Immunology Network (SIgN), A*STAR, 8A Biomedical Grove, #03-06, Immunos Building, Singapore, 138648, Singapore
| | - Soon Wei Daniel Lim
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
| | - Eugene S Tan
- National Skin Centre (S) Pte Ltd, 1 Mandalay Rd, Singapore, 308205, Singapore
| | - Hazel H Oon
- National Skin Centre (S) Pte Ltd, 1 Mandalay Rd, Singapore, 308205, Singapore.
| | - Ee Chee Ren
- Singapore Immunology Network (SIgN), A*STAR, 8A Biomedical Grove, #03-06, Immunos Building, Singapore, 138648, Singapore. .,Department of Microbiology and Immunology, National University of Singapore, 5 Science Drive 2, MD4, Level 3, Singapore, 117545, Singapore.
| |
Collapse
|
28
|
Cornillet M, Jansson H, Schaffer M, Hertwig L, Berglin L, Zimmer CL, Johansson H, Ellis E, Isaksson B, Gonzalez-Galarza FF, Middleton D, Malmberg KJ, Sparrelid E, Björkström NK. Imbalance of Genes Encoding Natural Killer Immunoglobulin-Like Receptors and Human Leukocyte Antigen in Patients With Biliary Cancer. Gastroenterology 2019; 157:1067-1080.e9. [PMID: 31229495 DOI: 10.1053/j.gastro.2019.06.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 06/03/2019] [Accepted: 06/16/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND & AIMS Bile duct tumors are rare and have poor prognoses. Natural killer (NK) cells are frequent in human liver and infiltrate these tumors but do not control their progression. Responses of NK cells are regulated by NK immunoglobulin-like receptors (KIRs), which interact with HLA class I ligands. We aimed to characterize the features of the KIR gene loci and their ligands in patients with bile duct cancer (BDC). METHODS We performed combined multidimensional characterization of genes that encode KIRs and their ligands in blood samples from patients with BDC from Sweden, followed for up to 8 years after diagnosis (n = 148), in 2 geographically matched cohorts of healthy individuals from Northern Europe (n = 204 and n = 900), and in healthy individuals from 6 geographically unrelated populations (n = 2917). We used real-time polymerase chain reaction, RNA sequencing, immunohistochemistry, and flow cytometry to evaluate NK-cell presence, as well as KIR and KIR-ligand expression in bile duct tumors and control tissues. RESULTS Patients with bile duct tumors had multiple alterations at the KIR gene loci. KIR loci are grouped into genotypes that encode more inhibitory (group A) and more activating (group B) receptors, which can be subdivided into centromeric and telomeric fragments. Patients with BDC had a lower prevalence of KIR2DL3, which was linked to disequilibrium in centromeric A/B and B/B genotypes, compared with control individuals. The associations between KIRs and KIR ligands differed between patients with BDC and control individuals; patients had an altered balance between activating and inhibitory KIRs. KIR-positive NK cells infiltrated biliary tumors that expressed matched KIR ligands. CONCLUSIONS In a multidimensional analysis of DNA from blood samples of patients with BDC in Europe, we found patients to have multiple alterations at the KIR and HLA gene loci compared with control individuals. These alterations might affect NK-cell tumor surveillance. NK cells from bile duct tumors expressed KIRs and were found in tumors that expressed cognate ligands. This should be considered in development of immune-based therapies for BDC.
