1
|
Huo R, Wuhanqimuge, Zhang M, Sun M, Miao Y. Molecular dynamics modeling of different conformations of beta-glucan, molecular docking with dectin-1, and the effects on macrophages. Int J Biol Macromol 2024; 293:139382. [PMID: 39743052 DOI: 10.1016/j.ijbiomac.2024.139382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/11/2024] [Accepted: 12/29/2024] [Indexed: 01/04/2025]
Abstract
This study investigated β-glucan with diverse conformations by using molecular dynamics simulations to analyze their conformational transitions in water. Stable conformations were docked with the Dectin-1 protein to evaluate key metrics such as favorable conformations, root-mean-square deviation, hydrogen bond interactions, and their effects on macrophage activity. Results revealed that single-chain β-1,3-glucan with a degree of polymerization (DP) of 24 forms aggregates in water, while triple-chain β-1,3-glucan with a DP of 6 tends to form double helices. Other models exhibited single-helical or entangled-helical structures, with β-1,3/1,4-glucans favoring compact triple helices. The β-1,3 glycosidic bond promotes compact helical structures, while the β-1,4 bond hinders folding, increasing rigidity. Branching via β-1,6 glycosidic bonds introduces flexibility and enhances hydrogen bonding with water, although longer branches may cause localized aggregation. Molecular docking suggests that Dectin-1's recognition sites are predominantly hydrophobic. Lower polymerization models improve binding affinity through structural complexity, whereas higher polymerization models enhance binding via helical characteristics and larger contact areas. The study provides a comprehensive perspective on Dectin-1's differential recognition of β-glucans.
Collapse
Affiliation(s)
- Rui Huo
- College of Food Science and Engineering, Inner Mongolia Agricultural University, China
| | - Wuhanqimuge
- Inner Mongolia Autonomous Region Traditional Chinese and Mongolian Medicine Research Institute, China
| | - Meili Zhang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, China.
| | - Minjun Sun
- College of Food Science and Engineering, Inner Mongolia Agricultural University, China
| | - Ying Miao
- College of Food Science and Engineering, Inner Mongolia Agricultural University, China
| |
Collapse
|
2
|
Panwar D, Briggs J, Fraser ASC, Stewart WA, Brumer H. Transcriptional delineation of polysaccharide utilization loci in the human gut commensal Segatella copri DSM18205 and co-culture with exemplar Bacteroides species on dietary plant glycans. Appl Environ Microbiol 2024:e0175924. [PMID: 39636128 DOI: 10.1128/aem.01759-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/10/2024] [Indexed: 12/07/2024] Open
Abstract
There is growing interest in members of the genus Segatella (family Prevotellaceae) as members of a well-balanced human gut microbiota (HGM). Segatella are particularly associated with the consumption of a diet rich in plant polysaccharides comprising dietary fiber. However, understanding of the molecular basis of complex carbohydrate utilization in Segatella species is currently incomplete. Here, we used RNA sequencing (RNA-seq) of the type strain Segatella copri DSM 18205 (previously Prevotella copri CB7) to define precisely individual polysaccharide utilization loci (PULs) and associated carbohydrate-active enzymes (CAZymes) that are implicated in the catabolism of common fruit, vegetable, and grain polysaccharides (viz. mixed-linkage β-glucans, xyloglucans, xylans, pectins, and inulin). Although many commonalities were observed, several of these systems exhibited significant compositional and organizational differences vis-à-vis homologs in the better-studied Bacteroides (sister family Bacteroidaceae), which predominate in post-industrial HGM. Growth on β-mannans, β(1, 3)-galactans, and microbial β(1, 3)-glucans was not observed, due to an apparent lack of cognate PULs. Most notably, S. copri is unable to grow on starch, due to an incomplete starch utilization system (Sus). Subsequent transcriptional profiling of bellwether Ton-B-dependent transporter-encoding genes revealed that PUL upregulation is rapid and general upon transfer from glucose to plant polysaccharides, reflective of de-repression enabling substrate sensing. Distinct from previous observations of Bacteroides species, we were unable to observe clearly delineated substrate prioritization on a polysaccharide mixture designed to mimic in vitro diverse plant cell wall digesta. Finally, co-culture experiments generally indicated stable co-existence and lack of exclusive competition between S. copri and representative HGM Bacteroides species (Bacteroides thetaiotaomicron and Bacteroides ovatus) on individual polysaccharides, except in cases where corresponding PULs were obviously lacking. IMPORTANCE There is currently a great level of interest in improving the composition and function of the human gut microbiota (HGM) to improve health. The bacterium Segatella copri is prevalent in people who eat plant-rich diets and is therefore associated with a healthy lifestyle. On one hand, our study reveals the specific molecular systems that enable S. copri to proliferate on individual plant polysaccharides. On the other, a growing body of data suggests that the inability of S. copri to grow on starch and animal glycans, which dominate in post-industrial diets, as well as host mucin, contributes strongly to its displacement from the HGM by Bacteroides species, in the absence of direct antagonism.
Collapse
Affiliation(s)
- Deepesh Panwar
- Michael Smith Laboratories, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Jonathon Briggs
- Michael Smith Laboratories, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Alexander S C Fraser
- Michael Smith Laboratories, The University of British Columbia, Vancouver, British Columbia, Canada
| | - William A Stewart
- Michael Smith Laboratories, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Harry Brumer
- Michael Smith Laboratories, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Botany, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
3
|
Caseiro C, McGregor NGS, Alves VD, Carvalho AL, Romão MJ, Davies GJ, Fontes CMGA, Bule P. Family GH157 enzyme exhibits broad linkage tolerance and a dual endo/exo-β-glucanase activity on β-glucans. Int J Biol Macromol 2024; 282:137402. [PMID: 39528173 DOI: 10.1016/j.ijbiomac.2024.137402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/06/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
The structural and chemical diversity of β-glucans is reflected on the variety of essential biological roles tackled by these polysaccharides. This natural heterogeneity requires an elaborate assortment of enzymatic mechanisms to assemble, degrade or modify, as well as to extract their full biotechnological potential. Recent metagenomic efforts have provided an unprecedented growth in potential new biocatalysts, most of which remain unconfirmed or uncharacterized. Here we report the first biochemical and structural characterization of two bacterial β-glucanases from the recently created glycoside hydrolase family 157 (LaGH157 and BcGH157) and investigate their molecular basis for substrate hydrolysis. Structural analysis by X-ray crystallography revealed that GH157 enzymes belong to clan GH-A, possessing a (β/α)8-barrel fold catalytic domain, two β-sandwich accessory domains and two conserved catalytic glutamates residues, with relative positions compatible with a retaining mechanism of hydrolysis. Specificity screening and enzyme kinetics suggest that the enzymes prefer mixed-linkage glucans over β-1,3-glucans. Activity screening showed that both enzymes exhibit pH optimum at 6.5 and temperature optimum for LaGH157 and BcGH157 at 25 °C and 48 °C, respectively. Product analysis with HPAEC-PAD and LC-MS revealed that both enzymes are endo-1,3(4)-β-glucanases, capable of cleaving β-1,3 and β-1,4-linked glucoses, when preceded by a β-1,3 linkage. Moreover, BcGH157 needs a minimum of 4 subsites occupied for hydrolysis to occur, while LaGH157 only requires 3 subsites. Additionally, LaGH157 possesses exohydrolytic activity on β-1,3 and branching β-1,6 linkages. This unusual bifunctional endo-1,3(4)/exo-1,3-1,6 activity constitutes an expansion on our understanding of β-glucan deconstruction, with the potential to inspire future applications.
Collapse
Affiliation(s)
- Catarina Caseiro
- CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal; Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Lisbon, Portugal
| | - Nicholas G S McGregor
- York Structural Biology Laboratory, Department of Chemistry, The University of York, York YO10 5DD, United Kingdom
| | - Victor Diogo Alves
- CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal; Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Lisbon, Portugal
| | - Ana Luísa Carvalho
- UCIBIO, Chemistry Department, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Maria João Romão
- UCIBIO, Chemistry Department, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Gideon J Davies
- York Structural Biology Laboratory, Department of Chemistry, The University of York, York YO10 5DD, United Kingdom
| | | | - Pedro Bule
- CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal; Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Lisbon, Portugal.
| |
Collapse
|
4
|
Fan S, Zhang Z, Nie Q, Ackah M, Nie S. Rethinking the classification of non-digestible carbohydrates: Perspectives from the gut microbiome. Compr Rev Food Sci Food Saf 2024; 23:e70046. [PMID: 39437196 DOI: 10.1111/1541-4337.70046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/23/2024] [Accepted: 09/30/2024] [Indexed: 10/25/2024]
Abstract
Clarification is required when the term "carbohydrate" is used interchangeably with "saccharide" and "glycan." Carbohydrate classification based on human digestive enzyme activities brings clarity to the energy supply function of digestible sugars and starch. However, categorizing structurally diverse non-digestible carbohydrates (NDCs) to make dietary intake recommendations for health promotion remains elusive. In this review, we present a summary of the strengths and weaknesses of the traditional dichotomic classifications of carbohydrates, which were introduced by food chemists, nutritionists, and microbiologists. In parallel, we discuss the current consensus on commonly used terms for NDCs such as "dietary fiber," "prebiotics," and "fermentable glycans" and highlight their inherent differences from the perspectives of gut microbiome. Moreover, we provide a historical perspective on the development of novel concepts such as microbiota-accessible carbohydrates, microbiota-directed fiber, targeted prebiotics, and glycobiome. Crucially, these novel concepts proposed by multidisciplinary scholars help to distinguish the interactions between diverse NDCs and the gut microbiome. In summary, the term NDCs created based on the inability of human digestive enzymes fails to denote their interactions with gut microbiome. Considering that the gut microbiome possesses sophisticated enzyme systems to harvest diverse NDCs, the subclassification of NDCs should be realigned to their metabolism by various gut microbes, particularly health-promoting microbes. Such rigorous categorizations facilitate the development of microbiome-targeted therapeutic strategies by incorporating specific types of NDCs.
Collapse
Affiliation(s)
- Songtao Fan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Zhihong Zhang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Qixing Nie
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Michael Ackah
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Shaoping Nie
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| |
Collapse
|
5
|
Mandelli F, Martins MP, Chinaglia M, Lima EAD, Morais MAB, Lima TB, Cabral L, Pirolla RAS, Fuzita FJ, Paixão DAA, Andrade MDO, Wolf LD, Vieira PS, Persinoti GF, Murakami MT. A functionally augmented carbohydrate utilization locus from herbivore gut microbiota fueled by dietary β-glucans. NPJ Biofilms Microbiomes 2024; 10:105. [PMID: 39397008 PMCID: PMC11471779 DOI: 10.1038/s41522-024-00578-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 10/01/2024] [Indexed: 10/15/2024] Open
Abstract
Gut microbiota members from the Bacteroidota phylum play a pivotal role in mammalian health and metabolism. They thrive in this diverse ecosystem due to their notable ability to cope with distinct recalcitrant dietary glycans via polysaccharide utilization loci (PULs). Our study reveals that a PUL from an herbivore gut bacterium belonging to the Bacteroidota phylum, with a gene composition similar to that in the human gut, exhibits extended functionality. While the human gut PUL targets mixed-linkage β-glucans specifically, the herbivore gut PUL also efficiently processes linear and substituted β-1,3-glucans. This gain of function emerges from molecular adaptations in recognition proteins and carbohydrate-active enzymes, including a β-glucosidase specialized for β(1,6)-glucosyl linkages, a typical substitution in β(1,3)-glucans. These findings broaden the existing model for non-cellulosic β-glucans utilization by gut bacteria, revealing an additional layer of functional and evolutionary complexity within the gut microbiota, beyond conventional gene insertions/deletions to intricate biochemical interactions.
