1
|
Splichal RC, Chen K, Walton SP, Chan C. The Role of Endoplasmic Reticulum Stress on Reducing Recombinant Protein Production in Mammalian Cells. Biochem Eng J 2024; 210:109434. [PMID: 39220803 PMCID: PMC11360842 DOI: 10.1016/j.bej.2024.109434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Therapeutic recombinant protein production relies on industrial scale culture of mammalian cells to produce active proteins in quantities sufficient for clinical use. The combination of stresses from industrial cell culture environment and recombinant protein production can overwhelm the protein synthesis machinery in the endoplasmic reticulum (ER). This leads to a buildup of improperly folded proteins which induces ER stress. Cells respond to ER stress by activating the Unfolded Protein Response (UPR). To restore proteostasis, ER sensor proteins reduce global protein synthesis and increase chaperone protein synthesis, and if that is insufficient the proteins are degraded. If proteostasis is still not restored, apoptosis is initiated. Increasing evidence suggests crosstalk between ER proteostasis and DNA damage repair (DDR) pathways. External factors (e.g., metabolites) from the cellular environment as well as internal factors (e.g., transgene copy number) can impact genome stability. Failure to maintain genome integrity reduces cell viability and in turn protein production. This review focuses on the association between ER stress and processes that affect protein production and secretion. The processes mediated by ER stress, including inhibition of global protein translation, chaperone protein production, degradation of misfolded proteins, DNA repair, and protein secretion, impact recombinant protein production. Recombinant protein production can be reduced by ER stress through increased autophagy and protein degradation, reduced protein secretion, and reduced DDR response.
Collapse
Affiliation(s)
- R. Chauncey Splichal
- Department of Chemical Engineering and Materials Science, Michigan State University, MI, USA
| | - Kevin Chen
- Department of Chemical Engineering and Materials Science, Michigan State University, MI, USA
| | - S. Patrick Walton
- Department of Chemical Engineering and Materials Science, Michigan State University, MI, USA
| | - Christina Chan
- Department of Chemical Engineering and Materials Science, Michigan State University, MI, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, MI, USA
- Department of Computer Science and Engineering, Michigan State University, MI, USA
- Institute for Quantitative Health Science and Engineering, Division of Medical Devices, Michigan State University, MI, USA
| |
Collapse
|
2
|
Badja C, Momen S, Koh GCC, Boushaki S, Roumeliotis TI, Kozik Z, Jones I, Bousgouni V, Dias JML, Krokidis MG, Young J, Chen H, Yang M, Docquier F, Memari Y, Valcarcel-Zimenez L, Gupta K, Kong LR, Fawcett H, Robert F, Zhao S, Degasperi A, Kumar Y, Davies H, Harris R, Frezza C, Chatgilialoglu C, Sarkany R, Lehmann A, Bakal C, Choudhary J, Fassihi H, Nik-Zainal S. Insights from multi-omic modeling of neurodegeneration in xeroderma pigmentosum using an induced pluripotent stem cell system. Cell Rep 2024; 43:114243. [PMID: 38805398 DOI: 10.1016/j.celrep.2024.114243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 04/27/2024] [Accepted: 05/02/2024] [Indexed: 05/30/2024] Open
Abstract
Xeroderma pigmentosum (XP) is caused by defective nucleotide excision repair of DNA damage. This results in hypersensitivity to ultraviolet light and increased skin cancer risk, as sunlight-induced photoproducts remain unrepaired. However, many XP patients also display early-onset neurodegeneration, which leads to premature death. The mechanism of neurodegeneration is unknown. Here, we investigate XP neurodegeneration using pluripotent stem cells derived from XP patients and healthy relatives, performing functional multi-omics on samples during neuronal differentiation. We show substantially increased levels of 5',8-cyclopurine and 8-oxopurine in XP neuronal DNA secondary to marked oxidative stress. Furthermore, we find that the endoplasmic reticulum stress response is upregulated and reversal of the mutant genotype is associated with phenotypic rescue. Critically, XP neurons exhibit inappropriate downregulation of the protein clearance ubiquitin-proteasome system (UPS). Chemical enhancement of UPS activity in XP neuronal models improves phenotypes, albeit inadequately. Although more work is required, this study presents insights with intervention potential.
Collapse
Affiliation(s)
- Cherif Badja
- Department of Medical Genetics, Box 238, Level 6, Addenbrooke's Treatment Centre, Cambridge Biomedical Research Campus, Cambridge CB2 0QQ, UK; Early Cancer Institute, Department of Oncology, Box 197, Hutchison Research Centre, Cambridge Biomedical Research Campus, Cambridge CB2 0XZ, UK.
| | - Sophie Momen
- Department of Medical Genetics, Box 238, Level 6, Addenbrooke's Treatment Centre, Cambridge Biomedical Research Campus, Cambridge CB2 0QQ, UK; Early Cancer Institute, Department of Oncology, Box 197, Hutchison Research Centre, Cambridge Biomedical Research Campus, Cambridge CB2 0XZ, UK
| | - Gene Ching Chiek Koh
- Department of Medical Genetics, Box 238, Level 6, Addenbrooke's Treatment Centre, Cambridge Biomedical Research Campus, Cambridge CB2 0QQ, UK; Early Cancer Institute, Department of Oncology, Box 197, Hutchison Research Centre, Cambridge Biomedical Research Campus, Cambridge CB2 0XZ, UK
| | - Soraya Boushaki
- Department of Medical Genetics, Box 238, Level 6, Addenbrooke's Treatment Centre, Cambridge Biomedical Research Campus, Cambridge CB2 0QQ, UK; Early Cancer Institute, Department of Oncology, Box 197, Hutchison Research Centre, Cambridge Biomedical Research Campus, Cambridge CB2 0XZ, UK
| | - Theodoros I Roumeliotis
- Functional Proteomics Group, Institute of Cancer Research, Chester Betty Labs, 237 Fulham Road, London SW3 6JB, UK
| | - Zuza Kozik
- Functional Proteomics Group, Institute of Cancer Research, Chester Betty Labs, 237 Fulham Road, London SW3 6JB, UK
| | - Ian Jones
- Dynamical Cell Systems Laboratory, Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Vicky Bousgouni
- Dynamical Cell Systems Laboratory, Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - João M L Dias
- Department of Medical Genetics, Box 238, Level 6, Addenbrooke's Treatment Centre, Cambridge Biomedical Research Campus, Cambridge CB2 0QQ, UK; Early Cancer Institute, Department of Oncology, Box 197, Hutchison Research Centre, Cambridge Biomedical Research Campus, Cambridge CB2 0XZ, UK
| | - Marios G Krokidis
- Institute of Nanoscience and Nanotechnology, N.C.S.R. "Demokritos", Agia Paraskevi Attikis, 15310 Athens, Greece; Bioinformatics and Human Electrophysiology Laboratory, Department of Informatics, Ionian University, 49100 Corfu, Greece
| | - Jamie Young
- Department of Medical Genetics, Box 238, Level 6, Addenbrooke's Treatment Centre, Cambridge Biomedical Research Campus, Cambridge CB2 0QQ, UK; Early Cancer Institute, Department of Oncology, Box 197, Hutchison Research Centre, Cambridge Biomedical Research Campus, Cambridge CB2 0XZ, UK
| | - Hongwei Chen
- Wellcome Sanger Institute, Hinxton CB10 1RQ, UK; Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Ming Yang
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XZ, UK; CECAD Research Center, Faculty of Medicine, University Hospital Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - France Docquier
- Department of Medical Genetics, Box 238, Level 6, Addenbrooke's Treatment Centre, Cambridge Biomedical Research Campus, Cambridge CB2 0QQ, UK
| | - Yasin Memari
- Department of Medical Genetics, Box 238, Level 6, Addenbrooke's Treatment Centre, Cambridge Biomedical Research Campus, Cambridge CB2 0QQ, UK; Early Cancer Institute, Department of Oncology, Box 197, Hutchison Research Centre, Cambridge Biomedical Research Campus, Cambridge CB2 0XZ, UK
| | - Lorea Valcarcel-Zimenez
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XZ, UK; CECAD Research Center, Faculty of Medicine, University Hospital Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Komal Gupta
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XZ, UK
| | - Li Ren Kong
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XZ, UK; NUS Centre for Cancer Research, N2CR, Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore; Cancer Science Institute of Singapore, Singapore 117599, Singapore
| | - Heather Fawcett
- Genome Damage and Stability Centre, University of Sussex, Brighton, UK
| | - Florian Robert
- Department of Medical Genetics, Box 238, Level 6, Addenbrooke's Treatment Centre, Cambridge Biomedical Research Campus, Cambridge CB2 0QQ, UK; Early Cancer Institute, Department of Oncology, Box 197, Hutchison Research Centre, Cambridge Biomedical Research Campus, Cambridge CB2 0XZ, UK
| | - Salome Zhao
- Department of Medical Genetics, Box 238, Level 6, Addenbrooke's Treatment Centre, Cambridge Biomedical Research Campus, Cambridge CB2 0QQ, UK; Early Cancer Institute, Department of Oncology, Box 197, Hutchison Research Centre, Cambridge Biomedical Research Campus, Cambridge CB2 0XZ, UK
| | - Andrea Degasperi
- Early Cancer Institute, Department of Oncology, Box 197, Hutchison Research Centre, Cambridge Biomedical Research Campus, Cambridge CB2 0XZ, UK
| | - Yogesh Kumar
- Early Cancer Institute, Department of Oncology, Box 197, Hutchison Research Centre, Cambridge Biomedical Research Campus, Cambridge CB2 0XZ, UK
| | - Helen Davies
- Department of Medical Genetics, Box 238, Level 6, Addenbrooke's Treatment Centre, Cambridge Biomedical Research Campus, Cambridge CB2 0QQ, UK; Early Cancer Institute, Department of Oncology, Box 197, Hutchison Research Centre, Cambridge Biomedical Research Campus, Cambridge CB2 0XZ, UK
| | - Rebecca Harris
- Department of Medical Genetics, Box 238, Level 6, Addenbrooke's Treatment Centre, Cambridge Biomedical Research Campus, Cambridge CB2 0QQ, UK
| | - Christian Frezza
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XZ, UK; CECAD Research Center, Faculty of Medicine, University Hospital Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Chryssostomos Chatgilialoglu
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy; Center for Advanced Technologies, Adam Mickiewicz University, 61-614 Poznan, Poland
| | - Robert Sarkany
- National Xeroderma Pigmentosum Service, St John's Institute of Dermatology, Guy's and St Thomas' Foundation Trust, London SE1 7EH, UK
| | - Alan Lehmann
- Genome Damage and Stability Centre, University of Sussex, Brighton, UK
| | - Chris Bakal
- Dynamical Cell Systems Laboratory, Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Jyoti Choudhary
- Functional Proteomics Group, Institute of Cancer Research, Chester Betty Labs, 237 Fulham Road, London SW3 6JB, UK
| | - Hiva Fassihi
- National Xeroderma Pigmentosum Service, St John's Institute of Dermatology, Guy's and St Thomas' Foundation Trust, London SE1 7EH, UK
| | - Serena Nik-Zainal
- Department of Medical Genetics, Box 238, Level 6, Addenbrooke's Treatment Centre, Cambridge Biomedical Research Campus, Cambridge CB2 0QQ, UK; Early Cancer Institute, Department of Oncology, Box 197, Hutchison Research Centre, Cambridge Biomedical Research Campus, Cambridge CB2 0XZ, UK.