Collapse
Affiliation(s)
- Martin Cornillet
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
| | - Hannes Jansson
- Division of Surgery, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Marie Schaffer
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Laura Hertwig
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Lena Berglin
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Christine L Zimmer
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Helene Johansson
- Department of Clinical Science, Intervention and Technology, Division of Transplantation Surgery, Karolinska Institutet, and Department of Transplantation, Karolinska University Hospital, Stockholm, Sweden
| | - Ewa Ellis
- Department of Clinical Science, Intervention and Technology, Division of Transplantation Surgery, Karolinska Institutet, and Department of Transplantation, Karolinska University Hospital, Stockholm, Sweden
| | - Bengt Isaksson
- Division of Surgery, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Faviel F Gonzalez-Galarza
- Center for Biomedical Research, Faculty of Medicine, Autonomous University of Coahuila, Torreon, Mexico
| | - Derek Middleton
- Transplant Immunology Laboratory, Royal Liverpool University Hospital, Liverpool, UK
| | - Karl-Johan Malmberg
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Radiumhospitalet, Oslo, Norway
| | - Ernesto Sparrelid
- Division of Surgery, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Niklas K Björkström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
29
|
Loubser S, Kwenda S, Sengupta D, Tiemessen CT. Identification of a novel recombinant allele, HLA-DPB1*835:01:01:02, in Black South African individuals. HLA 2019; 94:549-551. [PMID: 31478356 DOI: 10.1111/tan.13680] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 08/23/2019] [Accepted: 08/23/2019] [Indexed: 11/27/2022]
Abstract
Genetic characterisation of a novel intra-locus recombinant allele, HLA-DPB1*835:01:01:02, in Black South African individuals.
Collapse
Affiliation(s)
- Shayne Loubser
- Centre for HIV and STIs, National Institute for Communicable Diseases (NICD), Johannesburg, Republic of South Africa.,National Health Laboratory Service (NHLS), Faculty of Health Sciences, University of the Witwatersrand (WITS), Johannesburg, Republic of South Africa
| | - Stanford Kwenda
- Centre for HIV and STIs, National Institute for Communicable Diseases (NICD), Johannesburg, Republic of South Africa.,Sequencing Core Facility, National Institute for Communicable Diseases (NICD), National Health Laboratory Service (NHLS), Johannesburg, Republic of South Africa
| | - Dhriti Sengupta
- Sydney Brenner Institute for Molecular Bioscience (SBIMB), Faculty of Health Sciences, University of the Witwatersrand (WITS), Johannesburg, Republic of South Africa
| | - Caroline T Tiemessen
- Centre for HIV and STIs, National Institute for Communicable Diseases (NICD), Johannesburg, Republic of South Africa.,National Health Laboratory Service (NHLS), Faculty of Health Sciences, University of the Witwatersrand (WITS), Johannesburg, Republic of South Africa
| |
Collapse
|
30
|
Gfeller D, Guillaume P, Michaux J, Pak HS, Daniel RT, Racle J, Coukos G, Bassani-Sternberg M. The Length Distribution and Multiple Specificity of Naturally Presented HLA-I Ligands. THE JOURNAL OF IMMUNOLOGY 2018; 201:3705-3716. [DOI: 10.4049/jimmunol.1800914] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/12/2018] [Indexed: 11/19/2022]
|
31
|
Illing PT, Pymm P, Croft NP, Hilton HG, Jojic V, Han AS, Mendoza JL, Mifsud NA, Dudek NL, McCluskey J, Parham P, Rossjohn J, Vivian JP, Purcell AW. HLA-B57 micropolymorphism defines the sequence and conformational breadth of the immunopeptidome. Nat Commun 2018; 9:4693. [PMID: 30410026 PMCID: PMC6224591 DOI: 10.1038/s41467-018-07109-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/12/2018] [Indexed: 12/17/2022] Open
Abstract
Immunophenotypic differences between closely related human leukocyte antigen (HLA) alleles have been associated with divergent clinical outcomes in infection, autoimmunity, transplantation and drug hypersensitivity. Here we explore the impact of micropolymorphism on peptide antigen presentation by three closely related HLA molecules, HLA-B*57:01, HLA-B*57:03 and HLA-B*58:01, that are differentially associated with the HIV elite controller phenotype and adverse drug reactions. For each allotype, we mine HLA ligand data sets derived from the same parental cell proteome to define qualitative differences in peptide presentation using classical peptide binding motifs and an unbiased statistical approach. The peptide repertoires show marked qualitative overlap, with 982 peptides presented by all allomorphs. However, differences in peptide abundance, HLA-peptide stability, and HLA-bound conformation demonstrate that HLA micropolymorphism impacts more than simply the range of peptide ligands. These differences provide grounds for distinct immune reactivity and insights into the capacity of micropolymorphism to diversify immune outcomes. Human leukocyte antigens (HLA) are multi-allelic and polymorphic genes that present antigens to immune cells for inducing protective immunity. Here, using systems biology and structural approaches, the authors show that micropolymorphism of three HLA has effects beyond the modulation of antigen diversity.
