1
|
Shi H, Inankur B, Yin J. Serum starvation impacts rhinovirus spread from cell to cell. Virology 2025; 604:110408. [PMID: 39881468 DOI: 10.1016/j.virol.2025.110408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 01/08/2025] [Accepted: 01/13/2025] [Indexed: 01/31/2025]
Abstract
Single-cell studies of virus infection have found significant heterogeneity in virus and host gene expression as well as the kinetics of progeny particle release. However, such studies have yet to examine how the resulting virus descendants spread and infect nearby cells. We monitored reporter-gene expression from a recombinant rhinovirus in cell monolayers infected at low multiplicity of infection; we found that the second round of infection consistently exhibited a shorter delay in fluorescence signal appearance relative to the first round, indicating an acceleration in infection spread. We examined how the efficiency and timing of infection spread from initial to subsequent single infected cells depended on serum starvation, inhibition of protein synthesis, cell cycle arrest, and receptor expression. The sensitivity of this method to external factors and its ability to track viral protein expression in individual cells emphasize its potential in studying the role of host cell factors in infection spread.
Collapse
Affiliation(s)
- Huicheng Shi
- Wisconsin Institute for Discovery, Chemical and Biological Engineering, University of Wisconsin-Madison, 330 N. Orchard Street, Madison, WI, 53715, USA.
| | - Bahar Inankur
- Wisconsin Institute for Discovery, Chemical and Biological Engineering, University of Wisconsin-Madison, 330 N. Orchard Street, Madison, WI, 53715, USA.
| | - John Yin
- Wisconsin Institute for Discovery, Chemical and Biological Engineering, University of Wisconsin-Madison, 330 N. Orchard Street, Madison, WI, 53715, USA.
| |
Collapse
|
2
|
Hatta Y, Hill-Batorski L, Moser MJ, Marshall D, Boltz DA, Westfall L, Herber R, Sarawar S, Bilsel P. Intranasal M2SR and BM2SR Vaccine Viruses Do Not Shed or Transmit in Ferrets. Vaccines (Basel) 2024; 12:1228. [PMID: 39591131 PMCID: PMC11598709 DOI: 10.3390/vaccines12111228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/19/2024] [Accepted: 10/27/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Live influenza vaccines are considered to stimulate better overall immune responses but are associated with safety concerns regarding shedding and the potential for transmission or reassortment with wild-type influenza viruses. Intranasal M2SR and BM2SR (M2- and BM2-deficient single replication), intranasal influenza viruses, have shown promise as broadly cross-reactive next-generation influenza vaccines. The replication deficiency, shedding, and transmissibility of M2SR/BM2SR viruses were evaluated in a ferret model. METHODS Wild-type influenza A and B control viruses replicated in upper respiratory organs and transmitted to both direct and aerosol contact ferrets, whereas M2SR and BM2SR influenza vaccine viruses were not detected in any tissues or in nasal washes after inoculation and were not recovered from any direct or aerosol contact ferrets. Mice were simultaneously infected with wild-type influenza A and M2SR viruses to assess reassortment potential. Sequence and PCR analyses of the genome recovered from individual virus plaques isolated from lung homogenates identified the origin of the segments as exclusively from the replicating wild-type virus. RESULTS These results indicate that M2SR and BM2SR influenza vaccine viruses are attenuated, do not shed or transmit, and have a low probability for reassortment after coinfection. Absence of shedding was further demonstrated in nasal swabs taken from subjects who were inoculated with H3N2 M2SR in a previously described Phase 1 clinical study. CONCLUSIONS These results indicate that M2SR/BM2SR viruses have the potential to be used in a broader population range than current live influenza vaccines.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Sally Sarawar
- The BioMedical Research Institute of Southern California, Oceanside, CA 92056, USA
| | | |
Collapse
|
3
|
Dey S, Mondal A. Unveiling the role of host kinases at different steps of influenza A virus life cycle. J Virol 2024; 98:e0119223. [PMID: 38174932 PMCID: PMC10805039 DOI: 10.1128/jvi.01192-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024] Open
Abstract
Influenza viruses remain a major public health concern causing contagious respiratory illnesses that result in around 290,000-650,000 global deaths every year. Their ability to constantly evolve through antigenic shifts and drifts leads to the emergence of newer strains and resistance to existing drugs and vaccines. To combat this, there is a critical need for novel antiviral drugs through the introduction of host-targeted therapeutics. Influenza viruses encode only 14 gene products that get extensively modified through phosphorylation by a diverse array of host kinases. Reversible phosphorylation at serine, threonine, or tyrosine residues dynamically regulates the structure, function, and subcellular localization of viral proteins at different stages of their life cycle. In addition, kinases influence a plethora of signaling pathways that also regulate virus propagation by modulating the host cell environment thus establishing a critical virus-host relationship that is indispensable for executing successful infection. This dependence on host kinases opens up exciting possibilities for developing kinase inhibitors as next-generation anti-influenza therapy. To fully capitalize on this potential, extensive mapping of the influenza virus-host kinase interaction network is essential. The key focus of this review is to outline the molecular mechanisms by which host kinases regulate different steps of the influenza A virus life cycle, starting from attachment-entry to assembly-budding. By assessing the contributions of different host kinases and their specific phosphorylation events during the virus life cycle, we aim to develop a holistic overview of the virus-host kinase interaction network that may shed light on potential targets for novel antiviral interventions.
Collapse
Affiliation(s)
- Soumik Dey
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Arindam Mondal
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
4
|
Sabsay KR, te Velthuis AJW. Negative and ambisense RNA virus ribonucleocapsids: more than protective armor. Microbiol Mol Biol Rev 2023; 87:e0008223. [PMID: 37750733 PMCID: PMC10732063 DOI: 10.1128/mmbr.00082-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023] Open
Abstract
SUMMARYNegative and ambisense RNA viruses are the causative agents of important human diseases such as influenza, measles, Lassa fever, and Ebola hemorrhagic fever. The viral genome of these RNA viruses consists of one or more single-stranded RNA molecules that are encapsidated by viral nucleocapsid proteins to form a ribonucleoprotein complex (RNP). This RNP acts as protection, as a scaffold for RNA folding, and as the context for viral replication and transcription by a viral RNA polymerase. However, the roles of the viral nucleoproteins extend beyond these functions during the viral infection cycle. Recent advances in structural biology techniques and analysis methods have provided new insights into the formation, function, dynamics, and evolution of negative sense virus nucleocapsid proteins, as well as the role that they play in host innate immune responses against viral infection. In this review, we discuss the various roles of nucleocapsid proteins, both in the context of RNPs and in RNA-free states, as well as the open questions that remain.
Collapse
Affiliation(s)
- Kimberly R. Sabsay
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, USA
| | - Aartjan J. W. te Velthuis
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| |
Collapse
|
5
|
Xie E, Ahmad S, Smyth RP, Sieben C. Advanced fluorescence microscopy in respiratory virus cell biology. Adv Virus Res 2023; 116:123-172. [PMID: 37524480 DOI: 10.1016/bs.aivir.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Respiratory viruses are a major public health burden across all age groups around the globe, and are associated with high morbidity and mortality rates. They can be transmitted by multiple routes, including physical contact or droplets and aerosols, resulting in efficient spreading within the human population. Investigations of the cell biology of virus replication are thus of utmost importance to gain a better understanding of virus-induced pathogenicity and the development of antiviral countermeasures. Light and fluorescence microscopy techniques have revolutionized investigations of the cell biology of virus infection by allowing the study of the localization and dynamics of viral or cellular components directly in infected cells. Advanced microscopy including high- and super-resolution microscopy techniques available today can visualize biological processes at the single-virus and even single-molecule level, thus opening a unique view on virus infection. We will highlight how fluorescence microscopy has supported investigations on virus cell biology by focusing on three major respiratory viruses: respiratory syncytial virus (RSV), Influenza A virus (IAV) and SARS-CoV-2. We will review our current knowledge of virus replication and highlight how fluorescence microscopy has helped to improve our state of understanding. We will start by introducing major imaging and labeling modalities and conclude the chapter with a perspective discussion on remaining challenges and potential opportunities.
Collapse
Affiliation(s)
- Enyu Xie
- Nanoscale Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Shazeb Ahmad
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany
| | - Redmond P Smyth
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany; Faculty of Medicine, University of Würzburg, Würzburg, Germany
| | - Christian Sieben
- Nanoscale Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany; Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany.
| |
Collapse
|
6
|
Deng L, Zhao L, Jin J, Qiao B, Zhang X, Chang L, Zheng L, Dankar S, Ping J. Transforming acidic coiled-coil containing protein 3 suppresses influenza A virus replication by impeding viral endosomal trafficking and nuclear import. Vet Microbiol 2023; 282:109769. [PMID: 37148621 DOI: 10.1016/j.vetmic.2023.109769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/10/2023] [Accepted: 05/01/2023] [Indexed: 05/08/2023]
Abstract
Transforming acidic coiled-coil containing protein 3 (TACC3) is a motor spindle protein that plays an essential role in stabilization of the mitotic spindle. In this study, we show that the overexpression of TACC3 reduces the viral titers of multiple influenza A viruses (IAVs). In contrast, the downregulation of TACC3 increases IAVs propagation. Next, we map the target steps of TACC3 requirement to the early stages of viral replication. By confocal microscopy and nuclear plasma separation experiment, we reveal that overexpression of TACC3 results in a substantial decrease of IAV NP accumulation in the nuclei of infected cells. We further show that viral attachment and internalization are not affected by TACC3 overexpression and detect that the early and late endosomal trafficking of IAV in TACC3 overexpression cells is slower than negative control cells. These results suggest that TACC3 exerts an impaired effect on the endosomal trafficking and nuclear import of vRNP, thereby negatively regulating IAV replication. Moreover, the infection of different IAV subtypes decreases the expression level of TACC3 in turn. Consequently, we speculate that IAV ensures the generation of offspring virions by antagonizing the expression of inhibitory factor TACC3. Collectively, our results establish TACC3 as an important inhibitory factor for replication of the IAV, suggesting that TACC3 could be a potential target for the development of future antiviral compounds.
