1
|
Chiarella E. Exploring the contribution of Zfp521/ZNF521 on primary hematopoietic stem/progenitor cells and leukemia progression. Cell Tissue Res 2024:10.1007/s00441-024-03926-2. [PMID: 39436449 DOI: 10.1007/s00441-024-03926-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/08/2024] [Indexed: 10/23/2024]
Abstract
Hematopoietic stem cells (HSCs) drive cellular turnover in the hematopoietic system by balancing self-renewal and differentiation. In the adult bone marrow (BM), these cells are regulated by a complex cellular microenvironment known as "niche," which involves dynamic interactions between diverse cellular and non-cellular elements. During blood cell maturation, lineage branching is guided by clusters of genes that interact or counteract each other, forming complex networks of lineage-specific transcription factors. Disruptions in these networks can lead to obstacles in differentiation, lineage reprogramming, and ultimately malignant transformation, including acute myeloid leukemia (AML). Zinc Finger Protein 521 (Znf521/Zfp521), a conserved transcription factor enriched in HSCs in both human and murine hematopoiesis, plays a pivotal role in regulating HSC self-renewal and differentiation. Its enforced expression preserves progenitor cell activity, while inhibition promotes differentiation toward the lymphoid and myeloid lineages. Transcriptomic analysis of human AML patient samples has revealed upregulation of ZNF521 in AMLs with the t(9;11) fusion gene MLL-AF9. In vitro studies have shown that ZNF521 collaborates with MLL-AF9 to enhance the growth of transformed leukemic cells, increase colony formation, and activate MLL target genes. Conversely, inhibition of ZNF521 using short-hairpin RNA (shRNA) results in decreased leukemia proliferation, reduced colony formation, and induction of cell cycle arrest in MLL-rearranged AML cell lines. In vivo experiments have demonstrated that mZFP521-deficient mice transduced with MLL-AF9 experience a delay in leukemia development. This review provides an overview of the regulatory network involving ZNF521, which plays a crucial role in controlling both HSC self-renewal and differentiation pathways. Furthermore, we examine the impact of ZNF521 on the leukemic phenotype and consider it a potential marker for MLL-AF9+ AML.
Collapse
Affiliation(s)
- Emanuela Chiarella
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Department of Experimental and Clinical Medicine, University "Magna Græcia", 88100, Catanzaro, Italy.
| |
Collapse
|
2
|
Metzner E, Southard KM, Norman TM. Multiome Perturb-seq unlocks scalable discovery of integrated perturbation effects on the transcriptome and epigenome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.26.605307. [PMID: 39091800 PMCID: PMC11291144 DOI: 10.1101/2024.07.26.605307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Single-cell CRISPR screens link genetic perturbations to transcriptional states, but high-throughput methods connecting these induced changes to their regulatory foundations are limited. Here we introduce Multiome Perturb-seq, extending single-cell CRISPR screens to simultaneously measure perturbation-induced changes in gene expression and chromatin accessibility. We apply Multiome Perturb-seq in a CRISPRi screen of 13 chromatin remodelers in human RPE-1 cells, achieving efficient assignment of sgRNA identities to single nuclei via an improved method for capturing barcode transcripts from nuclear RNA. We organize expression and accessibility measurements into coherent programs describing the integrated effects of perturbations on cell state, finding that ARID1A and SUZ12 knockdowns induce programs enriched for developmental features. Pseudotime analysis of perturbations connects accessibility changes to changes in gene expression, highlighting the value of multimodal profiling. Overall, our method provides a scalable and simply implemented system to dissect the regulatory logic underpinning cell state.
Collapse
Affiliation(s)
- Eli Metzner
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Tri-Institutional Training Program in Computational Biology and Medicine, New York, NY, USA
| | - Kaden M. Southard
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Thomas M. Norman
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
3
|
Lu Z, Wang Y, Assumpção ALFV, Liu P, Kopp A, Saka S, Mcilwain SJ, Viny AD, Brand M, Pan X. Yin Yang 1 regulates cohesin complex protein SMC3 in mouse hematopoietic stem cells. Blood Adv 2024; 8:3076-3091. [PMID: 38531064 PMCID: PMC11222949 DOI: 10.1182/bloodadvances.2023011411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 02/16/2024] [Accepted: 02/26/2024] [Indexed: 03/28/2024] Open
Abstract
ABSTRACT Yin Yang 1 (YY1) and structural maintenance of chromosomes 3 (SMC3) are 2 critical chromatin structural factors that mediate long-distance enhancer-promoter interactions and promote developmentally regulated changes in chromatin architecture in hematopoietic stem/progenitor cells (HSPCs). Although YY1 has critical functions in promoting hematopoietic stem cell (HSC) self-renewal and maintaining HSC quiescence, SMC3 is required for proper myeloid lineage differentiation. However, many questions remain unanswered regarding how YY1 and SMC3 interact with each other and affect hematopoiesis. We found that YY1 physically interacts with SMC3 and cooccupies with SMC3 at a large cohort of promoters genome wide, and YY1 deficiency deregulates the genetic network governing cell metabolism. YY1 occupies the Smc3 promoter and represses SMC3 expression in HSPCs. Although deletion of 1 Smc3 allele partially restores HSC numbers and quiescence in YY1 knockout mice, Yy1-/-Smc3+/- HSCs fail to reconstitute blood after bone marrow transplant. YY1 regulates HSC metabolic pathways and maintains proper intracellular reactive oxygen species levels in HSCs, and this regulation is independent of the YY1-SMC3 axis. Our results establish a distinct YY1-SMC3 axis and its impact on HSC quiescence and metabolism.