Collapse
Affiliation(s)
- Patricia T Illing
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Phillip Pymm
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia.,Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, VIC, 3800, Australia
| | - Nathan P Croft
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Hugo G Hilton
- Departments of Structural Biology and Microbiology & Immunology, School of Medicine, Stanford University, Stanford, 94305, CA, USA.,Calico Life Sciences LLC, South San Francisco, 94080, CA, USA
| | - Vladimir Jojic
- Calico Life Sciences LLC, South San Francisco, 94080, CA, USA
| | - Alex S Han
- Department of Genetics, School of Medicine, Stanford University, Stanford, 94305, CA, USA
| | - Juan L Mendoza
- Department of Molecular and Cellular Physiology, School of Medicine, Stanford University, Stanford, 94305, CA, USA.,Institute for Molecular Engineering and Department of Biochemistry & Molecular Biology, University of Chicago, Chicago, 60637, IL, USA
| | - Nicole A Mifsud
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Nadine L Dudek
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - James McCluskey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Peter Parham
- Departments of Structural Biology and Microbiology & Immunology, School of Medicine, Stanford University, Stanford, 94305, CA, USA
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia.,Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, VIC, 3800, Australia.,Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, CF14 4XN, UK
| | - Julian P Vivian
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia. .,Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, VIC, 3800, Australia.
| | - Anthony W Purcell
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia.
| |
Collapse
|
32
|
Li L, Tian W, Zhu F, Wang W, Wang F. Characterization of a novel allelic variant in HLA-B*46:01 lineage, HLA-B*46:01:25, by cloning, phasing and sequencing. Int J Immunogenet 2018; 45:347-350. [PMID: 30063114 DOI: 10.1111/iji.12392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 06/27/2018] [Indexed: 11/30/2022]
Abstract
A new allelic variant in HLA-B*46:01 lineage, HLA-B*46:01:25, has been identified in a male individual of Mongol ethnicity residing in northern China. Following polymerase chain reaction-sequence-based typing (PCR-SBT), this novel variant was further confirmed by cloning, phasing and sequencing. HLA-B*46:01:25 differs from HLA-B*46:01:01 by a single synonymous T substitution at nucleotide position 137 (C - T) in exon 4, corresponding to codon 228 (ACC-ACT) of the mature HLA-B mRNA molecule.
Collapse
Affiliation(s)
- LiXin Li
- Immunogenetics Research Group, Department of Immunology, College of Basic Medical Sciences, Central South University, Changsha, China
| | - Wei Tian
- Immunogenetics Research Group, Department of Immunology, College of Basic Medical Sciences, Central South University, Changsha, China
| | - FaMing Zhu
- HLA Typing Laboratory, Blood Center of Zhejiang Province, Hangzhou, China
| | - WenYi Wang
- Immunogenetics Research Group, Department of Immunology, College of Basic Medical Sciences, Central South University, Changsha, China
| | - Fan Wang
- Immunogenetics Research Group, Department of Immunology, College of Basic Medical Sciences, Central South University, Changsha, China
| |
Collapse
|
33
|
Gfeller D, Bassani-Sternberg M. Predicting Antigen Presentation-What Could We Learn From a Million Peptides? Front Immunol 2018; 9:1716. [PMID: 30090105 PMCID: PMC6068240 DOI: 10.3389/fimmu.2018.01716] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 07/12/2018] [Indexed: 12/30/2022] Open
Abstract
Antigen presentation lies at the heart of immune recognition of infected or malignant cells. For this reason, important efforts have been made to predict which peptides are more likely to bind and be presented by the human leukocyte antigen (HLA) complex at the surface of cells. These predictions have become even more important with the advent of next-generation sequencing technologies that enable researchers and clinicians to rapidly determine the sequences of pathogens (and their multiple variants) or identify non-synonymous genetic alterations in cancer cells. Here, we review recent advances in predicting HLA binding and antigen presentation in human cells. We argue that the very large amount of high-quality mass spectrometry data of eluted (mainly self) HLA ligands generated in the last few years provides unprecedented opportunities to improve our ability to predict antigen presentation and learn new properties of HLA molecules, as demonstrated in many recent studies of naturally presented HLA-I ligands. Although major challenges still lie on the road toward the ultimate goal of predicting immunogenicity, these experimental and computational developments will facilitate screening of putative epitopes, which may eventually help decipher the rules governing T cell recognition.