Collapse
Affiliation(s)
- Lulu Deng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Lingcai Zhao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiayu Jin
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Bingchen Qiao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoting Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Lifeng Chang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Lucheng Zheng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Samar Dankar
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1V 8M5, Canada
| | - Jihui Ping
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
7
|
Farjo M, Brooke CB. When influenza viruses don't play well with others. Nature 2023; 616:668-669. [PMID: 37019958 DOI: 10.1038/d41586-023-00983-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
8
|
Farrell A, Phan T, Brooke CB, Koelle K, Ke R. Semi-infectious particles contribute substantially to influenza virus within-host dynamics when infection is dominated by spatial structure. Virus Evol 2023; 9:vead020. [PMID: 37538918 PMCID: PMC10395763 DOI: 10.1093/ve/vead020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 03/01/2023] [Accepted: 03/17/2023] [Indexed: 08/05/2023] Open
Abstract
Influenza is an ribonucleic acid virus with a genome that comprises eight segments. Experiments show that the vast majority of virions fail to express one or more gene segments and thus cannot cause a productive infection on their own. These particles, called semi-infectious particles (SIPs), can induce virion production through complementation when multiple SIPs are present in an infected cell. Previous within-host influenza models did not explicitly consider SIPs and largely ignore the potential effects of coinfection during virus infection. Here, we constructed and analyzed two distinct models explicitly keeping track of SIPs and coinfection: one without spatial structure and the other implicitly considering spatial structure. While the model without spatial structure fails to reproduce key aspects of within-host influenza virus dynamics, we found that the model implicitly considering the spatial structure of the infection process makes predictions that are consistent with biological observations, highlighting the crucial role that spatial structure plays during an influenza infection. This model predicts two phases of viral growth prior to the viral peak: a first phase driven by fully infectious particles at the initiation of infection followed by a second phase largely driven by coinfections of fully infectious particles and SIPs. Fitting this model to two sets of data, we show that SIPs can contribute substantially to viral load during infection. Overall, the model provides a new interpretation of the in vivo exponential viral growth observed in experiments and a mechanistic explanation for why the production of large numbers of SIPs does not strongly impede viral growth. Being simple and predictive, our model framework serves as a useful tool to understand coinfection dynamics in spatially structured acute viral infections.
Collapse
Affiliation(s)
| | - Tin Phan
- T-6, Theoretical Biology and Biophysics, Los Alamos, NM 87545, USA
| | | | | | | |
Collapse
|
9
|
Sims A, Tornaletti LB, Jasim S, Pirillo C, Devlin R, Hirst JC, Loney C, Wojtus J, Sloan E, Thorley L, Boutell C, Roberts E, Hutchinson E. Superinfection exclusion creates spatially distinct influenza virus populations. PLoS Biol 2023; 21:e3001941. [PMID: 36757937 PMCID: PMC9910727 DOI: 10.1371/journal.pbio.3001941] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 12/02/2022] [Indexed: 02/10/2023] Open
Abstract
Interactions between viruses during coinfections can influence viral fitness and population diversity, as seen in the generation of reassortant pandemic influenza A virus (IAV) strains. However, opportunities for interactions between closely related viruses are limited by a process known as superinfection exclusion (SIE), which blocks coinfection shortly after primary infection. Using IAVs, we asked whether SIE, an effect which occurs at the level of individual cells, could limit interactions between populations of viruses as they spread across multiple cells within a host. To address this, we first measured the kinetics of SIE in individual cells by infecting them sequentially with 2 isogenic IAVs, each encoding a different fluorophore. By varying the interval between addition of the 2 IAVs, we showed that early in infection SIE does not prevent coinfection, but that after this initial lag phase the potential for coinfection decreases exponentially. We then asked how the kinetics of SIE onset controlled coinfections as IAVs spread asynchronously across monolayers of cells. We observed that viruses at individual coinfected foci continued to coinfect cells as they spread, because all new infections were of cells that had not yet established SIE. In contrast, viruses spreading towards each other from separately infected foci could only establish minimal regions of coinfection before reaching cells where coinfection was blocked. This created a pattern of separate foci of infection, which was recapitulated in the lungs of infected mice, and which is likely to be applicable to many other viruses that induce SIE. We conclude that the kinetics of SIE onset segregate spreading viral infections into discrete regions, within which interactions between virus populations can occur freely, and between which they are blocked.
Collapse
Affiliation(s)
- Anna Sims
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | | | - Seema Jasim
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Chiara Pirillo
- Beatson Institute for Cancer Research, Glasgow, United Kingdom
| | - Ryan Devlin
- Beatson Institute for Cancer Research, Glasgow, United Kingdom
| | - Jack C. Hirst
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Colin Loney
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Joanna Wojtus
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Elizabeth Sloan
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Luke Thorley
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Chris Boutell
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Edward Roberts
- Beatson Institute for Cancer Research, Glasgow, United Kingdom
| | - Edward Hutchinson
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| |
Collapse
|
10
|
Allman B, Koelle K, Weissman D. Heterogeneity in viral populations increases the rate of deleterious mutation accumulation. Genetics 2022; 222:6673144. [PMID: 35993909 PMCID: PMC9526070 DOI: 10.1093/genetics/iyac127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
RNA viruses have high mutation rates, with the majority of mutations being deleterious. We examine patterns of deleterious mutation accumulation over multiple rounds of viral replication, with a focus on how cellular coinfection and heterogeneity in viral output affect these patterns. Specifically, using agent-based intercellular simulations we find, in agreement with previous studies, that coinfection of cells by viruses relaxes the strength of purifying selection, and thereby increases the rate of deleterious mutation accumulation. We further find that cellular heterogeneity in viral output exacerbates the rate of deleterious mutation accumulation, regardless of whether this heterogeneity in viral output is stochastic or is due to variation in cellular multiplicity of infection. These results highlight the need to consider the unique life histories of viruses and their population structure to better understand observed patterns of viral evolution.
Collapse
Affiliation(s)
- Brent Allman
- Graduate Program in Population Biology, Ecology, and Evolution, Emory University, Atlanta, Georgia 30322, USA
| | - Katia Koelle
- Department of Biology, Emory University, Atlanta, Georgia 30322, USA
| | - Daniel Weissman
- Department of Biology, Emory University, Atlanta, Georgia 30322, USA.,Department of Physics, Emory University, Atlanta, Georgia 30322, USA
| |
Collapse
|
11
|
Membrane-Tethered Mucin 1 Is Stimulated by Interferon and Virus Infection in Multiple Cell Types and Inhibits Influenza A Virus Infection in Human Airway Epithelium. mBio 2022; 13:e0105522. [PMID: 35699372 PMCID: PMC9426523 DOI: 10.1128/mbio.01055-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Influenza A virus (IAV) causes significant morbidity and mortality in the human population. Tethered mucin 1 (MUC1) is highly expressed in airway epithelium, the primary site of IAV replication, and also by other cell types that influence IAV infection, including macrophages. MUC1 has the potential to influence infection dynamics through physical interactions and/or signaling activity, yet MUC1 modulation and its impact during viral pathogenesis remain unclear. Thus, we investigated MUC1-IAV interactions in an in vitro model of human airway epithelium (HAE). Our data indicate that a recombinant IAV hemagglutinin (H3) and H3N2 virus can bind endogenous HAE MUC1. Notably, infection of HAE with H1N1 or H3N2 IAV strains does not trigger MUC1 shedding but instead stimulates an increase in cell-associated MUC1 protein. We observed a similar increase after type I or III interferon (IFN) stimulation; however, inhibition of IFN signaling during H1N1 infection only partially abrogated this increase, indicating that multiple soluble factors contribute to MUC1 upregulation during the antiviral response. In addition to HAE, primary human monocyte-derived macrophages also upregulated MUC1 protein in response to IFN treatment and conditioned media from IAV-infected HAE. Then, to determine the impact of MUC1 on IAV pathogenesis, we developed HAE genetically depleted of MUC1 and found that MUC1 knockout cultures exhibited enhanced viral growth compared to control cultures for several IAV strains. Together, our data support a model whereby MUC1 inhibits productive uptake of IAV in HAE. Infection then stimulates MUC1 expression on multiple cell types through IFN-dependent and -independent mechanisms that further impact infection dynamics.
Collapse
|
12
|
Kumar A, Mishra S, Kumar A, Raut AA, Sato S, Takaoka A, Kumar H. Essential role of Rnd1 in innate immunity during viral and bacterial infections. Cell Death Dis 2022; 13:520. [PMID: 35654795 PMCID: PMC9161769 DOI: 10.1038/s41419-022-04954-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 05/05/2022] [Accepted: 05/13/2022] [Indexed: 01/21/2023]
Abstract
Intracellular and cell surface pattern-recognition receptors (PRRs) are an essential part of innate immune recognition and host defense. Here, we have compared the innate immune responses between humans and bats to identify a novel membrane-associated protein, Rnd1, which defends against viral and bacterial infection in an interferon-independent manner. Rnd1 belongs to the Rho GTPase family, but unlike other small GTPase members, it is constitutively active. We show that Rnd1 is induced by pro-inflammatory cytokines during viral and bacterial infections and provides protection against these pathogens through two distinct mechanisms. Rnd1 counteracts intracellular calcium fluctuations by inhibiting RhoA activation, thereby inhibiting virus internalisation. On the other hand, Rnd1 also facilitates pro-inflammatory cytokines IL-6 and TNF-α through Plxnb1, which are highly effective against intracellular bacterial infections. These data provide a novel Rnd1-mediated innate defense against viral and bacterial infections.
Collapse
Affiliation(s)
- Akhilesh Kumar
- grid.462376.20000 0004 1763 8131Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Shalabh Mishra
- grid.462376.20000 0004 1763 8131Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Ashish Kumar
- grid.462376.20000 0004 1763 8131Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India ,grid.27860.3b0000 0004 1936 9684Department of Dermatology, School of Medicine, University of California Davis, Sacramento, CA USA
| | - Ashwin Ashok Raut
- grid.506025.40000 0004 5997 407XPathogenomics Lab, ICAR-National Institute of High Security Animal Diseases, Bhopal, Madhya Pradesh India
| | - Seiichi Sato
- grid.39158.360000 0001 2173 7691Division of Signaling in Cancer and Immunology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Akinori Takaoka
- grid.39158.360000 0001 2173 7691Division of Signaling in Cancer and Immunology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Himanshu Kumar
- grid.462376.20000 0004 1763 8131Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India ,grid.136593.b0000 0004 0373 3971WPI Immunology, Frontier Research Centre, Osaka University, Osaka, Japan
| |
Collapse
|
13
|
A Therapeutically Active Minibody Exhibits an Antiviral Activity in Oseltamivir-Resistant Influenza-Infected Mice via Direct Hydrolysis of Viral RNAs. Viruses 2022; 14:v14051105. [PMID: 35632846 PMCID: PMC9146509 DOI: 10.3390/v14051105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 11/17/2022] Open
Abstract
Emerging Oseltamivir-resistant influenza strains pose a critical public health threat due to antigenic shifts and drifts. We report an innovative strategy for controlling influenza A infections by use of a novel minibody of the 3D8 single chain variable fragment (scFv) showing intrinsic viral RNA hydrolyzing activity, cell penetration activity, and epidermal cell penetration ability. In this study, we examined 3D8 scFv’s antiviral activity in vitro on three different H1N1 influenza strains, one Oseltamivir-resistant (A/Korea/2785/2009pdm) strain, and two Oseltamivir-sensitive (A/PuertoRico/8/1934 and A/X-31) strains. Interestingly, the 3D8 scFv directly digested viral RNAs in the ribonucleoprotein complex. scFv’s reduction of influenza viral RNA including viral genomic RNA, complementary RNA, and messenger RNA during influenza A infection cycles indicated that this minibody targets all types of viral RNAs during the early, intermediate, and late stages of the virus’s life cycle. Moreover, we further addressed the antiviral effects of 3D8 scFv to investigate in vivo clinical outcomes of influenza-infected mice. Using both prophylactic and therapeutic treatments of intranasal administered 3D8 scFv, we found that Oseltamivir-resistant H1N1-infected mice showed 90% (prophylactic effects) and 40% (therapeutic effects) increased survival rates, respectively, compared to the control group. The pathological signs of influenza A in the lung tissues, and quantitative analyses of the virus proliferations supported the antiviral activity of the 3D8 single chain variable fragment. Taken together, these results demonstrate that 3D8 scFv has antiviral therapeutic potentials against a wide range of influenza A viruses via the direct viral RNA hydrolyzing activity.