Collapse
Affiliation(s)
- Zhanping Lu
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI
- Carbone Cancer Center, University of Wisconsin, Madison, WI
- Wisconsin Blood Cancer Research Institute, University of Wisconsin, Madison, WI
| | - Yinghua Wang
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI
- Carbone Cancer Center, University of Wisconsin, Madison, WI
- Wisconsin Blood Cancer Research Institute, University of Wisconsin, Madison, WI
| | - Anna L. F. V. Assumpção
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI
- Carbone Cancer Center, University of Wisconsin, Madison, WI
- Wisconsin Blood Cancer Research Institute, University of Wisconsin, Madison, WI
| | - Peng Liu
- Carbone Cancer Center, University of Wisconsin, Madison, WI
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Audrey Kopp
- Wisconsin Blood Cancer Research Institute, University of Wisconsin, Madison, WI
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Sahitya Saka
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI
- Carbone Cancer Center, University of Wisconsin, Madison, WI
- Wisconsin Blood Cancer Research Institute, University of Wisconsin, Madison, WI
| | - Sean J. Mcilwain
- Carbone Cancer Center, University of Wisconsin, Madison, WI
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Aaron D. Viny
- Division of Hematology & Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, NY
- Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY
- Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY
| | - Marjorie Brand
- Wisconsin Blood Cancer Research Institute, University of Wisconsin, Madison, WI
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Xuan Pan
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI
- Carbone Cancer Center, University of Wisconsin, Madison, WI
- Wisconsin Blood Cancer Research Institute, University of Wisconsin, Madison, WI
| |
Collapse
|
4
|
Abstract
This review article discusses the epigenetic regulation of quiescent stem cells. Quiescent stem cells are a rare population of stem cells that remain in a state of cell cycle arrest until activated to proliferate and differentiate. The molecular signature of quiescent stem cells is characterized by unique epigenetic modifications, including histone modifications and deoxyribonucleic acid (DNA) methylation. These modifications play critical roles in regulating stem cell behavior, including maintenance of quiescence, proliferation, and differentiation. The article specifically focuses on the role of histone modifications and DNA methylation in quiescent stem cells, and how these modifications can be dynamically regulated by environmental cues. The future perspectives of quiescent stem cell research are also discussed, including their potential for tissue repair and regeneration, their role in aging and age-related diseases, and their implications for cancer research. Overall, this review provides a comprehensive overview of the epigenetic regulation of quiescent stem cells and highlights the potential of this research for the development of new therapies in regenerative medicine, aging research, and cancer biology.
Collapse
Affiliation(s)
- Mehran Radak
- Department of Biology, School of Sciences, Razi University, Baq-e-Abrisham, Kermanshah, Islamic Republic of Iran
| | - Hossein Fallahi
- Department of Biology, School of Sciences, Razi University, Baq-e-Abrisham, Kermanshah, Islamic Republic of Iran
| |
Collapse
|
5
|
Yang S, Chen D, Xie L, Zou X, Xiao Y, Rao L, Yao T, Zhang Q, Cai L, Huang F, Yang B, Huang L. Developmental dynamics of the single nucleus regulatory landscape of pig hippocampus. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2614-2628. [PMID: 37428306 DOI: 10.1007/s11427-022-2345-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/14/2023] [Indexed: 07/11/2023]
Abstract
The hippocampus is a brain region associated with memory, learning and spatial navigation, its aging-related dysfunction is a common sign of Alzheimer's disease. Pig is a good model for human neurodegenerative disease, but our understanding of the regulatory program of the pig hippocampus and its cross-species conservation in humans remains limited. Here, we profiled chromatin accessibility in 33,409 high-quality nuclei and gene expression in 8,122 high-quality nuclei of the pig hippocampus at four postnatal stages. We identified 510,908 accessible chromatin regions (ACRs) in 12 major cell types, among which progenitor cells such as neuroblasts and oligodendrocyte progenitor cells showed a dynamic decrease from early to later developmental stages. We revealed significant enrichment of transposable elements in cell type-specific ACRs, particularly in neuroblasts. We identified oligodendrocytes as the most prominent cell type with the greatest number of genes that showed significant changes during the development. We identified ACRs and key transcription factors underlying the trajectory of neurogenesis (such as POU3F3 and EGR1) and oligodendrocyte differentiation (RXRA and FOXO6). We examined 27 Alzheimer's disease-related genes in our data and found that 15 showed cell type-specific activity (TREM2, RIN3 and CLU), and 15 genes displayed age-associated dynamic activity (BIN1, RABEP1 and APOE). We intersected our data with human genome-wide association study results to detect neurological disease-associated cell types. The present study provides a single nucleus-accessible chromatin landscape of the pig hippocampus at different developmental stages and is helpful for the exploration of pigs as a biomedical model in human neurodegenerative diseases.
Collapse
Affiliation(s)
- Siyu Yang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Dong Chen
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Lei Xie
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xiaoxiao Zou
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yanyuan Xiao
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Lin Rao
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Tianxiong Yao
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Qing Zhang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Liping Cai
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Fei Huang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Bin Yang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Lusheng Huang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
6
|
Noguera NI, Travaglini S, Scalea S, Catalanotto C, Reale A, Zampieri M, Zaza A, Ricciardi MR, Angelini DF, Tafuri A, Ottone T, Voso MT, Zardo G. YY1 Knockdown Relieves the Differentiation Block and Restores Apoptosis in AML Cells. Cancers (Basel) 2023; 15:4010. [PMID: 37568827 PMCID: PMC10417667 DOI: 10.3390/cancers15154010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
In this study we analyzed the expression of Yin and Yang 1 protein (YY1), a member of the noncanonical PcG complexes, in AML patient samples and AML cell lines and the effect of YY1 downregulation on the AML differentiation block. Our results show that YY1 is significantly overexpressed in AML patient samples and AML cell lines and that YY1 knockdown relieves the differentiation block. YY1 downregulation in two AML cell lines (HL-60 and OCI-AML3) and one AML patient sample restored the expression of members of the CEBP protein family, increased the expression of extrinsic growth factors/receptors and surface antigenic markers, induced morphological cell characteristics typical of myeloid differentiation, and sensitized cells to retinoic acid treatment and to apoptosis. Overall, our data show that YY1 is not a secondary regulator of myeloid differentiation but that, if overexpressed, it can play a predominant role in myeloid differentiation block.