| |
Collapse
|
3
|
Tian Y, Guo J, Hua L, Jiang Y, Ge W, Zhang X, Cai D, Lu D, Wang B, Shen W, Sun Z, Han B. Mechanisms of imbalanced testicular homeostasis in infancy due to aberrant histone acetylation in undifferentiated spermatogonia under different concentrations of Di(2-ethylhexyl) phthalate (DEHP) exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123742. [PMID: 38460586 DOI: 10.1016/j.envpol.2024.123742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/03/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024]
Abstract
Di (2-ethylhexyl) phthalate (DEHP), identified as an endocrine-disrupting chemical, is associated with reproductive toxicity. This association is particularly noteworthy in newborns with incompletely developed metabolic functions, as exposure to DEHP can induce enduring damage to the reproductive system, potentially influencing adult reproductive health. In this study, we continuously administered 40 μg/kg and 80 μg/kg DEHP to postnatal day 5 (PD5) mice for ten days to simulate low and high doses of DEHP exposure during infancy. Utilizing single-cell RNA sequencing (scRNA-seq), our analysis revealed that varying concentrations of DEHP exposure during infancy induced distinct DNA damage response characteristics in testicular Undifferentiated spermatogonia (Undiff SPG). Specifically, DNA damage triggered mitochondrial dysfunction, leading to acetyl-CoA content alterations. Subsequently, this disruption caused aberrations in histone acetylation patterns, ultimately resulting in apoptosis of Undiff SPG in the 40 μg/kg DEHP group and autophagy in the 80 μg/kg DEHP group. Furthermore, we found that DEHP exposure impacts the development and functionality of Sertoli and Leydig cells through the focal adhesion and PPAR signaling pathways, respectively. We also revealed that Leydig cells regulate the metabolic environment of Undiff SPG via Ptn-Sdc4 and Mdk-Sdc4 after DEHP exposure. Finally, our study provided pioneering evidence that disruptions in testicular homeostasis induced by DEHP exposure during infancy endure into adulthood. In summary, this study elucidates the molecular mechanisms through which DEHP exposure during infancy influences the development of testicular cell populations.
Collapse
Affiliation(s)
- Yu Tian
- Department of Urology, Shenzhen University General Hospital, Shenzhen, China; College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Jiachen Guo
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Lei Hua
- School of Clinical Medicine, Henan University, Kaifeng, China
| | - Yinuo Jiang
- Department of Urology, Shenzhen University General Hospital, Shenzhen, China
| | - Wei Ge
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Xiaoyuan Zhang
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Diya Cai
- Department of Urology, Shenzhen University General Hospital, Shenzhen, China
| | - Dongliang Lu
- Department of Urology, Shenzhen University General Hospital, Shenzhen, China
| | - Bin Wang
- Department of Urology, Shenzhen University General Hospital, Shenzhen, China
| | - Wei Shen
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Zhongyi Sun
- Department of Urology, Shenzhen University General Hospital, Shenzhen, China
| | - Baoquan Han
- Department of Urology, Shenzhen University General Hospital, Shenzhen, China.
| |
Collapse
|
4
|
López-Gil L, Pascual-Ahuir A, Proft M. Genomic Instability and Epigenetic Changes during Aging. Int J Mol Sci 2023; 24:14279. [PMID: 37762580 PMCID: PMC10531692 DOI: 10.3390/ijms241814279] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Aging is considered the deterioration of physiological functions along with an increased mortality rate. This scientific review focuses on the central importance of genomic instability during the aging process, encompassing a range of cellular and molecular changes that occur with advancing age. In particular, this revision addresses the genetic and epigenetic alterations that contribute to genomic instability, such as telomere shortening, DNA damage accumulation, and decreased DNA repair capacity. Furthermore, the review explores the epigenetic changes that occur with aging, including modifications to histones, DNA methylation patterns, and the role of non-coding RNAs. Finally, the review discusses the organization of chromatin and its contribution to genomic instability, including heterochromatin loss, chromatin remodeling, and changes in nucleosome and histone abundance. In conclusion, this review highlights the fundamental role that genomic instability plays in the aging process and underscores the need for continued research into these complex biological mechanisms.
Collapse
Affiliation(s)
- Lucía López-Gil
- Department of Biotechnology, Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València, Ingeniero Fausto Elio s/n, 46022 Valencia, Spain;
- Department of Molecular and Cellular Pathology and Therapy, Instituto de Biomedicina de Valencia IBV-CSIC, Consejo Superior de Investigaciones Científicas CSIC, Jaime Roig 11, 46010 Valencia, Spain
| | - Amparo Pascual-Ahuir
- Department of Biotechnology, Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València, Ingeniero Fausto Elio s/n, 46022 Valencia, Spain;
| | - Markus Proft
- Department of Molecular and Cellular Pathology and Therapy, Instituto de Biomedicina de Valencia IBV-CSIC, Consejo Superior de Investigaciones Científicas CSIC, Jaime Roig 11, 46010 Valencia, Spain
| |
Collapse
|
5
|
Culberson JW, Kopel J, Sehar U, Reddy PH. Urgent needs of caregiving in ageing populations with Alzheimer's disease and other chronic conditions: Support our loved ones. Ageing Res Rev 2023; 90:102001. [PMID: 37414157 PMCID: PMC10756323 DOI: 10.1016/j.arr.2023.102001] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/27/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
The ageing process begins at birth. It is a life-long process, and its exact origins are still unknown. Several hypotheses attempt to describe the normal ageing process, including hormonal imbalance, formation of reactive oxygen species, DNA methylation & DNA damage accumulation, loss of proteostasis, epigenetic alterations, mitochondrial dysfunction, senescence, inflammation, and stem cell depletion. With increased lifespan in elderly individuals, the prevalence of age-related diseases including, cancer, diabetes, obesity, hypertension, Alzheimer's, Alzheimer's disease and related dementias, Parkinson's, and other mental illnesses are increased. These increased age-related illnesses, put tremendous pressure & burden on caregivers, family members, and friends who are living with patients with age-related diseases. As medical needs evolve, the caregiver is expected to experience an increase in duties and challenges, which may result in stress on themselves, and impact their own family life. In the current article, we assess the biological mechanisms of ageing and its effect on body systems, exploring lifestyle and ageing, with a specific focus on age-related disorders. We also discussed the history of caregiving and specific challenges faced by caregivers in the presence of multiple comorbidities. We also assessed innovative approaches to funding caregiving, and efforts to improve the medical system to better organize chronic care efforts, while improving the skill and efficiency of both informal and formal caregivers. We also discussed the role of caregiving in end-of-life care. Our critical analysis strongly suggests that there is an urgent need for caregiving in aged populations and support from local, state, and federal agencies.