Collapse
|
14
|
Skelton RM, Huber VC. Comparing Influenza Virus Biology for Understanding Influenza D Virus. Viruses 2022; 14:1036. [PMID: 35632777 PMCID: PMC9147167 DOI: 10.3390/v14051036] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 02/06/2023] Open
Abstract
The newest type of influenza virus, influenza D virus (IDV), was isolated in 2011. IDV circulates in several animal species worldwide, causing mild respiratory illness in its natural hosts. Importantly, IDV does not cause clinical disease in humans and does not spread easily from person to person. Here, we review what is known about the host-pathogen interactions that may limit IDV illness. We focus on early immune interactions between the virus and infected host cells in our summary of what is known about IDV pathogenesis. This work establishes a foundation for future research into IDV infection and immunity in mammalian hosts.
Collapse
Affiliation(s)
| | - Victor C. Huber
- Division of Basic Biomedical Sciences, University of South Dakota, Vermillion, SD 57069, USA;
| |
Collapse
|
15
|
Chauhan RP, Gordon ML. An overview of influenza A virus genes, protein functions, and replication cycle highlighting important updates. Virus Genes 2022; 58:255-269. [PMID: 35471490 DOI: 10.1007/s11262-022-01904-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 04/04/2022] [Indexed: 10/18/2022]
Abstract
The recent research findings on influenza A virus (IAV) genome biology prompted us to present a comprehensive overview of IAV genes, protein functions, and replication cycle. The eight gene segments of the IAV genome encode 17 proteins, each having unique functions contributing to virus fitness in the host. The polymerase genes are essential determinants of IAV pathogenicity and virulence; however, other viral components also play crucial roles in the IAV replication, transmission, and adaptation. Specific adaptive mutations within polymerase (PB2, PB1, and PA) and glycoprotein-hemagglutinin (HA) and neuraminidase (NA) genes, may facilitate interspecies transmission and adaptation of IAV. The HA-NA interplay is essential for establishing the IAV infection; the low pH triggers the inactivation of HA-receptor binding, leading to significantly lower NA activities, indicating that the enzymatic function of NA is dependent on HA binding. While the HA and NA glycoproteins are required to initiate infection, M1, M2, NS1, and NEP proteins are essential for cytoplasmic trafficking of viral ribonucleoproteins (vRNPs) and the assembly of the IAV virions. The mechanisms that enable IAV to exploit the host cell resources to advance the infection are discussed. A comprehensive understanding of IAV genome biology is essential for developing antivirals to combat the IAV disease burden.
Collapse
Affiliation(s)
- Ravendra P Chauhan
- School of Laboratory Medicine and Medical Sciences, Nelson R. Mandela School of Medicine, College of Health Sciences, University of KwaZulu-Natal, 719 Umbilo Road, Durban, 4001, South Africa
| | - Michelle L Gordon
- School of Laboratory Medicine and Medical Sciences, Nelson R. Mandela School of Medicine, College of Health Sciences, University of KwaZulu-Natal, 719 Umbilo Road, Durban, 4001, South Africa.
| |
Collapse
|
16
|
Kopanke J, Carpenter M, Lee J, Reed K, Rodgers C, Burton M, Lovett K, Westrich JA, McNulty E, McDermott E, Barbera C, Cavany S, Rohr JR, Perkins TA, Mathiason CK, Stenglein M, Mayo C. Bluetongue Research at a Crossroads: Modern Genomics Tools Can Pave the Way to New Insights. Annu Rev Anim Biosci 2022; 10:303-324. [PMID: 35167317 DOI: 10.1146/annurev-animal-051721-023724] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bluetongue virus (BTV) is an arthropod-borne, segmented double-stranded RNA virus that can cause severe disease in both wild and domestic ruminants. BTV evolves via several key mechanisms, including the accumulation of mutations over time and the reassortment of genome segments.Additionally, BTV must maintain fitness in two disparate hosts, the insect vector and the ruminant. The specific features of viral adaptation in each host that permit host-switching are poorly characterized. Limited field studies and experimental work have alluded to the presence of these phenomena at work, but our understanding of the factors that drive or constrain BTV's genetic diversification remains incomplete. Current research leveraging novel approaches and whole genome sequencing applications promises to improve our understanding of BTV's evolution, ultimately contributing to the development of better predictive models and management strategies to reduce future impacts of bluetongue epizootics.
Collapse
Affiliation(s)
- Jennifer Kopanke
- Office of the Campus Veterinarian, Washington State University, Spokane, Washington, USA;
| | - Molly Carpenter
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA; , , , , , , , , ,
| | - Justin Lee
- Genomic Sequencing Laboratory, Centers for Disease Control and Prevention, Atlanta, Georgia, USA;
| | - Kirsten Reed
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA; , , , , , , , , ,
| | - Case Rodgers
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA; , , , , , , , , ,
| | - Mollie Burton
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA; , , , , , , , , ,
| | - Kierra Lovett
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA; , , , , , , , , ,
| | - Joseph A Westrich
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA; , , , , , , , , ,
| | - Erin McNulty
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA; , , , , , , , , ,
| | - Emily McDermott
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, Arkansas, USA;
| | - Carly Barbera
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA; , , ,
| | - Sean Cavany
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA; , , ,
| | - Jason R Rohr
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA; , , ,
| | - T Alex Perkins
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA; , , ,
| | - Candace K Mathiason
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA; , , , , , , , , ,
| | - Mark Stenglein
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA; , , , , , , , , ,
| | - Christie Mayo
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA; , , , , , , , , ,
| |
Collapse
|
17
|
Soares RRG, Madaboosi N, Nilsson M. Rolling Circle Amplification in Integrated Microsystems: An Uncut Gem toward Massively Multiplexed Pathogen Diagnostics and Genotyping. Acc Chem Res 2021; 54:3979-3990. [PMID: 34637281 PMCID: PMC8567418 DOI: 10.1021/acs.accounts.1c00438] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The development of robust methods allowing the precise detection of specific nucleic acid sequences is of major societal relevance, paving the way for significant advances in biotechnology and biomedical engineering. These range from a better understanding of human disease at a molecular level, allowing the discovery and development of novel biopharmaceuticals and vaccines, to the improvement of biotechnological processes providing improved food quality and safety, efficient green fuels, and smart textiles. Among these applications, the significance of pathogen diagnostics as the main focus of this Account has become particularly clear during the recent SARS-CoV-2 pandemic. In this context, while RT-PCR is the gold standard method for unambiguous detection of genetic material from pathogens, other isothermal amplification alternatives circumventing rapid heating-cooling cycles up to ∼95 °C are appealing to facilitate the translation of the assay into point-of-care (PoC) analytical platforms. Furthermore, the possibility of routinely multiplexing the detection of tens to hundreds of target sequences with single base pair specificity, currently not met by state-of-the-art methods available in clinical laboratories, would be instrumental along the path to tackle emergent viral variants and antimicrobial resistance genes. Here, we advocate that padlock probes (PLPs), first reported by Nilsson et al. in 1994, coupled with rolling circle amplification (RCA), termed here as PLP-RCA, is an underexploited technology in current arena of isothermal nucleic acid amplification tests (NAATs) providing an unprecedented degree of multiplexing, specificity, versatility, and amenability to integration in miniaturized PoC platforms. Furthermore, the intrinsically digital amplification of PLP-RCA retains spatial information and opens new avenues in the exploration of pathogenesis with spatial multiomics analysis of infected cells and tissue.The Account starts by introducing PLP-RCA in a nutshell focusing individually on the three main assay steps, namely, (1) PLP design and ligation mechanism, (2) RCA after probe ligation, and (3) detection of the RCA products. Each subject is touched upon succinctly but with sufficient detail for the reader to appreciate some assay intricacies and degree of versatility depending on the analytical challenge at hand. After familiarizing the reader with the method, we discuss specific examples of research in our group and others using PLP-RCA for viral, bacterial, and fungal diagnostics in a variety of clinical contexts, including the genotyping of antibiotic resistance genes and viral subtyping. Then, we dissect key developments in the miniaturization and integration of PLP-RCA to minimize user input, maximize analysis throughput, and expedite the time to results, ultimately aiming at PoC applications. These developments include molecular enrichment for maximum sensitivity, spatial arrays to maximize analytical throughput, automation of liquid handling to streamline the analytical workflow in miniaturized devices, and seamless integration of signal transduction to translate RCA product titers (and ideally spatial information) into a readable output. Finally, we position PLP-RCA in the current landscape of NAATs and furnish a systematic Strengths, Weaknesses, Opportunities and Threats analysis to shine light upon unpolished edges to uncover the gem with potential for ubiquitous, precise, and unbiased pathogen diagnostics.