Collapse
Affiliation(s)
- Fernanda Mandelli
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, 13083-970, Brazil
| | - Marcele Pandeló Martins
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, 13083-970, Brazil
| | - Mariana Chinaglia
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, 13083-970, Brazil
| | - Evandro Antonio de Lima
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, 13083-970, Brazil
| | - Mariana Abrahão Bueno Morais
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, 13083-970, Brazil
| | - Tatiani Brenelli Lima
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, 13083-970, Brazil
| | - Lucélia Cabral
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, 13083-970, Brazil
| | - Renan Augusto Siqueira Pirolla
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, 13083-970, Brazil
| | - Felipe Jun Fuzita
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, 13083-970, Brazil
| | - Douglas Antônio Alvaredo Paixão
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, 13083-970, Brazil
| | - Maxuel de Oliveira Andrade
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, 13083-970, Brazil
| | - Lucia Daniela Wolf
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, 13083-970, Brazil
| | - Plinio Salmazo Vieira
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, 13083-970, Brazil
| | - Gabriela Felix Persinoti
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, 13083-970, Brazil
| | - Mario Tyago Murakami
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, 13083-970, Brazil.
| |
Collapse
|
6
|
Zhang S, Nie Q, Sun Y, Zuo S, Chen C, Li S, Yang J, Hu J, Zhou X, Yu Y, Huang P, Lian L, Xie M, Nie S. Bacteroides uniformis degrades β-glucan to promote Lactobacillus johnsonii improving indole-3-lactic acid levels in alleviating colitis. MICROBIOME 2024; 12:177. [PMID: 39300532 DOI: 10.1186/s40168-024-01896-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 07/30/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Intake of dietary fiber is associated with a reduced risk of inflammatory bowel disease. β-Glucan (BG), a bioactive dietary fiber, has potential health-promoting effects on intestinal functions; however, the underlying mechanism remains unclear. Here, we explore the role of BG in ameliorating colitis by modulating key bacteria and metabolites, confirmed by multiple validation experiments and loss-of-function studies, and reveal a novel bacterial cross-feeding interaction. RESULTS BG intervention ameliorates colitis and reverses Lactobacillus reduction in colitic mice, and Lactobacillus abundance was significantly negatively correlated with the severity of colitis. It was confirmed by further studies that Lactobacillus johnsonii was the most significantly enriched Lactobacillus spp. Multi-omics analysis revealed that L. johnsonii produced abundant indole-3-lactic acid (ILA) leading to the activation of aryl hydrocarbon receptor (AhR) responsible for the mitigation of colitis. Interestingly, L. johnsonii cannot utilize BG but requires a cross-feeding with Bacteroides uniformis, which degrades BG and produces nicotinamide (NAM) to promote the growth of L. johnsonii. A proof-of-concept study confirmed that BG increases L. johnsonii and B. uniformis abundance and ILA levels in healthy individuals. CONCLUSIONS These findings demonstrate the mechanism by which BG ameliorates colitis via L. johnsonii-ILA-AhR axis and reveal the important cross-feeding interaction between L. johnsonii and B. uniformis. Video Abstract.
Collapse
Affiliation(s)
- Shanshan Zhang
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology, Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Qixing Nie
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology, Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Yonggan Sun
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology, Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Sheng Zuo
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology, Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Chunhua Chen
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology, Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Song Li
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology, Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Jingrui Yang
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology, Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Jielun Hu
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology, Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Xingtao Zhou
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology, Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Yongkang Yu
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology, Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Ping Huang
- Department of Nutrition, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lu Lian
- Department of Nutrition, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Mingyong Xie
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology, Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China.
| | - Shaoping Nie
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology, Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China.
| |
Collapse
|
7
|
Cortijo-Alfonso ME, Romero MP, Macià A, Yuste S, Moralejo M, Rubió-Piqué L, Piñol-Felis C. Effect of Barley and Oat Consumption on Immune System, Inflammation and Gut Microbiota: A Systematic Review of Randomized Controlled Trials. Curr Nutr Rep 2024; 13:582-597. [PMID: 38789888 PMCID: PMC11327181 DOI: 10.1007/s13668-024-00543-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2024] [Indexed: 05/26/2024]
Abstract
PURPOSE OF REVIEW The aim of this systematic review was to investigate the effects of whole grain Avena sativa and Hordeum vulgare L., or their isolated fractions, on immune and inflammatory functions, as well as their influence on gut microbiota. A structured literature search was undertaken in line with PRISMA guidelines. Randomized controlled trials (RCTs) that investigated the effects of oats or barley consumption in adults and reported ≥ 1 of the following: C-reactive protein (CRP), tumor necrosis factor (TNF-α), interleukin-6 (IL-6), IL-2, IL-8, IL-18, lipopolysacharide binding protein (LBP) or gut microbiota-related outcomes, were included. RECENT FINDINGS A total of 16 RCTs were included, among which 6 studies recruited metabolically at-risk population, including individuals with overweight and obesity, metabolic syndrome or hypercholesterolemia. Additionally, 3 trials involved young healthy population, 5 trials targeted older individuals (aged over 50 years), and 2 studies encompassed populations with other disease states. A total of 1091 individuals were included in the evaluation of short-term (up to 14 days) and long-term (beyond 14 days, up to 90 days) supplementation with oats or barley-based products. 9 studies measured inflammatory biomarkers and 5 of them reported significant reductions, specifically in long-term studies. Notably, no evidence of anti-inflammatory benefits was found in healthy individuals, whereas studies involving metabolically at-risk populations showed promising reductions in inflammation. 13 studies measured the impact on gut microbiota, and collectively suggest that oats and barley food products can influence the composition of gut microbiota, associated in some cases with metabolic improvements. Oats and barley consumption may confer anti-inflammatory effects in metabolically at-risk populations and influence gut microbiota outcomes. However, no anti-inflammatory benefits were observed in healthy individuals. Results from this systematic review suggests caution in interpreting findings due to limited trials and variations in interventions and health conditions.
Collapse
Affiliation(s)
| | - María-Paz Romero
- University of Lleida-Agrotecnio CERCA Center, Av. Alcalde Rovira Roure 191, 25198, Lleida, Spain
| | - Alba Macià
- University of Lleida-Agrotecnio CERCA Center, Av. Alcalde Rovira Roure 191, 25198, Lleida, Spain
| | - Silvia Yuste
- University of Lleida-Agrotecnio CERCA Center, Av. Alcalde Rovira Roure 191, 25198, Lleida, Spain
| | - Marian Moralejo
- University of Lleida-Agrotecnio CERCA Center, Av. Alcalde Rovira Roure 191, 25198, Lleida, Spain
| | - Laura Rubió-Piqué
- University of Lleida-Agrotecnio CERCA Center, Av. Alcalde Rovira Roure 191, 25198, Lleida, Spain.
| | - Carme Piñol-Felis
- Department of Medicine and Surgery, University of Lleida, Lleida, Catalonia, Spain
- Institut de Recerca Biomèdica de Lleida, Fundació Dr. Pifarré IRBLleida, Lleida, Catalonia, Spain
| |
Collapse
|
8
|
Golisch B, Cordeiro RL, Fraser ASC, Briggs J, Stewart WA, Van Petegem F, Brumer H. The molecular basis of cereal mixed-linkage β-glucan utilization by the human gut bacterium Segatella copri. J Biol Chem 2024; 300:107625. [PMID: 39122003 PMCID: PMC11418011 DOI: 10.1016/j.jbc.2024.107625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/15/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Mixed-linkage β(1,3)/β(1,4)-glucan (MLG) is abundant in the human diet through the ingestion of cereal grains and is widely associated with healthful effects on metabolism and cholesterol levels. MLG is also a major source of fermentable glucose for the human gut microbiota (HGM). Bacteria from the family Prevotellaceae are highly represented in the HGM of individuals who eat plant-rich diets, including certain indigenous people and vegetarians in postindustrial societies. Here, we have defined and functionally characterized an exemplar Prevotellaceae MLG polysaccharide utilization locus (MLG-PUL) in the type-strain Segatella copri (syn. Prevotella copri) DSM 18205 through transcriptomic, biochemical, and structural biological approaches. In particular, structure-function analysis of the cell-surface glycan-binding proteins and glycoside hydrolases of the S. copri MLG-PUL revealed the molecular basis for glycan capture and saccharification. Notably, syntenic MLG-PULs from human gut, human oral, and ruminant gut Prevotellaceae are distinguished from their counterparts in Bacteroidaceae by the presence of a β(1,3)-specific endo-glucanase from glycoside hydrolase family 5, subfamily 4 (GH5_4) that initiates MLG backbone cleavage. The definition of a family of homologous MLG-PULs in individual species enabled a survey of nearly 2000 human fecal microbiomes using these genes as molecular markers, which revealed global population-specific distributions of Bacteroidaceae- and Prevotellaceae-mediated MLG utilization. Altogether, the data presented here provide new insight into the molecular basis of β-glucan metabolism in the HGM, as a basis for informing the development of approaches to improve the nutrition and health of humans and other animals.
Collapse
Affiliation(s)
- Benedikt Golisch
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada; Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Rosa Lorizolla Cordeiro
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alexander S C Fraser
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jonathon Briggs
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - William A Stewart
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Filip Van Petegem
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Harry Brumer
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada; Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada; Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
9
|
Li X, Lippens G, Parrou JL, Cioci G, Esque J, Wang Z, Laville E, Potocki-Veronese G, Labourel A. Biochemical characterization of a SusD-like protein involved in β-1,3-glucan utilization by an uncultured cow rumen Bacteroides. mSphere 2024; 9:e0027824. [PMID: 39012103 PMCID: PMC11351036 DOI: 10.1128/msphere.00278-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 06/18/2024] [Indexed: 07/17/2024] Open
Abstract
In ruminants, the rumen is a specialized stomach that is adapted to the breakdown of plant-derived complex polysaccharides through the coordinated activities of a diverse microbial community. Bacteroidota is a major phylum in this bovine rumen microbiota. They contain several clusters of genes called polysaccharide utilization loci (PULs) that encode proteins working in concert to capture, degrade, and transport polysaccharides. Despite the critical role of SusD-like proteins for efficient substrate transport, they remain largely unexplored. Here, we present the biochemical characterization of a SusD-like protein encoded by a β-glucan utilization locus from an Escherichia coli metagenomic clone previously isolated by functional screening of the bovine rumen microbiome. In this study, we show that clone 41O1 can grow on laminaritriose, cellotriose, and a mixture of cellobiosyl-cellobiose and glucosyl-cellotriose as sole carbon sources. Based on this, we used various in vitro analyses to investigate the binding ability of 41O1_SusD-like towards these oligosaccharides and the corresponding polysaccharides. We observed a clear binding affinity for β-1,6 branched β-1,3-glucans (laminarins, yeast β-glucan) and laminaritriose. Comparison of the AlphaFold2 model of 41O1_SusD-like with its closest structural homologs highlights a similar pattern of substrate recognition. In particular, three tryptophan residues are shown to be crucial for laminarin recognition. In the context of the cow rumen, we discuss the possible substrates targeted by the 41O1_PUL, such as the (1,3;1,4)-β-d-glucans present in cereal grains or the β-1,3- and (1,3;1,6)-β-d-glucans that are components of the cell wall of ruminal yeasts.IMPORTANCEThe rumen microbiota can majorly impact overall animal health, feed efficiency, and release of harmful substances into the environment. This microbiota is involved in the fermentation of organic matter to provide the host with valuable and assimilable nutrients. Bacteroidota efficiently captures, breaks down, and imports complex polysaccharides through the concerted action of proteins encoded by polysaccharide utilization loci (PULs). Within this system, SusD-like protein has proven necessary for the active internalization of the substrate. Nevertheless, the vast majority of SusD-like proteins characterized to date originate from cultured bacteria. With regard to the diversity and importance of uncultured bacteria in the rumen, further studies are required to better understand the role of polysaccharide utilization loci in ruminal polysaccharide degradation. Our detailed characterization of the 41O1_SusD-like therefore contributes to a better understanding of the carbohydrate metabolism of an uncultured Bacteroides from the cow rumen.
Collapse
Affiliation(s)
- Xiaoqian Li
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Guy Lippens
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Jean-Luc Parrou
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Gianluca Cioci
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Jérémy Esque
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Zhi Wang
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | | | | | - Aurore Labourel
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| |
Collapse
|
10
|
Bai J, Wang J, Fan M, Li Y, Huang L, Wang L. In vitro fermentation reveals an interplay relationship between oat β-glucan and human gut Bacteroides and their potential role in regulating gut cytokines. Food Funct 2024; 15:7794-7811. [PMID: 38920001 DOI: 10.1039/d4fo00775a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Dietary oat β-glucan regulates the gut microbial composition and structure; however, the interplay relationship between oat β-glucan and the gut microbiota is unclear. In this study, we aim to investigate the interaction between oat β-glucan and human gut Bacteroides, a versatile carbohydrate utilizer, and explore the effect of their interaction on gut immunity homeostasis. The results of in vitro fermentation showed that oat β-glucan significantly increased the abundance of gut Bacteroides at the genus level. Then, Bacteroides strains were isolated from human gut microbiota and 9 strains of Bacteroides could grow on oat β-glucan and degrade oat β-glucan to reducing sugars. Notably, strains Bacteroides xylanisolvens Bac02 and Bacteroides koreensis Bac08 possessed the strongest degradation capacity towards oat β-glucan. Genome analysis and functional annotations suggested that B. xylanisolvens Bac02 and B. koreensis Bac08 contained abundant genes encoding glycoside hydrolases family 3 (GH3) and GH16, which might be responsible for β-glucan degradation. Moreover, cell experiments revealed that the metabolites from oat β-glucan fermentation by these 9 strains of Bacteroides could regulate the polarization of macrophages and maintain gut immunity homeostasis. Our study provides a novel insight into research on the interplay between dietary compounds and the gut microbiota.
Collapse
Affiliation(s)
- Junying Bai
- Citrus Research Institute, Southwest University, 2 Tiansheng Road, Chongqing 400712, China.
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, China.
- National Citrus Engineering Research Center, Chongqing, 400712, China
| | - Jing Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, China.
| | - Mingcong Fan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, China.
| | - Yan Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, China.
| | - Linhua Huang
- Citrus Research Institute, Southwest University, 2 Tiansheng Road, Chongqing 400712, China.
