1
|
Chapman PD, Kulkarni AS, Trevisan AJ, Han K, Hinton JM, Deltuvaite P, Fenno LE, Ramakrishnan C, Patton MH, Schwarz LA, Zakharenko SS, Deisseroth K, Bikoff JB. A brain-wide map of descending inputs onto spinal V1 interneurons. Neuron 2024:S0896-6273(24)00876-6. [PMID: 39719703 DOI: 10.1016/j.neuron.2024.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/11/2024] [Accepted: 11/26/2024] [Indexed: 12/26/2024]
Abstract
Motor output results from the coordinated activity of neural circuits distributed across multiple brain regions that convey information to the spinal cord via descending motor pathways. Yet the organizational logic through which supraspinal systems target discrete components of spinal motor circuits remains unclear. Here, using viral transsynaptic tracing along with serial two-photon tomography, we have generated a whole-brain map of monosynaptic inputs to spinal V1 interneurons, a major inhibitory population involved in motor control. We identified 26 distinct brain structures that directly innervate V1 interneurons, spanning medullary and pontine regions in the hindbrain as well as cortical, midbrain, cerebellar, and neuromodulatory systems. Moreover, we identified broad but biased input from supraspinal systems onto V1Foxp2 and V1Pou6f2 neuronal subsets. Collectively, these studies reveal elements of biased connectivity and convergence in descending inputs to molecularly distinct interneuron subsets and provide an anatomical foundation for understanding how supraspinal systems influence spinal motor circuits.
Collapse
Affiliation(s)
- Phillip D Chapman
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Anand S Kulkarni
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Alexandra J Trevisan
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Katie Han
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jennifer M Hinton
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Paulina Deltuvaite
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Lief E Fenno
- Department of Neuroscience, University of Texas at Austin, Austin, TX 78712, USA; Department of Psychiatry & Behavioral Sciences, University of Texas Dell Medical School, Austin, TX 78712, USA
| | - Charu Ramakrishnan
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Mary H Patton
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Lindsay A Schwarz
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Stanislav S Zakharenko
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Jay B Bikoff
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
2
|
Maurus P, Mahdi G, Cluff T. Increased muscle coactivation is linked with fast feedback control when reaching in unpredictable visual environments. iScience 2024; 27:111174. [PMID: 39524350 PMCID: PMC11550142 DOI: 10.1016/j.isci.2024.111174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/12/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024] Open
Abstract
Humans encounter unpredictable disturbances in daily activities and sports. When encountering unpredictable physical disturbances, healthy participants increase the peak velocity of their reaching movements, muscle coactivation, and responses to sensory feedback. Emerging evidence suggests that muscle coactivation may facilitate responses to sensory feedback and may not solely increase stiffness to resist displacements. We tested this idea by examining how healthy participants alter the control of reaching movements and responses to sensory feedback when encountering variable visuomotor rotations. The rotations changed amplitude and direction between movements, creating unpredictable errors that required fast online corrections. Participants increased the peak velocity of their movements, muscle coactivation, and responses to visual and proprioceptive feedback with the variability of the visuomotor rotations. The findings highlight an increase in neural responsiveness to sensory feedback and suggest that muscle coactivation may prime the nervous system for fast responses to sensory feedback that accommodate properties of unpredictable visual environments.
Collapse
Affiliation(s)
- Philipp Maurus
- Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Ghadeer Mahdi
- Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Tyler Cluff
- Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
3
|
Creed RB, Harris SC, Sridhar S, du Lac S, Zee DS, Dunn FA, Bouvier G, Nelson AB. Tau P301S Transgenic Mice Develop Gait and Eye Movement Impairments That Mimic Progressive Supranuclear Palsy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.20.614197. [PMID: 39386710 PMCID: PMC11463522 DOI: 10.1101/2024.09.20.614197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Progressive supranuclear palsy (PSP) is a neurodegenerative disorder with an estimated prevalence of 5-7 people in 100,000. Clinically characterized by impairments in gait, balance, and eye movements, as well as aggregated Tau pathology, PSP leads to death in approximately 5-8 years. No disease-modifying treatments are currently available. The contribution of Tau pathology to the symptoms of patients with PSP is poorly understood, in part due to lack of a rodent model that recapitulates characteristic aspects of PSP. Here, we assessed the hTau.P301S mouse for key clinical features of PSP, finding progressive impairments in balance and gait coordination. Additionally, we found impairments in fast vertical eye movements, one of the most distinctive features of PSP. Across animals, we found that Tau pathology in motor control regions correlated with motor deficits. These findings highlight the utility of the hP301S mouse in modeling key aspects of PSP.
Collapse
Affiliation(s)
- Rose B. Creed
- Kavli Institute for Fundamental Neuroscience, UCSF, San Francisco, CA, 94158
- Weill Institute for Neuroscience, UCSF, San Francisco, CA, 94159
- Department of Neurology, UCSF, San Francisco, CA, 94158
| | - Scott C. Harris
- Department of Ophthalmology, UCSF, San Francisco, CA, 94158
- Neuroscience Graduate Program, UCSF, San Francisco, CA, 94158
| | - Sadhana Sridhar
- Kavli Institute for Fundamental Neuroscience, UCSF, San Francisco, CA, 94158
- Weill Institute for Neuroscience, UCSF, San Francisco, CA, 94159
- Department of Neurology, UCSF, San Francisco, CA, 94158
| | - Sascha du Lac
- Department of Otolaryngology-Head and Neck Surgery, Neurology, and Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - David S. Zee
- Departments of Neurology, Ophthalmology, Otolaryngology-Head and Neck Surgery, and Neuroscience, The Johns Hopkins School of Medicine, Baltimore, USA
| | - Felice A. Dunn
- Department of Ophthalmology, UCSF, San Francisco, CA, 94158
| | - Guy Bouvier
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91400 Saclay, France
| | - Alexandra B. Nelson
- Kavli Institute for Fundamental Neuroscience, UCSF, San Francisco, CA, 94158
- Weill Institute for Neuroscience, UCSF, San Francisco, CA, 94159
- Department of Neurology, UCSF, San Francisco, CA, 94158
| |
Collapse
|
4
|
Tsutsumi Y, Morita Y, Sato F, Furuta T, Uchino K, Sohn J, Haque T, Bae YC, Niwa H, Tachibana Y, Yoshida A. Cerebellar Nuclei Receiving Orofacial Proprioceptive Signals through the Mossy Fiber Pathway from the Supratrigeminal Nucleus in Rats. CEREBELLUM (LONDON, ENGLAND) 2024; 23:1795-1810. [PMID: 37682386 DOI: 10.1007/s12311-023-01602-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/28/2023] [Indexed: 09/09/2023]
Abstract
Proprioception from muscle spindles is necessary for motor function executed by the cerebellum. In particular, cerebellar nuclear neurons that receive proprioceptive signals and send projections to the lower brainstem or spinal cord play key roles in motor control. However, little is known about which cerebellar nuclear regions receive orofacial proprioception. Here, we investigated projections to the cerebellar nuclei from the supratrigeminal nucleus (Su5), which conveys the orofacial proprioception arising from jaw-closing muscle spindles (JCMSs). Injections of an anterograde tracer into the Su5 resulted in a large number of labeled axon terminals bilaterally in the dorsolateral hump (IntDL) of the cerebellar interposed nucleus (Int) and the dorsolateral protuberance (MedDL) of the cerebellar medial nucleus. In addition, a moderate number of axon terminals were ipsilaterally labeled in the vestibular group Y nucleus (group Y). We electrophysiologically detected JCMS proprioceptive signals in the IntDL and MedDL. Retrograde tracing analysis confirmed bilateral projections from the Su5 to the IntDL and MedDL. Furthermore, anterograde tracer injections into the external cuneate nucleus (ECu), which receives other proprioceptive input from forelimb/neck muscles, resulted in only a limited number of ipsilaterally labeled terminals, mainly in the dorsomedial crest of the Int and the group Y. Taken together, the Su5 and ECu axons almost separately terminated in the cerebellar nuclei (except for partial overlap in the group Y). These data suggest that orofacial proprioception is differently processed in the cerebellar circuits in comparison to other body-part proprioception, thus contributing to the executive function of orofacial motor control.
Collapse
Affiliation(s)
- Yumi Tsutsumi
- Department of Systematic Anatomy and Neurobiology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yayoi Morita
- Department of Dental Anesthesiology, Osaka University Graduate School of Dentistry, Suita, Osaka, 565-0871, Japan
| | - Fumihiko Sato
- Department of Systematic Anatomy and Neurobiology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Takahiro Furuta
- Department of Systematic Anatomy and Neurobiology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Katsuro Uchino
- Department of Acupuncture, Faculty of Health Care Sciences, Takarazuka University of Medical and Health Care, Takarazuka, Hyogo, 666-0162, Japan
| | - Jaerin Sohn
- Department of Systematic Anatomy and Neurobiology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tahsinul Haque
- Department of Preventive Sciences, College of Dentistry, Dar Al Uloom University, Riyadh, 13314, Saudi Arabia
| | - Yong Chul Bae
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, 700-412, Korea
| | - Hitoshi Niwa
- Department of Dental Anesthesiology, Osaka University Graduate School of Dentistry, Suita, Osaka, 565-0871, Japan
| | - Yoshihisa Tachibana
- Division of Physiology and Cell Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki, Chuo, Kobe, Hyogo, 650-0017, Japan.
| | - Atsushi Yoshida
- Department of Systematic Anatomy and Neurobiology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Department of Oral Health Sciences, Faculty of Health Care Sciences, Takarazuka University of Medical and Health Care, Takarazuka, Hyogo, 666-0162, Japan.
| |
Collapse
|
5
|
Bollu T, Whitehead SC, Prasad N, Walker J, Shyamkumar N, Subramaniam R, Kardon B, Cohen I, Goldberg JH. Motor cortical inactivation impairs corrective submovements in mice performing a hold-still center-out reach task. J Neurophysiol 2024; 132:829-848. [PMID: 39081209 PMCID: PMC11427071 DOI: 10.1152/jn.00241.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 09/05/2024] Open
Abstract
Holding still and aiming reaches to spatial targets may depend on distinct neural circuits. Using automated homecage training and a sensitive joystick, we trained freely moving mice to contact a joystick, hold their forelimb still, and then reach to rewarded target locations. Mice learned the task by initiating forelimb sequences with clearly resolved submillimeter-scale micromovements followed by millimeter-scale reaches to learned spatial targets. Hundreds of thousands of trajectories were decomposed into millions of kinematic submovements, while photoinhibition was used to test roles of motor cortical areas. Inactivation of both caudal and rostral forelimb areas preserved the ability to produce aimed reaches, but reduced reach speed. Inactivation specifically of contralateral caudal forelimb area (CFA) additionally impaired the ability to aim corrective submovements to remembered locations following target undershoots. Our findings show that motor cortical inactivations reduce the gain of forelimb movements but that inactivation specifically of contralateral CFA impairs corrective movements important for reaching a target location.NEW & NOTEWORTHY To test the role of different cortical areas in holding still and reaching to targets, this study combined home-cage training with optogenetic silencing as mice engaged in a learned center-out-reach task. Inactivation specifically of contralateral caudal forelimb area (CFA) impaired corrective movements necessary to reach spatial targets to earn reward.
Collapse
Affiliation(s)
- Tejapratap Bollu
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, United States
| | - Samuel C Whitehead
- Department of Physics, Cornell University, Ithaca, New York, United States
| | - Nikil Prasad
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, United States
| | - Jackson Walker
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, United States
| | - Nitin Shyamkumar
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, United States
| | - Raghav Subramaniam
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, United States
| | - Brian Kardon
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, United States
| | - Itai Cohen
- Department of Physics, Cornell University, Ithaca, New York, United States
| | - Jesse H Goldberg
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, United States
| |
Collapse
|
6
|
Contini D, Holstein GR, Art JJ. Simultaneous recordings from vestibular Type I hair cells and their calyceal afferents in mice. Front Neurol 2024; 15:1434026. [PMID: 39263277 PMCID: PMC11387672 DOI: 10.3389/fneur.2024.1434026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/08/2024] [Indexed: 09/13/2024] Open
Abstract
The vestibular hair cell receptors of anamniotes, designated Type II, are presynaptic to bouton endings of vestibular nerve distal neurites. An additional flask-shaped hair cell receptor, Type I, is present in amniotes, and communicates with a chalice-shaped afferent neuritic ending that surrounds the entire hair cell except its apical neck. Since the full repertoire of afferent fiber dynamics and sensitivities observed throughout the vertebrate phyla can be accomplished through Type II hair cell-bouton synapses, the functional contribution(s) of Type I hair cells and their calyces to vestibular performance remains a topic of great interest. The goal of the present study was to investigate electrical coupling between the Type I hair cell and its enveloping calyx in the mouse semicircular canal crista ampullaris. Since there are no gap junctions between these two cells, evidence for electrical communication would necessarily involve other mechanisms. Simultaneous recordings from the two cells of the synaptic pair were used initially to verify the presence of orthodromic quantal synaptic transmission from the hair cell to the calyx, and then to demonstrate bi-directional communication due to the slow accumulation of potassium ions in the synaptic cleft. As a result of this potassium ion accretion, the equilibrium potentials of hair cell conductances facing the synaptic cleft become depolarized to an extent that is adequate for calcium influx into the hair cell, and the calyx inner face becomes depolarized to a level that is near the threshold for spike initiation. Following this, paired recordings were again employed to characterize fast bi-directional electrical coupling between the two cells. In this form of signaling, cleft-facing conductances in both the hair cell and calyx increase, which strengthens their coupling. Because this mechanism relies on the cleft resistance, we refer to it as resistive coupling. We conclude that the same three forms of hair cell-calyceal transmission previously demonstrated in the turtle are present in the mammalian periphery, providing a biophysical basis for the exceptional temporal fidelity of the vestibular system.