Collapse
Affiliation(s)
- David Gfeller
- Department of Oncology, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Michal Bassani-Sternberg
- Department of Oncology, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Department of Oncology, Ludwig Institute for Cancer Research, University Hospital of Lausanne, Lausanne, Switzerland
| |
Collapse
|
34
|
The C-terminal extension landscape of naturally presented HLA-I ligands. Proc Natl Acad Sci U S A 2018; 115:5083-5088. [PMID: 29712860 DOI: 10.1073/pnas.1717277115] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
HLA-I molecules play a central role in antigen presentation. They typically bind 9- to 12-mer peptides, and their canonical binding mode involves anchor residues at the second and last positions of their ligands. To investigate potential noncanonical binding modes, we collected in-depth and accurate HLA peptidomics datasets covering 54 HLA-I alleles and developed algorithms to analyze these data. Our results reveal frequent (442 unique peptides) and statistically significant C-terminal extensions for at least eight alleles, including the common HLA-A03:01, HLA-A31:01, and HLA-A68:01. High resolution crystal structure of HLA-A68:01 with such a ligand uncovers structural changes taking place to accommodate C-terminal extensions and helps unraveling sequence and structural properties predictive of the presence of these extensions. Scanning viral proteomes with the C-terminal extension motifs identifies many putative epitopes and we demonstrate direct recognition by human CD8+ T cells of a 10-mer epitope from cytomegalovirus predicted to follow the C-terminal extension binding mode.
Collapse
|
35
|
Parham P, Guethlein LA. Genetics of Natural Killer Cells in Human Health, Disease, and Survival. Annu Rev Immunol 2018; 36:519-548. [PMID: 29394121 DOI: 10.1146/annurev-immunol-042617-053149] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Natural killer (NK) cells have vital functions in human immunity and reproduction. In the innate and adaptive immune responses to infection, particularly by viruses, NK cells respond by secreting inflammatory cytokines and killing infected cells. In reproduction, NK cells are critical for genesis of the placenta, the organ that controls the supply of oxygen and nutrients to the growing fetus. Controlling NK cell functions are interactions of HLA class I with inhibitory NK cell receptors. First evolved was the conserved interaction of HLA-E with CD94:NKG2A; later established were diverse interactions of HLA-A, -B, and -C with killer cell immunoglobulin-like receptors. Characterizing the latter interactions is rapid evolution, which distinguishes human populations and all species of higher primate. Driving this evolution are the different and competing selections imposed by pathogens on NK cell-mediated immunity and by the constraints of human reproduction on NK cell-mediated placentation. Promoting rapid evolution is independent segregation of polymorphic receptors and ligands throughout human populations.