- National Citrus Engineering Research Center, Chongqing, 400712, China
| | - Li Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, China.
| |
Collapse
|
11
|
Yang J, Qin K, Wang Q, Yang X. Deciphering the nutritional strategies for polysaccharides effects on intestinal barrier in broilers: Selectively promote microbial ecosystems. Int J Biol Macromol 2024; 264:130677. [PMID: 38458298 DOI: 10.1016/j.ijbiomac.2024.130677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 03/03/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
The gut microbiota, a complex and dynamic microbial ecosystem, plays a crucial role in regulating the intestinal barrier. Polysaccharide foraging is specifically dedicated to establishing and maintaining microbial communities, contributing to the shaping of the intestinal ecosystem and ultimately enhancing the integrity of the intestinal barrier. The utilization and regulation of individual polysaccharides often rely on distinct gut-colonizing bacteria. The products of their metabolism not only benefit the formation of the ecosystem but also facilitate cross-feeding partnerships. In this review, we elucidate the mechanisms by which specific bacteria degrade polysaccharides, and how polysaccharide metabolism shapes the microbial ecosystem through cross-feeding. Furthermore, we explore how selectively promoting microbial ecosystems and their metabolites contributes to improvements in the integrity of the intestinal barrier.
Collapse
Affiliation(s)
- Jiantao Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Kailong Qin
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Qianggang Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaojun Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
12
|
Wong JPH, Chillier N, Fischer-Stettler M, Zeeman SC, Battin TJ, Persat A. Bacteroides thetaiotaomicron metabolic activity decreases with polysaccharide molecular weight. mBio 2024; 15:e0259923. [PMID: 38376161 PMCID: PMC10936149 DOI: 10.1128/mbio.02599-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/26/2024] [Indexed: 02/21/2024] Open
Abstract
The human colon hosts hundreds of commensal bacterial species, many of which ferment complex dietary carbohydrates. To transform these fibers into metabolically accessible compounds, microbes often express a series of dedicated enzymes homologous to the starch utilization system (Sus) encoded in polysaccharide utilization loci (PULs). The genome of Bacteroides thetaiotaomicron (Bt), a common member of the human gut microbiota, encodes nearly 100 PULs, conferring a strong metabolic versatility. While the structures and functions of individual enzymes within the PULs have been investigated, little is known about how polysaccharide complexity impacts the function of Sus-like systems. We here show that the activity of Sus-like systems depends on polysaccharide size, ultimately impacting bacterial growth. We demonstrate the effect of size-dependent metabolism in the context of dextran metabolism driven by the specific utilization system PUL48. We find that as the molecular weight of dextran increases, Bt growth rate decreases and lag time increases. At the enzymatic level, the dextranase BT3087, a glycoside hydrolase (GH) belonging to the GH family 66, is the main GH for dextran utilization, and BT3087 and BT3088 contribute to Bt dextran metabolism in a size-dependent manner. Finally, we show that the polysaccharide size-dependent metabolism of Bt impacts its metabolic output in a way that modulates the composition of a producer-consumer community it forms with Bacteroides fragilis. Altogether, our results expose an overlooked aspect of Bt metabolism that can impact the composition and diversity of microbiota. IMPORTANCE Polysaccharides are complex molecules that are commonly found in our diet. While humans lack the ability to degrade many polysaccharides, their intestinal microbiota contain bacterial commensals that are versatile polysaccharide utilizers. The gut commensal Bacteroides thetaiotaomicron dedicates roughly 20% of their genomes to the expression of polysaccharide utilization loci for the broad range utilization of polysaccharides. Although it is known that different polysaccharide utilization loci are dedicated to the degradation of specific polysaccharides with unique glycosidic linkages and monosaccharide compositions, it is often overlooked that specific polysaccharides may also exist in various molecular weights. These different physical attributes may impact their processability by starch utilization system-like systems, leading to differing growth rates and nutrient-sharing properties at the community level. Therefore, understanding how molecular weight impacts utilization by gut microbe may lead to the potential design of novel precision prebiotics.
Collapse
Affiliation(s)
- Jeremy P. H. Wong
- Institute of Bioengineering and Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Sion, Switzerland
| | - Noémie Chillier
- Institute of Bioengineering and Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | | | - Tom J. Battin
- School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Sion, Switzerland
| | - Alexandre Persat
- Institute of Bioengineering and Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
13
|
Liang Y, Yu W, Wang H, Yao L, He Z, Sun M, Feng T, Yu C, Yue H. Flash extraction of ulvan polysaccharides from marine green macroalga Ulva linza and evaluation of its antioxidant and gut microbiota modulation activities. Int J Biol Macromol 2024; 262:130174. [PMID: 38360235 DOI: 10.1016/j.ijbiomac.2024.130174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/29/2024] [Accepted: 02/12/2024] [Indexed: 02/17/2024]
Abstract
In this study, flash extraction was used to rapidly extract water-soluble polysaccharides from Ulva linza. The optimal extraction process for the flash extraction was determined by Box-Behnken design with extraction temperature 80 °C, extraction time 117 s, liquid-solid ratio 46:1 (mL/g) and a corresponding yield of 18.5 %. The crude Ulva linza polysaccharides (CULP) were subsequently isolated by chromatography technology to obtain purified Ulva linza polysaccharide (ULP) and characterized by monosaccharide composition and molecular weight determination analysis. Furthermore, the antioxidant bioactivity of ULP was studied and the results revealed that it had a good scavenging effect on DPPH, ABTS and OH, with IC50 values of 149.2 μg/mL, 252.5 μg/mL and 1073 μg/mL, respectively. After in vitro fermentation by human fecal microbiota, the pH value of fermentation culture significantly decreased to 5.06, suggesting that ULP could be hydrolyzed and utilized by gut microbiota. The abundance of beneficial bacteria including Bacteroides, Parabacteroides and Faecalibacterium was improved. Meanwhile, the relative abundance of Prevotella, Blautia and Ruminococcus was decreased, and the low ratio of these organisms might reveal positive effects on maintaining the balance of gut microbial biodiversity. These results suggested that the composition of the human gut microbiota could be modulated by ULP, and ULP might possess the potential to maintain gut homeostasis and improve human intestinal health.
Collapse
Affiliation(s)
- Yi Liang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China; Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, 100 Guilin Road, Xuhui District, Shanghai 200234, China
| | - Wanguo Yu
- Key Laboratory for Processing of Sugar Resources of Guangxi Higher Education Institutes, Guangxi University of Science and Technology, Liuzhou 545006, China; Guangxi Key Laboratory of Green Processing of Sugar Resources, Guangxi University of Science and Technology, Liuzhou 545006, China
| | - Huatian Wang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Lingyun Yao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China.
| | - Zengyang He
- Technology Centre of China Tobacco Anhui Industrial Co., Ltd., Hefei 230088, China
| | - Min Sun
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Tao Feng
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Chuang Yu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Heng Yue
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China.
| |
Collapse
|
14
|
Hrmova M, Zimmer J, Bulone V, Fincher GB. Enzymes in 3D: Synthesis, remodelling, and hydrolysis of cell wall (1,3;1,4)-β-glucans. PLANT PHYSIOLOGY 2023; 194:33-50. [PMID: 37594400 PMCID: PMC10762513 DOI: 10.1093/plphys/kiad415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 06/09/2023] [Indexed: 08/19/2023]
Abstract
Recent breakthroughs in structural biology have provided valuable new insights into enzymes involved in plant cell wall metabolism. More specifically, the molecular mechanism of synthesis of (1,3;1,4)-β-glucans, which are widespread in cell walls of commercially important cereals and grasses, has been the topic of debate and intense research activity for decades. However, an inability to purify these integral membrane enzymes or apply transgenic approaches without interpretative problems associated with pleiotropic effects has presented barriers to attempts to define their synthetic mechanisms. Following the demonstration that some members of the CslF sub-family of GT2 family enzymes mediate (1,3;1,4)-β-glucan synthesis, the expression of the corresponding genes in a heterologous system that is free of background complications has now been achieved. Biochemical analyses of the (1,3;1,4)-β-glucan synthesized in vitro, combined with 3-dimensional (3D) cryogenic-electron microscopy and AlphaFold protein structure predictions, have demonstrated how a single CslF6 enzyme, without exogenous primers, can incorporate both (1,3)- and (1,4)-β-linkages into the nascent polysaccharide chain. Similarly, 3D structures of xyloglucan endo-transglycosylases and (1,3;1,4)-β-glucan endo- and exohydrolases have allowed the mechanisms of (1,3;1,4)-β-glucan modification and degradation to be defined. X-ray crystallography and multi-scale modeling of a broad specificity GH3 β-glucan exohydrolase recently revealed a previously unknown and remarkable molecular mechanism with reactant trajectories through which a polysaccharide exohydrolase can act with a processive action pattern. The availability of high-quality protein 3D structural predictions should prove invaluable for defining structures, dynamics, and functions of other enzymes involved in plant cell wall metabolism in the immediate future.
Collapse
Affiliation(s)
- Maria Hrmova
- School of Agriculture, Food and Wine, and the Waite Research Institute, University of Adelaide, Glen Osmond, South Australia 5064, Australia
| | - Jochen Zimmer
- Howard Hughes Medical Institute and Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Vincent Bulone
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia 5042, Australia
- Division of Glycoscience, Department of Chemistry, KTH Royal Institute of Technology, Alba Nova University Centre, 106 91 Stockholm, Sweden
| | - Geoffrey B Fincher
- School of Agriculture, Food and Wine, and the Waite Research Institute, University of Adelaide, Glen Osmond, South Australia 5064, Australia
| |
Collapse
|
15
|
Low KE, Tingley JP, Klassen L, King ML, Xing X, Watt C, Hoover SER, Gorzelak M, Abbott DW. Carbohydrate flow through agricultural ecosystems: Implications for synthesis and microbial conversion of carbohydrates. Biotechnol Adv 2023; 69:108245. [PMID: 37652144 DOI: 10.1016/j.biotechadv.2023.108245] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/10/2023] [Accepted: 08/25/2023] [Indexed: 09/02/2023]
Abstract
Carbohydrates are chemically and structurally diverse biomolecules, serving numerous and varied roles in agricultural ecosystems. Crops and horticulture products are inherent sources of carbohydrates that are consumed by humans and non-human animals alike; however carbohydrates are also present in other agricultural materials, such as soil and compost, human and animal tissues, milk and dairy products, and honey. The biosynthesis, modification, and flow of carbohydrates within and between agricultural ecosystems is intimately related with microbial communities that colonize and thrive within these environments. Recent advances in -omics techniques have ushered in a new era for microbial ecology by illuminating the functional potential for carbohydrate metabolism encoded within microbial genomes, while agricultural glycomics is providing fresh perspective on carbohydrate-microbe interactions and how they influence the flow of functionalized carbon. Indeed, carbohydrates and carbohydrate-active enzymes are interventions with unrealized potential for improving carbon sequestration, soil fertility and stability, developing alternatives to antimicrobials, and circular production systems. In this manner, glycomics represents a new frontier for carbohydrate-based biotechnological solutions for agricultural systems facing escalating challenges, such as the changing climate.
Collapse
Affiliation(s)
- Kristin E Low
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Jeffrey P Tingley
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Leeann Klassen
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Marissa L King
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Xiaohui Xing
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Caitlin Watt
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Shelley E R Hoover
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada
| | - Monika Gorzelak
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - D Wade Abbott
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada.
| |
Collapse
|
16
|
Zhao T, Yue H, Peng J, Nie Y, Wu L, Li T, Niu W, Li C, Zhang Z, Li M, Ding K. Degradation of xylan by human gut Bacteroides xylanisolvens XB1A. Carbohydr Polym 2023; 315:121005. [PMID: 37230606 DOI: 10.1016/j.carbpol.2023.121005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 04/26/2023] [Accepted: 05/08/2023] [Indexed: 05/27/2023]
Abstract
Although many polysaccharides utilization loci (PULs) have been investigated by genomics and transcriptomics, the detailed functional characterization lags severely behind. We hypothesize that PULs on the genome of Bacteroides xylanisolvens XB1A (BX) dictate the degradation of complex xylan. To address, xylan S32 isolated from Dendrobium officinale was employed as a sample polysaccharide. We firstly showed that xylan S32 promoted the growth of BX which might degrade xylan S32 into monosaccharides and oligosaccharides. We further showed that this degradation was performed mainly via two discrete PULs in the genome of BX. Briefly, a new surface glycan binding protein (SGBP) BX_29290SGBP was identified, and shown to be essential for the growth of BX on xylan S32. Two cell surface endo-xylanases Xyn10A and Xyn10B cooperated to deconstruct the xylan S32. Intriguingly, genes encoding Xyn10A and Xyn10B were mainly distributed in the genome of Bacteroides spp. In addition, BX metabolized xylan S32 to produce short chain fatty acids (SCFAs) and folate. Taken together, these findings provide new evidence to understand the food source of BX and the BX-directed intervention strategy by xylan.