Collapse
Affiliation(s)
- Ruben R. G. Soares
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, 17165 Solna, Sweden
- Division of Nanobiotechnology, Department of Protein Science, Science for Life Laboratory, KTH Royal Institute of Technology, 17165 Solna, Sweden
| | - Narayanan Madaboosi
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, 17165 Solna, Sweden
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai, 600036 Tamil Nadu, India
| | - Mats Nilsson
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, 17165 Solna, Sweden
| |
Collapse
|
18
|
Rüdiger D, Pelz L, Hein MD, Kupke SY, Reichl U. Multiscale model of defective interfering particle replication for influenza A virus infection in animal cell culture. PLoS Comput Biol 2021; 17:e1009357. [PMID: 34491996 PMCID: PMC8448327 DOI: 10.1371/journal.pcbi.1009357] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 09/17/2021] [Accepted: 08/18/2021] [Indexed: 12/15/2022] Open
Abstract
Cell culture-derived defective interfering particles (DIPs) are considered for antiviral therapy due to their ability to inhibit influenza A virus (IAV) production. DIPs contain a large internal deletion in one of their eight viral RNAs (vRNAs) rendering them replication-incompetent. However, they can propagate alongside their homologous standard virus (STV) during infection in a competition for cellular and viral resources. So far, experimental and modeling studies for IAV have focused on either the intracellular or the cell population level when investigating the interaction of STVs and DIPs. To examine these levels simultaneously, we conducted a series of experiments using highly different multiplicities of infections for STVs and DIPs to characterize virus replication in Madin-Darby Canine Kidney suspension cells. At several time points post infection, we quantified virus titers, viable cell concentration, virus-induced apoptosis using imaging flow cytometry, and intracellular levels of vRNA and viral mRNA using real-time reverse transcription qPCR. Based on the obtained data, we developed a mathematical multiscale model of STV and DIP co-infection that describes dynamics closely for all scenarios with a single set of parameters. We show that applying high DIP concentrations can shut down STV propagation completely and prevent virus-induced apoptosis. Interestingly, the three observed viral mRNAs (full-length segment 1 and 5, defective interfering segment 1) accumulated to vastly different levels suggesting the interplay between an internal regulation mechanism and a growth advantage for shorter viral RNAs. Furthermore, model simulations predict that the concentration of DIPs should be at least 10000 times higher than that of STVs to prevent the spread of IAV. Ultimately, the model presented here supports a comprehensive understanding of the interactions between STVs and DIPs during co-infection providing an ideal platform for the prediction and optimization of vaccine manufacturing as well as DIP production for therapeutic use.
Collapse
Affiliation(s)
- Daniel Rüdiger
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Lars Pelz
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Marc D. Hein
- Chair of Bioprocess Engineering, Institute of Process Engineering, Faculty of Process & Systems Engineering, Otto-von-Guericke University, Magdeburg, Germany
| | - Sascha Y. Kupke
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Udo Reichl
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
- Chair of Bioprocess Engineering, Institute of Process Engineering, Faculty of Process & Systems Engineering, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
19
|
Zhu H, Allman BE, Koelle K. Fitness Estimation for Viral Variants in the Context of Cellular Coinfection. Viruses 2021; 13:v13071216. [PMID: 34201862 PMCID: PMC8310006 DOI: 10.3390/v13071216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 11/16/2022] Open
Abstract
Animal models are frequently used to characterize the within-host dynamics of emerging zoonotic viruses. More recent studies have also deep-sequenced longitudinal viral samples originating from experimental challenges to gain a better understanding of how these viruses may evolve in vivo and between transmission events. These studies have often identified nucleotide variants that can replicate more efficiently within hosts and also transmit more effectively between hosts. Quantifying the degree to which a mutation impacts viral fitness within a host can improve identification of variants that are of particular epidemiological concern and our ability to anticipate viral adaptation at the population level. While methods have been developed to quantify the fitness effects of mutations using observed changes in allele frequencies over the course of a host’s infection, none of the existing methods account for the possibility of cellular coinfection. Here, we develop mathematical models to project variant allele frequency changes in the context of cellular coinfection and, further, integrate these models with statistical inference approaches to demonstrate how variant fitness can be estimated alongside cellular multiplicity of infection. We apply our approaches to empirical longitudinally sampled H5N1 sequence data from ferrets. Our results indicate that previous studies may have significantly underestimated the within-host fitness advantage of viral variants. These findings underscore the importance of considering the process of cellular coinfection when studying within-host viral evolutionary dynamics.
Collapse
Affiliation(s)
- Huisheng Zhu
- Department of Biology, Emory University, Atlanta, GA 30322, USA;
| | - Brent E. Allman
- Graduate Program in Population Biology, Ecology, and Evolution, Emory University, Atlanta, GA 30322, USA;
| | - Katia Koelle
- Department of Biology, Emory University, Atlanta, GA 30322, USA;
- Emory-UGA Center of Excellence for Influenza Research and Surveillance (CEIRS), Atlanta, GA 30322, USA
- Correspondence:
| |
Collapse
|
20
|
Horio K, Takahashi H, Kobori T, Watanabe K, Aki T, Nakashimada Y, Okamura Y. Visualization of Gene Reciprocity among Lactic Acid Bacteria in Yogurt by RNase H-Assisted Rolling Circle Amplification-Fluorescence In Situ Hybridization. Microorganisms 2021; 9:1208. [PMID: 34204984 PMCID: PMC8228470 DOI: 10.3390/microorganisms9061208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 11/16/2022] Open
Abstract
Recently, we developed an in situ mRNA detection method termed RNase H-assisted rolling circle amplification-fluorescence in situ hybridization (RHa-RCA-FISH), which can detect even short mRNA in a bacterial cell. However, because this FISH method is sensitive to the sample condition, it is necessary to find a suitable cell permeabilization and collection protocol. Here, we demonstrate its further applicability for detecting intrinsic mRNA expression using lactic acid bacteria (LAB) as a model consortium. Our results show that this method can visualize functional gene expression in LAB cells and can be used for monitoring the temporal transition of gene expression. In addition, we also confirmed that data obtained from bulk analyses such as RNA-seq or microarray do not always correspond to gene expression in individual cells. RHa-RCA-FISH will be a powerful tool to compensate for insufficient data from metatranscriptome analyses while clarifying the carriers of function in microbial consortia. By extending this technique to capture spatiotemporal microbial gene expression at the single-cell level, it will be able to characterize microbial interactions in phytoplankton-bacteria interactions.
Collapse
Affiliation(s)
- Kyohei Horio
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima 739-8530, Japan; (K.H.); (H.T.); (K.W.); (T.A.); (Y.N.)
| | - Hirokazu Takahashi
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima 739-8530, Japan; (K.H.); (H.T.); (K.W.); (T.A.); (Y.N.)
| | - Toshiro Kobori
- Division of Food Biotechnology, Food Research Institute, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8642, Japan;
| | - Kenshi Watanabe
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima 739-8530, Japan; (K.H.); (H.T.); (K.W.); (T.A.); (Y.N.)
| | - Tsunehiro Aki
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima 739-8530, Japan; (K.H.); (H.T.); (K.W.); (T.A.); (Y.N.)
| | - Yutaka Nakashimada
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima 739-8530, Japan; (K.H.); (H.T.); (K.W.); (T.A.); (Y.N.)
| | - Yoshiko Okamura
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima 739-8530, Japan; (K.H.); (H.T.); (K.W.); (T.A.); (Y.N.)
| |
Collapse
|
21
|
Competitive exclusion during co-infection as a strategy to prevent the spread of a virus: A computational perspective. PLoS One 2021; 16:e0247200. [PMID: 33626106 PMCID: PMC7904198 DOI: 10.1371/journal.pone.0247200] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 02/02/2021] [Indexed: 01/24/2023] Open
Abstract
Inspired by the competition exclusion principle, this work aims at providing a computational framework to explore the theoretical feasibility of viral co-infection as a possible strategy to reduce the spread of a fatal strain in a population. We propose a stochastic-based model—called Co-Wish—to understand how competition between two viruses over a shared niche can affect the spread of each virus in infected tissue. To demonstrate the co-infection of two viruses, we first simulate the characteristics of two virus growth processes separately. Then, we examine their interactions until one can dominate the other. We use Co-Wish to explore how the model varies as the parameters of each virus growth process change when two viruses infect the host simultaneously. We will also investigate the effect of the delayed initiation of each infection. Moreover, Co-Wish not only examines the co-infection at the cell level but also includes the innate immune response during viral infection. The results highlight that the waiting times in the five stages of the viral infection of a cell in the model—namely attachment, penetration, eclipse, replication, and release—play an essential role in the competition between the two viruses. While it could prove challenging to fully understand the therapeutic potentials of viral co-infection, we discuss that our theoretical framework hints at an intriguing research direction in applying co-infection dynamics in controlling any viral outbreak’s speed.
Collapse
|
22
|
Malausse N, van der Werf S, Naffakh N, Munier S. Influenza B Virus Infection Is Enhanced Upon Heterotypic Co-infection With Influenza A Virus. Front Microbiol 2021; 12:631346. [PMID: 33717023 PMCID: PMC7947630 DOI: 10.3389/fmicb.2021.631346] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/22/2021] [Indexed: 11/13/2022] Open
Abstract
Homotypic co-infections with influenza viruses are described to increase genetic population diversity, to drive viral evolution and to allow genetic complementation. Less is known about heterotypic co-infections between influenza A (IAV) and influenza B (IBV) viruses. Previous publications showed that IAV replication was suppressed upon co-infection with IBV. However, the effect of heterotypic co-infections on IBV replication was not investigated. To do so, we produced by reverse genetics a pair of replication-competent recombinant IAV (A/WSN/33) and IBV (B/Brisbane/60/2008) expressing a GFP and mCherry fluorescent reporter, respectively. A549 cells were infected simultaneously or 1 h apart at a high MOI with IAV-GFP or IBV-mCherry and the fluorescence was measured at 6 h post-infection by flow cytometry. Unexpectedly, we observed that IBV-mCherry infection was enhanced upon co-infection with IAV-GFP, and more strongly so when IAV was added 1 h prior to IBV. The same effect was observed with wild-type viruses and with various strains of IAV. Using UV-inactivated IAV or type-specific antiviral compounds, we showed that the enhancing effect of IAV infection on IBV infection was dependent on transcription/replication of the IAV genome. Our results, taken with available data in the literature, support the hypothesis that the presence of IAV proteins can enhance IBV genome expression and/or complement IBV defective particles.