Collapse
Affiliation(s)
- Nelida Ines Noguera
- Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy; (S.T.); (T.O.); (M.T.V.)
- Unit of Neuro-Oncoematologia, Santa Lucia Foundation IRCCS, 00143 Rome, Italy
| | - Serena Travaglini
- Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy; (S.T.); (T.O.); (M.T.V.)
- Unit of Neuro-Oncoematologia, Santa Lucia Foundation IRCCS, 00143 Rome, Italy
| | - Stefania Scalea
- Department of Experimental Medicine, Sapienza University, 00185 Rome, Italy;
| | - Caterina Catalanotto
- Department of Molecular Medicine, Sapienza University, 00185 Rome, Italy; (C.C.); (A.R.); (M.Z.)
| | - Anna Reale
- Department of Molecular Medicine, Sapienza University, 00185 Rome, Italy; (C.C.); (A.R.); (M.Z.)
| | - Michele Zampieri
- Department of Molecular Medicine, Sapienza University, 00185 Rome, Italy; (C.C.); (A.R.); (M.Z.)
| | - Alessandra Zaza
- Unit of Neuro-Oncoematologia, Santa Lucia Foundation IRCCS, 00143 Rome, Italy
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University, 00185 Rome, Italy
| | - Maria Rosaria Ricciardi
- Department of Clinical and Molecular Medicine, Sapienza University, 00185 Rome, Italy; (M.R.R.); (A.T.)
| | | | - Agostino Tafuri
- Department of Clinical and Molecular Medicine, Sapienza University, 00185 Rome, Italy; (M.R.R.); (A.T.)
| | - Tiziana Ottone
- Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy; (S.T.); (T.O.); (M.T.V.)
- Unit of Neuro-Oncoematologia, Santa Lucia Foundation IRCCS, 00143 Rome, Italy
| | - Maria Teresa Voso
- Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy; (S.T.); (T.O.); (M.T.V.)
- Unit of Neuro-Oncoematologia, Santa Lucia Foundation IRCCS, 00143 Rome, Italy
| | - Giuseppe Zardo
- Department of Experimental Medicine, Sapienza University, 00185 Rome, Italy;
| |
Collapse
|
7
|
Zhao HG, Deininger M. Always stressed but never exhausted: how stem cells in myeloid neoplasms avoid extinction in inflammatory conditions. Blood 2023; 141:2797-2812. [PMID: 36947811 PMCID: PMC10315634 DOI: 10.1182/blood.2022017152] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/27/2023] [Accepted: 03/13/2023] [Indexed: 03/24/2023] Open
Abstract
Chronic or recurrent episodes of acute inflammation cause attrition of normal hematopoietic stem cells (HSCs) that can lead to hematopoietic failure but they drive progression in myeloid malignancies and their precursor clonal hematopoiesis. Mechanistic parallels exist between hematopoiesis in chronic inflammation and the continuously increased proliferation of myeloid malignancies, particularly myeloproliferative neoplasms (MPNs). The ability to enter dormancy, a state of deep quiescence characterized by low oxidative phosphorylation, low glycolysis, reduced protein synthesis, and increased autophagy is central to the preservation of long-term HSCs and likely MPN SCs. The metabolic features of dormancy resemble those of diapause, a state of arrested embryonic development triggered by adverse environmental conditions. To outcompete their normal counterparts in the inflammatory MPN environment, MPN SCs co-opt mechanisms used by HSCs to avoid exhaustion, including signal attenuation by negative regulators, insulation from activating cytokine signals, anti-inflammatory signaling, and epigenetic reprogramming. We propose that new therapeutic strategies may be derived from conceptualizing myeloid malignancies as an ecosystem out of balance, in which residual normal and malignant hematopoietic cells interact in multiple ways, only few of which have been characterized in detail. Disrupting MPN SC insulation to overcome dormancy, interfering with aberrant cytokine circuits that favor MPN cells, and directly boosting residual normal HSCs are potential strategies to tip the balance in favor of normal hematopoiesis. Although eradicating the malignant cell clones remains the goal of therapy, rebalancing the ecosystem may be a more attainable objective in the short term.
Collapse
Affiliation(s)
- Helong Gary Zhao
- Versiti Blood Research Institute and Medical College of Wisconsin, Milwaukee, WI
| | - Michael Deininger
- Versiti Blood Research Institute and Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
8
|
Turkalj S, Jakobsen NA, Groom A, Metzner M, Riva SG, Gür ER, Usukhbayar B, Salazar MA, Hentges LD, Mickute G, Clark K, Sopp P, Davies JOJ, Hughes JR, Vyas P. GTAC enables parallel genotyping of multiple genomic loci with chromatin accessibility profiling in single cells. Cell Stem Cell 2023; 30:722-740.e11. [PMID: 37146586 DOI: 10.1016/j.stem.2023.04.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 02/23/2023] [Accepted: 04/12/2023] [Indexed: 05/07/2023]
Abstract
Understanding clonal evolution and cancer development requires experimental approaches for characterizing the consequences of somatic mutations on gene regulation. However, no methods currently exist that efficiently link high-content chromatin accessibility with high-confidence genotyping in single cells. To address this, we developed Genotyping with the Assay for Transposase-Accessible Chromatin (GTAC), enabling accurate mutation detection at multiple amplified loci, coupled with robust chromatin accessibility readout. We applied GTAC to primary acute myeloid leukemia, obtaining high-quality chromatin accessibility profiles and clonal identities for multiple mutations in 88% of cells. We traced chromatin variation throughout clonal evolution, showing the restriction of different clones to distinct differentiation stages. Furthermore, we identified switches in transcription factor motif accessibility associated with a specific combination of driver mutations, which biased transformed progenitors toward a leukemia stem cell-like chromatin state. GTAC is a powerful tool to study clonal heterogeneity across a wide spectrum of pre-malignant and neoplastic conditions.