Collapse
Affiliation(s)
- Tingting Zhao
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu Province 210029, PR China; Carbohydrate-Based Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China
| | - Han Yue
- Carbohydrate-Based Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China
| | - Junfeng Peng
- Department of Pancreatic-biliary Surgery, Naval Medical University, Shanghai, PR China
| | - Yingmin Nie
- Carbohydrate-Based Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; University of Chinese Academy of Science, No.19A Yuquan Road, Beijing 100049, PR China
| | - Longzhen Wu
- Carbohydrate-Based Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China
| | - Tingting Li
- Carbohydrate-Based Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China
| | - Wei Niu
- Carbohydrate-Based Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China
| | - Chuan Li
- Carbohydrate-Based Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China
| | - Zhengqing Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China.
| | - Meixia Li
- Carbohydrate-Based Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China.
| | - Kan Ding
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu Province 210029, PR China; Carbohydrate-Based Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; University of Chinese Academy of Science, No.19A Yuquan Road, Beijing 100049, PR China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, SSIP Healthcare and Medicine Demonstration Zone, Zhongshan Tsuihang New District, Zhongshan 528400, PR China.
| |
Collapse
|
17
|
Jiang P, Kang Z, Zhao S, Meng N, Liu M, Tan B. Effect of Dynamic High-Pressure Microfluidizer on Physicochemical and Microstructural Properties of Whole-Grain Oat Pulp. Foods 2023; 12:2747. [PMID: 37509839 PMCID: PMC10378919 DOI: 10.3390/foods12142747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
By avoiding the filtration step and utilizing the whole components of oats, the highest utilization rate of raw materials, improving the nutritional value of products and reducing environmental pollution, can be achieved in the production of whole-grain oat drinks. This study innovatively introduced a dynamic high-pressure microfluidizer (DHPM) into the processing of whole-grain oat pulp, which aimed to achieve the efficient crushing, homogenizing and emulsification of starch, dietary fiber and other substances. Due to DHPM processing, the instability index and slope value were reduced, whereas the β-glucan content, soluble protein content and soluble dietary fiber content were increased. In the samples treated with a pressure of 120 MPa and 150 MPa, 59% and 67% more β-glucan content was released, respectively. The soluble dietary fiber content in the samples treated with a pressure of 120 MPa and 150 MPa was increased by 44.8% and 43.2%, respectively, compared with the sample treated with a pressure of 0 MPa. From the perspective of the relative stability of the sample and nutrient enhancement, the processing pressure of 120 MPa was a good choice. In addition, DHPM processing effectively reduced the average particle size and the relaxation time of the water molecules of whole-grain oat pulp, whereas it increased the apparent viscosity of whole-grain oat pulp; all of the above changes alleviated the gravitational subsidence of particles to a certain extent, and thus the overall stability of the system was improved. Furthermore, CLSM and AFM showed that the samples OM-120 and OM-150 had a more uniform and stable structural system as a whole. This study could provide theoretical guidance for the development of a whole-grain oat drink with improved quality and consistency.
Collapse
Affiliation(s)
- Ping Jiang
- Institute of Cereal and Oil Science and Technology, Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Ziyue Kang
- Institute of Cereal and Oil Science and Technology, Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Su Zhao
- Institute of Cereal and Oil Science and Technology, Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Ning Meng
- Institute of Cereal and Oil Science and Technology, Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Ming Liu
- Institute of Cereal and Oil Science and Technology, Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Bin Tan
- Institute of Cereal and Oil Science and Technology, Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| |
Collapse
|
18
|
Strain R, Tran TT, Mills S, Stanton C, Ross RP. A pilot study of dietary fibres on pathogen growth in an ex vivo colonic model reveals their potential ability to limit vancomycin-resistant Enterococcus expansion. MICROBIOME RESEARCH REPORTS 2023; 2:22. [PMID: 38046819 PMCID: PMC10688796 DOI: 10.20517/mrr.2022.14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 03/15/2023] [Accepted: 06/06/2023] [Indexed: 12/05/2023]
Abstract
Aim: Dietary fibre is important for shaping gut microbiota. The aim of this pilot study was to investigate the impact of dietary fibres on pathogen performance in the presence of gut microbiota. Methods: In an ex vivo gut model, pooled faecal samples were spiked with a cocktail of representative gastrointestinal pathogens and fermented with yeast β-glucan for 24 hours, after which 16S rRNA amplicon sequencing and short-chain and branched-chain fatty acid (SCFA and BCFA) analyses were performed. In addition, oat β-glucan, arabinoxylan, yeast β-glucan, and galactooligosaccharides were each tested against individual representative pathogens and pathogen growth was assessed via qPCR. Glucose served as a control carbon source. Results: Based on 16S rRNA amplicon sequencing, yeast β-glucan selected for higher proportions of Bacteroides (P = 0.0005, ~6 fold) and Clostridia (P = 0.005, ~3.6 fold) while species of Escherichia/Shigella (P = 0.021, ~2.8 fold) and Lactobacillus (P = 0.007, ~ 15.7-fold) were higher in glucose. Pathogen relative abundance did not differ between glucose and yeast β-glucan. In the absence of pathogens, higher production of BCFAs (P = 0.002) and SCFAs (P = 0.002) fatty acids was observed for fibre group(s). For individual pathogens, yeast β-glucan increased growth of Escherichia coli, Salmonella typhimurium, and Listeria monocytogenes (P < 0.05), arabinoxylan increased S. typhimurium (P < 0.05). Tested fibres decreased vancomycin-resistant Enterococcus faecium (P < 0.05), with yeast β-glucan causing a 1-log reduction (P < 0.01), while galactooligosaccharides decreased L. monocytogenes (P < 0.05). Conclusion: Tested fibres differentially influenced the growth of pathogens, but yeast β-glucan could represent a dietary strategy to help limit vancomycin-resistant enterococci (VRE) expansion in the gut.
Collapse
Affiliation(s)
- Ronan Strain
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork P61C996, Ireland
- APC Microbiome Ireland, University College Cork, Co. Cork T12YT20, Ireland
| | - Tam T.T. Tran
- APC Microbiome Ireland, University College Cork, Co. Cork T12YT20, Ireland
| | - Susan Mills
- APC Microbiome Ireland, University College Cork, Co. Cork T12YT20, Ireland
| | - Catherine Stanton
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork P61C996, Ireland
- APC Microbiome Ireland, University College Cork, Co. Cork T12YT20, Ireland
| | - R. Paul Ross
- APC Microbiome Ireland, University College Cork, Co. Cork T12YT20, Ireland
- Microbiology Department, University College Cork, Co. Cork T12TP07, Ireland
| |
Collapse
|
19
|
Yu L, Gao Y, Ye Z, Duan H, Zhao J, Zhang H, Narbad A, Tian F, Zhai Q, Chen W. Interaction of beta-glucans with gut microbiota: Dietary origins, structures, degradation, metabolism, and beneficial function. Crit Rev Food Sci Nutr 2023; 64:9884-9909. [PMID: 37272431 DOI: 10.1080/10408398.2023.2217727] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Beta-glucan (BG), a polysaccharide comprised of interfacing glucose monomers joined via beta-glycosidic linkages, can be defined as a type of dietary fiber with high specificity based on its interaction with the gut microbiota. It can induce similar interindividual microbiota responses, thereby having beneficial effects on the human body. In this paper, we review the four main sources of BG (cereals, fungi, algae, and bacteria) and their differences in structure and content. The interaction of BG with gut microbiota and the resulting health effects have been highlighted, including immune enhancement, regulation of serum cholesterol and insulin levels, alleviation of obesity and improvement of cognitive disorders. Finally, the application of BG in food products and its beneficial effects on the gut microbiota of consumers were discussed. Although some of the mechanisms of action remain unclear, revealing the beneficial functions of BG from the perspective of gut microbiota can help provide theoretical support for the development of diets that target the regulation of microbiota.
Collapse
Affiliation(s)
- Leilei Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, Jiangsu, China
| | - Yuhang Gao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Zi Ye
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Hui Duan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
| | - Arjan Narbad
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, Jiangsu, China
- Gut Health and Microbiome Institute Strategic Programme, Quadram Institute Bioscience, Norwich, UK
| | - Fengwei Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, Jiangsu, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, Jiangsu, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
20
|
Fernandez-Julia P, Black GW, Cheung W, Van Sinderen D, Munoz-Munoz J. Fungal β-glucan-facilitated cross-feeding activities between Bacteroides and Bifidobacterium species. Commun Biol 2023; 6:576. [PMID: 37253778 DOI: 10.1038/s42003-023-04970-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 05/23/2023] [Indexed: 06/01/2023] Open
Abstract
The human gut microbiota (HGM) is comprised of a very complex network of microorganisms, which interact with the host thereby impacting on host health and well-being. β-glucan has been established as a dietary polysaccharide supporting growth of particular gut-associated bacteria, including members of the genera Bacteroides and Bifidobacterium, the latter considered to represent beneficial or probiotic bacteria. However, the exact mechanism underpinning β-glucan metabolism by gut commensals is not fully understood. We show that mycoprotein represents an excellent source for β-glucan, which is consumed by certain Bacteroides species as primary degraders, such as Bacteroides cellulosilyticus WH2. The latter bacterium employs two extracellular, endo-acting enzymes, belonging to glycoside hydrolase families 30 and 157, to degrade mycoprotein-derived β-glucan, thereby releasing oligosaccharides into the growth medium. These released oligosaccharides can in turn be utilized by other gut microbes, such as Bifidobacterium and Lactiplantibacillus, which thus act as secondary degraders. We used a cross-feeding approach to track how both species are able to grow in co-culture.
Collapse
Affiliation(s)
- Pedro Fernandez-Julia
- Microbial Enzymology Lab, Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne, NE1 8ST, Tyne & Wear, England, UK
| | - Gary W Black
- Microbial Enzymology Lab, Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne, NE1 8ST, Tyne & Wear, England, UK
| | - William Cheung
- Microbial Enzymology Lab, Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne, NE1 8ST, Tyne & Wear, England, UK
| | - Douwe Van Sinderen
- School of Microbiology & APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Jose Munoz-Munoz
- Microbial Enzymology Lab, Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne, NE1 8ST, Tyne & Wear, England, UK.
| |
Collapse
|
21
|
Li J, Chen X, Zhao S, Chen J. Arsenic-Containing Medicine Treatment Disturbed the Human Intestinal Microbial Flora. TOXICS 2023; 11:toxics11050458. [PMID: 37235272 DOI: 10.3390/toxics11050458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023]
Abstract
Human intestinal microbiome plays vital role in maintaining intestinal homeostasis and interacting with xenobiotics. Few investigations have been conducted to understand the effect of arsenic-containing medicine exposure on gut microbiome. Most animal experiments are onerous in terms of time and resources and not in line with the international effort to reduce animal experiments. We explored the overall microbial flora by 16S rRNA genes analysis in fecal samples from acute promyelocytic leukemia (APL) patients treated with arsenic trioxide (ATO) plus all-trans retinoic acid (ATRA). Gut microbiomes were found to be overwhelmingly dominated by Firmicutes and Bacteroidetes after taking medicines containing arsenic in APL patients. The fecal microbiota composition of APL patients after treatment showed lower diversity and uniformity shown by the alpha diversity indices of Chao, Shannon, and Simpson. Gut microbiome operational taxonomic unit (OTU) numbers were associated with arsenic in the feces. We evaluated Bifidobacterium adolescentis and Lactobacillus mucosae to be a keystone in APL patients after treatment. Bacteroides at phylum or genus taxonomic levels were consistently affected after treatment. In the most common gut bacteria Bacteroides fragilis, arsenic resistance genes were significantly induced by arsenic exposure in anaerobic pure culture experiments. Without an animal model, without taking arsenicals passively, the results evidence that arsenic exposure by drug treatment is not only associated with alterations in intestinal microbiome development at the abundance and diversity level, but also induced arsenic biotransformation genes (ABGs) at the function levels which may even extend to arsenic-related health outcomes in APL.
Collapse
Affiliation(s)
- Jiaojiao Li
- College of Ecology and Environmental Sciences & Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming 650500, China
| | - Xinshuo Chen
- College of Ecology and Environmental Sciences & Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming 650500, China
| | - Shixiang Zhao
- Hematology Department of First People's Hospital of Yunnan Province, Kunming 650032, China
| | - Jian Chen
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
- Institute of Environmental Remediation and Human Health, College of Ecology and Environment, Southwest Forestry University, Kunming 650224, China
| |
Collapse
|
22
|
Cai M, Zhu H, Xu L, Wang J, Xu J, Li Z, Yang K, Wu J, Sun P. Structure, anti-fatigue activity and regulation on gut microflora in vivo of ethanol-fractional polysaccharides from Dendrobium officinale. Int J Biol Macromol 2023; 234:123572. [PMID: 36754265 DOI: 10.1016/j.ijbiomac.2023.123572] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/27/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023]
Abstract
This study was to investigate the antifatigue, prebiotic effects and their relationships to the structure properties of three ethanol precipitated polysaccharides from Dendrobium officinale (EPDO), as EPDO-40, EPDO-60 and EPDO-80. EPDOs with anti-fatigue activity were screened out by forced swimming test, and blood lactic acid (BLA), blood urea nitrogen (BUN), superoxide dismutase (SOD), liver glycogen, muscle glycogen, and intestinal microflora were investigated. Results showed that purified EPDO-60, 277.3 kDa, with a backbone consisted of 4-Manp and 4-Glcp. EPDO-60 had the best anti-fatigue activity, because it could significantly prolong the forced swimming time, as well as down-regulating the levels of BLA and BUN, increasing SOD. Proportions of Bacteroidetes and Firmicutes and abundance of Lactobacillus and Bifidobacterium in gut microflora increased after treated with EPDO-60. Accordingly, EPDO-60 could affect the community structure of gut microflora, leading to promote the balance of oxidation and antioxidation, and accelerated the fatigue metabolism in vivo.