Collapse
Affiliation(s)
- Peter Parham
- Department of Structural Biology and Department of Microbiology and Immunology, School of Medicine, Stanford University, Stanford, California 94305, USA; ,
| | - Lisbeth A Guethlein
- Department of Structural Biology and Department of Microbiology and Immunology, School of Medicine, Stanford University, Stanford, California 94305, USA; ,
| |
Collapse
|
36
|
Hölzemer A, Garcia-Beltran WF, Altfeld M. Natural Killer Cell Interactions with Classical and Non-Classical Human Leukocyte Antigen Class I in HIV-1 Infection. Front Immunol 2017; 8:1496. [PMID: 29184550 PMCID: PMC5694438 DOI: 10.3389/fimmu.2017.01496] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/24/2017] [Indexed: 11/23/2022] Open
Abstract
Natural killer (NK) cells are effector lymphocytes of the innate immune system that are able to mount a multifaceted antiviral response within hours following infection. This is achieved through an array of cell surface receptors surveilling host cells for alterations in human leukocyte antigen class I (HLA-I) expression and other ligands as signs of viral infection, malignant transformation, and cellular stress. This interaction between HLA-I ligands and NK-cell receptor is not only important for recognition of diseased cells but also mediates tuning of NK-cell-effector functions. HIV-1 alters the expression of HLA-I ligands on infected cells, rendering them susceptible to NK cell-mediated killing. However, over the past years, various HIV-1 evasion strategies have been discovered to target NK-cell-receptor ligands and allow the virus to escape from NK cell-mediated immunity. While studies have been mainly focusing on the role of polymorphic HLA-A, -B, and -C molecules, less is known about how HIV-1 affects the more conserved, non-classical HLA-I molecules HLA-E, -G, and -F. In this review, we will focus on the recent progress in understanding the role of non-classical HLA-I ligands in NK cell-mediated recognition of HIV-1-infected cells.
Collapse
Affiliation(s)
- Angelique Hölzemer
- First Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | | | - Marcus Altfeld
- German Center for Infection Research (DZIF), Partner site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
- Institute for Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
37
|
Dunachie SJ, Jenjaroen K, Reynolds CJ, Quigley KJ, Sergeant R, Sumonwiriya M, Chaichana P, Chumseng S, Ariyaprasert P, Lassaux P, Gourlay L, Promwong C, Teparrukkul P, Limmathurotsakul D, Day NPJ, Altmann DM, Boyton RJ. Infection with Burkholderia pseudomallei - immune correlates of survival in acute melioidosis. Sci Rep 2017; 7:12143. [PMID: 28939855 PMCID: PMC5610189 DOI: 10.1038/s41598-017-12331-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 09/07/2017] [Indexed: 12/11/2022] Open
Abstract
Melioidosis, caused by Burkholderia pseudomallei, is a potentially lethal infection with no licensed vaccine. There is little understanding of why some exposed individuals have no symptoms, while others rapidly progress to sepsis and death, or why diabetes confers increased susceptibility. We prospectively recruited a cohort of 183 acute melioidosis patients and 21 control subjects from Northeast Thailand and studied immune parameters in the context of survival status and the presence or absence of diabetes. HLA-B*46 (one of the commonest HLA class I alleles in SE Asia) and HLA-C*01 were associated with an increased risk of death (odds ratio 2.8 and 3.1 respectively). Transcriptomic analysis during acute infection in diabetics indicated the importance of interplay between immune pathways including those involved in antigen presentation, chemotaxis, innate and adaptive immunity and their regulation. Survival was associated with enhanced T cell immunity to nine of fifteen immunodominant antigens analysed including AhpC (BPSL2096), BopE (BPSS1525), PilO (BPSS1599), ATP binding protein (BPSS1385) and an uncharacterised protein (BPSL2520). T cell immunity to GroEL (BPSL2697) was specifically impaired in diabetic individuals. This characterization of immunity associated with survival during acute infection offers insights into correlates of protection and a foundation for design of an effective multivalent vaccine.
Collapse
Affiliation(s)
- Susanna J Dunachie
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand.
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom.
| | - Kemajittra Jenjaroen
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | | | - Kathryn J Quigley
- Department of Medicine, Imperial College London, London, United Kingdom
| | - Ruhena Sergeant
- Department of Medicine, Imperial College London, London, United Kingdom
| | | | - Panjaporn Chaichana
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Suchintana Chumseng
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | | | | | - Louise Gourlay
- Department of Biosciences, University of Milan, Milan, Italy
| | | | | | - Direk Limmathurotsakul
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Nicholas P J Day
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| | - Daniel M Altmann
- Department of Medicine, Imperial College London, London, United Kingdom
| | - Rosemary J Boyton
- Department of Medicine, Imperial College London, London, United Kingdom.