Collapse
Affiliation(s)
- John W Culberson
- Department of Family and Community Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Jonathan Kopel
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Ujala Sehar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Nutritional Sciences Department, College of Human Sciences, Texas Tech University, 1301 Akron Ave, Lubbock, TX 79409, USA; Neurology, Departments of School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
6
|
Canonical and Noncanonical ER Stress-Mediated Autophagy Is a Bite the Bullet in View of Cancer Therapy. Cells 2022; 11:cells11233773. [PMID: 36497032 PMCID: PMC9738281 DOI: 10.3390/cells11233773] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Cancer cells adapt multiple mechanisms to counter intense stress on their way to growth. Tumor microenvironment stress leads to canonical and noncanonical endoplasmic stress (ER) responses, which mediate autophagy and are engaged during proteotoxic challenges to clear unfolded or misfolded proteins and damaged organelles to mitigate stress. In these conditions, autophagy functions as a cytoprotective mechanism in which malignant tumor cells reuse degraded materials to generate energy under adverse growing conditions. However, cellular protection by autophagy is thought to be complicated, contentious, and context-dependent; the stress response to autophagy is suggested to support tumorigenesis and drug resistance, which must be adequately addressed. This review describes significant findings that suggest accelerated autophagy in cancer, a novel obstacle for anticancer therapy, and discusses the UPR components that have been suggested to be untreatable. Thus, addressing the UPR or noncanonical ER stress components is the most effective approach to suppressing cytoprotective autophagy for better and more effective cancer treatment.
Collapse
|
7
|
Ovejero S, Soulet C, Kumanski S, Moriel-Carretero M. Coordination between phospholipid pools and DNA damage sensing. Biol Cell 2022; 114:211-219. [PMID: 35524759 DOI: 10.1111/boc.202200007] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/22/2022] [Accepted: 04/22/2022] [Indexed: 11/27/2022]
Abstract
Both phospholipid synthesis and the detection of DNA damage are coupled to cell cycle progression, yet whether these two aspects crosstalk to each other remains unassessed. We postulate here that shortage of phospholipids, which negatively affects proliferation, may reduce the need for checkpoint activation in response to DNA damage. By exploring the DDR activation in response to seven different genotoxins, in three distinct cell types, and manipulating phospholipid synthesis both pharmacologically and genetically, we point at the DNA damage response kinase ATR as responsible for the coordination between phospholipid levels and DNA damage sensing. Further, our analysis reveals the functional significance of this crosstalk to keep genome homeostasis. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Sara Ovejero
- Institut de Génétique Humaine (IGH), Université de Montpellier-Centre National de la Recherche Scientifique, Montpellier, France.,Department of Biological Hematology, CHU Montpellier, Montpellier, 34295, France
| | - Caroline Soulet
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), Université de Montpellier-Centre National de la Recherche Scientifique, Montpellier, France
| | - Sylvain Kumanski
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), Université de Montpellier-Centre National de la Recherche Scientifique, Montpellier, France
| | - María Moriel-Carretero
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), Université de Montpellier-Centre National de la Recherche Scientifique, Montpellier, France
| |
Collapse
|
8
|
Franco I, Revêchon G, Eriksson M. Challenges of proving a causal role of somatic mutations in the aging process. Aging Cell 2022; 21:e13613. [PMID: 35435316 PMCID: PMC9124308 DOI: 10.1111/acel.13613] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/25/2022] [Accepted: 04/03/2022] [Indexed: 12/21/2022] Open
Abstract
Aging is accompanied by the progressive accumulation of permanent changes to the genomic sequence, termed somatic mutations. Small mutations, including single‐base substitutions and insertions/deletions, are key determinants of the malignant transformations leading to cancer, but their role as initiators of other age‐related phenotypes is controversial. Here, we present recent advances in the study of somatic mutagenesis in aging tissues and posit that the current uncertainty about its causal effects in the aging process is due to technological and methodological weaknesses. We highlight classical and novel experimental systems, including premature aging syndromes, that could be used to model the increase of somatic mutation burden and understand its functional role. It is important that studies are designed to take into account the biological context and peculiarities of each tissue and that the downstream impact of somatic mutation accumulation is measured by methods able to resolve subtle cellular changes.
Collapse
Affiliation(s)
- Irene Franco
- Cystic Kidney Disorders Unit Division of Genetics and Cell Biology IRCCS Ospedale San Raffaele Milan Italy
| | - Gwladys Revêchon
- Department of Biosciences and Nutrition Center for Innovative Medicine Karolinska Institutet Huddinge Sweden
| | - Maria Eriksson
- Department of Biosciences and Nutrition Center for Innovative Medicine Karolinska Institutet Huddinge Sweden
| |
Collapse
|
9
|
Valerio HP, Ravagnani FG, Yaya Candela AP, Dias Carvalho da Costa B, Ronsein GE, Di Mascio P. Spatial proteomics reveals subcellular reorganization in human keratinocytes exposed to UVA light. iScience 2022; 25:104093. [PMID: 35372811 PMCID: PMC8971936 DOI: 10.1016/j.isci.2022.104093] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/16/2021] [Accepted: 03/14/2022] [Indexed: 12/16/2022] Open
Abstract
The effects of UV light on the skin have been extensively investigated. However, systematic information about how the exposure to ultraviolet-A (UVA) light, the least energetic but the most abundant UV radiation reaching the Earth, shapes the subcellular organization of proteins is lacking. Using subcellular fractionation, mass-spectrometry-based proteomics, machine learning algorithms, immunofluorescence, and functional assays, we mapped the subcellular reorganization of the proteome of human keratinocytes in response to UVA light. Our workflow quantified and assigned subcellular localization for over 1,600 proteins, of which about 200 were found to redistribute upon UVA exposure. Reorganization of the proteome affected modulators of signaling pathways, cellular metabolism, and DNA damage response. Strikingly, mitochondria were identified as one of the main targets of UVA-induced stress. Further investigation demonstrated that UVA induces mitochondrial fragmentation, up-regulates redox-responsive proteins, and attenuates respiratory rates. These observations emphasize the role of this radiation as a potent metabolic stressor in the skin.
Collapse
Affiliation(s)
- Hellen Paula Valerio
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-000, Brazil
| | - Felipe Gustavo Ravagnani
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-000, Brazil
| | - Angela Paola Yaya Candela
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-000, Brazil
| | | | - Graziella Eliza Ronsein
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-000, Brazil
| | - Paolo Di Mascio
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-000, Brazil
| |
Collapse
|
10
|
Clancy JW, Sheehan CS, Boomgarden AC, D'Souza-Schorey C. Recruitment of DNA to tumor-derived microvesicles. Cell Rep 2022; 38:110443. [PMID: 35235806 DOI: 10.1016/j.celrep.2022.110443] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 12/16/2021] [Accepted: 02/04/2022] [Indexed: 02/08/2023] Open
Abstract
The shedding of extracellular vesicles (EVs) represents an important but understudied means of cell-cell communication in cancer. Among the currently described classes of EVs, tumor-derived microvesicles (TMVs) comprise a class of vesicles released directly from the cell surface. TMVs contain abundant cargo, including functional proteins and miRNA, which can be transferred to and alter the behavior of recipient cells. Here, we document that a fraction of extracellular double-stranded DNA (dsDNA) is enclosed within TMVs and protected from nuclease degradation. dsDNA inclusion in TMVs is regulated by ARF6 cycling and occurs with the cytosolic DNA sensor, cGAS, but independent of amphisome or micronuclei components. Our studies suggest that dsDNA is trafficked to TMVs via a mechanism distinct from the multivesicular body-dependent secretion reported for the extracellular release of cytosolic DNA. Furthermore, TMV dsDNA can be transferred to recipient cells with consequences to recipient cell behavior, reinforcing its relevance in mediating cell-cell communication.
Collapse
Affiliation(s)
- James W Clancy
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Colin S Sheehan
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Alex C Boomgarden
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | | |
Collapse
|
11
|
Hamsanathan S, Anthonymuthu T, Han S, Shinglot H, Siefken E, Sims A, Sen P, Pepper HL, Snyder NW, Bayir H, Kagan V, Gurkar AU. Integrated -omics approach reveals persistent DNA damage rewires lipid metabolism and histone hyperacetylation via MYS-1/Tip60. SCIENCE ADVANCES 2022; 8:eabl6083. [PMID: 35171671 PMCID: PMC8849393 DOI: 10.1126/sciadv.abl6083] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
Although DNA damage is intricately linked to metabolism, the metabolic alterations that occur in response to DNA damage are not well understood. We use a DNA repair-deficient model of ERCC1-XPF in Caenorhabditis elegans to gain insights on how genotoxic stress drives aging. Using multi-omic approach, we discover that nuclear DNA damage promotes mitochondrial β-oxidation and drives a global loss of fat depots. This metabolic shift to β-oxidation generates acetyl-coenzyme A to promote histone hyperacetylation and an associated change in expression of immune-effector and cytochrome genes. We identify the histone acetyltransferase MYS-1, as a critical regulator of this metabolic-epigenetic axis. We show that in response to DNA damage, polyunsaturated fatty acids, especially arachidonic acid (AA) and AA-related lipid mediators, are elevated and this is dependent on mys-1. Together, these findings reveal that DNA damage alters the metabolic-epigenetic axis to drive an immune-like response that can promote age-associated decline.