Collapse
Affiliation(s)
- Ming Cai
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China; Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, People's Republic of China.
| | - Hua Zhu
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China; Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, People's Republic of China
| | - Lei Xu
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China; Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, People's Republic of China
| | - Jian Wang
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China; Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, People's Republic of China
| | - Jing Xu
- Longevity Valley Botanical Co., Ltd., Zhejiang 321200, People's Republic of China
| | - Zhenhao Li
- Longevity Valley Botanical Co., Ltd., Zhejiang 321200, People's Republic of China
| | - Kai Yang
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China; Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, People's Republic of China
| | - Jianyong Wu
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Peilong Sun
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China; Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, People's Republic of China
| |
Collapse
|
23
|
Identifying glycan consumers in human gut microbiota samples using metabolic labeling coupled with fluorescence-activated cell sorting. Nat Commun 2023; 14:662. [PMID: 36750571 PMCID: PMC9905522 DOI: 10.1038/s41467-023-36365-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/26/2023] [Indexed: 02/09/2023] Open
Abstract
The composition and metabolism of the human gut microbiota are strongly influenced by dietary complex glycans, which cause downstream effects on the physiology and health of hosts. Despite recent advances in our understanding of glycan metabolism by human gut bacteria, we still need methods to link glycans to their consuming bacteria. Here, we use a functional assay to identify and isolate gut bacteria from healthy human volunteers that take up different glycans. The method combines metabolic labeling using fluorescent oligosaccharides with fluorescence-activated cell sorting (FACS), followed by amplicon sequencing or culturomics. Our results demonstrate metabolic labeling in various taxa, such as Prevotella copri, Collinsella aerofaciens and Blautia wexlerae. In vitro validation confirms the ability of most, but not all, labeled species to consume the glycan of interest for growth. In parallel, we show that glycan consumers spanning three major phyla can be isolated from cultures of sorted labeled cells. By linking bacteria to the glycans they consume, this approach increases our basic understanding of glycan metabolism by gut bacteria. Going forward, it could be used to provide insight into the mechanism of prebiotic approaches, where glycans are used to manipulate the gut microbiota composition.
Collapse
|
24
|
Xiang Y, Cao Y, Yang S, Ren Y, Zhao G, Li Q, Li H, Peng L. Isolation and purification of Tartary buckwheat polysaccharides and their effect on gut microbiota. Food Sci Nutr 2023; 11:408-417. [PMID: 36655103 PMCID: PMC9834889 DOI: 10.1002/fsn3.3072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/28/2022] [Accepted: 09/08/2022] [Indexed: 01/21/2023] Open
Abstract
Tartary buckwheat (Fagopyrum tataricum) is rich in polysaccharides that can be utilized by the gut microbiota (GM) and provide several health benefits. However, the mechanisms underlying the action of these polysaccharides remain unclear to date. In this study, Tartary buckwheat polysaccharides (TBP) were purified, and five fractions were obtained. The composition of these fractions was determined using ion chromatography. Different TBP components were investigated regarding their probiotic effect on three species of Bifidobacteria and Lactobacillus rhamnosus. In addition, the effect of TBP on GM and short-chain fatty acids (SCFAs) was evaluated. Results showed that the probiotic effect of TBP fraction was dependent on their composition. The polysaccharides present in different fractions had specific probiotic effects. TBP-1.0, mainly composed of fucose, glucose, and d-galactose, exhibited the strongest proliferation effect on L. rhamnosus, while TBP-W, rich in glucose, d-galactose, and fructose, had the best promoting effect on Bifidobacterium longum and Bifidobacterium adolescentis growth. Furthermore, TBP-0.2, composed of d-galacturonic acid, d-galactose, xylose, and arabinose, exhibited its highest impact on Bifidobacterium breve growth. The composition of GM was significantly altered by adding TBP during fecal fermentation, with an increased relative abundance of Lactococcus, Phascolarctobacterium, Bacteroidetes, and Shigella. Simultaneously, the level of SCFA was also significantly increased by TBP. Our findings indicate that Tartary buckwheat can provide specific dietary polysaccharide sources to modulate and maintain GM diversity. They provide a basis for Tartary buckwheat commercial utilization for GM modulation.
Collapse
Affiliation(s)
- Yue Xiang
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal IndustrializationChengdu UniversityChengduPeople's Republic of China
| | - Ya‐Nan Cao
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal IndustrializationChengdu UniversityChengduPeople's Republic of China
| | - Si‐Hui Yang
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal IndustrializationChengdu UniversityChengduPeople's Republic of China
| | - Yuan‐Hang Ren
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal IndustrializationChengdu UniversityChengduPeople's Republic of China
| | - Gang Zhao
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal IndustrializationChengdu UniversityChengduPeople's Republic of China
| | - Qiang Li
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal IndustrializationChengdu UniversityChengduPeople's Republic of China
| | - Hehe Li
- Key Laboratory of Brewing Molecular Engineering of China Light IndustryBeijing Technology and Business UniversityBeijingPeople's Republic of China
| | - Lian‐Xin Peng
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal IndustrializationChengdu UniversityChengduPeople's Republic of China
| |
Collapse
|
25
|
Li M, Wang Y, Guo C, Wang S, Zheng L, Bu Y, Ding K. The claim of primacy of human gut Bacteroides ovatus in dietary cellobiose degradation. Gut Microbes 2023; 15:2227434. [PMID: 37349961 PMCID: PMC10291918 DOI: 10.1080/19490976.2023.2227434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 06/14/2023] [Indexed: 06/24/2023] Open
Abstract
A demonstration of cellulose degrading bacterium from human gut changed our view that human cannot degrade the cellulose. However, investigation of cellulose degradation by human gut microbiota on molecular level has not been completed so far. We showed here, using cellobiose as a model that promoted the growth of human gut key members, such as Bacteroides ovatus (BO), to clarify the molecular mechanism. Our results showed that a new polysaccharide utilization locus (PUL) from BO was involved in the cellobiose capturing and degradation. Further, two new cellulases BACOVA_02626GH5 and BACOVA_02630GH5 on the cell surface performed the degradation of cellobiose into glucose were determined. The predicted structures of BACOVA_02626GH5 and BACOVA_02630GH5 were highly homologous with the cellulase from soil bacteria, and the catalytic residues were highly conservative with two glutamate residues. In murine experiment, we observed cellobiose reshaped the composition of gut microbiota and probably modified the metabolic function of bacteria. Taken together, our findings further highlight the evidence of cellulose can be degraded by human gut microbes and provide new insight in the field of investigation on cellulose.
Collapse
Affiliation(s)
- Meixia Li
- Glycochemistry and Glycobiology Lab, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Yeqing Wang
- Glycochemistry and Glycobiology Lab, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Ciliang Guo
- Glycochemistry and Glycobiology Lab, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
- University of Chinese Academy of Science, Beijing, P. R. China
| | | | | | - Yifan Bu
- Zelixir Biotech, Shanghai, P. R. China
| | - Kan Ding
- Glycochemistry and Glycobiology Lab, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
- University of Chinese Academy of Science, Beijing, P. R. China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, SSIP Healthcare and Medicine Demonstration Zone, Zhongshan, P. R. China
| |
Collapse
|
26
|
Fasogbon BM, Ademuyiwa OH, Adebo OA. Fermented foods and gut microbiome: a focus on African Indigenous fermented foods. INDIGENOUS FERMENTED FOODS FOR THE TROPICS 2023:315-331. [DOI: 10.1016/b978-0-323-98341-9.00018-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
27
|
β-glucans obtained from beer spent yeasts as functional food grade additive: Focus on biological activity. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
28
|
Fang C, Chen G, Kan J. Characterization and in vitro simulated gastrointestinal digestion and fermentation of Mentha haplocalyx polysaccharide. Int J Biol Macromol 2022; 222:360-372. [PMID: 36150573 DOI: 10.1016/j.ijbiomac.2022.09.168] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/10/2022] [Accepted: 09/19/2022] [Indexed: 11/25/2022]
Abstract
An acidic polysaccharide (PMHP-3) obtained from the Mentha haplocalyx was structurally characterized, and in vitro simulated digestion and fermentation were investigated. PMHP-3 was mainly composed of mannose, rhamnose, glucuronic acid, galacturonic acid, glucose, galactose and arabinose with molecular weight of 21.82 kDa. After digestion in saliva and simulated gastric juice, the molecular weight, reducing sugar, total sugar and uronic acid contents of PMHP-3 did not change significantly (p > 0.05). After digestion in simulated intestinal juice, the molecular weight and uronic acid content of PMHP-3 did not change significantly, and there was no free monosaccharide production, but the total sugar and reducing sugar contents slightly decreased. During fermentation, the molecular weight, carbohydrate residue and free monosaccharides of PMHP-3 were decreased, suggesting that PMHP-3 could be degraded by microorganism and metabolized into a variety the short-chain fatty acids (SCFAs) such as acetic, propionic. Meanwhile, PMHP-3 modulated the gut microbiota by reducing the ratio of Firmicutes/Bacteroidetes, promoting the proliferation of beneficial bacteria such as Bacteroidaceae and Bifidobacteriaceae, and inhibiting harmful bacteria such as Lachnospiraceae and Enterobacteriaceae. These results indicate that PMHP-3 is beneficial to the gut health and can be developed as a potential prebiotic to prevent diseases by improving intestinal health.
Collapse
Affiliation(s)
- Chuchu Fang
- College of Food Science, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400715, PR China
| | - Guangjing Chen
- Food and Pharmaceutical Engineering Institute, Guiyang University, Guiyang, Guizhou 550005, PR China.
| | - Jianquan Kan
- College of Food Science, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400715, PR China; Laboratory of Quality & Safety Risk Assessment for Agro-products on Storage and Preservation (Chongqing), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Chongqing 400715, PR China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China.
| |
Collapse
|
29
|
Wang J, Zheng Z, Yang H, Chen J, Xiao Y, Ji X, Zhang Z, He H, Ding B, Tang B. Effect of β-1,3/1,6-glucan on gut microbiota of yellow-feathered broilers. AMB Express 2022; 12:115. [PMID: 36066652 PMCID: PMC9448846 DOI: 10.1186/s13568-022-01458-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/27/2022] [Indexed: 11/10/2022] Open
Abstract
β-1,3/1,6-glucan as a prebiotic improves immune performance in animals. These functions are closely related to the effect of β-1,3/1,6-glucan on gut microbiota structure. However, the effect of β-1,3/1,6-glucan on the gut microbiota structure of broilers is unclear. The aim of this study was to confirm the effects of β-1,3/1,6-glucan on the cecal microflora structure of yellow-feathered broilers. This study monitored the antimicrobial resistance (AMR) level of Escherichia coli in feces of yellow-feathered broilers by standard broth dilution method and mastered the AMR level of chickens selected. The effects of β-1,3/1,6-glucan on gut microbiota were investigated by 16S rRNA sequencing. The results showed that the number of isolated multidrug-resistant E. coli strains accounted for 98.41%. At 14, 21, and 28 days of age, supplemented of 0.2%, 0.1%, and 0.1% β-1,3/1,6-glucan in yellow-feathered broiler diets significantly altered gut microbial composition, and beneficial bacteria Alistipes, Bacteroides and Faecalibacterium were significantly increased. These findings provide guidance and recommendations for β-1,3/1,6-glucan as a broiler feed additive to improve the growth of broilers.
Collapse
Affiliation(s)
- Jingge Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products & Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.,College of Agriculture and Animal Husbandry, Qinghai University, Xining, 810016, China
| | - Zibin Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products & Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.,Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Hua Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products & Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Jie Chen
- Zhejiang Provincial Center for Animal Disease Prevention and Control, Hangzhou, 310020, China
| | - Yingping Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products & Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xiaofeng Ji
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products & Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Zhenming Zhang
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, 810016, China
| | - Hailian He
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, 810016, China
| | - Baoan Ding
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, 810016, China.
| | - Biao Tang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products & Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| |
Collapse
|
30
|
Cheng J, Hu J, Geng F, Nie S. Bacteroides utilization for dietary polysaccharides and their beneficial effects on gut health. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2022.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
31
|
Sun J, Zhou R, Qian H, Li Y, Zhang H, Qi X, Wang L. Investigation the influences of water-extractable and water-unextractable arabinoxylan on the quality of whole wheat you-tiao and its mechanism. Food Chem 2022; 386:132809. [PMID: 35364498 DOI: 10.1016/j.foodchem.2022.132809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 03/01/2022] [Accepted: 03/23/2022] [Indexed: 11/17/2022]
Abstract
This research aimed to investigate the effects of water-extractable arabinoxylan (WEAX) and water-unextractable arabinoxylan (WUAX) on the quality of you-tiao. In this work, the interactions between different amounts of AX and wheat gluten were extensively evaluated during frying treatment. The results showed that WEAX impaired the surface hydrophobicity of gluten and improved its solubility, while WUAX had the opposite effect. The fluorescence spectra revealed that WEAX and WUAX changed the conformation of gluten molecules. Besides, chemical interaction measurement indicated that WEAX and WUAX prevented the formation of partial disulfide bonds and inhibited the thermal aggregation of gluten proteins. In summary, the results indicated that WEAX partly improved the properties of you-tiao. Meanwhile, WUAX reduced the dough's oil content and specific volume, resulting in you-tiao with poor quality.