Collapse
Affiliation(s)
- Donatella Contini
- Anatomy and Cell Biology, College of Medicine, University of Illinois Chicago, Chicago, IL, United States
| | - Gay R Holstein
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jonathan J Art
- Anatomy and Cell Biology, College of Medicine, University of Illinois Chicago, Chicago, IL, United States
| |
Collapse
|
7
|
Hamling KR, Harmon K, Kimura Y, Higashijima SI, Schoppik D. The Vestibulospinal Nucleus Is a Locus of Balance Development. J Neurosci 2024; 44:e2315232024. [PMID: 38777599 PMCID: PMC11270517 DOI: 10.1523/jneurosci.2315-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 05/25/2024] Open
Abstract
Mature vertebrates maintain posture using vestibulospinal neurons that transform sensed instability into reflexive commands to spinal motor circuits. Postural stability improves across development. However, due to the complexity of terrestrial locomotion, vestibulospinal contributions to postural refinement in early life remain unexplored. Here we leveraged the relative simplicity of underwater locomotion to quantify the postural consequences of losing vestibulospinal neurons during development in larval zebrafish of undifferentiated sex. By comparing posture at two timepoints, we discovered that later lesions of vestibulospinal neurons led to greater instability. Analysis of thousands of individual swim bouts revealed that lesions disrupted movement timing and corrective reflexes without impacting swim kinematics, and that this effect was particularly strong in older larvae. Using a generative model of swimming, we showed how these disruptions could account for the increased postural variability at both timepoints. Finally, late lesions disrupted the fin/trunk coordination observed in older larvae, linking vestibulospinal neurons to postural control schemes used to navigate in depth. Since later lesions were considerably more disruptive to postural stability, we conclude that vestibulospinal contributions to balance increase as larvae mature. Vestibulospinal neurons are highly conserved across vertebrates; we therefore propose that they are a substrate for developmental improvements to postural control.
Collapse
Affiliation(s)
- Kyla R Hamling
- Departments of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, New York University Grossman School of Medicine, New York, New York 10016
| | - Katherine Harmon
- Departments of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, New York University Grossman School of Medicine, New York, New York 10016
| | - Yukiko Kimura
- National Institutes of Natural Sciences, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institute for Basic Biology, Okazaki, Aichi 444-8787, Japan
| | - Shin-Ichi Higashijima
- National Institutes of Natural Sciences, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institute for Basic Biology, Okazaki, Aichi 444-8787, Japan
| | - David Schoppik
- Departments of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, New York University Grossman School of Medicine, New York, New York 10016
| |
Collapse
|
8
|
Govender S, Hochstrasser D, Todd NP, Colebatch JG. Head Orientation Modulates Vestibular Cerebellar Evoked Potentials (VsCEPs) and Reflexes Produced by Impulsive Mastoid and Midline Skull Stimulation. CEREBELLUM (LONDON, ENGLAND) 2024; 23:957-972. [PMID: 37466894 PMCID: PMC11102417 DOI: 10.1007/s12311-023-01587-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/07/2023] [Indexed: 07/20/2023]
Abstract
The cerebellum plays a critical role in the modulation of vestibular reflexes, dependent on input from proprioceptive afferents. The mechanism of this cerebellar control is not well understood. In a sample of 11 healthy human subjects, we investigated the effects of head orientation on ocular, cervical, postural and cerebellar short latency potentials evoked by impulsive stimuli applied at both mastoids and midline skull sites. Subjects were instructed to lean backwards with the head positioned straight ahead or held rotated in different degrees of yaw towards the right and left sides. Impulsive mastoid stimulation, a potent method of utricular stimulation, produced localised vestibular cerebellar evoked potentials (VsCEPs: P12-N17) which were strongly modulated by head orientation. The response was larger on the side opposite to the direction of head rotation and with stimulation on the side of rotation. In contrast, ocular VEMPs (oVEMPs: n10-p16) were present but showed little change with head posture, while cervical VEMPs (cVEMPs: p15-n23) were larger with the head held rotated away from the side of the recording. Postural effects with lateral vestibular stimulation were strongly modulated by head rotation, with more powerful effects occurring bilaterally with stimulation on the side of rotation. The duration of the postural EMG changes was similar to the post-excitation inhibition of the electrocerebellogram (ECeG), consistent with cerebellar participation. We conclude that head rotation selectively affects evoked vestibular reflexes towards different targets, consistent with their physiological roles. Changes in VsCEPs may contribute to the modulation of postural reflexes by the cerebellum.
Collapse
Affiliation(s)
- Sendhil Govender
- School of Clinical Medicine, Randwick Clinical Campus, University of New South Wales, Sydney, NSW, 2052, Australia
- Neuroscience Research Australia, University of New South Wales, Randwick, Sydney, NSW, 2052, Australia
| | - Daniel Hochstrasser
- MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Westmead, Sydney, NSW, 2145, Australia
| | - Neil Pm Todd
- School of Clinical Medicine, Randwick Clinical Campus, University of New South Wales, Sydney, NSW, 2052, Australia
| | - James G Colebatch
- School of Clinical Medicine, Randwick Clinical Campus, University of New South Wales, Sydney, NSW, 2052, Australia.
- Neuroscience Research Australia, University of New South Wales, Randwick, Sydney, NSW, 2052, Australia.
- Institute of Neurological Sciences, Prince of Wales Hospital, Randwick, Sydney, NSW, 2031, Australia.
| |
Collapse
|
9
|
Hamling KR, Harmon K, Kimura Y, Higashijima SI, Schoppik D. The vestibulospinal nucleus is a locus of balance development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.06.570482. [PMID: 38105966 PMCID: PMC10723429 DOI: 10.1101/2023.12.06.570482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Mature vertebrates maintain posture using vestibulospinal neurons that transform sensed instability into reflexive commands to spinal motor circuits. Postural stability improves across development. However, due to the complexity of terrestrial locomotion, vestibulospinal contributions to postural refinement in early life remain unexplored. Here we leveraged the relative simplicity of underwater locomotion to quantify the postural consequences of losing vestibulospinal neurons during development in larval zebrafish of undifferentiated sex. By comparing posture at two timepoints, we discovered that later lesions of vestibulospinal neurons led to greater instability. Analysis of thousands of individual swim bouts revealed that lesions disrupted movement timing and corrective reflexes without impacting swim kinematics, and that this effect was particularly strong in older larvae. Using a generative model of swimming, we showed how these disruptions could account for the increased postural variability at both timepoints. Finally, late lesions disrupted the fin/trunk coordination observed in older larvae, linking vestibulospinal neurons to postural control schemes used to navigate in depth. Since later lesions were considerably more disruptive to postural stability, we conclude that vestibulospinal contributions to balance increase as larvae mature. Vestibulospinal neurons are highly conserved across vertebrates; we therefore propose that they are a substrate for developmental improvements to postural control.
Collapse
Affiliation(s)
- Kyla R Hamling
- Departments of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, New York University Grossman School of Medicine
| | - Katherine Harmon
- Departments of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, New York University Grossman School of Medicine
| | - Yukiko Kimura
- National Institutes of Natural Sciences, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institute for Basic Biology, Okazaki 444-8787, Aichi, Japan
| | - Shin-Ichi Higashijima
- National Institutes of Natural Sciences, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institute for Basic Biology, Okazaki 444-8787, Aichi, Japan
| | - David Schoppik
- Departments of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, New York University Grossman School of Medicine
| |
Collapse
|
10
|
Velica A, Kullander K. A flowchart for adequate controls in virus-based monosynaptic tracing experiments identified Cre-independent leakage of the TVA receptor in RΦGT mice. BMC Neurosci 2024; 25:9. [PMID: 38383317 PMCID: PMC10882902 DOI: 10.1186/s12868-024-00848-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/29/2024] [Indexed: 02/23/2024] Open
Abstract
BACKGROUND A pseudotyped modified rabies virus lacking the rabies glycoprotein (G-protein), which is crucial for transsynaptic spread, can be used for monosynaptic retrograde tracing. By coupling the pseudotyped virus with transgene expression of the G-protein and the avian leukosis and sarcoma virus subgroup A receptor (TVA), which is necessary for cell entry of the virus, researchers can investigate specific neuronal populations. Responder mouse lines, like the RΦGT mouse line, carry the genes encoding the G-protein and TVA under Cre-dependent expression. These mouse lines are valuable tools because they reduce the number of viral injections needed compared to when using helper viruses. Since RΦGT mice do not express Cre themselves, introducing the pseudotyped rabies virus into their brain should not result in viral cell entry or spread. RESULTS We present a straightforward flowchart for adequate controls in tracing experiments, which we employed to demonstrate Cre-independent expression of TVA in RΦGT mice. CONCLUSIONS Our observations revealed TVA leakage, indicating that RΦGT mice should be used with caution for transgene expression of TVA. Inaccurate tracing outcomes may occur if TVA is expressed in the absence of Cre since background leakage leads to nonspecific cell entry. Moreover, conducting appropriate control experiments can identify the source of potential caveats in virus-based neuronal tracing experiments.
Collapse
Affiliation(s)
- Anna Velica
- Department of Immunology, Genetics and Pathology, Uppsala University, 815, Husargatan 3, Uppsala, 751 08, Sweden.
| | - Klas Kullander
- Department of Immunology, Genetics and Pathology, Uppsala University, 815, Husargatan 3, Uppsala, 751 08, Sweden
| |
Collapse
|
11
|
Oquita R, Cuello V, Uppati S, Mannuru S, Salinas D, Dobbs M, Potter-Baker KA. Moving toward elucidating alternative motor pathway structures post-stroke: the value of spinal cord neuroimaging. Front Neurol 2024; 15:1282685. [PMID: 38419695 PMCID: PMC10899520 DOI: 10.3389/fneur.2024.1282685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
Stroke results in varying levels of motor and sensory disability that have been linked to the neurodegeneration and neuroinflammation that occur in the infarct and peri-infarct regions within the brain. Specifically, previous research has identified a key role of the corticospinal tract in motor dysfunction and motor recovery post-stroke. Of note, neuroimaging studies have utilized magnetic resonance imaging (MRI) of the brain to describe the timeline of neurodegeneration of the corticospinal tract in tandem with motor function following a stroke. However, research has suggested that alternate motor pathways may also underlie disease progression and the degree of functional recovery post-stroke. Here, we assert that expanding neuroimaging techniques beyond the brain could expand our knowledge of alternate motor pathway structure post-stroke. In the present work, we will highlight findings that suggest that alternate motor pathways contribute to post-stroke motor dysfunction and recovery, such as the reticulospinal and rubrospinal tract. Then we review imaging and electrophysiological techniques that evaluate alternate motor pathways in populations of stroke and other neurodegenerative disorders. We will then outline and describe spinal cord neuroimaging techniques being used in other neurodegenerative disorders that may provide insight into alternate motor pathways post-stroke.
Collapse
Affiliation(s)
- Ramiro Oquita
- School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, United States
| | - Victoria Cuello
- School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, United States
| | - Sarvani Uppati
- School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, United States
| | - Sravani Mannuru
- School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, United States
| | - Daniel Salinas
- Department of Neuroscience, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, United States
| | - Michael Dobbs
- Department of Clinical Neurosciences, College of Medicine, Florida Atlantic University, Boca Raton, FL, United States
| | - Kelsey A. Potter-Baker
- Department of Neuroscience, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, United States
| |
Collapse
|
12
|
Konosu A, Matsuki Y, Fukuhara K, Funato T, Yanagihara D. Roles of the cerebellar vermis in predictive postural controls against external disturbances. Sci Rep 2024; 14:3162. [PMID: 38326369 PMCID: PMC10850480 DOI: 10.1038/s41598-024-53186-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 01/29/2024] [Indexed: 02/09/2024] Open
Abstract
The central nervous system predictively controls posture against external disturbances; however, the detailed mechanisms remain unclear. We tested the hypothesis that the cerebellar vermis plays a substantial role in acquiring predictive postural control by using a standing task with floor disturbances in rats. The intact, lesioned, and sham groups of rats sequentially underwent 70 conditioned floor-tilting trials, and kinematics were recorded. Six days before these recordings, only the lesion group underwent focal suction surgery targeting vermal lobules IV-VIII. In the naïve stage of the sequential trials, the upright postures and fluctuations due to the disturbance were mostly consistent among the groups. Although the pattern of decrease in postural fluctuation due to learning corresponded among the groups, the learning rate estimated from the lumbar displacement was significantly lower in the lesion group than in the intact and sham groups. These results suggest that the cerebellar vermis contributes to predictive postural controls.