Collapse
Affiliation(s)
- Nicolas Malausse
- Unité de Génétique Moléculaire des Virus à ARN, Institut Pasteur, CNRS UMR 3569, Université de Paris, Paris, France.,Université de Paris, Sorbonne Paris Cité, Paris, France
| | - Sylvie van der Werf
- Unité de Génétique Moléculaire des Virus à ARN, Institut Pasteur, CNRS UMR 3569, Université de Paris, Paris, France
| | - Nadia Naffakh
- Unité de Génétique Moléculaire des Virus à ARN, Institut Pasteur, CNRS UMR 3569, Université de Paris, Paris, France
| | - Sandie Munier
- Unité de Génétique Moléculaire des Virus à ARN, Institut Pasteur, CNRS UMR 3569, Université de Paris, Paris, France
| |
Collapse
|
23
|
Ginex T, Luque FJ. Searching for effective antiviral small molecules against influenza A virus: A patent review. Expert Opin Ther Pat 2020; 31:53-66. [PMID: 33012213 DOI: 10.1080/13543776.2020.1831471] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Introduction: Despite the current interest caused by SARS-Cov-2, influenza continues to be one of the most serious health concerns, with an estimated 1 billion cases across the globe, including 3-5 million severe cases and 290,000-650,000 deaths worldwide. Areas covered: This manuscript reviews the efforts made in the development of small molecules for the treatment of influenza virus, primarily focused on patent applications in the last 5 years. Attention is paid to compounds targeting key functional viral proteins, such as the M2 channel, neuraminidase, and hemagglutinin, highlighting the evolution toward new ligands and scaffolds motivated by the emergence of resistant strains. Finally, the discovery of compounds against novel viral targets, such as the RNA-dependent RNA polymerase, is discussed. Expert opinion: The therapeutic potential of antiviral agents is limited by the increasing presence of resistant strains. This should encourage research on novel strategies for therapeutic intervention. In this context, the discovery of arbidol and JNJ7918 against hemagglutinin, and current efforts on RNA-dependent RNA polymerase have disclosed novel opportunities for therapeutic treatment. Studies should attempt to expand the therapeutic arsenal of anti-flu agents, often in combined therapies, to prevent future health challenges caused by influenza virus. Abbreviations: AlphaLISA: amplified luminescent proximity homogeneous assay; HA: hemagglutinin; NA: neuraminidase; RBD: receptor binding domain; RdRp: RNA-dependent RNA polymerase; SA: sialic Acid; TBHQ: tert-butyl hydroquinone; TEVC: two-electrode voltage clamp.
Collapse
Affiliation(s)
- Tiziana Ginex
- Translational Medicinal and Biological Chemistry Group, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Biológicas (CIB-CSIC) , Madrid, Spain
| | - F Javier Luque
- Department of Nutrition, Food Science and Gastronomy, Faculty of Pharmacy and Food Sciences, Institute of Biomedicine (IBUB), and Institute of Theoretical and Computational Chemistry (IQTCUB), University of Barcelona , Santa Coloma de Gramanet, Spain
| |
Collapse
|
24
|
Martin BE, Harris JD, Sun J, Koelle K, Brooke CB. Cellular co-infection can modulate the efficiency of influenza A virus production and shape the interferon response. PLoS Pathog 2020; 16:e1008974. [PMID: 33064776 PMCID: PMC7592918 DOI: 10.1371/journal.ppat.1008974] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 10/28/2020] [Accepted: 09/10/2020] [Indexed: 12/19/2022] Open
Abstract
During viral infection, the numbers of virions infecting individual cells can vary significantly over time and space. The functional consequences of this variation in cellular multiplicity of infection (MOI) remain poorly understood. Here, we rigorously quantify the phenotypic consequences of cellular MOI during influenza A virus (IAV) infection over a single round of replication in terms of cell death rates, viral output kinetics, interferon and antiviral effector gene transcription, and superinfection potential. By statistically fitting mathematical models to our data, we precisely define specific functional forms that quantitatively describe the modulation of these phenotypes by MOI at the single cell level. To determine the generality of these functional forms, we compare two distinct cell lines (MDCK cells and A549 cells), both infected with the H1N1 strain A/Puerto Rico/8/1934 (PR8). We find that a model assuming that infected cell death rates are independent of cellular MOI best fits the experimental data in both cell lines. We further observe that a model in which the rate and efficiency of virus production increase with cellular co-infection best fits our observations in MDCK cells, but not in A549 cells. In A549 cells, we also find that induction of type III interferon, but not type I interferon, is highly dependent on cellular MOI, especially at early timepoints. This finding identifies a role for cellular co-infection in shaping the innate immune response to IAV infection. Finally, we show that higher cellular MOI is associated with more potent superinfection exclusion, thus limiting the total number of virions capable of infecting a cell. Overall, this study suggests that the extent of cellular co-infection by influenza viruses may be a critical determinant of both viral production kinetics and cellular infection outcomes in a host cell type-dependent manner. During influenza A virus (IAV) infection, the number of virions to enter individual cells can be highly variable. Cellular co-infection appears to be common and plays an essential role in facilitating reassortment for IAV, yet little is known about how cellular co-infection influences infection outcomes at the cellular level. Here, we combine quantitative in vitro infection experiments with statistical model fitting to precisely define the phenotypic consequences of cellular co-infection in two cell lines. We reveal that cellular co-infection can increase and accelerate the efficiency of IAV production in a cell line-dependent fashion, identifying it as a potential determinant of viral replication kinetics. We also show that induction of type III, but not type I, interferon is highly dependent upon the number of virions that infect a given cell, implicating cellular co-infection as an important determinant of the host innate immune response to infection. Altogether, our findings show that cellular co-infection plays a crucial role in determining infection outcome. The integration of experimental and statistical modeling approaches detailed here represents a significant advance in the quantitative study of influenza virus infection and should aid ongoing efforts focused on the construction of mathematical models of IAV infection.
Collapse
Affiliation(s)
- Brigitte E. Martin
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| | - Jeremy D. Harris
- Department of Biology, Emory University, Atlanta, GA, United States of America
| | - Jiayi Sun
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| | - Katia Koelle
- Department of Biology, Emory University, Atlanta, GA, United States of America
- * E-mail: (KK); (CB)
| | - Christopher B. Brooke
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
- * E-mail: (KK); (CB)
| |
Collapse
|
25
|
Jones JE, Le Sage V, Lakdawala SS. Viral and host heterogeneity and their effects on the viral life cycle. Nat Rev Microbiol 2020; 19:272-282. [PMID: 33024309 PMCID: PMC7537587 DOI: 10.1038/s41579-020-00449-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2020] [Indexed: 02/08/2023]
Abstract
Traditionally, the viral replication cycle is envisioned as a single, well-defined loop with four major steps: attachment and entry into a target cell, replication of the viral genome, maturation of viral proteins and genome packaging into infectious progeny, and egress and dissemination to the next target cell. However, for many viruses, a growing body of evidence points towards extreme heterogeneity in each of these steps. In this Review, we reassess the major steps of the viral replication cycle by highlighting recent advances that show considerable variability during viral infection. First, we discuss heterogeneity in entry receptors, followed by a discussion on error-prone and low-fidelity polymerases and their impact on viral diversity. Next, we cover the implications of heterogeneity in genome packaging and assembly on virion morphology. Last, we explore alternative egress mechanisms, including tunnelling nanotubes and host microvesicles. In summary, we discuss the implications of viral phenotypic, morphological and genetic heterogeneity on pathogenesis and medicine. This Review highlights common themes and unique features that give nuance to the viral replication cycle.
Collapse
Affiliation(s)
- Jennifer E Jones
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Valerie Le Sage
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Seema S Lakdawala
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA. .,Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
26
|
Sun J, Vera JC, Drnevich J, Lin YT, Ke R, Brooke CB. Single cell heterogeneity in influenza A virus gene expression shapes the innate antiviral response to infection. PLoS Pathog 2020; 16:e1008671. [PMID: 32614923 PMCID: PMC7363107 DOI: 10.1371/journal.ppat.1008671] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 07/15/2020] [Accepted: 06/01/2020] [Indexed: 12/25/2022] Open
Abstract
Viral infection outcomes are governed by the complex and dynamic interplay between the infecting virus population and the host response. It is increasingly clear that both viral and host cell populations are highly heterogeneous, but little is known about how this heterogeneity influences infection dynamics or viral pathogenicity. To dissect the interactions between influenza A virus (IAV) and host cell heterogeneity, we examined the combined host and viral transcriptomes of thousands of individual cells, each infected with a single IAV virion. We observed complex patterns of viral gene expression and the existence of multiple distinct host transcriptional responses to infection at the single cell level. We show that human H1N1 and H3N2 strains differ significantly in patterns of both viral and host anti-viral gene transcriptional heterogeneity at the single cell level. Our analyses also reveal that semi-infectious particles that fail to express the viral NS can play a dominant role in triggering the innate anti-viral response to infection. Altogether, these data reveal how patterns of viral population heterogeneity can serve as a major determinant of antiviral gene activation.
Collapse
Affiliation(s)
- Jiayi Sun
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - J. Cristobal Vera
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Jenny Drnevich
- High-Performance Biological Computing at the Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Yen Ting Lin
- Information Sciences Group, Computer, Computational and Statistical Sciences DIvision (CCS-3), Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Ruian Ke
- T-6, Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Christopher B. Brooke
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| |
Collapse
|
27
|
Disruption of cellular proteostasis by H1N1 influenza A virus causes α-synuclein aggregation. Proc Natl Acad Sci U S A 2020; 117:6741-6751. [PMID: 32152117 DOI: 10.1073/pnas.1906466117] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Neurodegenerative diseases feature specific misfolded or misassembled proteins associated with neurotoxicity. The precise mechanisms by which protein aggregates first arise in the majority of sporadic cases have remained unclear. Likely, a first critical mass of misfolded proteins starts a vicious cycle of a prion-like expansion. We hypothesize that viruses, having evolved to hijack the host cellular machinery for catalyzing their replication, lead to profound disturbances of cellular proteostasis, resulting in such a critical mass of protein aggregates. Here, we investigated the effect of influenza virus (H1N1) strains on proteostasis of proteins associated with neurodegenerative diseases in Lund human mesencephalic dopaminergic cells in vitro and infection of Rag knockout mice in vivo. We demonstrate that acute H1N1 infection leads to the formation of α-synuclein and Disrupted-in-Schizophrenia 1 (DISC1) aggregates, but not of tau or TDP-43 aggregates, indicating a selective effect on proteostasis. Oseltamivir phosphate, an antiinfluenza drug, prevented H1N1-induced α-synuclein aggregation. As a cell pathobiological mechanism, we identified H1N1-induced blocking of autophagosome formation and inhibition of autophagic flux. In addition, α-synuclein aggregates appeared in infected cell populations connected to the olfactory bulbs following intranasal instillation of H1N1 in Rag knockout mice. We propose that H1N1 virus replication in neuronal cells can induce seeds of aggregated α-synuclein or DISC1 that may be able to initiate further detrimental downstream events and should thus be considered a risk factor in the pathogenesis of synucleinopathies or a subset of mental disorders. More generally, aberrant proteostasis induced by viruses may be an underappreciated factor in initiating protein misfolding.