Collapse
Affiliation(s)
- Juan Sun
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Ruoxin Zhou
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Haifeng Qian
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Yan Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Hui Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Xiguang Qi
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Li Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
| |
Collapse
|
32
|
Wang R, Zhang Z, Aihemaitijiang S, Ye C, Halimulati M, Huang X, Qin H. Oat β Glucan Ameliorates Renal Function and Gut Microbiota in Diabetic Rats. Front Nutr 2022; 9:875060. [PMID: 35614982 PMCID: PMC9125244 DOI: 10.3389/fnut.2022.875060] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 04/07/2022] [Indexed: 11/13/2022] Open
Abstract
Diabetic nephropathy is a severe complication of diabetes and the leading cause of end-stage renal disease and death. Therefore, we must find effective prevention and treatment approaches to the problem. Oat has a long history of use for its nutritional and medicinal properties, such as maintaining physiological blood glucose levels. Oat β glucan is one of the major bioactive substances produced by oat. However, the protective effects of oat β glucan on diabetic nephropathy are still unclear. This study generated a rat model of diabetic nephropathy to explore the potent therapeutic ability and mechanism of oat β glucan in renal function by 16S rRNA genes sequencing. Diabetic nephropathy model was established in forty rats by left nephrectomy and single intraperitoneal injection of streptozotocin. These rats were randomly divided into the model group and three oat β glucan intervention groups. Twenty rats underwent sham operation and were randomly divided into normal control group and oat β glucan control group. Animals were treated by oral gavage for 8 consecutive weeks. The results showed that oat β glucan reduced blood glucose level and improved renal function (P < 0.05). Oat β glucan significantly improved serum inflammatory levels (P < 0.05). The diversity of intestinal microflora in diabetic nephropathy rats decreased with time prolongation, while oat β-glucan reversed the result. Compared with the model group at week 8, the abundances of Eubacterium, Butyricicoccus, and Ruminococcus were elevated significantly after oat β glucan intervention (P < 0.05). Correlation analysis indicated that abundances of Eubacterium, Butyricicoccus, and Ruminococcus were significantly negatively correlated with the levels of renal impairment markers. In summary, the findings of this study showed that oat β glucan can increase the diversity of intestinal flora, regulate the composition of intestinal flora, modulate intestinal flora metabolism, alleviate the inflammatory response, and further delay the development of diabetic nephropathy. Therefore, oat β glucan has the potential to be developed into the novel and safe drug for diabetic nephropathy.
Collapse
Affiliation(s)
- Ruoyu Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, China
- Beijing's Key Laboratory of Food Safety Toxicology Research and Evaluation, Beijing, China
| | - Zhaofeng Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, China
- Beijing's Key Laboratory of Food Safety Toxicology Research and Evaluation, Beijing, China
- *Correspondence: Zhaofeng Zhang
| | - Sumiya Aihemaitijiang
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, China
- Beijing's Key Laboratory of Food Safety Toxicology Research and Evaluation, Beijing, China
| | - Chen Ye
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, China
- Beijing's Key Laboratory of Food Safety Toxicology Research and Evaluation, Beijing, China
| | - Mairepaiti Halimulati
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, China
- Beijing's Key Laboratory of Food Safety Toxicology Research and Evaluation, Beijing, China
| | - Xiaojie Huang
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, China
- Beijing's Key Laboratory of Food Safety Toxicology Research and Evaluation, Beijing, China
| | - Haoyuan Qin
- Department of Nutrition and Food Studies, Steinhardt School, New York University, New York, NY, United States
| |
Collapse
|
33
|
Hiengrach P, Visitchanakun P, Finkelman MA, Chancharoenthana W, Leelahavanichkul A. More Prominent Inflammatory Response to Pachyman than to Whole-Glucan Particle and Oat-β-Glucans in Dextran Sulfate-Induced Mucositis Mice and Mouse Injection through Proinflammatory Macrophages. Int J Mol Sci 2022; 23:4026. [PMID: 35409384 PMCID: PMC8999416 DOI: 10.3390/ijms23074026] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/28/2022] [Accepted: 04/01/2022] [Indexed: 02/07/2023] Open
Abstract
(1→3)-β-D-glucans (BG) (the glucose polymers) are recognized as pathogen motifs, and different forms of BGs are reported to have various effects. Here, different BGs, including Pachyman (BG with very few (1→6)-linkages), whole-glucan particles (BG with many (1→6)-glycosidic bonds), and Oat-BG (BG with (1→4)-linkages), were tested. In comparison with dextran sulfate solution (DSS) alone in mice, DSS with each of these BGs did not alter the weight loss, stool consistency, colon injury (histology and cytokines), endotoxemia, serum BG, and fecal microbiome but Pachyman-DSS-treated mice demonstrated the highest serum cytokine elicitation (TNF-α and IL-6). Likewise, a tail vein injection of Pachyman together with intraperitoneal lipopolysaccharide (LPS) induced the highest levels of these cytokines at 3 h post-injection than LPS alone or LPS with other BGs. With bone marrow-derived macrophages, BG induced only TNF-α (most prominent with Pachyman), while LPS with BG additively increased several cytokines (TNF-α, IL-6, and IL-10); inflammatory genes (iNOS, IL-1β, Syk, and NF-κB); and cell energy alterations (extracellular flux analysis). In conclusion, Pachyman induced the highest LPS proinflammatory synergistic effect on macrophages, followed by WGP, possibly through Syk-associated interactions between the Dectin-1 and TLR-4 signal transduction pathways. Selection of the proper form of BGs for specific clinical conditions might be beneficial.
Collapse
Affiliation(s)
- Pratsanee Hiengrach
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Chulalongkorn University, Bangkok 10330, Thailand; (P.H.); (P.V.)
| | - Peerapat Visitchanakun
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Chulalongkorn University, Bangkok 10330, Thailand; (P.H.); (P.V.)
| | | | - Wiwat Chancharoenthana
- Tropical Nephrology Research Unit, Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
- Tropical Immunology and Translational Research Unit, Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Asada Leelahavanichkul
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Chulalongkorn University, Bangkok 10330, Thailand; (P.H.); (P.V.)
- Nephrology Unit, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
34
|
Tian B, Geng Y, Xu T, Zou X, Mao R, Pi X, Wu W, Huang L, Yang K, Zeng X, Sun P. Digestive Characteristics of Hericium erinaceus Polysaccharides and Their Positive Effects on Fecal Microbiota of Male and Female Volunteers During in vitro Fermentation. Front Nutr 2022; 9:858585. [PMID: 35433782 PMCID: PMC9008368 DOI: 10.3389/fnut.2022.858585] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 02/15/2022] [Indexed: 12/12/2022] Open
Abstract
Hericium erinaceus polysaccharides (HEPs) have attracted widespread attention in regulating gut microbiota (GM). To investigate digestibility and fermentation of HEPs and their effects on GM composition, three polysaccharide fractions, namely, HEP-30, HEP-50, and HEP-70, were fractionally precipitated with 30%, 50%, and 70% ethanol concentrations (v/v) from hot water-soluble extracts of Hericium erinaceus, respectively. Three kinds of prepared HEPs were structurally characterized and simulated gastrointestinal digestion, and their effects on human fecal microbiota fermentations of male and female and short-chain fatty acid (SCFA) production in vitro were clarified. Under digestive conditions simulating saliva, stomach, and small intestine, HEPs were not significantly influenced and safely reached the distal intestine. After 24 h of in vitro fermentation, the content of SCFAs was significantly enhanced (p < 0.05), and the retention rates of total and reducing sugars and pH value were significantly decreased (p < 0.05). Thus, HEPs could be utilized by GM, especially HEP-50, and enhanced the relative abundance of SCFA-producing bacteria, e.g., Bifidobacterium, Faecalibacterium, Blautia, Butyricicoccus, and Lactobacillus. Furthermore, HEPs reduced the relative abundances of opportunistic pathogenic bacteria, e.g., Escherichia-Shigella, Klebsiella, and Enterobacter. This study suggests that gradual ethanol precipitation is available for the preparation of polysaccharides from Hericium erinaceus, and the extracted polysaccharide could be developed as functional foods with great development value.
Collapse
Affiliation(s)
- Baoming Tian
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Yan Geng
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Tianrui Xu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Xianguo Zou
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Rongliang Mao
- Changshan Haofeng Agricultural Development Co., Ltd., Quzhou, China
| | - Xionge Pi
- Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Weicheng Wu
- Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Liangshui Huang
- Research Institute of Changshan Tianle Edible Fungus, Quzhou, China
| | - Kai Yang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Xiaoxiong Zeng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Peilong Sun
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
35
|
Wardman JF, Bains RK, Rahfeld P, Withers SG. Carbohydrate-active enzymes (CAZymes) in the gut microbiome. Nat Rev Microbiol 2022; 20:542-556. [PMID: 35347288 DOI: 10.1038/s41579-022-00712-1] [Citation(s) in RCA: 206] [Impact Index Per Article: 68.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2022] [Indexed: 12/13/2022]
Abstract
The 1013-1014 microorganisms present in the human gut (collectively known as the human gut microbiota) dedicate substantial percentages of their genomes to the degradation and uptake of carbohydrates, indicating the importance of this class of molecules. Carbohydrates function not only as a carbon source for these bacteria but also as a means of attachment to the host, and a barrier to infection of the host. In this Review, we focus on the diversity of carbohydrate-active enzymes (CAZymes), how gut microorganisms use them for carbohydrate degradation, the different chemical mechanisms of these CAZymes and the roles that these microorganisms and their CAZymes have in human health and disease. We also highlight examples of how enzymes from this treasure trove have been used in manipulation of the microbiota for improved health and treatment of disease, in remodelling the glycans on biopharmaceuticals and in the potential production of universal O-type donor blood.
Collapse
Affiliation(s)
- Jacob F Wardman
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada.,Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Rajneesh K Bains
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Peter Rahfeld
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Stephen G Withers
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada. .,Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada. .,Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
36
|
Pudlo NA, Urs K, Crawford R, Pirani A, Atherly T, Jimenez R, Terrapon N, Henrissat B, Peterson D, Ziemer C, Snitkin E, Martens EC. Phenotypic and Genomic Diversification in Complex Carbohydrate-Degrading Human Gut Bacteria. mSystems 2022; 7:e0094721. [PMID: 35166563 PMCID: PMC8845570 DOI: 10.1128/msystems.00947-21] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 01/04/2022] [Indexed: 12/20/2022] Open
Abstract
Symbiotic bacteria are responsible for the majority of complex carbohydrate digestion in the human colon. Since the identities and amounts of dietary polysaccharides directly impact the gut microbiota, determining which microorganisms consume specific nutrients is central for defining the relationship between diet and gut microbial ecology. Using a custom phenotyping array, we determined carbohydrate utilization profiles for 354 members of the Bacteroidetes, a dominant saccharolytic phylum. There was wide variation in the numbers and types of substrates degraded by individual bacteria, but phenotype-based clustering grouped members of the same species indicating that each species performs characteristic roles. The ability to utilize dietary polysaccharides and endogenous mucin glycans was negatively correlated, suggesting exclusion between these niches. By analyzing related Bacteroides ovatus/Bacteroides xylanisolvens strains that vary in their ability to utilize mucin glycans, we addressed whether gene clusters that confer this complex, multilocus trait are being gained or lost in individual strains. Pangenome reconstruction of these strains revealed a remarkably mosaic architecture in which genes involved in polysaccharide metabolism are highly variable and bioinformatics data provide evidence of interspecies gene transfer that might explain this genomic heterogeneity. Global transcriptomic analyses suggest that the ability to utilize mucin has been lost in some lineages of B. ovatus and B. xylanisolvens, which harbor residual gene clusters that are involved in mucin utilization by strains that still actively express this phenotype. Our data provide insight into the breadth and complexity of carbohydrate metabolism in the microbiome and the underlying genomic events that shape these behaviors. IMPORTANCE Nonharmful bacteria are the primary microbial symbionts that inhabit the human gastrointestinal tract. These bacteria play many beneficial roles and in some cases can modify disease states, making it important to understand which nutrients sustain specific lineages. This knowledge will in turn lead to strategies to intentionally manipulate the gut microbial ecosystem. We designed a scalable, high-throughput platform for measuring the ability of gut bacteria to utilize polysaccharides, of which many are derived from dietary fiber sources that can be manipulated easily. Our results provide paths to expand phenotypic surveys of more diverse gut bacteria to understand their functions and also to leverage dietary fibers to alter the physiology of the gut microbial community.