Collapse
Affiliation(s)
- Akira Konosu
- Department of Mechanical Engineering and Intelligent Systems, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan.
| | - Yuma Matsuki
- Department of Mechanical Engineering and Intelligent Systems, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan
| | - Kaito Fukuhara
- Department of Mechanical Engineering and Intelligent Systems, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan
| | - Tetsuro Funato
- Department of Mechanical Engineering and Intelligent Systems, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan
| | - Dai Yanagihara
- Department of Life Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan.
| |
Collapse
|
13
|
Mistretta OC, Wood RL, English AW, Alvarez FJ. Air-stepping in the neonatal mouse: a powerful tool for analyzing early stages of rhythmic limb movement development. J Neurophysiol 2024; 131:321-337. [PMID: 38198656 PMCID: PMC11305634 DOI: 10.1152/jn.00227.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 12/07/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
There is a lack of experimental methods in genetically tractable mouse models to analyze the developmental period at which newborns mature weight-bearing locomotion. To overcome this deficit, we introduce methods to study l-3,4-dihydroxyphenylalanine (l-DOPA)-induced air-stepping in mice at postnatal day (P)7 and P10. Air-stepping is a stereotypic rhythmic behavior that resembles mouse walking overground locomotion but without constraints imposed by weight bearing, postural adjustments, or sensory feedback. We propose that air-stepping represents the functional organization of early spinal circuits coordinating limb movements. After subcutaneous injection of l-DOPA (0.5 mg/g), we recorded air-stepping movements in all four limbs and electromyographic (EMG) activity from ankle flexor (tibialis anterior, TA) and extensor (lateral gastrocnemius, LG) muscles. Using DeepLabCut pose estimation, we analyzed rhythmicity and limb coordination. We demonstrate steady rhythmic stepping of similar duration from P7 to P10 but with some fine-tuning of interlimb coordination with age. Hindlimb joints undergo a greater range of flexion at older ages, indicating maturation of flexion-extension cycles as the animal starts to walk. EMG recordings of TA and LG show alternation but with more focused activation particularly in the LG from P7 to P10. We discuss similarities to neonatal rat l-DOPA-induced air-stepping and infant assisted walking. We conclude that limb coordination and muscle activations recorded with this method represent basic spinal cord circuitry for limb control in neonates and pave the way for future investigations on the development of rhythmic limb control in genetic or disease models with correctly or erroneously developing motor circuitry.NEW & NOTEWORTHY We present novel methods to study neonatal air-stepping in newborn mice. These methods allow analyses at the onset of limb coordination during the period in which altricial species like rats, mice, and humans "learn" to walk. The methods will be useful to test a large variety of mutations that serve as models of motor disease in newborns or that are used to probe for specific circuit mechanisms that generate coordinated limb motor output.
Collapse
Affiliation(s)
- Olivia C Mistretta
- Department of Cell Biology, Emory University, Atlanta, Georgia, United States
| | - Ryan L Wood
- Department of Cell Biology, Emory University, Atlanta, Georgia, United States
| | - Arthur W English
- Department of Cell Biology, Emory University, Atlanta, Georgia, United States
| | - Francisco J Alvarez
- Department of Cell Biology, Emory University, Atlanta, Georgia, United States
| |
Collapse
|
14
|
Li YC, Bruijn SM, Lemaire KK, Brumagne S, van Dieën JH. Vertebral level specific modulation of paraspinal muscle activity based on vestibular signals during walking. J Physiol 2024; 602:507-525. [PMID: 38252405 DOI: 10.1113/jp285831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024] Open
Abstract
Evoking muscle responses by electrical vestibular stimulation (EVS) may help to understand the contribution of the vestibular system to postural control. Although paraspinal muscles play a role in postural stability, the vestibulo-muscular coupling of these muscles during walking has rarely been studied. This study aimed to investigate how vestibular signals affect paraspinal muscle activity at different vertebral levels during walking with preferred and narrow step width. Sixteen healthy participants were recruited. Participants walked on a treadmill for 8 min at 78 steps/min and 2.8 km/h, at two different step width, either with or without EVS. Bipolar electromyography was recorded bilaterally from the paraspinal muscles at eight vertebral levels from cervical to lumbar. Coherence, gain, and delay of EVS and EMG responses were determined. Significant EVS-EMG coupling (P < 0.01) was found at ipsilateral and/or contralateral heel strikes. This coupling was mirrored between left and right relative to the midline of the trunk and between the higher and lower vertebral levels, i.e. a peak occurred at ipsilateral heel strike at lower levels, whereas it occurred at contralateral heel strike at higher levels. EVS-EMG coupling only partially coincided with peak muscle activity. EVS-EMG coherence slightly, but not significantly, increased when walking with narrow steps. No significant differences were found in gain and phase between the vertebral levels or step width conditions. In summary, vertebral level specific modulation of paraspinal muscle activity based on vestibular signals might allow a fast, synchronized, and spatially co-ordinated response along the trunk during walking. KEY POINTS: Mediolateral stabilization of gait requires an estimate of the state of the body, which is affected by vestibular afference. During gait, the heavy trunk segment is controlled by phasic paraspinal muscle activity and in rodents the medial and lateral vestibulospinal tracts activate these muscles. To gain insight in vestibulospinal connections in humans and their role in gait, we recorded paraspinal surface EMG of cervical to lumbar paraspinal muscles, and characterized coherence, gain and delay between EMG and electrical vestibular stimulation, during slow walking. Vestibular stimulation caused phasic, vertebral level specific modulation of paraspinal muscle activity at delays of around 40 ms, which was mirrored between left, lower and right, upper vertebral levels. Our results indicate that vestibular afference causes fast, synchronized, and spatially co-ordinated responses of the paraspinal muscles along the trunk, that simultaneously contribute to stabilizing the centre of mass trajectory and to keeping the head upright.
Collapse
Affiliation(s)
- Yiyuan C Li
- Department of Human Movement Sciences, Faculty of Behavioral and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Rehabilitation Sciences, Leuven, KU, Belgium
| | - Sjoerd M Bruijn
- Department of Human Movement Sciences, Faculty of Behavioral and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Koen K Lemaire
- Department of Human Movement Sciences, Faculty of Behavioral and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Simon Brumagne
- Department of Rehabilitation Sciences, Leuven, KU, Belgium
| | - Jaap H van Dieën
- Department of Human Movement Sciences, Faculty of Behavioral and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
15
|
Witts EC, Mathews MA, Murray AJ. The locus coeruleus directs sensory-motor reflex amplitude across environmental contexts. Curr Biol 2023; 33:4679-4688.e3. [PMID: 37741282 PMCID: PMC10957397 DOI: 10.1016/j.cub.2023.08.085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/03/2023] [Accepted: 08/25/2023] [Indexed: 09/25/2023]
Abstract
Purposeful movement across unpredictable environments requires quick, accurate, and contextually appropriate motor corrections in response to disruptions in balance and posture.1,2,3 These responses must respect both the current position and limitations of the body, as well as the surrounding environment,4,5,6 and involve a combination of segmental reflexes in the spinal cord, vestibulospinal and reticulospinal pathways in the brainstem, and forebrain structures such as the motor cortex.7,8,9,10 These motor plans can be heavily influenced by the animal's surrounding environment, even when that environment has no mechanical influence on the perturbation itself. This environmental influence has been considered as cortical in nature, priming motor responses to a perturbation.8,11 Similarly, postural responses can be influenced by environments that alter threat levels in humans.12,13,14,15,16,17,18 Such studies are generally in agreement with work done in the mouse showing that optogenetic stimulation of the lateral vestibular nucleus (LVN) only results in motor responses when the animal is on a balance beam at height and not when walking on the stable surface of a treadmill.10 In general, this ability to flexibly modify postural responses across terrains and environmental conditions is a critically important component of the balance system.19,20 Here we show that LVN-generated motor corrections can be altered by manipulating the surrounding environment. Furthermore, environmental influence on corrections requires noradrenergic signaling from the locus coeruleus, suggesting a potential link between forebrain structures that convey sensory information about the environment and brainstem circuits that generate motor corrections.
Collapse
Affiliation(s)
- Emily C Witts
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, W1T 4JG London, UK.
| | - Miranda A Mathews
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, W1T 4JG London, UK
| | - Andrew J Murray
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, W1T 4JG London, UK.
| |
Collapse
|
16
|
Wuehr M, Eilles E, Lindner M, Grosch M, Beck R, Ziegler S, Zwergal A. Repetitive Low-Intensity Vestibular Noise Stimulation Partly Reverses Behavioral and Brain Activity Changes following Bilateral Vestibular Loss in Rats. Biomolecules 2023; 13:1580. [PMID: 38002261 PMCID: PMC10669117 DOI: 10.3390/biom13111580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/18/2023] [Accepted: 10/22/2023] [Indexed: 11/26/2023] Open
Abstract
Low-intensity noisy galvanic vestibular stimulation (nGVS) can improve static and dynamic postural deficits in patients with bilateral vestibular loss (BVL). In this study, we aimed to explore the neurophysiological and neuroanatomical substrates underlying nGVS treatment effects in a rat model of BVL. Regional brain activation patterns and behavioral responses to a repeated 30 min nGVS treatment in comparison to sham stimulation were investigated by serial whole-brain 18F-FDG-PET measurements and quantitative locomotor assessments before and at nine consecutive time points up to 60 days after the chemical bilateral labyrinthectomy (BL). The 18F-FDG-PET revealed a broad nGVS-induced modulation on regional brain activation patterns encompassing biologically plausible brain networks in the brainstem, cerebellum, multisensory cortex, and basal ganglia during the entire observation period post-BL. nGVS broadly reversed brain activity adaptions occurring in the natural course post-BL. The parallel behavioral locomotor assessment demonstrated a beneficial treatment effect of nGVS on sensory-ataxic gait alterations, particularly in the early stage of post-BL recovery. Stimulation-induced locomotor improvements were finally linked to nGVS brain activity responses in the brainstem, hemispheric motor, and limbic networks. In conclusion, combined 18F-FDG-PET and locomotor analysis discloses the potential neurophysiological and neuroanatomical substrates that mediate previously observed therapeutic nGVS effects on postural deficits in patients with BVL.
Collapse
Affiliation(s)
- Max Wuehr
- German Center for Vertigo and Balance Disorders (DSGZ), LMU University Hospital, LMU Munich, 81377 Munich, Germany; (M.W.); (E.E.); (M.L.); (M.G.); (R.B.)
| | - Eva Eilles
- German Center for Vertigo and Balance Disorders (DSGZ), LMU University Hospital, LMU Munich, 81377 Munich, Germany; (M.W.); (E.E.); (M.L.); (M.G.); (R.B.)
| | - Magdalena Lindner
- German Center for Vertigo and Balance Disorders (DSGZ), LMU University Hospital, LMU Munich, 81377 Munich, Germany; (M.W.); (E.E.); (M.L.); (M.G.); (R.B.)
| | - Maximilian Grosch
- German Center for Vertigo and Balance Disorders (DSGZ), LMU University Hospital, LMU Munich, 81377 Munich, Germany; (M.W.); (E.E.); (M.L.); (M.G.); (R.B.)
| | - Roswitha Beck
- German Center for Vertigo and Balance Disorders (DSGZ), LMU University Hospital, LMU Munich, 81377 Munich, Germany; (M.W.); (E.E.); (M.L.); (M.G.); (R.B.)
- Pharmaceutical Radiochemistry, TUM School of Natural Sciences, TU Munich, 85748 Garching, Germany
| | - Sibylle Ziegler
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, 81377 Munich, Germany;
| | - Andreas Zwergal
- German Center for Vertigo and Balance Disorders (DSGZ), LMU University Hospital, LMU Munich, 81377 Munich, Germany; (M.W.); (E.E.); (M.L.); (M.G.); (R.B.)
- Department of Neurology, LMU University Hospital, LMU Munich, 81377 Munich, Germany
| |
Collapse
|
17
|
Liu Z, Bagnall MW. Organization of vestibular circuits for postural control in zebrafish. Curr Opin Neurobiol 2023; 82:102776. [PMID: 37634321 PMCID: PMC11528713 DOI: 10.1016/j.conb.2023.102776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 08/29/2023]
Abstract
Most animals begin controlling their posture, or orientation with respect to gravity, at an early stage in life. Posture is vital for locomotor function. Even animals like fish, which are capable of swimming upside-down, must actively control their orientation to coordinate behaviors such as capturing prey near the water's surface. Here we review recent research from multiple laboratories investigating the organization and function of the vestibular circuits underlying postural control in zebrafish. Some findings in zebrafish strongly align with prior observations in mammals, reinforcing our understanding of homologies between systems. In other instances, the unique transparency and accessibility of zebrafish has enabled new analyses of several neural circuit components that remain challenging to study in mammalian systems. These new results demonstrate topographical and circuit features in postural control.
Collapse
Affiliation(s)
- Zhikai Liu
- Department of Neuroscience, Washington University in St. Louis, 660 S. Euclid Ave., St. Louis MO 63108, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA. https://twitter.com/zhikai_liu
| | - Martha W Bagnall
- Department of Neuroscience, Washington University in St. Louis, 660 S. Euclid Ave., St. Louis MO 63108, USA.
| |
Collapse
|
18
|
Zhou J, Liu B, Ye H, Duan JP. A prospective cohort study on the association between new falls and balancing ability among older adults over 80 years who are independent. Exp Gerontol 2023; 180:112259. [PMID: 37473970 DOI: 10.1016/j.exger.2023.112259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/22/2023]
Abstract
OBJECTIVE The purpose of this study was to prospectively investigate the relationship between new falls and the balancing ability of older adults aged ≥80 years who are independent and evaluate the validity of the assessment tools as a predictor of falls. METHODS We enrolled a total of 160 participants (104 males and 56 females) aged 80 years or older. During the 12 months of observation, we investigated underlying diseases and drug use and performed a comprehensive geriatric assessment (including self-care ability, muscle strength, action ability, cognition, emotional state, and other aspects), as well as computerized dynamic posturography to assess balance and gait functions. We further analyzed the relationship between new falls and multiple internal risk factors. RESULTS A total of 159 participants were included for statistical analysis, and there were 108 new falls among the 59 participants. Fall history and visual preference (PREF) scores on the sensory integration test showed a positive correlation with new falls. The composite equilibrium score (SOTcom), left total hip bone mineral density, left directional control, and end point deviation were all found to be negatively correlated with new falls (P < 0.05). The cut-off point of the timed "up and go" test (TUG) in predicting new falls in this cohort was >12.03 s, with a sensitivity of 78.0 %, a specificity of 51.5 %, and an AUC of 0.667 (P < 0.001, 95 % CI: 0.567-0.721). The cut-off point of SOTcom in predicting new falls was ≤52, with a sensitivity of 40.7 %, a specificity of 84.0 %, and an AUC of 0.606 (P = 0.028, 95 % CI: 0.525-0.682). CONCLUSIONS The decline of balance sensory input function (mainly vestibular and visual sense), skeletal muscle motor function, and related postural control ability constituted the main risk factors for new falls in older adults who were independent. The combined use of TUG and SOT was useful in further improving the accuracy of predicting new falls in this population and providing a direction for effective intervention and rehabilitation measures.