Collapse
Affiliation(s)
- Shruthi Hamsanathan
- Aging Institute of UPMC and the University of Pittsburgh School of Medicine, 100 Technology Dr., Pittsburgh, PA 15219, USA
| | - Tamil Anthonymuthu
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
- Children’s Neuroscience Institute, Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA 15224, USA
- Adeptrix Corp., Beverly, MA 01915, USA
| | - Suhao Han
- Aging Institute of UPMC and the University of Pittsburgh School of Medicine, 100 Technology Dr., Pittsburgh, PA 15219, USA
| | - Himaly Shinglot
- Aging Institute of UPMC and the University of Pittsburgh School of Medicine, 100 Technology Dr., Pittsburgh, PA 15219, USA
| | - Ella Siefken
- Aging Institute of UPMC and the University of Pittsburgh School of Medicine, 100 Technology Dr., Pittsburgh, PA 15219, USA
| | - Austin Sims
- Aging Institute of UPMC and the University of Pittsburgh School of Medicine, 100 Technology Dr., Pittsburgh, PA 15219, USA
| | - Payel Sen
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Hannah L. Pepper
- Center for Metabolic Disease Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Nathaniel W. Snyder
- Center for Metabolic Disease Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Hulya Bayir
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
- Children’s Neuroscience Institute, Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA 15224, USA
- Department of Environmental Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Valerian Kagan
- Children’s Neuroscience Institute, Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA 15224, USA
- Department of Environmental Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Aditi U. Gurkar
- Aging Institute of UPMC and the University of Pittsburgh School of Medicine, 100 Technology Dr., Pittsburgh, PA 15219, USA
- Division of Geriatric Medicine, Department of Medicine, University of Pittsburgh School of Medicine, 3471 Fifth Avenue, Kaufmann Medical Building Suite 500, Pittsburgh, PA 15213, USA
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA
| |
Collapse
|
12
|
Fan X, Fan Z, Yang Z, Huang T, Tong Y, Yang D, Mao X, Yang M. Flavonoids-Natural Gifts to Promote Health and Longevity. Int J Mol Sci 2022; 23:ijms23042176. [PMID: 35216290 PMCID: PMC8879655 DOI: 10.3390/ijms23042176] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/08/2022] [Accepted: 02/14/2022] [Indexed: 02/01/2023] Open
Abstract
The aging of mammals is accompanied by the progressive atrophy of tissues and organs and the accumulation of random damage to macromolecular DNA, protein, and lipids. Flavonoids have excellent antioxidant, anti-inflammatory, and neuroprotective effects. Recent studies have shown that flavonoids can delay aging and prolong a healthy lifespan by eliminating senescent cells, inhibiting senescence-related secretion phenotypes (SASPs), and maintaining metabolic homeostasis. However, only a few systematic studies have described flavonoids in clinical treatment for anti-aging, which needs to be explored further. This review first highlights the association between aging and macromolecular damage. Then, we discuss advances in the role of flavonoid molecules in prolonging the health span and lifespan of organisms. This study may provide crucial information for drug design and developmental and clinical applications based on flavonoids.
Collapse
Affiliation(s)
- Xiaolan Fan
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China; (X.F.); (Z.F.); (Z.Y.); (T.H.); (Y.T.); (D.Y.); (X.M.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Ziqiang Fan
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China; (X.F.); (Z.F.); (Z.Y.); (T.H.); (Y.T.); (D.Y.); (X.M.)
| | - Ziyue Yang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China; (X.F.); (Z.F.); (Z.Y.); (T.H.); (Y.T.); (D.Y.); (X.M.)
| | - Tiantian Huang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China; (X.F.); (Z.F.); (Z.Y.); (T.H.); (Y.T.); (D.Y.); (X.M.)
| | - Yingdong Tong
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China; (X.F.); (Z.F.); (Z.Y.); (T.H.); (Y.T.); (D.Y.); (X.M.)
| | - Deying Yang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China; (X.F.); (Z.F.); (Z.Y.); (T.H.); (Y.T.); (D.Y.); (X.M.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Xueping Mao
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China; (X.F.); (Z.F.); (Z.Y.); (T.H.); (Y.T.); (D.Y.); (X.M.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Mingyao Yang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China; (X.F.); (Z.F.); (Z.Y.); (T.H.); (Y.T.); (D.Y.); (X.M.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence:
| |
Collapse
|
13
|
Regulation and functions of membrane lipids: Insights from Caenorhabditis elegans. BBA ADVANCES 2022; 2:100043. [PMID: 37082601 PMCID: PMC10074978 DOI: 10.1016/j.bbadva.2022.100043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/28/2021] [Accepted: 01/12/2022] [Indexed: 02/08/2023] Open
Abstract
The Caenorhabditis elegans plasma membrane is composed of glycerophospholipids and sphingolipids with a small cholesterol. The C. elegans obtain the majority of the membrane lipids by modifying fatty acids present in the bacterial diet. The metabolic pathways of membrane lipid biosynthesis are well conserved across the animal kingdom. In C. elegans CDP-DAG and Kennedy pathway produce glycerophospholipids. Meanwhile, the sphingolipids are synthesized through a different pathway. They have evolved remarkably diverse mechanisms to maintain membrane lipid homeostasis. For instance, the lipid bilayer stress operates to accomplish homeostasis during any perturbance in the lipid composition. Meanwhile, the PAQR-2/IGLR-2 complex works with FLD-1 to balance unsaturated to saturated fatty acids to maintain membrane fluidity. The loss of membrane lipid homeostasis is observed in many human genetic and metabolic disorders. Since C. elegans conserved such genes and pathways, it can be used as a model organism.
Collapse
|
14
|
Guédon R, Maremonti E, Armant O, Galas S, Brede DA, Lecomte-Pradines C. A systems biology analysis of reproductive toxicity effects induced by multigenerational exposure to ionizing radiation in C. elegans. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 225:112793. [PMID: 34544019 DOI: 10.1016/j.ecoenv.2021.112793] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 09/12/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
Understanding the effects of chronic exposure to pollutants over generations is of primary importance for the protection of humans and the environment; however, to date, knowledge on the molecular mechanisms underlying multigenerational adverse effects is scarce. We employed a systems biology approach to analyze effects of chronic exposure to gamma radiation at molecular, tissue and individual levels in the nematode Caenorhabditis elegans. Our data show a decrease of 23% in the number of offspring on the first generation F0 and more than 40% in subsequent generations F1, F2 and F3. To unveil the impact on the germline, an in-depth analysis of reproductive processes involved in gametes formation was performed for all four generations. We measured a decrease in the number of mitotic germ cells accompanied by increased cell-cycle arrest in the distal part of the gonad. Further impact on the germline was manifested by decreased sperm quantity and quality. In order to obtain insight in the molecular mechanisms leading to decreased fecundity, gene expression was investigated via whole genome RNA sequencing. The transcriptomic analysis revealed modulation of transcription factors, as well as genes involved in stress response, unfolded protein response, lipid metabolism and reproduction. Furthermore, a drastic increase in the number of differentially expressed genes involved in defense response was measured in the last two generations, suggesting a cumulative stress effect of ionizing radiation exposure. Transcription factor binding site enrichment analysis and the use of transgenic strain identified daf-16/FOXO as a master regulator of genes differentially expressed in response to radiation. The presented data provide new knowledge with respect to the molecular mechanisms involved in reproductive toxic effects and accumulated stress resulting from multigenerational exposure to ionizing radiation.