Collapse
Affiliation(s)
- Nicholas A. Pudlo
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Karthik Urs
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Ryan Crawford
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Ali Pirani
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Todd Atherly
- Iowa State University, Department of Animal Science, Ames, Iowa, USA
- United States Department of Agriculture Agricultural Research Station, Ames, Iowa, USA
| | - Roberto Jimenez
- University of Nebraska, Department of Food Sciences, Lincoln, Nebraska, USA
| | - Nicolas Terrapon
- Aix Marseille Univ, CNRS, UMR7257 AFMB, Marseille, France
- INRAE, USC1408 AFMB, Marseille, France
| | - Bernard Henrissat
- Aix Marseille Univ, CNRS, UMR7257 AFMB, Marseille, France
- INRAE, USC1408 AFMB, Marseille, France
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Daniel Peterson
- University of Nebraska, Department of Food Sciences, Lincoln, Nebraska, USA
- Johns Hopkins University, Department of Pathology, Baltimore, Maryland, USA
| | - Cherie Ziemer
- Iowa State University, Department of Animal Science, Ames, Iowa, USA
- United States Department of Agriculture Agricultural Research Station, Ames, Iowa, USA
| | - Evan Snitkin
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Eric C. Martens
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
37
|
Cabral L, Persinoti GF, Paixão DAA, Martins MP, Morais MAB, Chinaglia M, Domingues MN, Sforca ML, Pirolla RAS, Generoso WC, Santos CA, Maciel LF, Terrapon N, Lombard V, Henrissat B, Murakami MT. Gut microbiome of the largest living rodent harbors unprecedented enzymatic systems to degrade plant polysaccharides. Nat Commun 2022; 13:629. [PMID: 35110564 PMCID: PMC8810776 DOI: 10.1038/s41467-022-28310-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 01/14/2022] [Indexed: 12/12/2022] Open
Abstract
The largest living rodent, capybara, can efficiently depolymerize and utilize lignocellulosic biomass through microbial symbiotic mechanisms yet elusive. Herein, we elucidate the microbial community composition, enzymatic systems and metabolic pathways involved in the conversion of dietary fibers into short-chain fatty acids, a main energy source for the host. In this microbiota, the unconventional enzymatic machinery from Fibrobacteres seems to drive cellulose degradation, whereas a diverse set of carbohydrate-active enzymes from Bacteroidetes, organized in polysaccharide utilization loci, are accounted to tackle complex hemicelluloses typically found in gramineous and aquatic plants. Exploring the genetic potential of this community, we discover a glycoside hydrolase family of β-galactosidases (named as GH173), and a carbohydrate-binding module family (named as CBM89) involved in xylan binding that establishes an unprecedented three-dimensional fold among associated modules to carbohydrate-active enzymes. Together, these results demonstrate how the capybara gut microbiota orchestrates the depolymerization and utilization of plant fibers, representing an untapped reservoir of enzymatic mechanisms to overcome the lignocellulose recalcitrance, a central challenge toward a sustainable and bio-based economy.
Collapse
Affiliation(s)
- Lucelia Cabral
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, SP, Brazil
| | - Gabriela F Persinoti
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, SP, Brazil.
| | - Douglas A A Paixão
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, SP, Brazil
| | - Marcele P Martins
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, SP, Brazil
- Graduate Program in Functional and Molecular Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | - Mariana A B Morais
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, SP, Brazil
| | - Mariana Chinaglia
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, SP, Brazil
- Graduate Program in Functional and Molecular Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | - Mariane N Domingues
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, SP, Brazil
| | - Mauricio L Sforca
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, SP, Brazil
| | - Renan A S Pirolla
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, SP, Brazil
| | - Wesley C Generoso
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, SP, Brazil
| | - Clelton A Santos
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, SP, Brazil
| | - Lucas F Maciel
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, SP, Brazil
| | - Nicolas Terrapon
- The Institut National de la Recherche Agronomique, USC 1408 AFMB, 13288, Marseille, France
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, Marseille, France
| | - Vincent Lombard
- The Institut National de la Recherche Agronomique, USC 1408 AFMB, 13288, Marseille, France
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, Marseille, France
| | - Bernard Henrissat
- Department of Biotechnology and Biomedicine (DTU Bioengineering), Technical University of Denmark, 2800 Kgs, Lyngby, Denmark
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mario T Murakami
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, SP, Brazil.
| |
Collapse
|
38
|
Zhang W, Zhang X, Su Q, Tang M, Zheng H, Zhou X. Genomic features underlying the evolutionary transitions of Apibacter to honey bee gut symbionts. INSECT SCIENCE 2022; 29:259-275. [PMID: 33811731 DOI: 10.1111/1744-7917.12912] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/20/2021] [Accepted: 02/21/2021] [Indexed: 05/16/2023]
Abstract
The gut bacteria of honey bee recognized as a mutualistic partner with the insect host might have originated from a free-living or parasitic lifestyle. However, little is known about the genomic features underlying this lifestyle transition. Here we compared the genomes of bee gut bacteria Apibacter with their close relatives living in different lifestyles. We found that despite general reduction in the Apibacter genome, genes involved in amino acid synthesis and monosaccharide detoxification were retained, which is putatively beneficial to the host. Interestingly, the microaerobic Apibacter species specifically acquired genes encoding for the nitrate respiration (NAR). These together with nitrate transporter and enzymatic cofactor synthesis genes were found clustered in the genomes. The NAR system is also conserved in the cohabitating bee gut microbe Snodgrassella, although with a different structure. This convergence suggests a key role of respiratory nitrate reduction for microaerophilic microbiomes to colonize bee gut epithelium. Genes involved in lipid, histidine degradation were found partially or completely lost in Apibacter. Particularly, genes encoding for the conversion to the toxic intermediates in phenylacetate degradation, as well as other potential virulence factors, are specifically lost in Apibacter group. Antibiotic resistance genes are only sporadically distributed among Apibacter species, but are prevalent in their relatives, which may be related to the remotely living feature and less exposure to antibiotics of their bee hosts. Collectively, this study advanced our knowledge of genomic features specialized to bee gut symbionts.
Collapse
Affiliation(s)
- Wenjun Zhang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xue Zhang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Qinzhi Su
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Min Tang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Hao Zheng
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Xin Zhou
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
39
|
Yang X, Zheng M, Zhou M, Zhou L, Ge X, Pang N, Li H, Li X, Li M, Zhang J, Huang XF, Zheng K, Yu Y. Lentinan Supplementation Protects the Gut–Liver Axis and Prevents Steatohepatitis: The Role of Gut Microbiota Involved. Front Nutr 2022; 8:803691. [PMID: 35127789 PMCID: PMC8810540 DOI: 10.3389/fnut.2021.803691] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022] Open
Abstract
The microbiota–gut–liver axis has emerged as an important player in developing nonalcoholic steatohepatitis (NASH), a type of nonalcoholic fatty liver disease (NAFLD). Higher mushroom intake is negatively associated with the prevalence of NAFLD. This study examined whether lentinan, an active ingredient in mushrooms, could improve NAFLD and gut microbiota dysbiosis in NAFLD mice induced by a high-fat (HF) diet. Dietary lentinan supplementation for 15 weeks significantly improved gut microbiota dysbiosis in HF mice, evidenced by increased the abundance of phylum Actinobacteria and decreased phylum Proteobacteria and Epsilonbacteraeota. Moreover, lentinan improved intestinal barrier integrity and characterized by enhancing intestinal tight junction proteins, restoring intestinal redox balance, and reducing serum lipopolysaccharide (LPS). In the liver, lentinan attenuated HF diet-induced steatohepatitis, alteration of inflammation–insulin (NFκB-PTP1B-Akt-GSK3β) signaling molecules, and dysregulation of metabolism and immune response genes. Importantly, the antihepatic inflammation effects of lentinan were associated with improved gut microbiota dysbiosis in the treated animals, since the Spearman's correlation analysis showed that hepatic LPS-binding protein and receptor (Lbp and Tlr4) and pro- and antiinflammatory cytokine expression were significantly correlated with the abundance of gut microbiota of phylum Proteobacteria, Epsilonbacteraeota and Actinobacteria. Therefore, lentinan supplementation may be used to mitigate NAFLD by modulating the microbiota–gut–liver axis.
Collapse
Affiliation(s)
- Xiaoying Yang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Mingxuan Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Menglu Zhou
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Limian Zhou
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Xing Ge
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Ning Pang
- Tianjin Third Central Hospital, Tianjin, China
| | - Hongchun Li
- Medical Technology Institute, Xuzhou Medical University, Xuzhou, China
- Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xiangyang Li
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Mengdi Li
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Jun Zhang
- Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Xu-Feng Huang
- School of Medicine, Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, NSW, Australia
| | - Kuiyang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Yinghua Yu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
- School of Medicine, Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, NSW, Australia
- *Correspondence: Yinghua Yu
| |
Collapse
|
40
|
Mapping Molecular Recognition of β1,3-1,4-Glucans by a Surface Glycan-Binding Protein from the Human Gut Symbiont Bacteroides ovatus. Microbiol Spectr 2021; 9:e0182621. [PMID: 34817219 PMCID: PMC8612152 DOI: 10.1128/spectrum.01826-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A multigene polysaccharide utilization locus (PUL) encoding enzymes and surface carbohydrate (glycan)-binding proteins (SGBPs) was recently identified in prominent members of Bacteroidetes in the human gut and characterized in Bacteroides ovatus. This PUL-encoded system specifically targets mixed-linkage β1,3-1,4-glucans, a group of diet-derived carbohydrates that promote a healthy microbiota and have potential as prebiotics. The BoSGBPMLG-A protein encoded by the BACOVA_2743 gene is a SusD-like protein that plays a key role in the PUL’s specificity and functionality. Here, we perform a detailed analysis of the molecular determinants underlying carbohydrate binding by BoSGBPMLG-A, combining carbohydrate microarray technology with quantitative affinity studies and a high-resolution X-ray crystallography structure of the complex of BoSGBPMLG-A with a β1,3-1,4-nonasaccharide. We demonstrate its unique binding specificity toward β1,3-1,4-gluco-oligosaccharides, with increasing binding affinities up to the octasaccharide and dependency on the number and position of β1,3 linkages. The interaction is defined by a 41-Å-long extended binding site that accommodates the oligosaccharide in a mode distinct from that of previously described bacterial β1,3-1,4-glucan-binding proteins. In addition to the shape complementarity mediated by CH-π interactions, a complex hydrogen bonding network complemented by a high number of key ordered water molecules establishes additional specific interactions with the oligosaccharide. These support the twisted conformation of the β-glucan backbone imposed by the β1,3 linkages and explain the dependency on the oligosaccharide chain length. We propose that the specificity of the PUL conferred by BoSGBPMLG-A to import long β1,3-1,4-glucan oligosaccharides to the bacterial periplasm allows Bacteroidetes to outcompete bacteria that lack this PUL for utilization of β1,3-1,4-glucans. IMPORTANCE With the knowledge of bacterial gene systems encoding proteins that target dietary carbohydrates as a source of nutrients and their importance for human health, major efforts are being made to understand carbohydrate recognition by various commensal bacteria. Here, we describe an integrative strategy that combines carbohydrate microarray technology with structural studies to further elucidate the molecular determinants of carbohydrate recognition by BoSGBPMLG-A, a key protein expressed at the surface of Bacteroides ovatus for utilization of mixed-linkage β1,3-1,4-glucans. We have mapped at high resolution interactions that occur at the binding site of BoSGBPMLG-A and provide evidence for the role of key water-mediated interactions for fine specificity and affinity. Understanding at the molecular level how commensal bacteria, such as prominent members of Bacteroidetes, can differentially utilize dietary carbohydrates with potential prebiotic activities will shed light on possible ways to modulate the microbiome to promote human health.
Collapse
|
41
|
Xiao X, Zhou Y, Tan C, Bai J, Zhu Y, Zhang J, Zhou X, Zhao Y. Barley β-glucan resist oxidative stress of Caenorhabditis elegans via daf-2/daf-16 pathway. Int J Biol Macromol 2021; 193:1021-1031. [PMID: 34798183 DOI: 10.1016/j.ijbiomac.2021.11.067] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 09/27/2021] [Accepted: 11/10/2021] [Indexed: 11/27/2022]
Abstract
β-glucan is an important functional active component with relatively high content in barley. It is reported to possess various biological activities, including anti-oxidative stress, but its mechanism of action remains obscure. In the current study, C. elegans was used as an in vivo animal model to explore its anti-oxidative stress mechanism. We found that both RBG (raw barley β-glucan) and FBG (fermented barley β-glucan) could significantly reduce the ROS level in C. elegans under oxidative emergency conditions. In addition, both FBG and RBG had positive effects on SOD and CAT enzyme activity, and FBG treatment obviously reduced the MDA content in nematodes under oxidative stress. Moreover, FBG and RBG pretreatment could extend the median lifespan of C. elegans under oxidative stress. The CB1370 and CF1038 mutants further confirmed that daf-2 and daf-16 were necessary for FBG or RBG to participate in anti-oxidative stress, and the RT-PCR results also evidenced that β-glucans resist oxidative stress in C. elegans partially through the daf-2/daf-16 pathway. In summary, barley β-glucan has high potential to defense oxidative stress as a natural polysaccharide.