Collapse
Affiliation(s)
- Jian Zhou
- Department of Geriatrics, Beijing Tongren Hospital, China Capital Medical University, Beijing 100730, China
| | - Bo Liu
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, China Capital Medical University, Beijing 100730, China; Beijing Institute of Otolaryngology, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Beijing 100730, China.
| | - Hui Ye
- Department of Geriatrics, Beijing Tongren Hospital, China Capital Medical University, Beijing 100730, China
| | - Jin-Ping Duan
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, China Capital Medical University, Beijing 100730, China
| |
Collapse
|
19
|
Kalinina DS, Lyakhovetskii VA, Gorskii OV, Shkorbatova PY, Pavlova NV, Bazhenova EY, Sysoev YI, Gainetdinov RR, Musienko PE. Alteration of Postural Reactions in Rats with Different Levels of Dopamine Depletion. Biomedicines 2023; 11:1958. [PMID: 37509596 PMCID: PMC10377029 DOI: 10.3390/biomedicines11071958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/19/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
Dopamine (DA) is the critical neurotransmitter involved in the unconscious control of muscle tone and body posture. We evaluated the general motor capacities and muscle responses to postural disturbance in three conditions: normal DA level (wild-type rats, WT), mild DA deficiency (WT after administration of α-methyl-p-tyrosine-AMPT, that blocks DA synthesis), and severe DA depletion (DAT-KO rats after AMPT). The horizontal displacements in WT rats elicited a multi-component EMG corrective response in the flexor and extensor muscles. Similar to the gradual progression of DA-related diseases, we observed different degrees of bradykinesia, rigidity, and postural instability after AMPT. The mild DA deficiency impaired the initiation pattern of corrective responses, specifically delaying the extensor muscles' activity ipsilaterally to displacement direction and earlier extensor activity from the opposite side. DA depletion in DAT-KO rats after AMPT elicited tremors, general stiffness, and akinesia, and caused earlier response to horizontal displacements in the coactivated flexor and extensor muscles bilaterally. The data obtained show the specific role of DA in postural reactions and suggest that this experimental approach can be used to investigate sensorimotor control in different dopamine-deficient states and to model DA-related diseases.
Collapse
Affiliation(s)
- Daria S Kalinina
- Institute of Translational Biomedicine, St. Petersburg State University Hospital, St. Petersburg State University, 199034 St. Petersburg, Russia
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223 St. Petersburg, Russia
- Department of Neuroscience, Sirius University of Science and Technology, 354340 Sirius, Russia
| | | | - Oleg V Gorskii
- Institute of Translational Biomedicine, St. Petersburg State University Hospital, St. Petersburg State University, 199034 St. Petersburg, Russia
- Pavlov Institute of Physiology, Russian Academy of Sciences, 199034 St. Petersburg, Russia
- Center for Biomedical Engineering, National University of Science and Technology "MISIS", 119049 Moscow, Russia
| | - Polina Yu Shkorbatova
- Institute of Translational Biomedicine, St. Petersburg State University Hospital, St. Petersburg State University, 199034 St. Petersburg, Russia
- Department of Neuroscience, Sirius University of Science and Technology, 354340 Sirius, Russia
- Pavlov Institute of Physiology, Russian Academy of Sciences, 199034 St. Petersburg, Russia
| | - Natalia V Pavlova
- Institute of Translational Biomedicine, St. Petersburg State University Hospital, St. Petersburg State University, 199034 St. Petersburg, Russia
- Pavlov Institute of Physiology, Russian Academy of Sciences, 199034 St. Petersburg, Russia
| | - Elena Yu Bazhenova
- Institute of Translational Biomedicine, St. Petersburg State University Hospital, St. Petersburg State University, 199034 St. Petersburg, Russia
- Pavlov Institute of Physiology, Russian Academy of Sciences, 199034 St. Petersburg, Russia
| | - Yurii I Sysoev
- Institute of Translational Biomedicine, St. Petersburg State University Hospital, St. Petersburg State University, 199034 St. Petersburg, Russia
- Department of Neuroscience, Sirius University of Science and Technology, 354340 Sirius, Russia
- Pavlov Institute of Physiology, Russian Academy of Sciences, 199034 St. Petersburg, Russia
- Department of Pharmacology and Clinical Pharmacology, Saint Petersburg State Chemical and Pharmaceutical University, 197022 St. Petersburg, Russia
| | - Raul R Gainetdinov
- Institute of Translational Biomedicine, St. Petersburg State University Hospital, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Pavel E Musienko
- Institute of Translational Biomedicine, St. Petersburg State University Hospital, St. Petersburg State University, 199034 St. Petersburg, Russia
- Pavlov Institute of Physiology, Russian Academy of Sciences, 199034 St. Petersburg, Russia
- Life Improvement by Future Technologies Center "LIFT", 143025 Moscow, Russia
| |
Collapse
|
20
|
Gibson AR, Horn KM, Pong M. Nucleus reticularis tegmenti pontis: a bridge between the basal ganglia and cerebellum for movement control. Exp Brain Res 2023; 241:1271-1287. [PMID: 37000205 PMCID: PMC10129968 DOI: 10.1007/s00221-023-06574-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 02/13/2023] [Indexed: 04/01/2023]
Abstract
Neural processing in the basal ganglia is critical for normal movement. Diseases of the basal ganglia, such as Parkinson's disease, produce a variety of movement disorders including akinesia and bradykinesia. Many believe that the basal ganglia influence movement via thalamic projections to motor areas of the cerebral cortex and through projections to the cerebellum, which also projects to the motor cortex via the thalamus. However, lesions that interrupt these thalamic pathways to the cortex have little effect on many movements, including limb movements. Yet, limb movements are severely impaired by basal ganglia disease or damage to the cerebellum. We can explain this impairment as well as the mild effects of thalamic lesions if basal ganglia and cerebellar output reach brainstem motor regions without passing through the thalamus. In this report, we describe several brainstem pathways that connect basal ganglia output to the cerebellum via nucleus reticularis tegmenti pontis (NRTP). Additionally, we propose that widespread afferent and efferent connections of NRTP with the cerebellum could integrate processing across cerebellar regions. The basal ganglia could then alter movements via descending projections of the cerebellum. Pathways through NRTP are important for the control of normal movement and may underlie deficits associated with basal ganglia disease.
Collapse
Affiliation(s)
- Alan R Gibson
- Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA.
- , 3417 E. Mission Ln, Phoenix, AZ, 85028, USA.
| | - Kris M Horn
- Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
- Chamberlain College of Nursing, 1036 E Baylor Ln, Gilbert, AZ, 85296, USA
| | - Milton Pong
- Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
- School of Osteopathic Medicine, Arizona, A. T. Still University, 5850 E. Still Circle, Mesa, AZ, 85206, USA
| |
Collapse
|
21
|
Biomechanics and neural circuits for vestibular-induced fine postural control in larval zebrafish. Nat Commun 2023; 14:1217. [PMID: 36898983 PMCID: PMC10006170 DOI: 10.1038/s41467-023-36682-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 02/10/2023] [Indexed: 03/12/2023] Open
Abstract
Land-walking vertebrates maintain a desirable posture by finely controlling muscles. It is unclear whether fish also finely control posture in the water. Here, we showed that larval zebrafish have fine posture control. When roll-tilted, fish recovered their upright posture using a reflex behavior, which was a slight body bend near the swim bladder. The vestibular-induced body bend produces a misalignment between gravity and buoyancy, generating a moment of force that recovers the upright posture. We identified the neural circuits for the reflex, including the vestibular nucleus (tangential nucleus) through reticulospinal neurons (neurons in the nucleus of the medial longitudinal fasciculus) to the spinal cord, and finally to the posterior hypaxial muscles, a special class of muscles near the swim bladder. These results suggest that fish maintain a dorsal-up posture by frequently performing the body bend reflex and demonstrate that the reticulospinal pathway plays a critical role in fine postural control.
Collapse
|
22
|
Krotov V, Agashkov K, Krasniakova M, Safronov BV, Belan P, Voitenko N. Segmental and descending control of primary afferent input to the spinal lamina X. Pain 2022; 163:2014-2020. [PMID: 35297816 PMCID: PMC9339045 DOI: 10.1097/j.pain.0000000000002597] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 01/03/2022] [Accepted: 01/20/2022] [Indexed: 02/04/2023]
Abstract
ABSTRACT Despite being involved in a number of functions, such as nociception and locomotion, spinal lamina X remains one of the least studied central nervous system regions. Here, we show that Aδ- and C-afferent inputs to lamina X neurons are presynaptically inhibited by homo- and heterosegmental afferents as well as by descending fibers from the corticospinal tract, dorsolateral funiculus, and anterior funiculus. Activation of descending tracts suppresses primary afferent-evoked action potentials and also elicits excitatory (mono- and polysynaptic) and inhibitory postsynaptic responses in lamina X neurons. Thus, primary afferent input to lamina X is subject to both spinal and supraspinal control being regulated by at least 5 distinct pathways.
Collapse
Affiliation(s)
- Volodymyr Krotov
- Departments of Sensory Signaling and
- Molecular Biophysics, Bogomoletz Institute of Physiology, Kyiv, Ukraine
| | | | | | - Boris V. Safronov
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Neuronal Networks Group, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Pavel Belan
- Molecular Biophysics, Bogomoletz Institute of Physiology, Kyiv, Ukraine
- Kyiv Academic University, Kyiv, Ukraine
| | - Nana Voitenko
- Departments of Sensory Signaling and
- Kyiv Academic University, Kyiv, Ukraine
- Private Institution Dobrobut Academy, Kyiv, Ukraine
| |
Collapse
|
23
|
The relationship between forward head posture, postural control and gait: A systematic review. Gait Posture 2022; 98:316-329. [PMID: 36274469 DOI: 10.1016/j.gaitpost.2022.10.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 07/29/2022] [Accepted: 10/12/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND Forward head posture (FHP) is a common postural deviation. An increasing number of studies have reported that people with FHP present with impaired postural control and gait; however, there is conflicting evidence. A systematic review focusing on these relationships has been unavailable to date. RESEARCH QUESTION Is there a relationship between FHP, postural control and gait? METHODS This systematic review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) statement (PROSPERO ID: CRD42021231908). Web of Science, PubMed, Scopus, and CINAHL Plus (via EBSCO) were systematically searched, and a manual search was performed using the reference lists of included studies. Eligible studies included observational studies addressing the relationship between FHP, postural control and/or gait. Quality assessment was conducted using the Joanna Briggs Institute Critical Appraisal Checklist for Cross-Sectional Studies. RESULTS Nineteen studies were selected for this review. Consistent evidence supported that people with FHP had significant alterations in limits of stability (n = 3), performance-based balance (n = 3), and cervical proprioception (n = 4). Controversial evidence existed for a relationship of FHP with static balance (n = 4) and postural stability control (n = 4). Limited evidence existed to support an alteration in gait and vestibular function. Three studies on induced FHP consistently identified no reduced postural control. SIGNIFICANCE Current evidence supports an association between FHP and a detrimental alteration in limits of stability, performance-based balance, and cervical proprioception. Instead of simply indicating impaired overall balance, the findings of this review indicate that a reduction in specific aspects of the postural control requires to be clarified in clinical evaluation for individuals with FHP, which would facilitate the planning and application of appropriate interventions to prevent dysfunctions and disability.
Collapse
|
24
|
Liu Z, Hildebrand DGC, Morgan JL, Jia Y, Slimmon N, Bagnall MW. Organization of the gravity-sensing system in zebrafish. Nat Commun 2022; 13:5060. [PMID: 36030280 PMCID: PMC9420129 DOI: 10.1038/s41467-022-32824-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 08/18/2022] [Indexed: 01/07/2023] Open
Abstract
Motor circuits develop in sequence from those governing fast movements to those governing slow. Here we examine whether upstream sensory circuits are organized by similar principles. Using serial-section electron microscopy in larval zebrafish, we generated a complete map of the gravity-sensing (utricular) system spanning from the inner ear to the brainstem. We find that both sensory tuning and developmental sequence are organizing principles of vestibular topography. Patterned rostrocaudal innervation from hair cells to afferents creates an anatomically inferred directional tuning map in the utricular ganglion, forming segregated pathways for rostral and caudal tilt. Furthermore, the mediolateral axis of the ganglion is linked to both developmental sequence and neuronal temporal dynamics. Early-born pathways carrying phasic information preferentially excite fast escape circuits, whereas later-born pathways carrying tonic signals excite slower postural and oculomotor circuits. These results demonstrate that vestibular circuits are organized by tuning direction and dynamics, aligning them with downstream motor circuits and behaviors.