Collapse
|
28
|
Cell-to-Cell Variation in Defective Virus Expression and Effects on Host Responses during Influenza Virus Infection. mBio 2020; 11:mBio.02880-19. [PMID: 31937643 PMCID: PMC6960286 DOI: 10.1128/mbio.02880-19] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Defective influenza virus particles generated during viral replication carry incomplete viral genomes and can interfere with the replication of competent viruses. These defective genomes are thought to modulate the disease severity and pathogenicity of an influenza virus infection. Different defective viral genomes also introduce another source of variation across a heterogeneous cell population. Evaluating the impact of defective virus genomes on host cell responses cannot be fully resolved at the population level, requiring single-cell transcriptional profiling. Here, we characterized virus and host transcriptomes in individual influenza virus-infected cells, including those of defective viruses that arise during influenza A virus infection. We established an association between defective virus transcription and host responses and validated interfering and immunostimulatory functions of identified dominant defective viral genome species in vitro. This study demonstrates the intricate effects of defective viral genomes on host transcriptional responses and highlights the importance of capturing host-virus interactions at the single-cell level. Virus and host factors contribute to cell-to-cell variation in viral infections and determine the outcome of the overall infection. However, the extent of the variability at the single-cell level and how it impacts virus-host interactions at a system level are not well understood. To characterize the dynamics of viral transcription and host responses, we used single-cell RNA sequencing to quantify at multiple time points the host and viral transcriptomes of human A549 cells and primary bronchial epithelial cells infected with influenza A virus. We observed substantial variability in viral transcription between cells, including the accumulation of defective viral genomes (DVGs) that impact viral replication. We show (i) a correlation between DVGs and virus-induced variation of the host transcriptional program and (ii) an association between differential inductions of innate immune response genes and attenuated viral transcription in subpopulations of cells. These observations at the single-cell level improve our understanding of the complex virus-host interplay during influenza virus infection.
Collapse
|
29
|
Ghorbani A, Ngunjiri JM, Lee CW. Influenza A Virus Subpopulations and Their Implication in Pathogenesis and Vaccine Development. Annu Rev Anim Biosci 2019; 8:247-267. [PMID: 31479617 DOI: 10.1146/annurev-animal-021419-083756] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The concept of influenza A virus (IAV) subpopulations emerged approximately 75 years ago, when Preben von Magnus described "incomplete" virus particles that interfere with the replication of infectious virus. It is now widely accepted that infectious particles constitute only a minor portion of biologically active IAV subpopulations. The IAV quasispecies is an extremely diverse swarm of biologically and genetically heterogeneous particle subpopulations that collectively influence the evolutionary fitness of the virus. This review summarizes the current knowledge of IAV subpopulations, focusing on their biologic and genomic diversity. It also discusses the potential roles IAV subpopulations play in virus pathogenesis and live attenuated influenza vaccine development.
Collapse
Affiliation(s)
- Amir Ghorbani
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio 44691, USA; , , .,Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| | - John M Ngunjiri
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio 44691, USA; , ,
| | - Chang-Won Lee
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio 44691, USA; , , .,Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
30
|
Wang H, Dou D, Östbye H, Revol R, Daniels R. Structural restrictions for influenza neuraminidase activity promote adaptation and diversification. Nat Microbiol 2019; 4:2565-2577. [PMID: 31451775 DOI: 10.1038/s41564-019-0537-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 07/10/2019] [Indexed: 12/17/2022]
Abstract
Influenza neuraminidase (NA) is a sialidase that contributes to viral mobility by removing the extracellular receptors for the haemagglutinin (HA) glycoprotein. However, it remains unclear why influenza NAs evolved to function as Ca2+-dependent tetramers that display variable stability. Here, we show that the Ca2+ ion located at the centre of the NA tetramer is a major stability determinant, as this Ca2+ ion is required for catalysis and its binding affinity varies between NAs. By examining NAs from 2009 pandemic-like H1N1 viruses, we traced the affinity variation to local substitutions that cause residues in the central Ca2+-binding pocket to reposition. A temporal analysis revealed that these local substitutions predictably alter the stability of the 2009 pandemic-like NAs and contribute to the tendency for the stability to vary up and down over time. In addition to the changes in stability, the structural plasticity of NA was also shown to support the formation of heterotetramers, which creates a mechanism for NA to obtain hybrid properties and propagate suboptimal mutants. Together, these results demonstrate how the structural restrictions for activity provide influenza NA with several mechanisms for adaptation and diversification.
Collapse
Affiliation(s)
- Hao Wang
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Dan Dou
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Henrik Östbye
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Rebecca Revol
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Robert Daniels
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden. .,Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA.
| |
Collapse
|
31
|
Dumm RE, Heaton NS. The Development and Use of Reporter Influenza B Viruses. Viruses 2019; 11:E736. [PMID: 31404985 PMCID: PMC6723853 DOI: 10.3390/v11080736] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/31/2019] [Accepted: 08/02/2019] [Indexed: 12/15/2022] Open
Abstract
Influenza B viruses (IBVs) are major contributors to total human influenza disease, responsible for ~1/3 of all infections. These viruses, however, are relatively less studied than the related influenza A viruses (IAVs). While it has historically been assumed that the viral biology and mechanisms of pathogenesis for all influenza viruses were highly similar, studies have shown that IBVs possess unique characteristics. Relative to IAV, IBV encodes distinct viral proteins, displays a different mutational rate, has unique patterns of tropism, and elicits different immune responses. More work is therefore required to define the mechanisms of IBV pathogenesis. One valuable approach to characterize mechanisms of microbial disease is the use of genetically modified pathogens that harbor exogenous reporter genes. Over the last few years, IBV reporter viruses have been developed and used to provide new insights into the host response to infection, viral spread, and the testing of antiviral therapeutics. In this review, we will highlight the history and study of IBVs with particular emphasis on the use of genetically modified viruses and discuss some remaining gaps in knowledge that can be addressed using reporter expressing IBVs.
Collapse
Affiliation(s)
- Rebekah E Dumm
- Department of Molecular Genetics and Microbiology, University School of Medicine Durham, Durham, NC 27710, USA
| | - Nicholas S Heaton
- Department of Molecular Genetics and Microbiology (MGM), Duke University Medical Center, 213 Research Drive, 426 CARL Building, Box 3054, Durham, NC 27710, USA.
| |
Collapse
|
32
|
Jacobs NT, Onuoha NO, Antia A, Steel J, Antia R, Lowen AC. Incomplete influenza A virus genomes occur frequently but are readily complemented during localized viral spread. Nat Commun 2019; 10:3526. [PMID: 31387995 PMCID: PMC6684657 DOI: 10.1038/s41467-019-11428-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 07/15/2019] [Indexed: 11/09/2022] Open
Abstract
Segmentation of viral genomes into multiple RNAs creates the potential for replication of incomplete viral genomes (IVGs). Here we use a single-cell approach to quantify influenza A virus IVGs and examine their fitness implications. We find that each segment of influenza A/Panama/2007/99 (H3N2) virus has a 58% probability of being replicated in a cell infected with a single virion. Theoretical methods predict that IVGs carry high costs in a well-mixed system, as 3.6 virions are required for replication of a full genome. Spatial structure is predicted to mitigate these costs, however, and experimental manipulations of spatial structure indicate that local spread facilitates complementation. A virus entirely dependent on co-infection was used to assess relevance of IVGs in vivo. This virus grows robustly in guinea pigs, but is less infectious and does not transmit. Thus, co-infection allows IVGs to contribute to within-host spread, but complete genomes may be critical for transmission.
Collapse
Affiliation(s)
- Nathan T Jacobs
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Nina O Onuoha
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Alice Antia
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - John Steel
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Rustom Antia
- Department of Biology, Emory University, Atlanta, GA, USA
| | - Anice C Lowen
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA.
- Emory-UGA Center of Excellence for Influenza Research and Surveillance, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
33
|
Russell AB, Elshina E, Kowalsky JR, Te Velthuis AJW, Bloom JD. Single-Cell Virus Sequencing of Influenza Infections That Trigger Innate Immunity. J Virol 2019; 93:e00500-19. [PMID: 31068418 PMCID: PMC6600203 DOI: 10.1128/jvi.00500-19] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 04/29/2019] [Indexed: 12/21/2022] Open
Abstract
Influenza virus-infected cells vary widely in their expression of viral genes and only occasionally activate innate immunity. Here, we develop a new method to assess how the genetic variation in viral populations contributes to this heterogeneity. We do this by determining the transcriptome and full-length sequences of all viral genes in single cells infected with a nominally "pure" stock of influenza virus. Most cells are infected by virions with defects, some of which increase the frequency of innate-immune activation. These immunostimulatory defects are diverse and include mutations that perturb the function of the viral polymerase protein PB1, large internal deletions in viral genes, and failure to express the virus's interferon antagonist NS1. However, immune activation remains stochastic in cells infected by virions with these defects and occasionally is triggered even by virions that express unmutated copies of all genes. Our work shows that the diverse spectrum of defects in influenza virus populations contributes to-but does not completely explain-the heterogeneity in viral gene expression and immune activation in single infected cells.IMPORTANCE Because influenza virus has a high mutation rate, many cells are infected by mutated virions. But so far, it has been impossible to fully characterize the sequence of the virion infecting any given cell, since conventional techniques such as flow cytometry and single-cell transcriptome sequencing (scRNA-seq) only detect if a protein or transcript is present, not its sequence. Here we develop a new approach that uses long-read PacBio sequencing to determine the sequences of virions infecting single cells. We show that viral genetic variation explains some but not all of the cell-to-cell variability in viral gene expression and innate immune induction. Overall, our study provides the first complete picture of how viral mutations affect the course of infection in single cells.