Collapse
Affiliation(s)
- Sven Turkalj
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK; Oxford Centre for Haematology, NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Niels Asger Jakobsen
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK; Oxford Centre for Haematology, NIHR Oxford Biomedical Research Centre, Oxford, UK; Department of Haematology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Angus Groom
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK; Oxford Centre for Haematology, NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Marlen Metzner
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK; Oxford Centre for Haematology, NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Simone G Riva
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK; MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - E Ravza Gür
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK; MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Batchimeg Usukhbayar
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK; Oxford Centre for Haematology, NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Mirian Angulo Salazar
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK; Oxford Centre for Haematology, NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Lance D Hentges
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK; MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Gerda Mickute
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK; Oxford Centre for Haematology, NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Kevin Clark
- Flow Cytometry Facility, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Paul Sopp
- Flow Cytometry Facility, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - James O J Davies
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK; Oxford Centre for Haematology, NIHR Oxford Biomedical Research Centre, Oxford, UK; Department of Haematology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Jim R Hughes
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK; MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Paresh Vyas
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK; Oxford Centre for Haematology, NIHR Oxford Biomedical Research Centre, Oxford, UK; Department of Haematology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK.
| |
Collapse
|
9
|
Single-cell sortChIC identifies hierarchical chromatin dynamics during hematopoiesis. Nat Genet 2023; 55:333-345. [PMID: 36539617 PMCID: PMC9925381 DOI: 10.1038/s41588-022-01260-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 11/01/2022] [Indexed: 12/24/2022]
Abstract
Post-translational histone modifications modulate chromatin activity to affect gene expression. How chromatin states underlie lineage choice in single cells is relatively unexplored. We develop sort-assisted single-cell chromatin immunocleavage (sortChIC) and map active (H3K4me1 and H3K4me3) and repressive (H3K27me3 and H3K9me3) histone modifications in the mouse bone marrow. During differentiation, hematopoietic stem and progenitor cells (HSPCs) acquire active chromatin states mediated by cell-type-specifying transcription factors, which are unique for each lineage. By contrast, most alterations in repressive marks during differentiation occur independent of the final cell type. Chromatin trajectory analysis shows that lineage choice at the chromatin level occurs at the progenitor stage. Joint profiling of H3K4me1 and H3K9me3 demonstrates that cell types within the myeloid lineage have distinct active chromatin but share similar myeloid-specific heterochromatin states. This implies a hierarchical regulation of chromatin during hematopoiesis: heterochromatin dynamics distinguish differentiation trajectories and lineages, while euchromatin dynamics reflect cell types within lineages.
Collapse
|
10
|
Transcription factor YY1 mediates self-renewal of glioblastoma stem cells through regulation of the SENP1/METTL3/MYC axis. Cancer Gene Ther 2022; 30:683-693. [PMID: 36575317 DOI: 10.1038/s41417-022-00580-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 11/10/2022] [Accepted: 12/14/2022] [Indexed: 12/28/2022]
Abstract
Glioma is a primary brain tumor with limited treatment approaches and glioblastoma stem cells (GSCs) are manifested with the self-renewal capability and high tumorigenic capacity. This study was performed to investigate the regulatory effect of the SUMO-specific protease 1 (SENP1)/methyltransferase-like 3 (METTL3)/MYC axis on the self-renewal of GSCs mediated by transcription factor Yin Yang 1 (YY1). Following bioinformatics analysis and clinical and cellular experiments, we found that YY1 was highly expressed in GBM tissues and cells, while silencing its expression reduced the self-renewal ability of GSCs. Functionally, YY1 promoted the transcriptional expression of SENP1 by binding to the promoter region of SENP1, while the deSUMOase SENP1 facilitated the methylase activity of m6A through deSUMOylation of the methylase METTL3, thereby promoting the m6A modification of MYC mRNA via METL3 and promoting the expression of MYC. A nude mouse xenograft model of GBM was also constructed to examine the tumorigenicity of GSCs. The obtained findings demonstrated that YY1 promoted tumorigenicity of GSCs by promoting the expression of MYC in vivo. Conclusively, YY1 can transcriptionally upregulate the SUMOylase SENP1 and enhance the methylase activity of METTL3, resulting in the increased m6A modification level of MYC mRNA, thereby promoting the self-renewal of GSCs.
Collapse
|
11
|
Zheng Z, He H, Tang XT, Zhang H, Gou F, Yang H, Cao J, Shi S, Yang Z, Sun G, Xie X, Zeng Y, Wen A, Lan Y, Zhou J, Liu B, Zhou BO, Cheng T, Cheng H. Uncovering the emergence of HSCs in the human fetal bone marrow by single-cell RNA-seq analysis. Cell Stem Cell 2022; 29:1562-1579.e7. [DOI: 10.1016/j.stem.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 02/24/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022]
|
12
|
Cell-intrinsic factors governing quiescence vis-à-vis activation of adult hematopoietic stem cells. Mol Cell Biochem 2022; 478:1361-1382. [PMID: 36309884 DOI: 10.1007/s11010-022-04594-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/13/2022] [Indexed: 10/31/2022]
Abstract
Hematopoiesis is a highly complex process, regulated by both intrinsic and extrinsic factors. Often, these two regulatory arms work in tandem to maintain the steady-state condition of hematopoiesis. However, at times, certain intrinsic attributes of hematopoietic stem cells (HSCs) override the external stimuli and dominate the outcome. These could be genetic events like mutations or environmentally induced epigenetic or transcriptomic changes. Since leukemic stem cells (LSCs) share molecular pathways that also regulate normal HSCs, identifying specific, dominantly acting intrinsic factors could help in the development of novel therapeutic approaches. Here we have reviewed such dominantly acting intrinsic factors governing quiescence vis-à-vis activation of the HSCs in the face of external forces acting on them. For brevity, we have restricted our review to the articles dealing with adult HSCs of human and mouse origin that have been published in the last 10 years. Hematopoietic stem cells (HSCs) are closely associated with various stromal cells in their microenvironment and, thus, constantly receive signaling cues from them. The illustration depicts some dominantly acting intrinsic or cell-autonomous factors operative in the HSCs. These fall into various categories, such as epigenetic regulators, transcription factors, cell cycle regulators, tumor suppressor genes, signaling pathways, and metabolic regulators, which counteract the outcome of extrinsic signaling exerted by the HSC niche.