Collapse
Affiliation(s)
- Zhikai Liu
- Dept. of Neuroscience, Washington University in St. Louis, St. Louis, MO, USA
| | | | - Joshua L Morgan
- Dept. of Ophthalmology, Washington University in St. Louis, St. Louis, MO, USA
| | - Yizhen Jia
- Dept. of Neuroscience, Washington University in St. Louis, St. Louis, MO, USA
| | - Nicholas Slimmon
- Dept. of Neuroscience, Washington University in St. Louis, St. Louis, MO, USA
| | - Martha W Bagnall
- Dept. of Neuroscience, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
25
|
Kattah JC, Zalazar G, Martinez C, Carmona S. Truncal ataxia and the vestibulo spinal reflex. A historical review. J Neurol Sci 2022; 441:120375. [PMID: 35988348 DOI: 10.1016/j.jns.2022.120375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/03/2022] [Accepted: 07/31/2022] [Indexed: 10/15/2022]
Abstract
The vestibulospinal pathway was described many years ago. Along with it, the vestibulospinal signs that are used for the diagnosis of vestibular disorders were described. In this work we summarize the history of the vestibulospinal pathway, the classic signs and the new signs that can be used in the diagnosis of vestibular disorders, paying special attention to truncal ataxia as a useful element to differentiate central from peripheral pathology.
Collapse
Affiliation(s)
- Jorge C Kattah
- Professor and Head of Neurology and Neurosurgery, University of Illinois College of Medicine. Peoria, IL, United States
| | - Guillermo Zalazar
- Neurologist, Hospital Central Dr. Ramón Carrillo, San Luis, Argentina.
| | | | - Sergio Carmona
- Neuro-otologist, Fundación San Lucas para la Neurociencia, Rosario, Santa Fe, Argentina
| |
Collapse
|
26
|
Stitt IM, Wellings TP, Drury HR, Jobling P, Callister RJ, Brichta AM, Lim R. Properties of Deiters' neurons and inhibitory synaptic transmission in the mouse lateral vestibular nucleus. J Neurophysiol 2022; 128:131-147. [PMID: 35730750 DOI: 10.1152/jn.00016.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Deiters' neurons, located exclusively in the lateral vestibular nucleus (LVN), are involved in vestibulospinal reflexes, innervate extensor motoneurons that drive anti-gravity muscles, and receive inhibitory inputs from the cerebellum. We investigated intrinsic membrane properties, short-term plasticity, and inhibitory synaptic inputs of mouse Deiters' and non-Deiters' neurons within the LVN. Deiters' neurons are distinguished from non-Deiters' neurons by their very low input resistance (105.8 vs 521.8 MOhms) respectively, long axons that project as far as the ipsilateral lumbar spinal cord, and expression of the cytostructural protein, non-phosphorylated neurofilament protein (NPNFP). Whole-cell patch clamp recordings in brainstem slices show most Deiters' and non-Deiters' neurons were tonically active (>92%). Short-term plasticity was studied by examining discharge rate modulation following release from hyperpolarization (post-inhibitory rebound firing; PRF) and depolarization (firing rate adaptation; FRA). PRF and FRA gain were similar in Deiters' and non-Deiters' neurons (PRF: 24.9 vs. 20.2 Hz and FRA gain: 231.5 vs. 287.8 spikes/sec/nA respectively). Inhibitory synaptic input to both populations showed GABAergic rather than glycinergic inhibition dominated in Deiters' neurons and GABAA miniature inhibitory postsynaptic current (mIPSC) frequency was much higher in Deiters' neurons compared to non-Deiters' neurons (~15.9 vs. 1.4 Hz respectively). Our data suggest Deiters' neurons can be reliably identified by their intrinsic membrane and synaptic properties. They are tonically active, glutamatergic, have low sensitivity or 'gain', exhibit little adaptation, and receive strong GABAergic input. Together, these features suggest, since Deiters' neurons have minimal short-term plasticity they are well-suited to a role encoding tonic signals for the vestibulospinal reflex.
Collapse
Affiliation(s)
- Iain M Stitt
- The School of Biomedical Sciences and Pharmacy, The University of Newcastle and Hunter Medical Research Institute, Callaghan, NSW, Australia
| | - Thomas P Wellings
- The School of Biomedical Sciences and Pharmacy, The University of Newcastle and Hunter Medical Research Institute, Callaghan, NSW, Australia
| | - Hannah Rose Drury
- The School of Biomedical Sciences and Pharmacy, The University of Newcastle and Hunter Medical Research Institute, Callaghan, NSW, Australia
| | - Phillip Jobling
- The School of Biomedical Sciences and Pharmacy, The University of Newcastle and Hunter Medical Research Institute, Callaghan, NSW, Australia
| | - Robert J Callister
- The School of Biomedical Sciences and Pharmacy, The University of Newcastle and Hunter Medical Research Institute, Callaghan, NSW, Australia
| | - Alan Martin Brichta
- The School of Biomedical Sciences and Pharmacy, The University of Newcastle and Hunter Medical Research Institute, Callaghan, NSW, Australia
| | - Rebecca Lim
- The School of Biomedical Sciences and Pharmacy, The University of Newcastle and Hunter Medical Research Institute, Callaghan, NSW, Australia
| |
Collapse
|
27
|
L-Thyroxine Improves Vestibular Compensation in a Rat Model of Acute Peripheral Vestibulopathy: Cellular and Behavioral Aspects. Cells 2022; 11:cells11040684. [PMID: 35203333 PMCID: PMC8869897 DOI: 10.3390/cells11040684] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 02/07/2023] Open
Abstract
Unilateral vestibular lesions induce a vestibular syndrome, which recovers over time due to vestibular compensation. The therapeutic effect of L-Thyroxine (L-T4) on vestibular compensation was investigated by behavioral testing and immunohistochemical analysis in a rat model of unilateral vestibular neurectomy (UVN). We demonstrated that a short-term L-T4 treatment reduced the vestibular syndrome and significantly promoted vestibular compensation. Thyroid hormone receptors (TRα and TRβ) and type II iodothyronine deiodinase (DIO2) were present in the vestibular nuclei (VN), supporting a local action of L-T4. We confirmed the T4-induced metabolic effects by demonstrating an increase in the number of cytochrome oxidase-labeled neurons in the VN three days after the lesion. L-T4 treatment modulated glial reaction by decreasing both microglia and oligodendrocytes in the deafferented VN three days after UVN and increased cell proliferation. Survival of newly generated cells in the deafferented vestibular nuclei was not affected, but microglial rather than neuronal differentiation was favored by L-T4 treatment.
Collapse
|
28
|
Spaeth L, Bahuguna J, Gagneux T, Dorgans K, Sugihara I, Poulain B, Battaglia D, Isope P. Cerebellar connectivity maps embody individual adaptive behavior in mice. Nat Commun 2022; 13:580. [PMID: 35102165 PMCID: PMC8803868 DOI: 10.1038/s41467-022-27984-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 12/13/2021] [Indexed: 11/16/2022] Open
Abstract
The cerebellar cortex encodes sensorimotor adaptation during skilled locomotor behaviors, however the precise relationship between synaptic connectivity and behavior is unclear. We studied synaptic connectivity between granule cells (GCs) and Purkinje cells (PCs) in murine acute cerebellar slices using photostimulation of caged glutamate combined with patch-clamp in developing or after mice adapted to different locomotor contexts. By translating individual maps into graph network entities, we found that synaptic maps in juvenile animals undergo critical period characterized by dissolution of their structure followed by the re-establishment of a patchy functional organization in adults. Although, in adapted mice, subdivisions in anatomical microzones do not fully account for the observed spatial map organization in relation to behavior, we can discriminate locomotor contexts with high accuracy. We also demonstrate that the variability observed in connectivity maps directly accounts for motor behavior traits at the individual level. Our findings suggest that, beyond general motor contexts, GC-PC networks also encode internal models underlying individual-specific motor adaptation.
Collapse
Affiliation(s)
- Ludovic Spaeth
- Institut des Neurosciences Cellulaires et Intégratives, CNRS, Université de Strasbourg, 67084, Strasbourg, France
- Dominick P Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jyotika Bahuguna
- Aix-Marseille Université, Institut de Neurosciences des Systèmes, CNRS, 13005, Marseille, France
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Theo Gagneux
- Institut des Neurosciences Cellulaires et Intégratives, CNRS, Université de Strasbourg, 67084, Strasbourg, France
| | - Kevin Dorgans
- Institut des Neurosciences Cellulaires et Intégratives, CNRS, Université de Strasbourg, 67084, Strasbourg, France
- Okinawa Institute of Science and Technology, Graduate University of Okinawa, Onna, Japan
| | - Izumi Sugihara
- Department of Systems Neurophysiology, Tokyo Medical and Dental University Graduate School of Medical and Dental Sciences, 1-5-45 Yushima Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Bernard Poulain
- Institut des Neurosciences Cellulaires et Intégratives, CNRS, Université de Strasbourg, 67084, Strasbourg, France
| | - Demian Battaglia
- Aix-Marseille Université, Institut de Neurosciences des Systèmes, CNRS, 13005, Marseille, France
- University of Strasbourg Institute for Advanced Studies (USIAS), 67084, Strasbourg, France
| | - Philippe Isope
- Institut des Neurosciences Cellulaires et Intégratives, CNRS, Université de Strasbourg, 67084, Strasbourg, France.
| |
Collapse
|
29
|
Elliott KL, Kersigo J, Lee JH, Yamoah EN, Fritzsch B. Sustained Loss of Bdnf Affects Peripheral but Not Central Vestibular Targets. Front Neurol 2021; 12:768456. [PMID: 34975728 PMCID: PMC8716794 DOI: 10.3389/fneur.2021.768456] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/25/2021] [Indexed: 11/13/2022] Open
Abstract
The vestibular system is vital for proper balance perception, and its dysfunction contributes significantly to fall-related injuries, especially in the elderly. Vestibular ganglion neurons innervate vestibular hair cells at the periphery and vestibular nuclei and the uvula and nodule of the cerebellum centrally. During aging, these vestibular ganglion neurons degenerate, impairing vestibular function. A complete understanding of the molecular mechanisms involved in neurosensory cell survival in the vestibular system is unknown. Brain-derived neurotrophic factor (BDNF) is specifically required for the survival of vestibular ganglion neurons, as its loss leads to early neuronal death. Bdnf null mice die within 3 weeks of birth, preventing the study of the long-term effects on target cells. We use Pax2-cre to conditionally knock out Bdnf, allowing mice survival to approximately 6 months of age. We show that a long-term loss of Bdnf leads to a significant reduction in the number of vestibular ganglion neurons and a reduction in the number of vestibular hair cells. There was no significant decrease in the central targets lateral vestibular nucleus (LVN) or the cerebellum at 6 months. This suggests that the connectivity between central target cells and other neurons suffices to prevent their loss despite vestibular hair cell and ganglion neuron loss. Whether the central neurons would undergo eventual degeneration in the absence of Bdnf remains to be determined.
Collapse
Affiliation(s)
- Karen L. Elliott
- Department of Biology, University of Iowa, Iowa City, IA, United States
| | - Jennifer Kersigo
- Department of Biology, University of Iowa, Iowa City, IA, United States
| | - Jeong Han Lee
- Department of Physiology, School of Medicine, University of Nevada, Reno, NV, United States
| | - Ebenezer N. Yamoah
- Department of Physiology, School of Medicine, University of Nevada, Reno, NV, United States
| | - Bernd Fritzsch
- Department of Biology, University of Iowa, Iowa City, IA, United States
- Department of Otolaryngology, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
30
|
García-Muñoz C, Casuso-Holgado MJ, Hernández-Rodríguez JC, Pinero-Pinto E, Palomo-Carrión R, Cortés-Vega MD. Feasibility and safety of an immersive virtual reality-based vestibular rehabilitation programme in people with multiple sclerosis experiencing vestibular impairment: a protocol for a pilot randomised controlled trial. BMJ Open 2021; 11:e051478. [PMID: 34810187 PMCID: PMC8609940 DOI: 10.1136/bmjopen-2021-051478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 10/22/2021] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION Vestibular system damage in patients with multiple sclerosis (MS) may have a central and/or peripheral origin. Subsequent vestibular impairments may contribute to dizziness, balance disorders and fatigue in this population. Vestibular rehabilitation targeting vestibular impairments may improve these symptoms. Furthermore, as a successful tool in neurological rehabilitation, immersive virtual reality (VRi) could also be implemented within a vestibular rehabilitation intervention. METHODS AND ANALYSIS This protocol describes a parallel-arm, pilot randomised controlled trial, with blinded assessments, in 30 patients with MS with vestibular impairment (Dizziness Handicap Inventory ≥16). The experimental group will receive a VRi vestibular rehabilitation intervention based on the conventional Cawthorne-Cooksey protocol; the control group will perform the conventional protocol. The duration of the intervention in both groups will be 7 weeks (20 sessions, 3 sessions/week). The primary outcomes are the feasibility and safety of the vestibular VRi intervention in patients with MS. Secondary outcome measures are dizziness symptoms, balance performance, fatigue and quality of life. Quantitative assessment will be carried out at baseline (T0), immediately after intervention (T1), and after a follow-up period of 3 and 6 months (T2 and T3). Additionally, in order to further examine the feasibility of the intervention, a qualitative assessment will be performed at T1. ETHICS AND DISSEMINATION The study was approved by the Andalusian Review Board and Ethics Committee, Virgen Macarena-Virgen del Rocio Hospitals (ID 2148-N-19, 25 March 2020). Informed consent will be collected from participants who wish to participate in the research. The results of this research will be disseminated by publication in peer-reviewed scientific journals. TRIAL REGISTRATION NUMBER NCT04497025.