Collapse
Affiliation(s)
- Rémi Guédon
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-ENV, SRTE, Laboratoire d'ECOtoxicologie des radionucléides (LECO), Cadarache, France
| | - Erica Maremonti
- Centre for Environmental Radioactivity (CERAD), Faculty of Environmental Sciences and Natural Resource Management (MINA), Norwegian University of Life Sciences (NMBU), 1432 Ås, Norway
| | - Olivier Armant
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-ENV, SRTE, Laboratoire d'ECOtoxicologie des radionucléides (LECO), Cadarache, France
| | - Simon Galas
- Institut des biomolecules Max Mousseron (IBMM), University of Montpellier, Centre National de Recherche Scientifique (CNRS), ENSCM, Montpellier, France
| | - Dag Anders Brede
- Centre for Environmental Radioactivity (CERAD), Faculty of Environmental Sciences and Natural Resource Management (MINA), Norwegian University of Life Sciences (NMBU), 1432 Ås, Norway
| | - Catherine Lecomte-Pradines
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-ENV, SRTE, Laboratoire d'ECOtoxicologie des radionucléides (LECO), Cadarache, France.
| |
Collapse
|
15
|
Parmar BS, Peeters MKR, Boonen K, Clark EC, Baggerman G, Menschaert G, Temmerman L. Identification of Non-Canonical Translation Products in C. elegans Using Tandem Mass Spectrometry. Front Genet 2021; 12:728900. [PMID: 34759956 PMCID: PMC8575065 DOI: 10.3389/fgene.2021.728900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/16/2021] [Indexed: 11/22/2022] Open
Abstract
Transcriptome and ribosome sequencing have revealed the existence of many non-canonical transcripts, mainly containing splice variants, ncRNA, sORFs and altORFs. However, identification and characterization of products that may be translated out of these remains a challenge. Addressing this, we here report on 552 non-canonical proteins and splice variants in the model organism C. elegans using tandem mass spectrometry. Aided by sequencing-based prediction, we generated a custom proteome database tailored to search for non-canonical translation products of C. elegans. Using this database, we mined available mass spectrometric resources of C. elegans, from which 51 novel, non-canonical proteins could be identified. Furthermore, we utilized diverse proteomic and peptidomic strategies to detect 40 novel non-canonical proteins in C. elegans by LC-TIMS-MS/MS, of which 6 were common with our meta-analysis of existing resources. Together, this permits us to provide a resource with detailed annotation of 467 splice variants and 85 novel proteins mapped onto UTRs, non-coding regions and alternative open reading frames of the C. elegans genome.
Collapse
Affiliation(s)
- Bhavesh S. Parmar
- Animal Physiology and Neurobiology, University of Leuven (KU Leuven), Leuven, Belgium
| | - Marlies K. R. Peeters
- Laboratory of Bioinformatics and Computational Genomics (BioBix), Department of Mathematical Modelling, Ghent University, Ghent, Belgium
| | - Kurt Boonen
- Centre for Proteomics (CFP), University of Antwerp, Antwerp, Belgium
| | - Ellie C. Clark
- Animal Physiology and Neurobiology, University of Leuven (KU Leuven), Leuven, Belgium
| | - Geert Baggerman
- Centre for Proteomics (CFP), University of Antwerp, Antwerp, Belgium
| | - Gerben Menschaert
- Laboratory of Bioinformatics and Computational Genomics (BioBix), Department of Mathematical Modelling, Ghent University, Ghent, Belgium
| | - Liesbet Temmerman
- Animal Physiology and Neurobiology, University of Leuven (KU Leuven), Leuven, Belgium
| |
Collapse
|
16
|
Rieckher M, Garinis GA, Schumacher B. Molecular pathology of rare progeroid diseases. Trends Mol Med 2021; 27:907-922. [PMID: 34272172 DOI: 10.1016/j.molmed.2021.06.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 12/21/2022]
Abstract
Progeroid syndromes (PSs) are characterized by the premature onset of age-related pathologies. The genetic mutations underlying PSs are functionally linked to genome maintenance and repair, supporting the causative role of DNA damage accumulation in aging. Recent advances from studies in animal models of PSs have provided new insight into the role of DNA repair mechanisms in human disease and the physiological adaptations to accumulating DNA damage during aging. The molecular pathology of PSs is reminiscent of the natural aging process, highlighting the relevance for a wide range of age-related diseases. Recent progress has led to the development of novel therapeutic strategies against age-related diseases that are relevant to rare diseases as well as the general aging population.
Collapse
Affiliation(s)
- Matthias Rieckher
- Institute for Genome Stability in Aging and Disease, Medical Faculty, University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany; Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine (CMMC), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany
| | - George A Garinis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, GR70013, Heraklion, Crete, Greece; Department of Biology, University of Crete, Heraklion, Crete, Greece
| | - Björn Schumacher
- Institute for Genome Stability in Aging and Disease, Medical Faculty, University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany; Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine (CMMC), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany.
| |
Collapse
|
17
|
Causes and consequences of DNA damage-induced autophagy. Matrix Biol 2021; 100-101:39-53. [DOI: 10.1016/j.matbio.2021.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/12/2021] [Accepted: 02/12/2021] [Indexed: 02/06/2023]
|
18
|
Network analysis in aged C. elegans reveals candidate regulatory genes of ageing. Biogerontology 2021; 22:345-367. [PMID: 33871732 DOI: 10.1007/s10522-021-09920-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/30/2021] [Indexed: 10/21/2022]
Abstract
Ageing is a biological process guided by genetic and environmental factors that ultimately lead to adverse outcomes for organismal lifespan and healthspan. Determination of molecular pathways that are affected with age and increase disease susceptibility is crucial. The gene expression profile of the ideal ageing model, namely the nematode Caenorhabditis elegans mapped with the microarray technology initially led to the identification of age-dependent gene expression alterations that characterize the nematode's ageing process. The list of differentially expressed genes was then utilized to construct a network of molecular interactions with their first neighbors/interactors using the interactions listed in the WormBase database. The subsequent network analysis resulted in the unbiased selection of 110 candidate genes, among which well-known ageing regulators appeared. More importantly, our approach revealed candidates that have never been linked to ageing before, thus suggesting promising potential targets/ageing regulators.
Collapse
|
19
|
The Keap1-Nrf2 System: A Mediator between Oxidative Stress and Aging. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6635460. [PMID: 34012501 PMCID: PMC8106771 DOI: 10.1155/2021/6635460] [Citation(s) in RCA: 194] [Impact Index Per Article: 64.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 04/05/2021] [Accepted: 04/11/2021] [Indexed: 02/06/2023]
Abstract
Oxidative stress, a term that describes the imbalance between oxidants and antioxidants, leads to the disruption of redox signals and causes molecular damage. Increased oxidative stress from diverse sources has been implicated in most senescence-related diseases and in aging itself. The Kelch-like ECH-associated protein 1- (Keap1-) nuclear factor-erythroid 2-related factor 2 (Nrf2) system can be used to monitor oxidative stress; Keap1-Nrf2 is closely associated with aging and controls the transcription of multiple antioxidant enzymes. Simultaneously, Keap1-Nrf2 signaling is also modulated by a more complex regulatory network, including phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt), protein kinase C, and mitogen-activated protein kinase. This review presents more information on aging-related molecular mechanisms involving Keap1-Nrf2. Furthermore, we highlight several major signals involved in Nrf2 unbinding from Keap1, including cysteine modification of Keap1 and phosphorylation of Nrf2, PI3K/Akt/glycogen synthase kinase 3β, sequestosome 1, Bach1, and c-Myc. Additionally, we discuss the direct interaction between Keap1-Nrf2 and the mammalian target of rapamycin pathway. In summary, we focus on recent progress in research on the Keap1-Nrf2 system involving oxidative stress and aging, providing an empirical basis for the development of antiaging drugs.
Collapse
|
20
|
Schumacher B, Pothof J, Vijg J, Hoeijmakers JH. The central role of DNA damage in the ageing process. Nature 2021; 592:695-703. [PMID: 33911272 PMCID: PMC9844150 DOI: 10.1038/s41586-021-03307-7] [Citation(s) in RCA: 379] [Impact Index Per Article: 126.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 01/28/2021] [Indexed: 01/31/2023]
Abstract
Ageing is a complex, multifaceted process leading to widespread functional decline that affects every organ and tissue, but it remains unknown whether ageing has a unifying causal mechanism or is grounded in multiple sources. Phenotypically, the ageing process is associated with a wide variety of features at the molecular, cellular and physiological level-for example, genomic and epigenomic alterations, loss of proteostasis, declining overall cellular and subcellular function and deregulation of signalling systems. However, the relative importance, mechanistic interrelationships and hierarchical order of these features of ageing have not been clarified. Here we synthesize accumulating evidence that DNA damage affects most, if not all, aspects of the ageing phenotype, making it a potentially unifying cause of ageing. Targeting DNA damage and its mechanistic links with the ageing phenotype will provide a logical rationale for developing unified interventions to counteract age-related dysfunction and disease.
Collapse
Affiliation(s)
- Björn Schumacher
- Institute for Genome Stability in Ageing and Disease, Medical Faculty, University of Cologne, Cologne, Germany. .,Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
| | - Joris Pothof
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jan Vijg
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York 10461, USA,Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jan H.J. Hoeijmakers
- Institute for Genome Stability in Ageing and Disease, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany,Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany,Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands,Princess Máxima Center for Pediatric Oncology, Oncode Institute, Utrecht, The Netherlands
| |
Collapse
|
21
|
Principles of the Molecular and Cellular Mechanisms of Aging. J Invest Dermatol 2021; 141:951-960. [PMID: 33518357 DOI: 10.1016/j.jid.2020.11.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/23/2020] [Accepted: 11/02/2020] [Indexed: 12/13/2022]
Abstract
Aging can be defined as a state of progressive functional decline accompanied by an increase in mortality. Time-dependent accumulation of cellular damage, namely lesions and mutations in the DNA and misfolded proteins, impair organellar and cellular function. Ensuing cell fate alterations lead to the accumulation of dysfunctional cells and hamper homeostatic processes, thus limiting regenerative potential; trigger low-grade inflammation; and alter intercellular and intertissue communication. The accumulation of molecular damage together with modifications in the epigenetic landscape, dysregulation of gene expression, and altered endocrine communication, drive the aging process and establish age as the main risk factor for age-associated diseases and multimorbidity.