Collapse
Affiliation(s)
- Xiang Xiao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yurong Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Cui Tan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Juan Bai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ying Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jiayan Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xinghua Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yansheng Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
42
|
Rosa rugosa polysaccharide attenuates alcoholic liver disease in mice through the gut-liver axis. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101385] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
43
|
Golisch B, Lei Z, Tamura K, Brumer H. Configured for the Human Gut Microbiota: Molecular Mechanisms of Dietary β-Glucan Utilization. ACS Chem Biol 2021; 16:2087-2102. [PMID: 34709792 DOI: 10.1021/acschembio.1c00563] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The β-glucans are a disparate group of structurally diverse polysaccharides, whose members are widespread in human diets as components of the cell walls of plants, algae, and fungi (including yeasts), and as bacterial exopolysaccharides. Individual β-glucans from these sources have long been associated with positive effects on human health through metabolic and immunological effects. Remarkably, the β-configured glucosidic linkages that define these polysaccharides render them inaccessible to the limited repertoire of digestive enzymes encoded by the human genome. As a result, the various β-glucans become fodder for the human gut microbiota (HGM) in the lower gastrointestinal tract, where they influence community composition and metabolic output, including fermentation to short chain fatty acids (SCFAs). Only recently, however, have the specific molecular systems that enable the utilization of β-glucans by select members of the HGM been fully elucidated by combined genetic, biochemical, and structural biological approaches. In the context of β-glucan structures and their effects on human nutrition and health, we summarize here the functional characterization of individual polysaccharide utilization loci (PULs) responsible for the saccharification of mixed-linkage β(1→3)/β(1→4)-glucans, β(1→6)-glucans, β(1→3)-glucans, β(1→2)-glucans, and xyloglucans in symbiotic human gut bacteria. These exemplar PULs serve as well-defined biomarkers for the prediction of β-glucan metabolic capability in individual bacterial taxa and across the global human population.
Collapse
|
44
|
Lu S, Williams BA, Flanagan BM, Yao H, Mikkelsen D, Gidley MJ. Fermentation outcomes of wheat cell wall related polysaccharides are driven by substrate effects as well as initial faecal inoculum. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
45
|
Jain N, Tamura K, Déjean G, Van Petegem F, Brumer H. Orthogonal Active-Site Labels for Mixed-Linkage endo-β-Glucanases. ACS Chem Biol 2021; 16:1968-1984. [PMID: 33988963 DOI: 10.1021/acschembio.1c00063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Small molecule irreversible inhibitors are valuable tools for determining catalytically important active-site residues and revealing key details of the specificity, structure, and function of glycoside hydrolases (GHs). β-glucans that contain backbone β(1,3) linkages are widespread in nature, e.g., mixed-linkage β(1,3)/β(1,4)-glucans in the cell walls of higher plants and β(1,3)glucans in yeasts and algae. Commensurate with this ubiquity, a large diversity of mixed-linkage endoglucanases (MLGases, EC 3.2.1.73) and endo-β(1,3)-glucanases (laminarinases, EC 3.2.1.39 and EC 3.2.1.6) have evolved to specifically hydrolyze these polysaccharides, respectively, in environmental niches including the human gut. To facilitate biochemical and structural analysis of these GHs, with a focus on MLGases, we present here the facile chemo-enzymatic synthesis of a library of active-site-directed enzyme inhibitors based on mixed-linkage oligosaccharide scaffolds and N-bromoacetylglycosylamine or 2-fluoro-2-deoxyglycoside warheads. The effectiveness and irreversibility of these inhibitors were tested with exemplar MLGases and an endo-β(1,3)-glucanase. Notably, determination of inhibitor-bound crystal structures of a human-gut microbial MLGase from Glycoside Hydrolase Family 16 revealed the orthogonal labeling of the nucleophile and catalytic acid/base residues with homologous 2-fluoro-2-deoxyglycoside and N-bromoacetylglycosylamine inhibitors, respectively. We anticipate that the selectivity of these inhibitors will continue to enable the structural and mechanistic analyses of β-glucanases from diverse sources and protein families.
Collapse
Affiliation(s)
- Namrata Jain
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Kazune Tamura
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Guillaume Déjean
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Filip Van Petegem
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Harry Brumer
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|
46
|
Sichert A, Cordero OX. Polysaccharide-Bacteria Interactions From the Lens of Evolutionary Ecology. Front Microbiol 2021; 12:705082. [PMID: 34690949 PMCID: PMC8531407 DOI: 10.3389/fmicb.2021.705082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 09/09/2021] [Indexed: 11/29/2022] Open
Abstract
Microbes have the unique ability to break down the complex polysaccharides that make up the bulk of organic matter, initiating a cascade of events that leads to their recycling. Traditionally, the rate of organic matter degradation is perceived to be limited by the chemical and physical structure of polymers. Recent advances in microbial ecology, however, suggest that polysaccharide persistence can result from non-linear growth dynamics created by the coexistence of alternate degradation strategies, metabolic roles as well as by ecological interactions between microbes. This complex "landscape" of degradation strategies and interspecific interactions present in natural microbial communities appears to be far from evolutionarily stable, as frequent gene gain and loss reshape enzymatic repertoires and metabolic roles. In this perspective, we discuss six challenges at the heart of this problem, ranging from the evolution of genetic repertoires, phenotypic heterogeneity in clonal populations, the development of a trait-based ecology, and the impact of metabolic interactions and microbial cooperation on degradation rates. We aim to reframe some of the key questions in the study of polysaccharide-bacteria interactions in the context of eco-evolutionary dynamics, highlighting possible research directions that, if pursued, would advance our understanding of polysaccharide degraders at the interface between biochemistry, ecology and evolution.
Collapse
|
47
|
McKee LS, La Rosa SL, Westereng B, Eijsink VG, Pope PB, Larsbrink J. Polysaccharide degradation by the Bacteroidetes: mechanisms and nomenclature. ENVIRONMENTAL MICROBIOLOGY REPORTS 2021; 13:559-581. [PMID: 34036727 DOI: 10.1111/1758-2229.12980] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 05/22/2021] [Accepted: 05/23/2021] [Indexed: 06/12/2023]
Abstract
The Bacteroidetes phylum is renowned for its ability to degrade a wide range of complex carbohydrates, a trait that has enabled its dominance in many diverse environments. The best studied species inhabit the human gut microbiome and use polysaccharide utilization loci (PULs), discrete genetic structures that encode proteins involved in the sensing, binding, deconstruction, and import of target glycans. In many environmental species, polysaccharide degradation is tightly coupled to the phylum-exclusive type IX secretion system (T9SS), which is used for the secretion of certain enzymes and is linked to gliding motility. In addition, within specific species these two adaptive systems (PULs and T9SS) are intertwined, with PUL-encoded enzymes being secreted by the T9SS. Here, we discuss the most noteworthy PUL and non-PUL mechanisms that confer specific and rapid polysaccharide degradation capabilities to the Bacteroidetes in a range of environments. We also acknowledge that the literature showcasing examples of PULs is rapidly expanding and developing a set of assumptions that can be hard to track back to original findings. Therefore, we present a simple universal description of conserved PUL functions and how they are determined, while proposing a common nomenclature describing PULs and their components, to simplify discussion and understanding of PUL systems.
Collapse
Affiliation(s)
- Lauren S McKee
- Division of Glycoscience, Department of Chemistry, KTH Royal Institute of Technology, AlbaNova University Centre, Stockholm, 106 91, Sweden
- Wallenberg Wood Science Center, Stockholm, 100 44, Sweden
| | | | - Bjørge Westereng
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Vincent G Eijsink
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Phillip B Pope
- Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Johan Larsbrink
- Wallenberg Wood Science Center, Stockholm, 100 44, Sweden
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, 412 96, Sweden
| |
Collapse
|
48
|
Yu S, Wang J, Li Y, Wang X, Ren F, Wang X. Structural Studies of Water-Insoluble β-Glucan from Oat Bran and Its Effect on Improving Lipid Metabolism in Mice Fed High-Fat Diet. Nutrients 2021; 13:nu13093254. [PMID: 34579130 PMCID: PMC8467107 DOI: 10.3390/nu13093254] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 01/04/2023] Open
Abstract
Water-insoluble β-glucan has been reported to have beneficial effects on human health. However, no studies have thoroughly characterized the structure and function of water-insoluble β-glucan in oat bran. Thus, the structure and effect of water-insoluble β-glucan on weight gain and lipid metabolism in high-fat diet (HFD)-fed mice were analyzed. First, water-insoluble β-glucan was isolated and purified from oat bran. Compared with water-soluble β-glucan, water-insoluble β-glucan had higher DP3:DP4 molar ratio (2.12 and 1.67, respectively) and molecular weight (123,800 and 119,200 g/mol, respectively). Notably, water-insoluble β-glucan exhibited more fibrous sheet-like structure and greater swelling power than water-soluble β-glucan. Animal experiments have shown that oral administration of water-insoluble β-glucan tended to lower the final body weight of obese mice after 10 weeks treatment. In addition, water-insoluble β-glucan administration significantly improved the serum lipid profile (triglyceride, total cholesterol, high-density lipoprotein cholesterol, and low-density lipoprotein cholesterol levels) and epididymal adipocytes size. What is more, water-insoluble β-glucan reduced the accumulation and accelerated the decomposition of lipid in liver. In conclusion, water-insoluble β-glucan (oat bran) could alleviate obesity in HFD-fed mice by improving blood lipid level and accelerating the decomposition of lipid.
Collapse
Affiliation(s)
- Shoujuan Yu
- Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (S.Y.); (J.W.)
| | - Jun Wang
- Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (S.Y.); (J.W.)
| | - Yixuan Li
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (Y.L.); (F.R.)
| | - Xifan Wang
- Department of Obstetrics and Gynecology, Columbia University, New York, NY 10032, USA;
| | - Fazheng Ren
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (Y.L.); (F.R.)
| | - Xiaoyu Wang
- Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (S.Y.); (J.W.)
- Correspondence: ; Tel.: +86-010-62738589
| |
Collapse
|
49
|
Xue C, Xie ZX, Li YY, Chen XH, Sun G, Lin L, Giovannoni SJ, Wang DZ. Polysaccharide utilization by a marine heterotrophic bacterium from the SAR92 clade. FEMS Microbiol Ecol 2021; 97:6355431. [PMID: 34415012 DOI: 10.1093/femsec/fiab120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 08/18/2021] [Indexed: 11/13/2022] Open
Abstract
SAR92 is one of the few examples of a widely distributed, abundant oligotroph that can be cultivated to study pathways of carbon oxidation in ocean systems. Genomic evidence for SAR92 suggests that this gammaproteobacterium might be a primary consumer of polysaccharides in the epipelagic zone, its main habitat. Here, we investigated cell growth, polysaccharide utilization gene expression, and carbohydrate-active enzyme abundance of a culturable SAR92 strain, HTCC2207, grown with different polysaccharides. Xylan and laminarin, two polysaccharides mainly produced by phytoplankton, supported the growth of HTCC2207 better than other polysaccharides. HTCC2207 possessed polysaccharide utilization loci (PULs) consisting of TonB-dependent receptor (TBDR) and glycoside hydrolase (GH) family genes. GH genes such as GH17 and GH3 presented no substrate-specificity and were induced by different sugar substrates, while expressions of GH16, GH10 and GH30 were enhanced in the glucose-treatment but suppressed in the polysaccharide-treatment, indicating complex polysaccharide utilization by HTCC2207. Metabolic pathways for laminarin and xylan were re-constructed in HTCC2207 based on the PULs genes and other predicted carbohydrate-active enzymes. This study reveals features of the epipelagic niche of SAR92 and provide insight into the biogeochemical cycling of labile, high-molecular carbohydrate compounds in the surface ocean.
Collapse
Affiliation(s)
- Cheng Xue
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen 361005, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Zhang-Xian Xie
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen 361005, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Yuan-Yuan Li
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
| | - Xiao-Huang Chen
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
| | - Geng Sun
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
| | - Lin Lin
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
| | - Stephen J Giovannoni
- Department of Microbiology, Oregon State University, Corvallis, OR 97331-3804, USA
| | - Da-Zhi Wang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen 361005, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| |
Collapse
|
50
|
Conservation of endo-glucanase 16 (EG16) activity across highly divergent plant lineages. Biochem J 2021; 478:3063-3078. [PMID: 34338284 DOI: 10.1042/bcj20210341] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/21/2021] [Accepted: 07/30/2021] [Indexed: 11/17/2022]
Abstract
Plant cell walls are highly dynamic structures that are composed predominately of polysaccharides. As such, endogenous carbohydrate active enzymes (CAZymes) are central to the synthesis and subsequent modification of plant cells during morphogenesis. The endo-glucanase 16 (EG16) members constitute a distinct group of plant CAZymes, angiosperm orthologs of which were recently shown to have dual β-glucan/xyloglucan hydrolase activity. Molecular phylogeny indicates that EG16 members comprise a sister clade with a deep evolutionary relationship to the widely studied apoplastic xyloglucan endo-transglycosylases/hydrolases (XTH). A cross-genome survey indicated that EG16 members occur as a single ortholog across species and are widespread in early diverging plants, including the non-vascular bryophytes, for which functional data were previously lacking. Remarkably, enzymological characterization of an EG16 ortholog from the model moss Physcomitrella patens (PpEG16) revealed that EG16 activity and sequence/structure are highly conserved across 500 million years of plant evolution, vis-à-vis orthologs from grapevine and poplar. Ex vivo biomechanical assays demonstrated that the application of EG16 gene products caused abrupt breakage of etiolated hypocotyls rather than slow extension, thereby indicating a mode-of-action distinct from endogenous expansins and microbial endo-glucanases. The biochemical data presented here will inform future genomic, genetic, and physiological studies of EG16 enzymes.
Collapse
|