Collapse
Affiliation(s)
| | | | | | | | - Rocío Palomo-Carrión
- Department of Nursery, Physiotherapy and Occupational Therapy, University of Castilla-La Mancha, Toledo, Spain
- GIFTO, Physiotherapy Research Group, Toledo, Spain
| | | |
Collapse
|
31
|
Chaterji S, Barik A, Sathyamurthy A. Intraspinal injection of adeno-associated viruses into the adult mouse spinal cord. STAR Protoc 2021; 2:100786. [PMID: 34505088 PMCID: PMC8414904 DOI: 10.1016/j.xpro.2021.100786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Genetic dissection of neural circuits has been accelerated by recent advances in viral-based vectors. This protocol describes an effective approach to performing intraspinal injections of adeno-associated viruses, which can be used to label, manipulate, and monitor spinal and supraspinal neurons. By avoiding invasive laminectomies and restrictive spinal-clamping and by adopting injectable anaesthetics and tough quartz glass micropipettes, our protocol presents a time-saving and efficient approach for genetic manipulation of neural circuits nucleated in the spinal cord. For complete details on the use and execution of this protocol, please refer to Sathyamurthy et al. (2020).
Collapse
Affiliation(s)
- Shrivas Chaterji
- Centre for Neuroscience, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Arnab Barik
- Centre for Neuroscience, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Anupama Sathyamurthy
- Centre for Neuroscience, Indian Institute of Science, Bangalore, Karnataka 560012, India
| |
Collapse
|
32
|
Haimson B, Hadas Y, Bernat N, Kania A, Daley MA, Cinnamon Y, Lev-Tov A, Klar A. Spinal lumbar dI2 interneurons contribute to stability of bipedal stepping. eLife 2021; 10:62001. [PMID: 34396953 PMCID: PMC8448531 DOI: 10.7554/elife.62001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 08/11/2021] [Indexed: 11/13/2022] Open
Abstract
Peripheral and intraspinal feedback is required to shape and update the output of spinal networks that execute motor behavior. We report that lumbar dI2 spinal interneurons in chicks receive synaptic input from afferents and premotor neurons. These interneurons innervate contralateral premotor networks in the lumbar and brachial spinal cord, and their ascending projections innervate the cerebellum. These findings suggest that dI2 neurons function as interneurons in local lumbar circuits, are involved in lumbo-brachial coupling, and that part of them deliver peripheral and intraspinal feedback to the cerebellum. Silencing of dI2 neurons leads to destabilized stepping in P8 hatchlings, with occasional collapses, variable step profiles and a wide-base walking gait, suggesting that dI2 neurons may contribute to the stabilization of the bipedal gait.
Collapse
Affiliation(s)
- Baruch Haimson
- Department of Medical Neurobiology,, IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, 91120, Israel, jerusalem, Israel
| | - Yoav Hadas
- Department of Medical Neurobiology,, IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, 91120, Israel, Jerusalem, Israel
| | - Nimrod Bernat
- Department of Medical Neurobiology,, IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, 91120, Israel, jerusalem, Israel
| | - Artur Kania
- Anatomy and Cell Biology, Institut de recherches cliniques de Montréal (IRCM), Montreal, Canada
| | - Monica A Daley
- Ecology and Evolutionary Biology, University of California, Irvine, Irvine, United States
| | - Yuval Cinnamon
- Institute of Animal Science Poultry and Aquaculture Sci. Dept, Institute of Animal Science Poultry and Aquaculture Sci. Dept. Agricultural Research Organization, The Volcani Center, Israel, Rehovot, Israel
| | - Aharon Lev-Tov
- Department of Medical Neurobiology,, IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, 91120, Israel, Jerisalem, Israel
| | - Avihu Klar
- Medical Neurobiology, Hebrew University, Jerusalem, Israel
| |
Collapse
|
33
|
Magnani RM, Bruijn SM, van Dieën JH, Forbes PA. Stabilization demands of walking modulate the vestibular contributions to gait. Sci Rep 2021; 11:13736. [PMID: 34215780 PMCID: PMC8253745 DOI: 10.1038/s41598-021-93037-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 06/04/2021] [Indexed: 12/26/2022] Open
Abstract
Stable walking relies critically on motor responses to signals of head motion provided by the vestibular system, which are phase-dependent and modulated differently within each muscle. It is unclear, however, whether these vestibular contributions also vary according to the stability of the walking task. Here we investigate how vestibular signals influence muscles relevant for gait stability (medial gastrocnemius, gluteus medius and erector spinae)-as well as their net effect on ground reaction forces-while humans walked normally, with mediolateral stabilization, wide and narrow steps. We estimated local dynamic stability of trunk kinematics together with coherence of electrical vestibular stimulation (EVS) with muscle activity and mediolateral ground reaction forces. Walking with external stabilization increased local dynamic stability and decreased coherence between EVS and all muscles/forces compared to normal walking. Wide-base walking also decreased vestibulomotor coherence, though local dynamic stability did not differ. Conversely, narrow-base walking increased local dynamic stability, but produced muscle-specific increases and decreases in coherence that resulted in a net increase in vestibulomotor coherence with ground reaction forces. Overall, our results show that while vestibular contributions may vary with gait stability, they more critically depend on the stabilization demands (i.e. control effort) needed to maintain a stable walking pattern.
Collapse
Affiliation(s)
- Rina M Magnani
- Department of Physiotherapy, School of Physical Education and Physical Therapy, State University of Goiás, Goiânia, GO, Brazil
| | - Sjoerd M Bruijn
- Department of Human Movement Sciences, Faculty of Behavioral and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands.,Institute Brain and Behavior Amsterdam, Amsterdam, The Netherlands
| | - Jaap H van Dieën
- Department of Human Movement Sciences, Faculty of Behavioral and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Patrick A Forbes
- Department of Neuroscience, Erasmus MC, University Medical Center Rotterdam, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands.
| |
Collapse
|
34
|
Nguyen KP, Sharma A, Gil-Silva M, Gittis AH, Chase SM. Distinct Kinematic Adjustments over Multiple Timescales Accompany Locomotor Skill Development in Mice. Neuroscience 2021; 466:260-272. [PMID: 34088581 PMCID: PMC8561674 DOI: 10.1016/j.neuroscience.2021.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 05/02/2021] [Accepted: 05/04/2021] [Indexed: 11/23/2022]
Abstract
Robust locomotion is critical to many species' survival, yet the mechanisms by which efficient locomotion is learned and maintained are poorly understood. In mice, a common paradigm for assaying locomotor learning is the rotarod task, in which mice learn to maintain balance atop of an accelerating rod. However, the standard metric for learning in this task is improvements in latency to fall, which gives little insight into the rich kinematic adjustments that accompany locomotor learning. In this study, we developed a rotarod-like task called the RotaWheel in which changes in paw kinematics are tracked using high-speed cameras as mice learn to stay atop an accelerating wheel. Using this device, we found that learning was accompanied by stereotyped progressions of paw kinematics that correlated with early, intermediate, and late stages of performance. Within the first day, mice sharpened their interlimb coordination using a timed pause in the forward swing of their forepaws. Over the next several days, mice reduced their stride length and took shorter, quicker steps. By the second week of training, mice began to use a more variable locomotor strategy, where consecutive overshoots or undershoots in strides were selected across paws to drive forward and backward exploration of the wheel. Collectively, our results suggest that mouse locomotor learning occurs through multiple mechanisms evolving over separate time courses and involving distinct corrective actions. These data provide insights into the kinematic strategies that accompany locomotor learning and establish an experimental platform for studying locomotor skill learning in mice.
Collapse
Affiliation(s)
- Katrina P Nguyen
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States; Center for the Neural Basis of Computation, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Abhinav Sharma
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States; Center for the Neural Basis of Computation, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Mauricio Gil-Silva
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Aryn H Gittis
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, United States; Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Steven M Chase
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States; Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, United States
| |
Collapse
|
35
|
Nandakumar B, Blumenthal GH, Pauzin FP, Moxon KA. Hindlimb Somatosensory Information Influences Trunk Sensory and Motor Cortices to Support Trunk Stabilization. Cereb Cortex 2021; 31:5165-5187. [PMID: 34165153 DOI: 10.1093/cercor/bhab150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/10/2021] [Accepted: 04/27/2021] [Indexed: 11/14/2022] Open
Abstract
Sensorimotor integration in the trunk system is poorly understood despite its importance for functional recovery after neurological injury. To address this, a series of mapping studies were performed in the rat. First, the receptive fields (RFs) of cells recorded from thoracic dorsal root ganglia were identified. Second, the RFs of cells recorded from trunk primary sensory cortex (S1) were used to assess the extent and internal organization of trunk S1. Finally, the trunk motor cortex (M1) was mapped using intracortical microstimulation to assess coactivation of trunk muscles with hindlimb and forelimb muscles, and integration with S1. Projections from trunk S1 to trunk M1 were not anatomically organized, with relatively weak sensorimotor integration between trunk S1 and M1 compared to extensive integration between hindlimb S1/M1 and trunk M1. Assessment of response latency and anatomical tracing suggest that trunk M1 is abundantly guided by hindlimb somatosensory information that is derived primarily from the thalamus. Finally, neural recordings from awake animals during unexpected postural perturbations support sensorimotor integration between hindlimb S1 and trunk M1, providing insight into the role of the trunk system in postural control that is useful when studying recovery after injury.
Collapse
Affiliation(s)
- Bharadwaj Nandakumar
- Department of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, 19104 PA, USA.,Department of Biomedical Engineering, University of California, Davis, 95616 CA, USA
| | - Gary H Blumenthal
- Department of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, 19104 PA, USA.,Department of Biomedical Engineering, University of California, Davis, 95616 CA, USA
| | | | - Karen A Moxon
- Department of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, 19104 PA, USA.,Department of Biomedical Engineering, University of California, Davis, 95616 CA, USA.,Center for Neuroscience, Davis, 95618 CA, USA
| |
Collapse
|
36
|
Sathyamurthy A, Barik A, Dobrott CI, Matson KJE, Stoica S, Pursley R, Chesler AT, Levine AJ. Cerebellospinal Neurons Regulate Motor Performance and Motor Learning. Cell Rep 2021; 31:107595. [PMID: 32402292 PMCID: PMC7263484 DOI: 10.1016/j.celrep.2020.107595] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 03/25/2020] [Accepted: 04/09/2020] [Indexed: 02/02/2023] Open
Abstract
To understand the neural basis of behavior, it is important to reveal how movements are planned, executed, and refined by networks of neurons distributed throughout the nervous system. Here, we report the neuroanatomical organization and behavioral roles of cerebellospinal (CeS) neurons. Using intersectional genetic techniques, we find that CeS neurons constitute a small minority of excitatory neurons in the fastigial and interpositus deep cerebellar nuclei, target pre-motor circuits in the ventral spinal cord and the brain, and control distinct aspects of movement. CeS neurons that project to the ipsilateral cervical cord are required for skilled forelimb performance, while CeS neurons that project to the contralateral cervical cord are involved in skilled locomotor learning. Together, this work establishes CeS neurons as a critical component of the neural circuitry for skilled movements and provides insights into the organizational logic of motor networks. Sathyamurthy et al. define the organization, function, and targets of cerebellospinal neurons, revealing a direct link between the deep cerebellar nuclei and motor execution circuits in the spinal cord and demonstrating a role for these neurons in motor control.
Collapse
Affiliation(s)
- Anupama Sathyamurthy
- Spinal Circuits and Plasticity Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Arnab Barik
- Sensory Cells and Circuits Section, National Center for Complimentary and Integrative Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Courtney I Dobrott
- Spinal Circuits and Plasticity Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kaya J E Matson
- Spinal Circuits and Plasticity Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Stefan Stoica
- Spinal Circuits and Plasticity Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Randall Pursley
- Signal Processing and Instrumentation Section, Center for Information Technology, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alexander T Chesler
- Sensory Cells and Circuits Section, National Center for Complimentary and Integrative Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ariel J Levine
- Spinal Circuits and Plasticity Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
37
|
Akay T, Murray AJ. Relative Contribution of Proprioceptive and Vestibular Sensory Systems to Locomotion: Opportunities for Discovery in the Age of Molecular Science. Int J Mol Sci 2021; 22:1467. [PMID: 33540567 PMCID: PMC7867206 DOI: 10.3390/ijms22031467] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/20/2021] [Accepted: 01/26/2021] [Indexed: 12/29/2022] Open
Abstract
Locomotion is a fundamental animal behavior required for survival and has been the subject of neuroscience research for centuries. In terrestrial mammals, the rhythmic and coordinated leg movements during locomotion are controlled by a combination of interconnected neurons in the spinal cord, referred as to the central pattern generator, and sensory feedback from the segmental somatosensory system and supraspinal centers such as the vestibular system. How segmental somatosensory and the vestibular systems work in parallel to enable terrestrial mammals to locomote in a natural environment is still relatively obscure. In this review, we first briefly describe what is known about how the two sensory systems control locomotion and use this information to formulate a hypothesis that the weight of the role of segmental feedback is less important at slower speeds but increases at higher speeds, whereas the weight of the role of vestibular system has the opposite relation. The new avenues presented by the latest developments in molecular sciences using the mouse as the model system allow the direct testing of the hypothesis.