Collapse
Affiliation(s)
- Alistair B Russell
- Basic Sciences and Computational Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Elizaveta Elshina
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Jacob R Kowalsky
- Basic Sciences and Computational Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Aartjan J W Te Velthuis
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Jesse D Bloom
- Basic Sciences and Computational Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
- Howard Hughes Medical Institute, Seattle, Washington, USA
| |
Collapse
|
34
|
Koelle K, Farrell AP, Brooke CB, Ke R. Within-host infectious disease models accommodating cellular coinfection, with an application to influenza. Virus Evol 2019; 5:vez018. [PMID: 31304043 PMCID: PMC6613536 DOI: 10.1093/ve/vez018] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Within-host models are useful tools for understanding the processes regulating viral load dynamics. While existing models have considered a wide range of within-host processes, at their core these models have shown remarkable structural similarity. Specifically, the structure of these models generally consider target cells to be either uninfected or infected, with the possibility of accommodating further resolution (e.g. cells that are in an eclipse phase). Recent findings, however, indicate that cellular coinfection is the norm rather than the exception for many viral infectious diseases, and that cells with high multiplicity of infection are present over at least some duration of an infection. The reality of these cellular coinfection dynamics is not accommodated in current within-host models although it may be critical for understanding within-host dynamics. This is particularly the case if multiplicity of infection impacts infected cell phenotypes such as their death rate and their viral production rates. Here, we present a new class of within-host disease models that allow for cellular coinfection in a scalable manner by retaining the low-dimensionality that is a desirable feature of many current within-host models. The models we propose adopt the general structure of epidemiological ‘macroparasite’ models that allow hosts to be variably infected by parasites such as nematodes and host phenotypes to flexibly depend on parasite burden. Specifically, our within-host models consider target cells as ‘hosts’ and viral particles as ‘macroparasites’, and allow viral output and infected cell lifespans, among other phenotypes, to depend on a cell’s multiplicity of infection. We show with an application to influenza that these models can be statistically fit to viral load and other within-host data, and demonstrate using model selection approaches that they have the ability to outperform traditional within-host viral dynamic models. Important in vivo quantities such as the mean multiplicity of cellular infection and time-evolving reassortant frequencies can also be quantified in a straightforward manner once these macroparasite models have been parameterized. The within-host model structure we develop here provides a mathematical way forward to address questions related to the roles of cellular coinfection, collective viral interactions, and viral complementation in within-host viral dynamics and evolution.
Collapse
Affiliation(s)
- Katia Koelle
- Department of Biology, Emory University, 1510 Clifton Rd #2006, Atlanta, GA, USA
| | - Alex P Farrell
- Department of Mathematics, North Carolina State University, 2311 Stinson Dr, Raleigh, NC, USA.,Department of Mathematics, University of Arizona, 617 N Santa Rita Ave, Tucson, AZ, USA
| | - Christopher B Brooke
- Department of Microbiology, University of Illinois at Urbana-Champaign, 601 S. Goodwin Ave, IL, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 601 S. Goodwin Ave, IL, USA
| | - Ruian Ke
- Department of Mathematics, North Carolina State University, 2311 Stinson Dr, Raleigh, NC, USA.,Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
35
|
Lakdawala SS, Lee N, Brooke CB. Teaching an Old Virus New Tricks: A Review on New Approaches to Study Age-Old Questions in Influenza Biology. J Mol Biol 2019; 431:4247-4258. [PMID: 31051174 DOI: 10.1016/j.jmb.2019.04.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/12/2019] [Accepted: 04/23/2019] [Indexed: 01/31/2023]
Abstract
Influenza viruses have been studied for over 80 years, yet much about the basic viral lifecycle remain unknown. However, new imaging, biochemical, and sequencing techniques have revealed significant insight into many age-old questions of influenza virus biology. In this review, we will cover the role of imaging techniques to describe unique aspects of influenza virus assembly, biochemical techniques to study viral genomic organization, and next-generation sequencing to explore influenza genomic evolution. Our goal is to provide a brief overview of how emerging techniques are being used to answer basic questions about influenza viruses. This is not a comprehensive list of emerging techniques, rather ones that we feel will continue to make significant contributions to field of influenza biology.
Collapse
Affiliation(s)
- Seema S Lakdawala
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, School of Medicine Pittsburgh, PA 15219, USA.
| | - Nara Lee
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, School of Medicine Pittsburgh, PA 15219, USA.
| | - Christopher B Brooke
- Department of Microbiology, University of Illinois at Urbana-Champaign, Champaign, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, IL 61801, USA.
| |
Collapse
|
36
|
A novel mutation tolerant padlock probe design for multiplexed detection of hypervariable RNA viruses. Sci Rep 2019; 9:2872. [PMID: 30814634 PMCID: PMC6393471 DOI: 10.1038/s41598-019-39854-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 01/31/2019] [Indexed: 12/13/2022] Open
Abstract
The establishment of a robust detection platform for RNA viruses still remains a challenge in molecular diagnostics due to their high mutation rates. Newcastle disease virus (NDV) is one such RNA avian virus with a hypervariable genome and multiple genotypes. Classical approaches like virus isolation, serology, immunoassays and RT-PCR are cumbersome, and limited in terms of specificity and sensitivity. Padlock probes (PLPs) are known for allowing the detection of multiple nucleic acid targets with high specificity, and in combination with Rolling circle amplification (RCA) have permitted the development of versatile pathogen detection assays. In this work, we aimed to detect hypervariable viruses by developing a novel PLP design strategy capable of tolerating mutations while preserving high specificity by targeting several moderately conserved regions and using degenerate bases. For this, we designed nine padlock probes based on the alignment of 335 sequences covering both Class I and II NDV. Our PLP design showed high coverage and specificity for the detection of eight out of ten reported genotypes of Class II NDV field isolated strains, yielding a detection limit of less than ten copies of viral RNA. Further taking advantage of the multiplex capability of PLPs, we successfully extended the assay for the simultaneous detection of three poultry RNA viruses (NDV, IBV and AIV) and combined it with a paper based microfluidic enrichment read-out for digital quantification. In summary, our novel PLP design addresses the current issue of tolerating mutations of highly emerging virus strains with high sensitivity and specificity.
Collapse
|
37
|
Gallagher ME, Brooke CB, Ke R, Koelle K. Causes and Consequences of Spatial Within-Host Viral Spread. Viruses 2018; 10:E627. [PMID: 30428545 PMCID: PMC6267451 DOI: 10.3390/v10110627] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/08/2018] [Accepted: 11/10/2018] [Indexed: 02/07/2023] Open
Abstract
The spread of viral pathogens both between and within hosts is inherently a spatial process. While the spatial aspects of viral spread at the epidemiological level have been increasingly well characterized, the spatial aspects of viral spread within infected hosts are still understudied. Here, with a focus on influenza A viruses (IAVs), we first review experimental studies that have shed light on the mechanisms and spatial dynamics of viral spread within hosts. These studies provide strong empirical evidence for highly localized IAV spread within hosts. Since mathematical and computational within-host models have been increasingly used to gain a quantitative understanding of observed viral dynamic patterns, we then review the (relatively few) computational modeling studies that have shed light on possible factors that structure the dynamics of spatial within-host IAV spread. These factors include the dispersal distance of virions, the localization of the immune response, and heterogeneity in host cell phenotypes across the respiratory tract. While informative, we find in these studies a striking absence of theoretical expectations of how spatial dynamics may impact the dynamics of viral populations. To mitigate this, we turn to the extensive ecological and evolutionary literature on range expansions to provide informed theoretical expectations. We find that factors such as the type of density dependence, the frequency of long-distance dispersal, specific life history characteristics, and the extent of spatial heterogeneity are critical factors affecting the speed of population spread and the genetic composition of spatially expanding populations. For each factor that we identified in the theoretical literature, we draw parallels to its analog in viral populations. We end by discussing current knowledge gaps related to the spatial component of within-host IAV spread and the potential for within-host spatial considerations to inform the development of disease control strategies.
Collapse
Affiliation(s)
| | - Christopher B Brooke
- Department of Microbiology, University of Illinois at Urbana-Champaign, Champaign, IL 61801, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, IL 61801, USA.
| | - Ruian Ke
- T-6, Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | - Katia Koelle
- Department of Biology, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
38
|
Chattopadhyay PK, Roederer M, Bolton DL. A deadly dance: the choreography of host-pathogen interactions, as revealed by single-cell technologies. Nat Commun 2018; 9:4638. [PMID: 30401874 PMCID: PMC6219517 DOI: 10.1038/s41467-018-06214-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 08/10/2018] [Indexed: 01/07/2023] Open
Abstract
Pathogens have numerous mechanisms by which they replicate within a host, who in turn responds by developing innate and adaptive immune countermeasures to limit disease. The advent of high-content single-cell technologies has facilitated a greater understanding of the properties of host cells harboring infection, the host's pathogen-specific immune responses, and the mechanisms pathogens have evolved to escape host control. Here we review these advances and argue for greater inclusion of higher resolution single-cell technologies into approaches for defining immune evasion mechanisms by pathogens.
Collapse
Affiliation(s)
| | - Mario Roederer
- ImmunoTechnology Section, Vaccine Research Center, NIAID, NIH, Bethesda, 20892, MD, USA
| | - Diane L Bolton
- US Military HIV Research Program, Henry M. Jackson Foundation, Walter Reed Army Institute of Research, Silver Spring, 20910, MD, USA.
| |
Collapse
|
39
|
Abstract
Superinfection, the sequential infection of a single cell by two or more virions, plays an important role in determining the replicative and evolutionary potential of influenza A virus (IAV) populations. The specific mechanisms that regulate superinfection during natural infection remain poorly understood. Here, we show that superinfection susceptibility is determined by the total number of viral genes expressed within a cell and is independent of their specific identity. Virions that express a complete set of viral genes potently inhibit superinfection, while the semi-infectious particles (SIPs) that make up the bulk of IAV populations and express incomplete subsets of viral genes do not. As a result, viral populations with more SIPs undergo more-frequent superinfection. These findings identify both the primary determinant of IAV superinfection potential and a prominent role for SIPs in promoting coinfection. Defining the specific factors that govern the evolution and transmission of influenza A virus (IAV) populations is of critical importance for designing more-effective prediction and control strategies. Superinfection, the sequential infection of a single cell by two or more virions, plays an important role in determining the replicative and evolutionary potential of IAV populations. The prevalence of superinfection during natural infection and the specific mechanisms that regulate it remain poorly understood. Here, we used a novel single virion infection approach to directly assess the effects of individual IAV genes on superinfection efficiency. Rather than implicating a specific viral gene, this approach revealed that superinfection susceptibility is determined by the total number of viral gene segments expressed within a cell. IAV particles that express a complete set of viral genes potently inhibit superinfection, while semi-infectious particles (SIPs) that express incomplete subsets of viral genes do not. As a result, virus populations that contain more SIPs undergo more-frequent superinfection. We further demonstrate that viral replicase activity is responsible for inhibiting subsequent infection. These findings identify both a major determinant of IAV superinfection potential and a prominent role for SIPs in promoting viral coinfection.