Collapse
|
22
|
Deng J, Bai X, Tang H, Pang S. DNA damage promotes ER stress resistance through elevation of unsaturated phosphatidylcholine in Caenorhabditis elegans. J Biol Chem 2021; 296:100095. [PMID: 33208465 PMCID: PMC7949029 DOI: 10.1074/jbc.ra120.016083] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/10/2020] [Accepted: 11/18/2020] [Indexed: 01/04/2023] Open
Abstract
DNA damage triggers the cellular adaptive response to arrest proliferation and repair DNA damage; when damage is too severe to be repaired, apoptosis is initiated to prevent the spread of genomic insults. However, how cells endure DNA damage to maintain cell function remains largely unexplored. By using Caenorhabditis elegans as a model, we report that DNA damage elicits cell maintenance programs, including the unfolded protein response of the endoplasmic reticulum (UPRER). Mechanistically, sublethal DNA damage unexpectedly suppresses apoptotic genes in C. elegans, which in turn increases the activity of the inositol-requiring enzyme 1/X-box binding protein 1 (IRE-1/XBP-1) branch of the UPRER by elevating unsaturated phosphatidylcholine. In addition, UPRER activation requires silencing of the lipid regulator skinhead-1 (SKN-1). DNA damage suppresses SKN-1 activity to increase unsaturated phosphatidylcholine and activate UPRER. These findings reveal the UPRER activation as an organismal adaptive response that is important to maintain cell function during DNA damage.
Collapse
Affiliation(s)
- Jianhui Deng
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Xue Bai
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Haiqing Tang
- School of Life Sciences, Chongqing University, Chongqing, China.
| | - Shanshan Pang
- School of Life Sciences, Chongqing University, Chongqing, China.
| |
Collapse
|
23
|
Tissue-Specific DNA Repair Activity of ERCC-1/XPF-1. Cell Rep 2021; 34:108608. [PMID: 33440146 DOI: 10.1016/j.celrep.2020.108608] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 10/30/2020] [Accepted: 12/15/2020] [Indexed: 01/14/2023] Open
Abstract
Hereditary DNA repair defects affect tissues differently, suggesting that in vivo cells respond differently to DNA damage. Knowledge of the DNA damage response, however, is largely based on in vitro and cell culture studies, and it is currently unclear whether DNA repair changes depending on the cell type. Here, we use in vivo imaging of the nucleotide excision repair (NER) endonuclease ERCC-1/XPF-1 in C. elegans to demonstrate tissue-specific NER activity. In oocytes, XPF-1 functions as part of global genome NER (GG-NER) to ensure extremely rapid removal of DNA-helix-distorting lesions throughout the genome. In contrast, in post-mitotic neurons and muscles, XPF-1 participates in NER of transcribed genes only. Strikingly, muscle cells appear more resistant to the effects of DNA damage than neurons. These results suggest a tissue-specific organization of the DNA damage response and may help to better understand pleiotropic and tissue-specific consequences of accumulating DNA damage.
Collapse
|
24
|
Huang Q, Lin Z, Wu P, Ni J, Shen Y. Phosphoproteomic Analysis Reveals Rio1-Related Protein Phosphorylation Changes in Response to UV Irradiation in Sulfolobus islandicus REY15A. Front Microbiol 2020; 11:586025. [PMID: 33343525 PMCID: PMC7744417 DOI: 10.3389/fmicb.2020.586025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/09/2020] [Indexed: 11/29/2022] Open
Abstract
DNA damage response (DDR) in eukaryotes is largely regulated by protein phosphorylation. In archaea, many proteins are phosphorylated, however, it is unclear how the cells respond to DNA damage through global protein phosphorylation. We previously found that Δrio1, a Rio1 kinase homolog deletion strain of Sulfolobus islandicus REY15A, was sensitive to UV irradiation. In this study, we showed that Δrio1 grew faster than the wild type. Quantitative phosphoproteomic analysis of the wild type and Δrio1, untreated and irradiated with UV irradiation, revealed 562 phosphorylated sites (with a Ser/Thr/Tyr ratio of 65.3%/23.8%/10.9%) of 333 proteins in total. The phosphorylation levels of 35 sites of 30 proteins changed with >1.3-fold in the wild type strain upon UV irradiation. Interestingly, more than half of the UV-induced changes in the wild type did not occur in the Δrio1 strain, which were mainly associated with proteins synthesis and turnover. In addition, a protein kinase and several transcriptional regulators were differentially phosphorylated after UV treatment, and some of the changes were dependent on Rio1. Finally, many proteins involved in various cellular metabolisms exhibited Riol-related and UV-independent phosphorylation changes. Our results suggest that Rio1 is involved in the regulation of protein recycling and signal transduction in response to UV irradiation, and plays regulatory roles in multiple cellular processes in S. islandicus.
Collapse
Affiliation(s)
- Qihong Huang
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Zijia Lin
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Pengju Wu
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Jinfeng Ni
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Yulong Shen
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| |
Collapse
|
25
|
Wang S, Meyer DH, Schumacher B. H3K4me2 regulates the recovery of protein biosynthesis and homeostasis following DNA damage. Nat Struct Mol Biol 2020; 27:1165-1177. [DOI: 10.1038/s41594-020-00513-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 09/02/2020] [Indexed: 01/08/2023]
|
26
|
When Endoplasmic Reticulum Proteostasis Meets the DNA Damage Response. Trends Cell Biol 2020; 30:881-891. [PMID: 33036871 DOI: 10.1016/j.tcb.2020.09.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/31/2020] [Accepted: 09/07/2020] [Indexed: 02/06/2023]
Abstract
Sustaining both proteome and genome integrity (GI) requires the integration of a wide range of mechanisms and signaling pathways. These comprise, in particular, the unfolded protein response (UPR) and the DNA damage response (DDR). These adaptive mechanisms take place respectively in the endoplasmic reticulum (ER) and in the nucleus. UPR and DDR alterations are associated with aging and with pathologies such as degenerative diseases, metabolic and inflammatory disorders, and cancer. We discuss the emerging signaling crosstalk between UPR stress sensors and the DDR, as well as their involvement in cancer biology.
Collapse
|
27
|
Al Zouabi L, Bardin AJ. Stem Cell DNA Damage and Genome Mutation in the Context of Aging and Cancer Initiation. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a036210. [PMID: 31932318 DOI: 10.1101/cshperspect.a036210] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Adult stem cells fuel tissue homeostasis and regeneration through their unique ability to self-renew and differentiate into specialized cells. Thus, their DNA provides instructions that impact the tissue as a whole. Since DNA is not an inert molecule, but rather dynamic, interacting with a myriad of chemical and physical factors, it encounters damage from both endogenous and exogenous sources. Damage to DNA introduces deviations from its normal intact structure and, if left unrepaired, may result in a genetic mutation. In turn, mutant genomes of stem and progenitor cells are inherited in cells of the lineage, thus eroding the genetic information that maintains homeostasis of the somatic cell population. Errors arising in stem and progenitor cells will have a substantially larger impact on the tissue in which they reside than errors occurring in postmitotic differentiated cells. Therefore, maintaining the integrity of genomic DNA within our stem cells is essential to protect the instructions necessary for rebuilding healthy tissues during homeostatic renewal. In this review, we will first discuss DNA damage arising in stem cells and cell- and tissue-intrinsic mechanisms that protect against harmful effects of this damage. Secondly, we will examine how erroneous DNA repair and persistent DNA damage in stem and progenitor cells impact stem cells and tissues in the context of cancer initiation and aging. Finally, we will discuss the use of invertebrate and vertebrate model systems to address unanswered questions on the role that DNA damage and mutation may play in aging and precancerous conditions.