Collapse
Affiliation(s)
- Turgay Akay
- Atlantic Mobility Action Project, Brain Repair Centre, Department of Medical Neuroscience, Life Science Research Institute, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Andrew J. Murray
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London W1T 4JG, UK
| |
Collapse
|
38
|
Warren RA, Zhang Q, Hoffman JR, Li EY, Hong YK, Bruno RM, Sawtell NB. A rapid whisker-based decision underlying skilled locomotion in mice. eLife 2021; 10:63596. [PMID: 33428566 PMCID: PMC7800376 DOI: 10.7554/elife.63596] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/18/2020] [Indexed: 12/24/2022] Open
Abstract
Skilled motor behavior requires rapidly integrating external sensory input with information about internal state to decide which movements to make next. Using machine learning approaches for high-resolution kinematic analysis, we uncover the logic of a rapid decision underlying sensory-guided locomotion in mice. After detecting obstacles with their whiskers mice select distinct kinematic strategies depending on a whisker-derived estimate of obstacle location together with the position and velocity of their body. Although mice rely on whiskers for obstacle avoidance, lesions of primary whisker sensory cortex had minimal impact. While motor cortex manipulations affected the execution of the chosen strategy, the decision-making process remained largely intact. These results highlight the potential of machine learning for reductionist analysis of naturalistic behaviors and provide a case in which subcortical brain structures appear sufficient for mediating a relatively sophisticated sensorimotor decision.
Collapse
Affiliation(s)
- Richard A Warren
- Department of Neuroscience, Mortimer Zuckerman Mind Brain Behavior Institute, Columbia University, New York, United States
| | - Qianyun Zhang
- Department of Neuroscience, Mortimer Zuckerman Mind Brain Behavior Institute, Columbia University, New York, United States
| | - Judah R Hoffman
- Department of Neuroscience, Mortimer Zuckerman Mind Brain Behavior Institute, Columbia University, New York, United States
| | - Edward Y Li
- Department of Neuroscience, Mortimer Zuckerman Mind Brain Behavior Institute, Columbia University, New York, United States
| | - Y Kate Hong
- Department of Neuroscience, Mortimer Zuckerman Mind Brain Behavior Institute, Columbia University, New York, United States
| | - Randy M Bruno
- Department of Neuroscience, Mortimer Zuckerman Mind Brain Behavior Institute, Columbia University, New York, United States
| | - Nathaniel B Sawtell
- Department of Neuroscience, Mortimer Zuckerman Mind Brain Behavior Institute, Columbia University, New York, United States
| |
Collapse
|
39
|
Thanawalla AR, Chen AI, Azim E. The Cerebellar Nuclei and Dexterous Limb Movements. Neuroscience 2020; 450:168-183. [PMID: 32652173 PMCID: PMC7688491 DOI: 10.1016/j.neuroscience.2020.06.046] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 06/03/2020] [Accepted: 06/30/2020] [Indexed: 01/21/2023]
Abstract
Dexterous forelimb movements like reaching, grasping, and manipulating objects are fundamental building blocks of the mammalian motor repertoire. These behaviors are essential to everyday activities, and their elaboration underlies incredible accomplishments by human beings in art and sport. Moreover, the susceptibility of these behaviors to damage and disease of the nervous system can lead to debilitating deficits, highlighting a need for a better understanding of function and dysfunction in sensorimotor control. The cerebellum is central to coordinating limb movements, as defined in large part by Joseph Babinski and Gordon Holmes describing motor impairment in patients with cerebellar lesions over 100 years ago (Babinski, 1902; Holmes, 1917), and supported by many important human and animal studies that have been conducted since. Here, with a focus on output pathways of the cerebellar nuclei across mammalian species, we describe forelimb movement deficits observed when cerebellar circuits are perturbed, the mechanisms through which these circuits influence motor output, and key challenges in defining how the cerebellum refines limb movement.
Collapse
Affiliation(s)
- Ayesha R Thanawalla
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Albert I Chen
- Nanyang Technological University (NTU), School of Biological Sciences, 11 Mandalay Road, Singapore 308232, Singapore; A*STAR, Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 308232, Singapore.
| | - Eiman Azim
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
40
|
Warriner CL, Fageiry SK, Carmona LM, Miri A. Towards Cell and Subtype Resolved Functional Organization: Mouse as a Model for the Cortical Control of Movement. Neuroscience 2020; 450:151-160. [PMID: 32771500 PMCID: PMC10727850 DOI: 10.1016/j.neuroscience.2020.07.054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 06/06/2020] [Accepted: 07/30/2020] [Indexed: 10/23/2022]
Abstract
Despite a long history of interrogation, the functional organization of motor cortex remains obscure. A major barrier has been the inability to measure and perturb activity with sufficient resolution to reveal clear functional elements within motor cortex and its associated circuits. Increasingly, the mouse has been employed as a model to facilitate application of contemporary approaches with the potential to surmount this barrier. In this brief essay, we consider these approaches and their use in the context of studies aimed at resolving the logic of motor cortical operation.
Collapse
Affiliation(s)
- Claire L Warriner
- Department of Neuroscience, The Mortimer B. Zuckerman Mind, Brain, and Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Samaher K Fageiry
- Department of Neuroscience, The Mortimer B. Zuckerman Mind, Brain, and Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Lina M Carmona
- Department of Neuroscience, The Mortimer B. Zuckerman Mind, Brain, and Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Andrew Miri
- Department of Neurobiology, Northwestern University, Evanston, IL 60201, USA.
| |
Collapse
|
41
|
Battilana F, Steurer S, Rizzi G, Delgado AC, Tan KR, Handschin C. Exercise-linked improvement in age-associated loss of balance is associated with increased vestibular input to motor neurons. Aging Cell 2020; 19:e13274. [PMID: 33174325 PMCID: PMC7744958 DOI: 10.1111/acel.13274] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/23/2020] [Accepted: 10/18/2020] [Indexed: 12/27/2022] Open
Abstract
Age‐associated loss of muscle function is exacerbated by a concomitant reduction in balance, leading to gait abnormalities and falls. Even though balance defects can be mitigated by exercise, the underlying neural mechanisms are unknown. We now have investigated components of the proprioceptive and vestibular systems in specific motor neuron pools in sedentary and trained old mice, respectively. We observed a strong age‐linked deterioration in both circuits, with a mitigating effect of exercise on vestibular synapse numbers on motor neurons, closely associated with an improvement in gait and balance in old mice. Our results thus describe how the proprioceptive and vestibular systems are modulated by age and exercise, and how these changes affect their input to motor neurons. These findings not only make a strong case for exercise‐based interventions in elderly individuals to improve balance, but could also lead to targeted therapeutic interventions aimed at the respective neuronal circuitry.
Collapse
Affiliation(s)
| | | | | | | | - Kelly R. Tan
- Biozentrum University of Basel Basel Switzerland
| | | |
Collapse
|
42
|
Agrawal Y, Merfeld DM, Horak FB, Redfern MS, Manor B, Westlake KP, Holstein GR, Smith PF, Bhatt T, Bohnen NI, Lipsitz LA. Aging, Vestibular Function, and Balance: Proceedings of a National Institute on Aging/National Institute on Deafness and Other Communication Disorders Workshop. J Gerontol A Biol Sci Med Sci 2020; 75:2471-2480. [PMID: 32617555 PMCID: PMC7662183 DOI: 10.1093/gerona/glaa097] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Indexed: 12/27/2022] Open
Abstract
Balance impairment and falls are among the most prevalent and morbid conditions affecting older adults. A critical contributor to balance and gait function is the vestibular system; however, there remain substantial knowledge gaps regarding age-related vestibular loss and its contribution to balance impairment and falls in older adults. Given these knowledge gaps, the National Institute on Aging and the National Institute on Deafness and Other Communication Disorders convened a multidisciplinary workshop in April 2019 that brought together experts from a wide array of disciplines, such as vestibular physiology, neuroscience, movement science, rehabilitation, and geriatrics. The goal of the workshop was to identify key knowledge gaps on vestibular function and balance control in older adults and develop a research agenda to make substantial advancements in the field. This article provides a report of the proceedings of this workshop. Three key questions emerged from the workshop, specifically: (i) How does aging impact vestibular function?; (ii) How do we know what is the contribution of age-related vestibular impairment to an older adult's balance problem?; and more broadly, (iii) Can we develop a nosology of balance impairments in older adults that can guide clinical practice? For each of these key questions, the current knowledge is reviewed, and the critical knowledge gaps and research strategies to address them are discussed. This document outlines an ambitious 5- to 10-year research agenda for increasing knowledge related to vestibular impairment and balance control in older adults, with the ultimate goal of linking this knowledge to more effective treatment.
Collapse
Affiliation(s)
- Yuri Agrawal
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Daniel M Merfeld
- Department of Otolaryngology-Head and Neck Surgery, Ohio State University, Columbus
| | - Fay B Horak
- Department of Neurology, School of Medicine, Oregon Health & Science University, Portland
| | - Mark S Redfern
- Department of Bioengineering, University of Pittsburgh, Pennsylvania
- Department of Otolaryngology, University of Pittsburgh, Pennsylvania
| | - Brad Manor
- Division of Gerontology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | | | - Gay R Holstein
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Paul F Smith
- Department of Pharmacology and Toxicology, School of Medical Sciences, University of Otago, Dunedin, New Zealand
- Brain Research New Zealand, Dunedin, New Zealand
| | - Tanvi Bhatt
- Department of Physical Therapy, University of Illinois at Chicago
| | - Nicolaas I Bohnen
- Department of Neurology, University of Michigan, Ann Arbor
- Department of Radiology, University of Michigan, Ann Arbor
| | - Lewis A Lipsitz
- Division of Gerontology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
43
|
Postural control in paw distance after labyrinthectomy-induced vestibular imbalance. Med Biol Eng Comput 2020; 58:3039-3047. [PMID: 33079344 DOI: 10.1007/s11517-020-02276-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 10/14/2020] [Indexed: 12/22/2022]
Abstract
Balance control is accomplished by the anatomical link which provides the neural information for the coordination of skeletal muscles. However, there are few experimental proofs to directly show the neuroanatomical connection. Here, we examined the behavioral alterations by constructing an animal model with chemically induced unilateral labyrinthectomy (UL). In the experiment using rats (26 for UL, 14 for volume cavity, 355-498 g, male), the models were initially evaluated by the rota-rod (RR) test (21/26, 80.8%) and ocular displacement (23/26, 88.5%). The duration on the rolling rod decreased from 234.71 ± 64.25 s (4th trial before UL) to 11.81 ± 17.94 s (1st trial after UL). Also, the ocular skewed deviation (OSD) was observed in the model with left (5.79 ± 3.06°) and right lesion (3.74 ± 2.69°). Paw distance (PW) was separated as the front (FPW) and the hind side (HPW), and the relative changes of HPW (1.71 ± 1.20 cm) was larger than those of FPW (1.39 ± 1.06 cm), providing a statistical significance (p = 1.51 × 10-4, t test). Moreover, the results of the RR tests matched to those of the changing rates (18/21, 85.7%), and the changes (16/18, 88.9%) were dominantly observed in HPW (in FPW, 2/18, 11.1%). Current results indicated that the UL directly affected the changes in HPW more than those in FPW. In conclusion, the missing neural information from the peripheral vestibular system caused the abnormal posture in HPW, and the postural instability might reduce the performance during the voluntary movement shown in the RR test, identifying the relation between the walking imbalance and the unstable posture in PW. Graphical abstract.
Collapse
|
44
|
Sen MK, Almuslehi MSM, Coorssen JR, Mahns DA, Shortland PJ. Behavioural and histological changes in cuprizone-fed mice. Brain Behav Immun 2020; 87:508-523. [PMID: 32014578 DOI: 10.1016/j.bbi.2020.01.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/20/2020] [Accepted: 01/30/2020] [Indexed: 12/13/2022] Open
Abstract
Feeding cuprizone (CPZ) to mice causes demyelination and reactive gliosis in the central nervous system (CNS), hallmarks of some neurodegenerative diseases like multiple sclerosis. However, relatively little is known regarding the behavioural deficits associated with CPZ-feeding and much of what is known is contradictory. This study investigated whether 37 days oral feeding of 0.2% CPZ to young adult mice evoked sensorimotor behavioural changes. Behavioural tests included measurements of nociceptive withdrawal reflex responses and locomotor tests. Additionally, these were compared to histological analysis of the relevant CNS regions by analysis of neuronal and glial cell components. CPZ-fed mice exhibited more foot slips in walking ladder and beam tests compared to controls. In contrast, no changes in nociceptive thresholds to thermal or mechanical stimuli occurred between groups. Histological analysis showed demyelination throughout the CNS, which was most prominent in white matter tracts in the cerebrum but was also elevated in areas such as the hippocampus, basal ganglia and diencephalon. Profound demyelination and gliosis was seen in the deep cerebellar nuclei and brain stem regions associated with the vestibular system. However, in the spinal cord changes were minimal. No loss of oligodendrocytes, neurons or motoneurons occurred but a significant increase in astrocyte staining ensued throughout the white matter of the spinal cord. The results suggest that CPZ differentially affects oligodendrocytes throughout the CNS and induces subtle motor changes such as ataxia. This is associated with deficits in CNS regions associated with motor and balance functions such as the cerebellum and brain stem.