| |
Collapse
|
38
|
Colucci F, Traherne J. Killer-cell immunoglobulin-like receptors on the cusp of modern immunogenetics. Immunology 2017; 152:556-561. [PMID: 28755388 DOI: 10.1111/imm.12802] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 07/25/2017] [Accepted: 07/25/2017] [Indexed: 12/19/2022] Open
Abstract
Killer-cell immunoglobulin-like receptors (KIR) and their human leukocyte antigen (HLA) ligands play a central role in immunity and human health. These molecules are encoded by gene families with copy number variation, extreme levels of sequence diversity and complex expression patterns. The rapid evolution of KIR and HLA genes and their associations with infectious diseases, pregnancy disorders, immunopathologies and outcome of cell transplantation have generated considerable interest from immunologists, geneticists and clinicians. Until recently, however, analyses have been stuck at low-level resolution, focusing primarily on presence or absence of KIR genes. This is changing with the advent of modern high throughput sequencing, cell phenotyping and bioinformatics. These developments allow high-resolution analysis and much deeper understanding of KIR evolution and KIR function. The impending deluge of high dimensional data brings inevitably new challenges in analysis, interpretation and communication of results, but the benefits are already tangible. The diversity of KIR across worldwide human populations is being catalogued at the allele level. Structures of KIR molecules and their interactions with HLA-peptide complexes are being determined. How KIR modulate natural killer cell education is being defined. Ligands for activating KIR, elusive for many years, are being discovered. KIR gene complexes and their related receptor gene families are being characterized in animal models and livestock breeds. These advances are helping to generate a more complete picture of the impact of KIR variation in health and disease and offer new opportunities for immunotherapy, as highlighted in a recent meeting (The Tenth KIR Workshop, April 2017 Cambridge, UK).
Collapse
Affiliation(s)
- Francesco Colucci
- Department of Obstetrics and Gynaecology, National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge School of Clinical Medicine, Cambridge, UK.,Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - James Traherne
- Department of Pathology, University of Cambridge, Cambridge, UK
| |
Collapse
|
39
|
Hilton HG, Parham P. Missing or altered self: human NK cell receptors that recognize HLA-C. Immunogenetics 2017; 69:567-579. [PMID: 28695291 DOI: 10.1007/s00251-017-1001-y] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 05/10/2017] [Indexed: 12/11/2022]
Abstract
Natural killer (NK) cells are fast-acting and versatile lymphocytes that are critical effectors of innate immunity, adaptive immunity, and placental development. Controlling NK cell function are the interactions between killer-cell immunoglobulin-like receptors (KIRs) and their HLA-A, HLA-B and HLA-C ligands. Due to the extensive polymorphism of both KIR and HLA class I, these interactions are highly diversified and specific combinations correlate with protection or susceptibility to a range of infectious, autoimmune, and reproductive disorders. Evolutionary, genetic, and functional studies are consistent with the interactions between KIR and HLA-C being the dominant control mechanism of human NK cells. In addition to their recognition of the C1 and C2 epitopes, increasing evidence points to KIR having a previously unrecognized selectivity for the peptide presented by HLA-C. This selectivity appears to be a conserved feature of activating KIR and may partly explain the slow progress made in identifying their HLA class I ligands. The peptide selectivity of KIR allows NK cells to respond, not only to changes in the surface expression of HLA-C, but also to the more subtle changes in the HLA-C peptidome, such as occur during viral infection and malignant transformation. Here, we review recent advances in understanding of human-specific KIR evolution and how the inhibitory and activating HLA-C receptors allow NK cells to respond to healthy cells, diseased cells, and the semi-allogeneic cells of the fetus.
Collapse
Affiliation(s)
- Hugo G Hilton
- Departments of Structural Biology and Microbiology & Immunology, Stanford University, Fairchild D-159, 299 Campus Drive West, Stanford, CA, 94305, USA
| | - Peter Parham
- Departments of Structural Biology and Microbiology & Immunology, Stanford University, Fairchild D-159, 299 Campus Drive West, Stanford, CA, 94305, USA.
| |
Collapse
|