Collapse
|
13
|
Chen Z, Guo Q, Song G, Hou Y. Molecular regulation of hematopoietic stem cell quiescence. Cell Mol Life Sci 2022; 79:218. [PMID: 35357574 PMCID: PMC11072845 DOI: 10.1007/s00018-022-04200-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 02/07/2022] [Accepted: 02/07/2022] [Indexed: 12/19/2022]
Abstract
Hematopoietic stem cells (HSCs) are primarily dormant in a cell-cycle quiescence state to preserve their self-renewal capacity and long-term maintenance, which is essential for the homeostasis of hematopoietic system. Dysregulation of quiescence causes HSC dysfunction and may result in aberrant hematopoiesis (e.g., myelodysplastic syndrome and bone marrow failure syndromes) and leukemia transformation. Accumulating evidence indicates that both intrinsic molecular networks and extrinsic signals regulate HSC quiescence, including cell-cycle regulators, transcription factors, epigenetic factors, and niche factors. Further, the transition between quiescence and activation of HSCs is a continuous developmental path driven by cell metabolism (e.g., protein synthesis, glycolysis, oxidative phosphorylation, and autophagy). Elucidating the complex regulatory networks of HSC quiescence will expand the knowledge of HSC hemostasis and benefit for clinical HSC use. Here, we review the current understanding and progression on the molecular and metabolic regulation of HSC quiescence, providing a more complete picture regarding the mechanisms of HSC quiescence maintenance.
Collapse
Affiliation(s)
- Zhe Chen
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, China
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Qian Guo
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, China
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Guanbin Song
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
| | - Yu Hou
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, China.
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| |
Collapse
|
14
|
Dual Role of YY1 in HPV Life Cycle and Cervical Cancer Development. Int J Mol Sci 2022; 23:ijms23073453. [PMID: 35408813 PMCID: PMC8998550 DOI: 10.3390/ijms23073453] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 01/27/2023] Open
Abstract
Human papillomaviruses (HPVs) are considered to be key etiological agents responsible for the induction and development of cervical cancer. However, it has been suggested that HPV infection alone may not be sufficient to promote cervical carcinogenesis, and other unknown factors might be required to establish the disease. One of the suggested proteins whose deregulation has been linked with oncogenesis is transcription factor Yin Yang 1 (YY1). YY1 is a multifunctional protein that is involved not only in the regulation of gene transcription and protein modification, but can also control important cell signaling pathways, such as cell growth, development, differentiation, and apoptosis. Vital functions of YY1 also indicate that the protein could be involved in tumorigenesis. The overexpression of this protein has been observed in different tumors, and its level has been correlated with poor prognoses of many types of cancers. YY1 can also regulate the transcription of viral genes. It has been documented that YY1 can bind to the HPV long control region and regulate the expression of viral oncogenes E6 and E7; however, its role in the HPV life cycle and cervical cancer development is different. In this review, we explore the role of YY1 in regulating the expression of cellular and viral genes and subsequently investigate how these changes inadvertently contribute toward the development of cervical malignancy.
Collapse
|
15
|
Wu F, Chen Z, Liu J, Hou Y. The Akt-mTOR network at the interface of hematopoietic stem cell homeostasis. Exp Hematol 2021; 103:15-23. [PMID: 34464661 DOI: 10.1016/j.exphem.2021.08.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 12/15/2022]
Abstract
Hematopoietic stem cells (HSCs) are immature blood cells that exhibit multilineage differentiation capacity. Homeostasis is critical for HSC potential and lifelong hematopoiesis, and HSC homeostasis is tightly governed by both intrinsic molecular networks and microenvironmental signals. The evolutionarily conserved serine/threonine protein kinase B (PKB, also referred to as Akt)-mammalian target of rapamycin (mTOR) pathway is universal to nearly all multicellular organisms and plays an integral role in most cellular processes. Emerging evidence has revealed a central role of the Akt-mTOR network in HSC homeostasis, because it responds to multiple intracellular and extracellular signals and regulates various downstream targets, eventually affecting several cellular processes, including the cell cycle, mitochondrial metabolism, and protein synthesis. Dysregulated Akt-mTOR signaling greatly affects HSC self-renewal, maintenance, differentiation, survival, autophagy, and aging, as well as transformation of HSCs to leukemia stem cells. Here, we review recent works and provide an advanced understanding of how the Akt-mTOR network regulates HSC homeostasis, thus offering insights into future clinical applications.
Collapse
Affiliation(s)
- Feng Wu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Zhe Chen
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jingbo Liu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China.
| | - Yu Hou
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
| |
Collapse
|
16
|
Budgude P, Kale V, Vaidya A. Pharmacological Inhibition of p38 MAPK Rejuvenates Bone Marrow Derived-Mesenchymal Stromal Cells and Boosts their Hematopoietic Stem Cell-Supportive Ability. Stem Cell Rev Rep 2021; 17:2210-2222. [PMID: 34420158 DOI: 10.1007/s12015-021-10240-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2021] [Indexed: 01/12/2023]
Abstract
The therapeutic value of mesenchymal stromal cells (MSCs) for various regenerative medicine applications, including hematopoietic stem cell transplantations (HSCT), has been well-established. Owing to their small numbers in vivo, it becomes necessary to expand them in vitro, which leads to a gradual loss of their regenerative capacity. Stress-induced mitogen-activated protein kinase p38 (p38 MAPK) signaling has been shown to compromise the MSC functions. Therefore, we investigated whether pharmacological inhibition of p38 MAPK signaling rejuvenates the cultured MSCs and boosts their functionality. Indeed, we found that the ex vivo expanded MSCs show activated p38 MAPK signaling and exhibit increased oxidative stress. These MSCs show a decreased ability to secrete salutary niche factors, thereby compromising their ability to support hematopoietic stem cell (HSC) self-renewal, proliferation, and differentiation. We, therefore, attempted to rejuvenate the cultured MSCs by pharmacological inhibition of p38 MAPK - a strategy broadly known as "priming of MSCs". We demonstrate that priming of MSCs with a p-38 MAPK inhibitor, PD169316, boosts their niche-supportive functions via upregulation of various HSC-supportive transcription factors. These primed MSCs expand multipotent HSCs having superior homing and long-term reconstitution ability. These findings shed light on the significance of non-cell-autonomous mechanisms operative in the hematopoietic niche and point towards the possible use of pharmacological compounds for rejuvenation of ex vivo cultured MSCs. Such approaches could improve the outcome of regenerative therapies involving in vitro cultured MSCs.