Collapse
Affiliation(s)
- Monokesh K Sen
- School of Medicine, Western Sydney University, Penrith, New South Wales, Australia
| | - Mohammed S M Almuslehi
- School of Medicine, Western Sydney University, Penrith, New South Wales, Australia; Department of Physiology, College of Veterinary Medicine, Diyala University, Diyala, Iraq
| | - Jens R Coorssen
- Departments of Health Sciences and Biological Sciences, Faculties of Applied Health Sciences and Mathematics & Science, Brock University, Ontario, Canada
| | - David A Mahns
- School of Medicine, Western Sydney University, Penrith, New South Wales, Australia
| | - Peter J Shortland
- School of Science, Western Sydney University, Penrith, New South Wales, Australia.
| |
Collapse
|
45
|
Zhang Y, Zhang Y, Tian K, Wang Y, Fan X, Pan Q, Qin G, Zhang D, Chen L, Zhou J. Calcitonin gene-related peptide facilitates sensitization of the vestibular nucleus in a rat model of chronic migraine. J Headache Pain 2020; 21:72. [PMID: 32522232 PMCID: PMC7288551 DOI: 10.1186/s10194-020-01145-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/01/2020] [Indexed: 12/23/2022] Open
Abstract
Background Vestibular migraine has recently been recognized as a novel subtype of migraine. However, the mechanism that relate vestibular symptoms to migraine had not been well elucidated. Thus, the present study investigated vestibular dysfunction in a rat model of chronic migraine (CM), and to dissect potential mechanisms between migraine and vertigo. Methods Rats subjected to recurrent intermittent administration of nitroglycerin (NTG) were used as the CM model. Migraine- and vestibular-related behaviors were analyzed. Immunofluorescent analyses and quantitative real-time polymerase chain reaction were employed to detect expressions of c-fos and calcitonin gene-related peptide (CGRP) in the trigeminal nucleus caudalis (TNC) and vestibular nucleus (VN). Morphological changes of vestibular afferent terminals was determined under transmission electron microscopy. FluoroGold (FG) and CTB-555 were selected as retrograde tracers and injected into the VN and TNC, respectively. Lentiviral vectors comprising CGRP short hairpin RNA (LV-CGRP) was injected into the trigeminal ganglion. Results CM led to persistent thermal hyperalgesia, spontaneous facial pain, and prominent vestibular dysfunction, accompanied by the upregulation of c-fos labeling neurons and CGRP immunoreactivity in the TNC (c-fos: vehicle vs. CM = 2.9 ± 0.6 vs. 45.5 ± 3.4; CGRP OD: vehicle vs. CM = 0.1 ± 0.0 vs. 0.2 ± 0.0) and VN (c-fos: vehicle vs. CM = 2.3 ± 0.8 vs. 54.0 ± 2.1; CGRP mRNA: vehicle vs. CM = 1.0 ± 0.1 vs. 2.4 ± 0.1). Furthermore, FG-positive neurons was accumulated in the superficial layer of the TNC, and the number of c-fos+/FG+ neurons were significantly increased in rats with CM compared to the vehicle group (vehicle vs. CM = 25.3 ± 2.2 vs. 83.9 ± 3.0). Meanwhile, CTB-555+ neurons dispersed throughout the VN. The structure of vestibular afferent terminals was less pronounced after CM compared with the peripheral vestibular dysfunction model. In vivo knockdown of CGRP in the trigeminal ganglion significantly reduced the number of c-fos labeling neurons (LV-CGRP vs. LV-NC = 9.9 ± 3.0 vs. 60.0 ± 4.5) and CGRP mRNA (LV-CGRP vs. LV-NC = 1.0 ± 0.1 vs. 2.1 ± 0.2) in the VN, further attenuating vestibular dysfunction after CM. Conclusions These data demonstrates the possibility of sensitization of vestibular nucleus neurons to impair vestibular function after CM, and anti-CGRP treatment to restore vestibular dysfunction in patients with CM.
Collapse
Affiliation(s)
- Yun Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1st Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Yixin Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1st Youyi Road, Yuzhong District, Chongqing, 400016, China.
| | - Ke Tian
- Department of Vascular Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yunfeng Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1st Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Xiaoping Fan
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1st Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Qi Pan
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1st Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Guangcheng Qin
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dunke Zhang
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lixue Chen
- Department of Vascular Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiying Zhou
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1st Youyi Road, Yuzhong District, Chongqing, 400016, China
| |
Collapse
|
46
|
Akay T. Sensory Feedback Control of Locomotor Pattern Generation in Cats and Mice. Neuroscience 2020; 450:161-167. [PMID: 32422335 DOI: 10.1016/j.neuroscience.2020.05.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/31/2020] [Accepted: 05/05/2020] [Indexed: 01/02/2023]
Abstract
Traditionally, research aimed at the understanding of the sensory control of terrestrial mammalian locomotion has focused on cats as the animal model. But advances in molecular genetics and new methods to record movement in small animals have moved mice into the forefront of locomotor research. In this review article, I will first give an overview of what is known about sensory feedback control of locomotion, mainly emerged from experiments performed on cats. This overview will not be an exhaustive overview, but will rather aim to give a broad picture of what has been learned about the sensory control of locomotion using cats as the animal model. I will then give a brief summary of how the mouse is adding to these insights.
Collapse
Affiliation(s)
- Turgay Akay
- Dalhousie University, Dept. of Medical Neuroscience, Atlantic Mobility Action Project, Brain Repair Center, Halifax, NS, Canada.
| |
Collapse
|
47
|
Dijkstra BW, Bekkers EMJ, Gilat M, de Rond V, Hardwick RM, Nieuwboer A. Functional neuroimaging of human postural control: A systematic review with meta-analysis. Neurosci Biobehav Rev 2020; 115:351-362. [PMID: 32407735 DOI: 10.1016/j.neubiorev.2020.04.028] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 04/07/2020] [Accepted: 04/23/2020] [Indexed: 02/03/2023]
Abstract
Postural instability is a strong risk factor for falls that becomes more prominent with aging. To facilitate treatment and prevention of falls in an aging society, a thorough understanding of the neural networks underlying postural control is warranted. Here, we present a systematic review of the functional neuroimaging literature of studies measuring posture-related neural activity in healthy subjects. Study methods were overall heterogeneous. Eleven out of the 14 studies relied on postural simulation in a supine position (e.g. motor imagery). The key nodes of human postural control involved the brainstem, cerebellum, basal ganglia, thalamus and several cortical regions. An activation likelihood estimation meta-analysis revealed that the anterior cerebellum was consistently activated across the wide range of postural tasks. The cerebellum is known to modulate the brainstem nuclei involved in the control of posture. Hence, this systematic review with meta-analysis provides insight into the neural correlates which underpin human postural control and which may serve as a reference for future neural network and region of interest analyses.
Collapse
Affiliation(s)
- Bauke W Dijkstra
- Neuromotor Rehabilitation Research Group, Department of Rehabilitation Sciences, KU Leuven, Tervuursevest 101, Bus 1501, 3001, Leuven, Belgium.
| | - Esther M J Bekkers
- Neuromotor Rehabilitation Research Group, Department of Rehabilitation Sciences, KU Leuven, Tervuursevest 101, Bus 1501, 3001, Leuven, Belgium.
| | - Moran Gilat
- Neuromotor Rehabilitation Research Group, Department of Rehabilitation Sciences, KU Leuven, Tervuursevest 101, Bus 1501, 3001, Leuven, Belgium.
| | - Veerle de Rond
- Neuromotor Rehabilitation Research Group, Department of Rehabilitation Sciences, KU Leuven, Tervuursevest 101, Bus 1501, 3001, Leuven, Belgium.
| | - Robert M Hardwick
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Tervuursevest 101, Bus 1501, 3001, Leuven, Belgium; Institute of Neuroscience, Université Catholique De Louvain, Brussels, Belgium.
| | - Alice Nieuwboer
- Neuromotor Rehabilitation Research Group, Department of Rehabilitation Sciences, KU Leuven, Tervuursevest 101, Bus 1501, 3001, Leuven, Belgium.
| |
Collapse
|
48
|
Abe C, Yamaoka Y, Maejima Y, Mikami T, Yokota S, Yamanaka A, Morita H. VGLUT2-expressing neurons in the vestibular nuclear complex mediate gravitational stress-induced hypothermia in mice. Commun Biol 2020; 3:227. [PMID: 32385401 PMCID: PMC7210111 DOI: 10.1038/s42003-020-0950-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 04/17/2020] [Indexed: 11/17/2022] Open
Abstract
The vestibular system, which is essential for maintaining balance, contributes to the sympathetic response. Although this response is involved in hypergravity load-induced hypothermia in mice, the underlying mechanism remains unknown. This study showed that hypergravity (2g) decreased plasma catecholamines, which resulted in hypoactivity of the interscapular brown adipose tissue (iBAT). Hypothermia induced by 2g load was significantly suppressed by administration of beta-adrenergic receptor agonists, suggesting the involvement of decrease in iBAT activity through sympathoinhibition. Bilateral chemogenetic activation of vesicular glutamate transporter 2 (VGLUT2)-expressing neurons in the vestibular nuclear complex (VNC) induced hypothermia. The VGLUT2-expressing neurons contributed to 2g load-induced hypothermia, since their deletion suppressed hypothermia. Although activation of vesicular gamma-aminobutyric acid transporter-expressing neurons in the VNC induced slight hypothermia instead of hyperthermia, their deletion did not affect 2g load-induced hypothermia. Thus, we concluded that 2g load-induced hypothermia resulted from sympathoinhibition via the activation of VGLUT2-expressing neurons in the VNC. Chikara Abe, Yusuke Yamaoka et al. show that chemogenetic activation of VGLUT2-expressing neurons in the vestibular nuclear complex induces hypothermia, while their deletion suppresses hypergravity load-induced hypothermia in mice. These findings suggest an important role for these glutamatergic neurons in thermoregulation.
Collapse
Affiliation(s)
- Chikara Abe
- Department of Physiology, Gifu University Graduate School of Medicine, Gifu, Japan.
| | - Yusuke Yamaoka
- Department of Physiology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yui Maejima
- Department of Physiology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Tomoe Mikami
- Department of Physiology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Shigefumi Yokota
- Department of Anatomy and Neuroscience, Shimane University School of Medicine, Izumo, Shimane, Japan
| | - Akihiro Yamanaka
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Hironobu Morita
- Department of Physiology, Gifu University Graduate School of Medicine, Gifu, Japan.
| |
Collapse
|
49
|
Nascimento F, Broadhead MJ, Tetringa E, Tsape E, Zagoraiou L, Miles GB. Synaptic mechanisms underlying modulation of locomotor-related motoneuron output by premotor cholinergic interneurons. eLife 2020; 9:e54170. [PMID: 32081133 PMCID: PMC7062467 DOI: 10.7554/elife.54170] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/20/2020] [Indexed: 01/15/2023] Open
Abstract
Spinal motor networks are formed by diverse populations of interneurons that set the strength and rhythmicity of behaviors such as locomotion. A small cluster of cholinergic interneurons, expressing the transcription factor Pitx2, modulates the intensity of muscle activation via 'C-bouton' inputs to motoneurons. However, the synaptic mechanisms underlying this neuromodulation remain unclear. Here, we confirm in mice that Pitx2+ interneurons are active during fictive locomotion and that their chemogenetic inhibition reduces the amplitude of motor output. Furthermore, after genetic ablation of cholinergic Pitx2+ interneurons, M2 receptor-dependent regulation of the intensity of locomotor output is lost. Conversely, chemogenetic stimulation of Pitx2+ interneurons leads to activation of M2 receptors on motoneurons, regulation of Kv2.1 channels and greater motoneuron output due to an increase in the inter-spike afterhyperpolarization and a reduction in spike half-width. Our findings elucidate synaptic mechanisms by which cholinergic spinal interneurons modulate the final common pathway for motor output.
Collapse
Affiliation(s)
- Filipe Nascimento
- School of Psychology and Neuroscience, University of St AndrewsSt AndrewsUnited Kingdom
| | | | - Efstathia Tetringa
- Center of Basic Research, Biomedical Research Foundation of the Academy of AthensAthensGreece
| | - Eirini Tsape
- Center of Basic Research, Biomedical Research Foundation of the Academy of AthensAthensGreece
| | - Laskaro Zagoraiou
- Center of Basic Research, Biomedical Research Foundation of the Academy of AthensAthensGreece
| | - Gareth Brian Miles
- School of Psychology and Neuroscience, University of St AndrewsSt AndrewsUnited Kingdom
| |
Collapse
|
50
|
Abe C, Yamaoka Y, Maejima Y, Mikami T, Morita H. Hypergravity-induced plastic alteration of the vestibulo-sympathetic reflex involves decrease in responsiveness of CAMK2-expressing neurons in the vestibular nuclear complex. J Physiol Sci 2019; 69:903-917. [PMID: 31435871 PMCID: PMC10942005 DOI: 10.1007/s12576-019-00705-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 08/09/2019] [Indexed: 01/18/2023]
Abstract
The vestibular system contributes to not only eye movement and posture but also the sympathetic response. Plastic alteration of the vestibulo-sympathetic reflex is induced by hypergravity load; however, the mechanism remains unknown. Here, we examined 2 g-induced changing in responsiveness of CAMK2-expressing neurons in the vestibular nucleus complex using optogenetic tools. The excitatory photostimulation of the CAMK2-expressing neurons in the unilateral vestibular nuclear complex induced body tilt to the contralateral side, while inhibitory photostimulation showed the opposite response. Photoactivation of either cell body or the axonal terminal in the rostral ventrolateral medulla showed sympathoexcitation followed by the pressor response. Furthermore, this response was significantly attenuated (49.8 ± 4%) after the 1st day of 2 g loading, and this value was further reduced by the 5th day (22.4 ± 3%), suggesting that 2 g-induced attenuation of the vestibulo-sympathetic reflex involves at least decrease in responsiveness of CAMK2-expressing neurons in the vestibular nuclear complex.
Collapse
Affiliation(s)
- Chikara Abe
- Department of Physiology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan.
| | - Yusuke Yamaoka
- Department of Physiology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Yui Maejima
- Department of Physiology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Tomoe Mikami
- Department of Physiology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Hironobu Morita
- Department of Physiology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| |
Collapse
|