Collapse
Affiliation(s)
- Lara Al Zouabi
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, Stem Cells and Tissue Homeostasis Group, 75248 Paris, France.,Sorbonne Universités, UPMC University, Paris 6, France
| | - Allison J Bardin
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, Stem Cells and Tissue Homeostasis Group, 75248 Paris, France.,Sorbonne Universités, UPMC University, Paris 6, France
| |
Collapse
|
28
|
Dufey E, Bravo-San Pedro JM, Eggers C, González-Quiroz M, Urra H, Sagredo AI, Sepulveda D, Pihán P, Carreras-Sureda A, Hazari Y, Sagredo EA, Gutierrez D, Valls C, Papaioannou A, Acosta-Alvear D, Campos G, Domingos PM, Pedeux R, Chevet E, Alvarez A, Godoy P, Walter P, Glavic A, Kroemer G, Hetz C. Genotoxic stress triggers the activation of IRE1α-dependent RNA decay to modulate the DNA damage response. Nat Commun 2020; 11:2401. [PMID: 32409639 PMCID: PMC7224204 DOI: 10.1038/s41467-020-15694-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 03/12/2020] [Indexed: 02/07/2023] Open
Abstract
The molecular connections between homeostatic systems that maintain both genome integrity and proteostasis are poorly understood. Here we identify the selective activation of the unfolded protein response transducer IRE1α under genotoxic stress to modulate repair programs and sustain cell survival. DNA damage engages IRE1α signaling in the absence of an endoplasmic reticulum (ER) stress signature, leading to the exclusive activation of regulated IRE1α-dependent decay (RIDD) without activating its canonical output mediated by the transcription factor XBP1. IRE1α endoribonuclease activity controls the stability of mRNAs involved in the DNA damage response, impacting DNA repair, cell cycle arrest and apoptosis. The activation of the c-Abl kinase by DNA damage triggers the oligomerization of IRE1α to catalyze RIDD. The protective role of IRE1α under genotoxic stress is conserved in fly and mouse. Altogether, our results uncover an important intersection between the molecular pathways that sustain genome stability and proteostasis. IRE1α plays a key role in the unfolded protein response (UPR) by promoting the unconventional splicing of the XBP1 and the selective cleavage of RNAs. Here the authors report that IRE1α is activated upon the DNA damage response and selectively controls the stability of mRNAs to maintain genome integrity.
Collapse
Affiliation(s)
- Estefanie Dufey
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile.,Center for Geroscience, Brain Health and Metabolism (GERO), Santiago, Chile.,Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - José Manuel Bravo-San Pedro
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université de Paris, Sorbonne Université, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Cristian Eggers
- Department of Biology, Faculty of Sciences, University of Chile, Santiago, Chile.,Center for Genome Regulation, Faculty of Sciences, University of Chile, Santiago, Chile
| | - Matías González-Quiroz
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile.,Center for Geroscience, Brain Health and Metabolism (GERO), Santiago, Chile.,Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile.,Proteostasis & Cancer Team, INSERM U1242, University of Rennes 1, Rennes, France.,Centre de Lutte contre le Cancer Eugène Marquis, Rennes, France
| | - Hery Urra
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile.,Center for Geroscience, Brain Health and Metabolism (GERO), Santiago, Chile.,Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Alfredo I Sagredo
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile.,Center for Geroscience, Brain Health and Metabolism (GERO), Santiago, Chile.,Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Denisse Sepulveda
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile.,Center for Geroscience, Brain Health and Metabolism (GERO), Santiago, Chile.,Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Philippe Pihán
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile.,Center for Geroscience, Brain Health and Metabolism (GERO), Santiago, Chile.,Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Amado Carreras-Sureda
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile.,Center for Geroscience, Brain Health and Metabolism (GERO), Santiago, Chile.,Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Younis Hazari
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile.,Center for Geroscience, Brain Health and Metabolism (GERO), Santiago, Chile.,Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Eduardo A Sagredo
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrheniusväg 20C, 106 91, Stockholm, Sweden
| | - Daniela Gutierrez
- Department of Cell & Molecular Biology, Pontificia Universidad Católica de Chile, 8331010, Santiago, Chile
| | - Cristian Valls
- Department of Cell & Molecular Biology, Pontificia Universidad Católica de Chile, 8331010, Santiago, Chile
| | - Alexandra Papaioannou
- Proteostasis & Cancer Team, INSERM U1242, University of Rennes 1, Rennes, France.,Centre de Lutte contre le Cancer Eugène Marquis, Rennes, France
| | - Diego Acosta-Alvear
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA.,Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA.,Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Gisela Campos
- IfADo-Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund, 44139, Dortmund, Germany
| | - Pedro M Domingos
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Rémy Pedeux
- Proteostasis & Cancer Team, INSERM U1242, University of Rennes 1, Rennes, France.,Centre de Lutte contre le Cancer Eugène Marquis, Rennes, France
| | - Eric Chevet
- Proteostasis & Cancer Team, INSERM U1242, University of Rennes 1, Rennes, France.,Centre de Lutte contre le Cancer Eugène Marquis, Rennes, France
| | - Alejandra Alvarez
- Department of Cell & Molecular Biology, Pontificia Universidad Católica de Chile, 8331010, Santiago, Chile
| | - Patricio Godoy
- IfADo-Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund, 44139, Dortmund, Germany
| | - Peter Walter
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA.,Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Alvaro Glavic
- Department of Biology, Faculty of Sciences, University of Chile, Santiago, Chile.,Center for Genome Regulation, Faculty of Sciences, University of Chile, Santiago, Chile
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université de Paris, Sorbonne Université, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.,Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China.,Department of Women's and Children's Health, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Claudio Hetz
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile. .,Center for Geroscience, Brain Health and Metabolism (GERO), Santiago, Chile. .,Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile. .,The Buck Institute for Research in Aging, Novato, CA, 94945, USA.
| |
Collapse
|
29
|
Wong SQ, Kumar AV, Mills J, Lapierre LR. C. elegans to model autophagy-related human disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 172:325-373. [PMID: 32620247 DOI: 10.1016/bs.pmbts.2020.01.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Autophagy is a highly conserved degradation process that clears damaged intracellular macromolecules and organelles in order to maintain cellular health. Dysfunctional autophagy is fundamentally linked to the development of various human disorders and pathologies. The use of the nematode Caenorhabditis elegans as a model system to study autophagy has improved our understanding of its regulation and function in organismal physiology. Here, we review the genetic, functional, and regulatory conservation of the autophagy pathway in C. elegans and we describe tools to quantify and study the autophagy process in this incredibly useful model organism. We further discuss how these nematodes have been modified to model autophagy-related human diseases and underscore the important insights obtained from such models. Altogether, we highlight the strengths of C. elegans as an exceptional tool to understand the genetic and molecular foundations underlying autophagy-related human diseases.
Collapse
Affiliation(s)
- Shi Quan Wong
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States
| | - Anita V Kumar
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States
| | - Joslyn Mills
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States
| | - Louis R Lapierre
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States.
| |
Collapse
|
30
|
Abstract
Ageing appears to be a nearly universal feature of life, ranging from unicellular microorganisms to humans. Longevity depends on the maintenance of cellular functionality, and an organism's ability to respond to stress has been linked to functional maintenance and longevity. Stress response pathways might indeed become therapeutic targets of therapies aimed at extending the healthy lifespan. Various progeroid syndromes have been linked to genome instability, indicating an important causal role of DNA damage accumulation in the ageing process and the development of age-related pathologies. Recently, non-cell-autonomous mechanisms including the systemic consequences of cellular senescence have been implicated in regulating organismal ageing. We discuss here the role of cellular and systemic mechanisms of ageing and their role in ageing-associated diseases.
Collapse
Affiliation(s)
- Paulo F L da Silva
- Institute for Genome Stability in Ageing and Disease, Medical Faculty, University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany.,Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany
| | - Björn Schumacher
- Institute for Genome Stability in Ageing and Disease, Medical Faculty, University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany.,Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany
| |
Collapse
|
31
|
Abstract
Nuclear DNA damage has detrimental effects on cellular homoeostasis and accelerates the aging process. A new study causally links error-prone mitochondrial replication to increased nuclear DNA damage, thereby drawing the hallmarks of aging closer to nuclear genome instability as a unifying denominator of the aging process.
Collapse
Affiliation(s)
- Björn Schumacher
- Institute for Genome Stability in Ageing and Disease, Medical Faculty, University of Cologne, Cologne, Germany.
- Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
| | - Jan Vijg
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA.
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
32
|
Abstract
The field of aging research has progressed significantly over the past decades. Exogenously and endogenously inflicted molecular damage ranging from genotoxic to organellar damage drives the aging process. Repair mechanisms and compensatory responses counteract the detrimental consequences of the various damage types. Here, we discuss recent progress in understanding cellular mechanisms and interconnections between signaling pathways that control longevity. We summarize cell-autonomous and non-cell-autonomous mechanisms that impact the cellular and organismal aging process
Collapse
Affiliation(s)
- Robert Bayersdorf
- Institute for Genome Stability in Aging and Disease, Medical Faculty, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Björn Schumacher
- Institute for Genome Stability in Aging and Disease, Medical Faculty, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
33
|
Khan C, Muliyil S, Rao BJ. Genome Damage Sensing Leads to Tissue Homeostasis in Drosophila. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 345:173-224. [PMID: 30904193 DOI: 10.1016/bs.ircmb.2018.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
DNA repair is a critical cellular process required for the maintenance of genomic integrity. It is now well appreciated that cells employ several DNA repair pathways to take care of distinct types of DNA damage. It is also well known that a cascade of signals namely DNA damage response or DDR is activated in response to DNA damage which comprise cellular responses, such as cell cycle arrest, DNA repair and cell death, if the damage is irreparable. There is also emerging literature suggesting a cross-talk between DNA damage signaling and several signaling networks within a cell. Moreover, cell death players themselves are also well known to engage in processes outside their canonical function of apoptosis. This chapter attempts to build a link between DNA damage, DDR and signaling from the studies mainly conducted in mammals and Drosophila model systems, with a special emphasis on their relevance in overall tissue homeostasis and development.