Collapse
Affiliation(s)
- Pallavi Budgude
- Symbiosis Centre for Stem Cell Research, Symbiosis International (Deemed University), Gram: Lavale, Taluka: Mulshi, Pune, 412115, India.,Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Gram: Lavale, Taluka: Mulshi, Pune, 412115, India
| | - Vaijayanti Kale
- Symbiosis Centre for Stem Cell Research, Symbiosis International (Deemed University), Gram: Lavale, Taluka: Mulshi, Pune, 412115, India
| | - Anuradha Vaidya
- Symbiosis Centre for Stem Cell Research, Symbiosis International (Deemed University), Gram: Lavale, Taluka: Mulshi, Pune, 412115, India. .,Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Gram: Lavale, Taluka: Mulshi, Pune, 412115, India.
| |
Collapse
|
17
|
Antonio-Andres G, Jiménez-Hernandez E, Estrada-Abreo LA, Garfias-Gómez Y, Patino-Lopez G, Juarez-Mendez S, Huerta-Yepez S. Expression of YY1 in pro-B and T phenotypes correlation with poor survival in pediatric acute lymphoblastic leukemia. Pediatr Hematol Oncol 2021; 38:456-470. [PMID: 33900899 DOI: 10.1080/08880018.2020.1871139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Acute lymphoblastic leukemia (ALL) is the most common pediatric cancer, constituting 80% of all acute leukemias in minors. Despite the increase in the success of therapies, disease-free survival is over 80% in most cases. For the remaining 20% of patients, new strategies are needed to allow us to know and select those at greatest risk of relapse. We evaluated by immunohistochemistry the expression of the transcription factor YY1 and found that it is overexpressed in peripheral blood leukemia cells of pediatric patients with ALL with Pro-B and T phenotype compared to control samples. Over expression of YY1 was associated with a significantly lower chance of survival. We also evaluated by RT-PCR in bone marrow samples from ALL pediatric patients the association of YY1 expression with the percentage of blasts. High levels of YY1 were present in samples with higher percent of blasts in these patients. In addition, ALL pediatric patients with a poor response to therapy had higher levels at the nuclear level of YY1 than those who responded well to chemotherapy. In conclusion, our data suggest that YY1 could serve in pediatric ALL as markers of evolution and response for this disease, mainly in patients with pro-B and T immunophenotype. It is also suggested that YY1 is implicated in the expanse of blast in these patients.
Collapse
Affiliation(s)
- Gabriela Antonio-Andres
- Oncology Disease Research Unit, Children's Hospital of Mexico, Federico Gomez, Mexico City, Mexico
| | | | - Laura A Estrada-Abreo
- Immunology and Proteomics Laboratory, Hospital Infantil de México, Federico Gómez, Mexico City, Mexico
| | - Yanelly Garfias-Gómez
- Immunology and Proteomics Laboratory, Hospital Infantil de México, Federico Gómez, Mexico City, Mexico
| | - Genaro Patino-Lopez
- Immunology and Proteomics Laboratory, Hospital Infantil de México, Federico Gómez, Mexico City, Mexico
| | - Sergio Juarez-Mendez
- Laboratorio de Oncologia Experimental, Instituto Nacional de Pediatria, S.S.A, Mexico City, Mexico
| | - Sara Huerta-Yepez
- Oncology Disease Research Unit, Children's Hospital of Mexico, Federico Gomez, Mexico City, Mexico
| |
Collapse
|
18
|
Xu C, Tsai YH, Galbo PM, Gong W, Storey AJ, Xu Y, Byrum SD, Xu L, Whang YE, Parker JS, Mackintosh SG, Edmondson RD, Tackett AJ, Huang J, Zheng D, Earp HS, Wang GG, Cai L. Cistrome analysis of YY1 uncovers a regulatory axis of YY1:BRD2/4-PFKP during tumorigenesis of advanced prostate cancer. Nucleic Acids Res 2021; 49:4971-4988. [PMID: 33849067 PMCID: PMC8136773 DOI: 10.1093/nar/gkab252] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/26/2021] [Indexed: 12/12/2022] Open
Abstract
Castration-resistant prostate cancer (CRPC) is a terminal disease and the molecular underpinnings of CRPC development need to be better understood in order to improve its treatment. Here, we report that a transcription factor Yin Yang 1 (YY1) is significantly overexpressed during prostate cancer progression. Functional and cistrome studies of YY1 uncover its roles in promoting prostate oncogenesis in vitro and in vivo, as well as sustaining tumor metabolism including the Warburg effect and mitochondria respiration. Additionally, our integrated genomics and interactome profiling in prostate tumor show that YY1 and bromodomain-containing proteins (BRD2/4) co-occupy a majority of gene-regulatory elements, coactivating downstream targets. Via gene loss-of-function and rescue studies and mutagenesis of YY1-bound cis-elements, we unveil an oncogenic pathway in which YY1 directly binds and activates PFKP, a gene encoding the rate-limiting enzyme for glycolysis, significantly contributing to the YY1-enforced Warburg effect and malignant growth. Altogether, this study supports a master regulator role for YY1 in prostate tumorigenesis and reveals a YY1:BRD2/4-PFKP axis operating in advanced prostate cancer with implications for therapy.