Collapse
|
40
|
Neumann F, Hernández-Neuta I, Grabbe M, Madaboosi N, Albert J, Nilsson M. Padlock Probe Assay for Detection and Subtyping of Seasonal Influenza. Clin Chem 2018; 64:1704-1712. [PMID: 30257827 DOI: 10.1373/clinchem.2018.292979] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 08/31/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND Influenza remains a constant threat worldwide, and WHO estimates that it affects 5% to 15% of the global population each season, with an associated 3 to 5 million severe cases and up to 500000 deaths. To limit the morbidity and the economic burden of influenza, improved diagnostic assays are needed. METHODS We developed a multiplexed assay for the detection and subtyping of seasonal influenza based on padlock probes and rolling circle amplification. The assay simultaneously targets all 8 genome segments of the 4 circulating influenza variants-A(H1N1), A(H3N2), B/Yamagata, and B/Victoria-and was combined with a prototype cartridge for inexpensive digital quantification. Characterized virus isolates and patient nasopharyngeal swabs were used for assay design and analytical validation. The diagnostic performance was assessed by blinded testing of 50 clinical samples analyzed in parallel with a commercial influenza assay, Simplexa™ Flu A/B & RSV Direct. RESULTS The assay had a detection limit of 18 viral RNA copies and achieved 100% analytical and clinical specificity for differential detection and subtyping of seasonal circulating influenza variants. The diagnostic sensitivity on the 50 clinical samples was 77.5% for detecting influenza and up to 73% for subtyping seasonal variants. CONCLUSIONS We have presented a proof-of-concept padlock probe assay combined with an inexpensive digital readout for the detection and subtyping of seasonal influenza strains A and B. The demonstrated high specificity and multiplexing capability, together with the digital quantification, established the assay as a promising diagnostic tool for seasonal influenza.
Collapse
Affiliation(s)
- Felix Neumann
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Iván Hernández-Neuta
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Malin Grabbe
- Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden.,Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Narayanan Madaboosi
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Jan Albert
- Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden.,Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Mats Nilsson
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden;
| |
Collapse
|
41
|
Distinct antiviral signatures revealed by the magnitude and round of influenza virus replication in vivo. Proc Natl Acad Sci U S A 2018; 115:9610-9615. [PMID: 30181264 DOI: 10.1073/pnas.1807516115] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Influenza virus has a broad cellular tropism in the respiratory tract. Infected epithelial cells sense the infection and initiate an antiviral response. To define the antiviral response at the earliest stages of infection we used a series of single-cycle reporter viruses. These viral probes demonstrated cells in vivo harbor a range in magnitude of virus replication. Transcriptional profiling of cells supporting different levels of replication revealed tiers of IFN-stimulated gene expression. Uninfected cells and cells with blunted replication expressed a distinct and potentially protective antiviral signature, while cells with high replication expressed a unique reserve set of antiviral genes. Finally, we used these single-cycle reporter viruses to determine the antiviral landscape during virus spread, which unveiled disparate protection of epithelial cell subsets mediated by IFN in vivo. Together these results highlight the complexity of virus-host interactions within the infected lung and suggest that magnitude and round of replication tune the antiviral response.
Collapse
|
42
|
Diefenbacher M, Sun J, Brooke CB. The parts are greater than the whole: the role of semi-infectious particles in influenza A virus biology. Curr Opin Virol 2018; 33:42-46. [PMID: 30053722 DOI: 10.1016/j.coviro.2018.07.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 07/05/2018] [Indexed: 12/21/2022]
Abstract
The influenza A virus (IAV) genome is incorporated into newly produced virions through a tightly orchestrated process that is one of the best studied examples of genome packaging by a segmented virus. Despite the remarkable selectivity and efficiency of this process, it is clear that the vast majority of IAV virions are unable to express the full set of essential viral gene products and are thus incapable of productive replication in the absence of complementation. Here, we attempt to reconcile the widespread production of these semi-infectious particles (SIPs) with the high efficiency and selectivity of IAV genome packaging. We also cover what is known and what remains unknown about the consequences of SIP production for the replication and evolution of viral populations.
Collapse
Affiliation(s)
| | - Jiayi Sun
- Department of Microbiology, University of Illinois, Urbana, IL 61801, USA
| | - Christopher B Brooke
- Department of Microbiology, University of Illinois, Urbana, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL 61801, USA.
| |
Collapse
|
43
|
Dou D, Revol R, Östbye H, Wang H, Daniels R. Influenza A Virus Cell Entry, Replication, Virion Assembly and Movement. Front Immunol 2018; 9:1581. [PMID: 30079062 PMCID: PMC6062596 DOI: 10.3389/fimmu.2018.01581] [Citation(s) in RCA: 318] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 06/26/2018] [Indexed: 12/20/2022] Open
Abstract
Influenza viruses replicate within the nucleus of the host cell. This uncommon RNA virus trait provides influenza with the advantage of access to the nuclear machinery during replication. However, it also increases the complexity of the intracellular trafficking that is required for the viral components to establish a productive infection. The segmentation of the influenza genome makes these additional trafficking requirements especially challenging, as each viral RNA (vRNA) gene segment must navigate the network of cellular membrane barriers during the processes of entry and assembly. To accomplish this goal, influenza A viruses (IAVs) utilize a combination of viral and cellular mechanisms to coordinate the transport of their proteins and the eight vRNA gene segments in and out of the cell. The aim of this review is to present the current mechanistic understanding for how IAVs facilitate cell entry, replication, virion assembly, and intercellular movement, in an effort to highlight some of the unanswered questions regarding the coordination of the IAV infection process.
Collapse
Affiliation(s)
- Dan Dou
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Rebecca Revol
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Henrik Östbye
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Hao Wang
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Robert Daniels
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| |
Collapse
|
44
|
Russell AB, Trapnell C, Bloom JD. Extreme heterogeneity of influenza virus infection in single cells. eLife 2018; 7:e32303. [PMID: 29451492 PMCID: PMC5826275 DOI: 10.7554/elife.32303] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 01/31/2018] [Indexed: 12/13/2022] Open
Abstract
Viral infection can dramatically alter a cell's transcriptome. However, these changes have mostly been studied by bulk measurements on many cells. Here we use single-cell mRNA sequencing to examine the transcriptional consequences of influenza virus infection. We find extremely wide cell-to-cell variation in the productivity of viral transcription - viral transcripts comprise less than a percent of total mRNA in many infected cells, but a few cells derive over half their mRNA from virus. Some infected cells fail to express at least one viral gene, but this gene absence only partially explains variation in viral transcriptional load. Despite variation in viral load, the relative abundances of viral mRNAs are fairly consistent across infected cells. Activation of innate immune pathways is rare, but some cellular genes co-vary in abundance with the amount of viral mRNA. Overall, our results highlight the complexity of viral infection at the level of single cells.
Collapse
Affiliation(s)
- Alistair B Russell
- Basic Sciences Division and Computational Biology ProgramFred Hutchinson Cancer Research CenterSeattleUnited States
| | - Cole Trapnell
- Department of Genome SciencesUniversity of WashingtonSeattleUnited States
| | - Jesse D Bloom
- Basic Sciences Division and Computational Biology ProgramFred Hutchinson Cancer Research CenterSeattleUnited States
- Department of Genome SciencesUniversity of WashingtonSeattleUnited States
| |
Collapse
|
45
|
Williams GD, Townsend D, Wylie KM, Kim PJ, Amarasinghe GK, Kutluay SB, Boon ACM. Nucleotide resolution mapping of influenza A virus nucleoprotein-RNA interactions reveals RNA features required for replication. Nat Commun 2018; 9:465. [PMID: 29386621 PMCID: PMC5792457 DOI: 10.1038/s41467-018-02886-w] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 01/04/2018] [Indexed: 02/03/2023] Open
Abstract
Influenza A virus nucleoprotein (NP) association with viral RNA (vRNA) is essential for packaging, but the pattern of NP binding to vRNA is unclear. Here we applied photoactivatable ribonucleoside enhanced cross-linking and immunoprecipitation (PAR-CLIP) to assess the native-state of NP-vRNA interactions in infected human cells. NP binds short fragments of RNA (~12 nucleotides) non-uniformly and without apparent sequence specificity. Moreover, NP binding is reduced at specific locations within the viral genome, including regions previously identified as required for viral genome segment packaging. Synonymous mutations designed to alter the predicted RNA structures in these low-NP-binding regions impact genome packaging and result in virus attenuation, whereas control mutations or mutagenesis of NP-bound regions have no effect. Finally, we demonstrate that the sequence conservation of low-NP-binding regions is required in multiple genome segments for propagation of diverse mammalian and avian IAV in host cells.
Collapse
Affiliation(s)
- Graham D Williams
- Department of Medicine at Washington University School of Medicine, St Louis, MO, 63110, USA
- Department of Molecular Microbiology at Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Dana Townsend
- Department of Molecular Microbiology at Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Kristine M Wylie
- Department of Pediatrics at Washington University School of Medicine, St Louis, MO, 63110, USA
- The McDonnell Genome Institute at Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Preston J Kim
- Department of Pathology and Immunology at Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Gaya K Amarasinghe
- Department of Pathology and Immunology at Washington University School of Medicine, St Louis, MO, 63110, USA
- Department of Biochemistry and Biophysics at Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Sebla B Kutluay
- Department of Molecular Microbiology at Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Adrianus C M Boon
- Department of Medicine at Washington University School of Medicine, St Louis, MO, 63110, USA.
- Department of Molecular Microbiology at Washington University School of Medicine, St Louis, MO, 63110, USA.
- Department of Pathology and Immunology at Washington University School of Medicine, St Louis, MO, 63110, USA.
| |
Collapse
|
46
|
Abstract
Influenza A virus (IAV) continues to pose an enormous and unpredictable global public health threat, largely due to the continual evolution of escape from preexisting immunity and the potential for zoonotic emergence. Understanding how the unique genetic makeup and structure of IAV populations influences their transmission and evolution is essential for developing more-effective vaccines, therapeutics, and surveillance capabilities. Owing to their mutation-prone replicase and unique genome organization, IAV populations exhibit enormous amounts of diversity both in terms of sequence and functional gene content. Here, I review what is currently known about the genetic and genomic diversity present within IAV populations and how this diversity may shape the replicative and evolutionary dynamics of these viruses.
Collapse
|
47
|
Wang D, Ma W. Visualization of IAV Genomes at the Single-Cell Level. Trends Microbiol 2017; 25:781-782. [PMID: 28843669 DOI: 10.1016/j.tim.2017.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 08/09/2017] [Indexed: 10/19/2022]
Abstract
Different influenza A viruses (IAVs) infect the same cell in a host, and can subsequently produce new viruses through genome reassortment. By combining padlock probe RNA labeling with a single-cell analysis, a new approach effectively captures IAV genome trafficking and defines a time window for genome reassortment from same-cell coinfections.
Collapse
Affiliation(s)
- Dan Wang
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA.
| | - Wenjun Ma
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS 66506, USA.
| |
Collapse
|