Collapse
Affiliation(s)
- Chaitali Khan
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Sonia Muliyil
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - B J Rao
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India.
| |
Collapse
|
34
|
Späth MR, Bartram MP, Palacio-Escat N, Hoyer KJR, Debes C, Demir F, Schroeter CB, Mandel AM, Grundmann F, Ciarimboli G, Beyer A, Kizhakkedathu JN, Brodesser S, Göbel H, Becker JU, Benzing T, Schermer B, Höhne M, Burst V, Saez-Rodriguez J, Huesgen PF, Müller RU, Rinschen MM. The proteome microenvironment determines the protective effect of preconditioning in cisplatin-induced acute kidney injury. Kidney Int 2018; 95:333-349. [PMID: 30522767 DOI: 10.1016/j.kint.2018.08.037] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 07/24/2018] [Accepted: 08/16/2018] [Indexed: 01/18/2023]
Abstract
Acute kidney injury (AKI) leads to significant morbidity and mortality; unfortunately, strategies to prevent or treat AKI are lacking. In recent years, several preconditioning protocols have been shown to be effective in inducing organ protection in rodent models. Here, we characterized two of these interventions-caloric restriction and hypoxic preconditioning-in a mouse model of cisplatin-induced AKI and investigated the underlying mechanisms by acquisition of multi-layered omic data (transcriptome, proteome, N-degradome) and functional parameters in the same animals. Both preconditioning protocols markedly ameliorated cisplatin-induced loss of kidney function, and caloric restriction also induced lipid synthesis. Bioinformatic analysis revealed mRNA-independent proteome alterations affecting the extracellular space, mitochondria, and transporters. Interestingly, our analyses revealed a strong dissociation of protein and RNA expression after cisplatin treatment that showed a strong correlation with the degree of damage. N-degradomic analysis revealed that most posttranscriptional changes were determined by arginine-specific proteolytic processing. This included a characteristic cisplatin-activated complement signature that was prevented by preconditioning. Amyloid and acute-phase proteins within the cortical parenchyma showed a similar response. Extensive analysis of disease-associated molecular patterns suggested that transcription-independent deposition of amyloid P-component serum protein may be a key component in the microenvironmental contribution to kidney damage. This proof-of-principle study provides new insights into the pathogenesis of cisplatin-induced AKI and the molecular mechanisms underlying organ protection by correlating phenotypic and multi-layered omics data.
Collapse
Affiliation(s)
- Martin R Späth
- Department II of Internal Medicine, University of Cologne, Cologne, Germany; Center for Molecular Medicine, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Malte P Bartram
- Department II of Internal Medicine, University of Cologne, Cologne, Germany; Center for Molecular Medicine, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Nicolàs Palacio-Escat
- COMBINE-Joint Research Center for Computational Biomedicine RWTH Aachen University, Aachen, Germany
| | - K Johanna R Hoyer
- Department II of Internal Medicine, University of Cologne, Cologne, Germany; Center for Molecular Medicine, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Cedric Debes
- Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Systems Biology of Ageing Cologne (Sybacol), University of Cologne, Cologne, Germany
| | - Fatih Demir
- Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Jülich, Germany
| | - Christina B Schroeter
- Department II of Internal Medicine, University of Cologne, Cologne, Germany; Center for Molecular Medicine, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Amrei M Mandel
- Department II of Internal Medicine, University of Cologne, Cologne, Germany; Center for Molecular Medicine, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Franziska Grundmann
- Department II of Internal Medicine, University of Cologne, Cologne, Germany; Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Giuliano Ciarimboli
- Department of Experimental Nephrology, University Hospital of Münster, Münster, Germany
| | - Andreas Beyer
- Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Systems Biology of Ageing Cologne (Sybacol), University of Cologne, Cologne, Germany
| | - Jayachandran N Kizhakkedathu
- Department of Pathology, Centre for Blood Research, The University of British Columbia, British Columbia, Vancouver, Canada; Laboratory Medicine, Department of Chemistry, The University of British Columbia, British Columbia, Vancouver, Canada
| | - Susanne Brodesser
- Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Heike Göbel
- Institute of Pathology, University Hospital of Cologne, Cologne, Germany
| | - Jan U Becker
- Institute of Pathology, University Hospital of Cologne, Cologne, Germany
| | - Thomas Benzing
- Department II of Internal Medicine, University of Cologne, Cologne, Germany; Center for Molecular Medicine, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Systems Biology of Ageing Cologne (Sybacol), University of Cologne, Cologne, Germany
| | - Bernhard Schermer
- Department II of Internal Medicine, University of Cologne, Cologne, Germany; Center for Molecular Medicine, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Systems Biology of Ageing Cologne (Sybacol), University of Cologne, Cologne, Germany
| | - Martin Höhne
- Department II of Internal Medicine, University of Cologne, Cologne, Germany; Center for Molecular Medicine, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Systems Biology of Ageing Cologne (Sybacol), University of Cologne, Cologne, Germany
| | - Volker Burst
- Department II of Internal Medicine, University of Cologne, Cologne, Germany; Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Julio Saez-Rodriguez
- COMBINE-Joint Research Center for Computational Biomedicine RWTH Aachen University, Aachen, Germany; Faculty of Medicine Bioquant, Institute for Computational Biomedicine, Heidelberg University, Heidelberg, Germany
| | - Pitter F Huesgen
- Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Jülich, Germany
| | - Roman-Ulrich Müller
- Department II of Internal Medicine, University of Cologne, Cologne, Germany; Center for Molecular Medicine, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Systems Biology of Ageing Cologne (Sybacol), University of Cologne, Cologne, Germany.
| | - Markus M Rinschen
- Department II of Internal Medicine, University of Cologne, Cologne, Germany; Center for Molecular Medicine, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Systems Biology of Ageing Cologne (Sybacol), University of Cologne, Cologne, Germany.
| |
Collapse
|
35
|
DNA damage responses and p53 in the aging process. Blood 2017; 131:488-495. [PMID: 29141944 DOI: 10.1182/blood-2017-07-746396] [Citation(s) in RCA: 208] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 09/01/2017] [Indexed: 12/18/2022] Open
Abstract
The genome is constantly attacked by genotoxic insults. DNA damage has long been established as a cause of cancer development through its mutagenic consequences. Conversely, radiation therapy and chemotherapy induce DNA damage to drive cells into apoptosis or senescence as outcomes of the DNA damage response (DDR). More recently, DNA damage has been recognized as a causal factor for the aging process. The role of DNA damage in aging and age-related diseases is illustrated by numerous congenital progeroid syndromes that are caused by mutations in genome maintenance pathways. During the past 2 decades, understanding how DDR drives cancer development and contributes to the aging process has progressed rapidly. It turns out that the DDR factor p53 takes center stage during tumor development and also plays an important role in the aging process. Studies in metazoan models ranging from Caenorhabditis elegans to mammals have revealed cell-autonomous and systemic DDR mechanisms that orchestrate adaptive responses that augment maintenance of the aging organism amid gradually accumulating DNA damage.
Collapse
|
36
|
Omics Approaches for Identifying Physiological Adaptations to Genome Instability in Aging. Int J Mol Sci 2017; 18:ijms18112329. [PMID: 29113067 PMCID: PMC5713298 DOI: 10.3390/ijms18112329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 10/25/2017] [Accepted: 10/29/2017] [Indexed: 12/25/2022] Open
Abstract
DNA damage causally contributes to aging and age-related diseases. The declining functioning of tissues and organs during aging can lead to the increased risk of succumbing to aging-associated diseases. Congenital syndromes that are caused by heritable mutations in DNA repair pathways lead to cancer susceptibility and accelerated aging, thus underlining the importance of genome maintenance for withstanding aging. High-throughput mass-spectrometry-based approaches have recently contributed to identifying signalling response networks and gaining a more comprehensive understanding of the physiological adaptations occurring upon unrepaired DNA damage. The insulin-like signalling pathway has been implicated in a DNA damage response (DDR) network that includes epidermal growth factor (EGF)-, AMP-activated protein kinases (AMPK)- and the target of rapamycin (TOR)-like signalling pathways, which are known regulators of growth, metabolism, and stress responses. The same pathways, together with the autophagy-mediated proteostatic response and the decline in energy metabolism have also been found to be similarly regulated during natural aging, suggesting striking parallels in the physiological adaptation upon persistent DNA damage due to DNA repair defects and long-term low-level DNA damage accumulation occurring during natural aging. These insights will be an important starting point to study the interplay between signalling networks involved in progeroid syndromes that are caused by DNA repair deficiencies and to gain new understanding of the consequences of DNA damage in the aging process.
Collapse
|