Collapse
Affiliation(s)
- Chenxi Xu
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Yi-Hsuan Tsai
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Phillip M Galbo
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Weida Gong
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Aaron J Storey
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Yuemei Xu
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Pathology, Nanjing Drum Tower Hospital and The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Stephanie D Byrum
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Lingfan Xu
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Young E Whang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
- Department of Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
| | - Joel S Parker
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
- Department of Genetics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Samuel G Mackintosh
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Ricky D Edmondson
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Alan J Tackett
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Jiaoti Huang
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Neurology and Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - H Shelton Earp
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
- Department of Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
| | - Gang Greg Wang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
| | - Ling Cai
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
- Department of Genetics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| |
Collapse
|
19
|
Assumpção ALFV, Fu G, Singh DK, Lu Z, Kuehnl AM, Welch R, Ong IM, Wen R, Pan X. A lineage-specific requirement for YY1 Polycomb Group protein function in early T cell development. Development 2021; 148:dev.197319. [PMID: 33766932 DOI: 10.1242/dev.197319] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 03/12/2021] [Indexed: 01/22/2023]
Abstract
Yin Yang 1 (YY1) is a ubiquitous transcription factor and mammalian Polycomb Group protein (PcG) with important functions for regulating lymphocyte development and stem cell self-renewal. YY1 mediates stable PcG-dependent transcriptional repression via recruitment of PcG proteins that result in histone modifications. Many questions remain unanswered regarding how cell- and tissue-specificity is achieved by PcG proteins. Here, we demonstrate that a conditional knockout of Yy1 in the hematopoietic system results in an early T cell developmental blockage at the double negative (DN) 1 stage with reduced Notch1 signaling. There is a lineage-specific requirement for YY1 PcG function. YY1 PcG domain is required for T and B cell development but not necessary for myeloid cells. YY1 functions in early T cell development are multicomponent and involve both PcG-dependent and -independent regulations. Although YY1 promotes early T cell survival through its PcG function, its function to promote the DN1-to-DN2 transition and Notch1 expression and signaling is independent of its PcG function. Our results reveal how a ubiquitously expressed PcG protein mediates lineage-specific and context-specific functions to control early T cell development.
Collapse
Affiliation(s)
- Anna L F V Assumpção
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin, 2015 Linden Dr., Madison, WI 57306, USA.,Carbone Cancer Center, UW-Madison Blood Research Program, Madison, WI 53705, USA
| | - Guoping Fu
- Versiti, Blood Research Institute, 8701 Watertown Plank Road, Milwaukee, WI 53223, USA
| | - Deependra K Singh
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin, 2015 Linden Dr., Madison, WI 57306, USA.,Carbone Cancer Center, UW-Madison Blood Research Program, Madison, WI 53705, USA
| | - Zhanping Lu
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin, 2015 Linden Dr., Madison, WI 57306, USA.,Carbone Cancer Center, UW-Madison Blood Research Program, Madison, WI 53705, USA
| | - Ashley M Kuehnl
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin, 2015 Linden Dr., Madison, WI 57306, USA.,Carbone Cancer Center, UW-Madison Blood Research Program, Madison, WI 53705, USA
| | - Rene Welch
- Department of Obstetrics and Gynecology, University of Wisconsin School of Medicine and Public Health, 750 Highland Ave, Madison, WI 53705, USA.,Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, 610 Walnut St, Madison, WI 53726, USA
| | - Irene M Ong
- Carbone Cancer Center, UW-Madison Blood Research Program, Madison, WI 53705, USA.,Department of Obstetrics and Gynecology, University of Wisconsin School of Medicine and Public Health, 750 Highland Ave, Madison, WI 53705, USA.,Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, 610 Walnut St, Madison, WI 53726, USA
| | - Renren Wen
- Versiti, Blood Research Institute, 8701 Watertown Plank Road, Milwaukee, WI 53223, USA
| | - Xuan Pan
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin, 2015 Linden Dr., Madison, WI 57306, USA.,Carbone Cancer Center, UW-Madison Blood Research Program, Madison, WI 53705, USA
| |
Collapse
|
20
|
Abstract
Accumulating evidence strongly indicates that the presence of cancer stem cells (CSCs) leads to the emergence of worse clinical scenarios, such as chemo- and radiotherapy resistance, metastasis, and cancer recurrence. CSCs are a highly tumorigenic population characterized by self-renewal capacity and differentiation potential. Thus, CSCs establish a hierarchical intratumor organization that enables tumor adaptation to evade the immune response and resist anticancer therapy. YY1 functions as a transcription factor, RNA-binding protein, and 3D chromatin regulator. Thus, YY1 has multiple effects and regulates several molecular processes. Emerging evidence indicates that the development of lethal YY1-mediated cancer phenotypes is associated with the presence of or enrichment in cancer stem-like cells. Therefore, it is necessary to investigate whether and to what extent YY1 regulates the CSC phenotype. Since CSCs mirror the phenotypic behavior of stem cells, we initially describe the roles played by YY1 in embryonic and adult stem cells. Next, we scrutinize evidence supporting the contributions of YY1 in CSCs from a number of various cancer types. Finally, we identify new areas for further investigation into the YY1-CSCs axis, including the participation of YY1 in the CSC niche.
Collapse
|
21
|
The DNA-helicase HELLS drives ALK - ALCL proliferation by the transcriptional control of a cytokinesis-related program. Cell Death Dis 2021; 12:130. [PMID: 33504766 PMCID: PMC7840974 DOI: 10.1038/s41419-021-03425-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 12/12/2022]
Abstract
Deregulation of chromatin modifiers, including DNA helicases, is emerging as one of the mechanisms underlying the transformation of anaplastic lymphoma kinase negative (ALK-) anaplastic large cell lymphoma (ALCL). We recently identified the DNA-helicase HELLS as central for proficient ALK-ALCL proliferation and progression. Here we assessed in detail its function by performing RNA-sequencing profiling coupled with bioinformatic prediction to identify HELLS targets and transcriptional cooperators. We demonstrated that HELLS, together with the transcription factor YY1, contributes to an appropriate cytokinesis via the transcriptional regulation of genes involved in cleavage furrow regulation. Binding target promoters, HELLS primes YY1 recruitment and transcriptional activation of cytoskeleton genes including the small GTPases RhoA and RhoU and their effector kinase Pak2. Single or multiple knockdowns of these genes reveal that RhoA and RhoU mediate HELLS effects on cell proliferation and cell division of ALK-ALCLs. Collectively, our work demonstrates the transcriptional role of HELLS in orchestrating a complex transcriptional program sustaining neoplastic features of ALK-ALCL.
Collapse
|
22
|
Zhu Q, Gao P, Tober J, Bennett L, Chen C, Uzun Y, Li Y, Howell ED, Mumau M, Yu W, He B, Speck NA, Tan K. Developmental trajectory of prehematopoietic stem cell formation from endothelium. Blood 2020; 136:845-856. [PMID: 32392346 PMCID: PMC7426642 DOI: 10.1182/blood.2020004801] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 04/22/2020] [Indexed: 01/01/2023] Open
Abstract
Hematopoietic stem and progenitor cells (HSPCs) in the bone marrow are derived from a small population of hemogenic endothelial (HE) cells located in the major arteries of the mammalian embryo. HE cells undergo an endothelial to hematopoietic cell transition, giving rise to HSPCs that accumulate in intra-arterial clusters (IAC) before colonizing the fetal liver. To examine the cell and molecular transitions between endothelial (E), HE, and IAC cells, and the heterogeneity of HSPCs within IACs, we profiled ∼40 000 cells from the caudal arteries (dorsal aorta, umbilical, vitelline) of 9.5 days post coitus (dpc) to 11.5 dpc mouse embryos by single-cell RNA sequencing and single-cell assay for transposase-accessible chromatin sequencing. We identified a continuous developmental trajectory from E to HE to IAC cells, with identifiable intermediate stages. The intermediate stage most proximal to HE, which we term pre-HE, is characterized by increased accessibility of chromatin enriched for SOX, FOX, GATA, and SMAD motifs. A developmental bottleneck separates pre-HE from HE, with RUNX1 dosage regulating the efficiency of the pre-HE to HE transition. A distal candidate Runx1 enhancer exhibits high chromatin accessibility specifically in pre-HE cells at the bottleneck, but loses accessibility thereafter. Distinct developmental trajectories within IAC cells result in 2 populations of CD45+ HSPCs; an initial wave of lymphomyeloid-biased progenitors, followed by precursors of hematopoietic stem cells (pre-HSCs). This multiomics single-cell atlas significantly expands our understanding of pre-HSC ontogeny.
Collapse
Affiliation(s)
- Qin Zhu
- Genomics and Computational Biology Graduate Group, University of Pennsylvania, Philadelphia, PA
| | - Peng Gao
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA; and
| | - Joanna Tober
- Department of Cell and Developmental Biology, Abramson Family Cancer Research Institute, Perelman School of Medicine, and
| | - Laura Bennett
- Department of Cell and Developmental Biology, Abramson Family Cancer Research Institute, Perelman School of Medicine, and
| | - Changya Chen
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA; and
| | - Yasin Uzun
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA; and
| | - Yan Li
- Department of Cell and Developmental Biology, Abramson Family Cancer Research Institute, Perelman School of Medicine, and
| | - Elizabeth D Howell
- Department of Cell and Developmental Biology, Abramson Family Cancer Research Institute, Perelman School of Medicine, and
| | - Melanie Mumau
- Department of Cell and Developmental Biology, Abramson Family Cancer Research Institute, Perelman School of Medicine, and
| | - Wenbao Yu
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA; and
| | - Bing He
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA; and
| | - Nancy A Speck
- Department of Cell and Developmental Biology, Abramson Family Cancer Research Institute, Perelman School of Medicine, and
| | - Kai Tan
- Genomics and Computational Biology Graduate Group, University of Pennsylvania, Philadelphia, PA
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA; and
- Department of Pediatrics, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
23
|
Cho HJ, Lee J, Yoon SR, Lee HG, Jung H. Regulation of Hematopoietic Stem Cell Fate and Malignancy. Int J Mol Sci 2020; 21:ijms21134780. [PMID: 32640596 PMCID: PMC7369689 DOI: 10.3390/ijms21134780] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 12/13/2022] Open
Abstract
The regulation of hematopoietic stem cell (HSC) fate decision, whether they keep quiescence, self-renew, or differentiate into blood lineage cells, is critical for maintaining the immune system throughout one’s lifetime. As HSCs are exposed to age-related stress, they gradually lose their self-renewal and regenerative capacity. Recently, many reports have implicated signaling pathways in the regulation of HSC fate determination and malignancies under aging stress or pathophysiological conditions. In this review, we focus on the current understanding of signaling pathways that regulate HSC fate including quiescence, self-renewal, and differentiation during aging, and additionally introduce pharmacological approaches to rescue defects of HSC fate determination or hematopoietic malignancies by kinase signaling pathways.
Collapse
Affiliation(s)
- Hee Jun Cho
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (H.J.C.); (S.R.Y.)
| | - Jungwoon Lee
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea;
| | - Suk Ran Yoon
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (H.J.C.); (S.R.Y.)
| | - Hee Gu Lee
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (H.J.C.); (S.R.Y.)
- Department of Biomolecular Science, Korea University of Science and Technology (UST), 113 Gwahak-ro, Yuseong-gu, Daejeon 34113, Korea
- Correspondence: (H.G.L.); (H.J.)
| | - Haiyoung Jung
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (H.J.C.); (S.R.Y.)
- Correspondence: (H.G.L.); (H.J.)
| |
Collapse
|
24
|
Li Y, He M, Zhang W, Yang M, Ding Y, Xu S, Gu J, Li Y, Yin J, Gao Y. Antioxidant Small Molecule Compound Chrysin Promotes the Self-Renewal of Hematopoietic Stem Cells. Front Pharmacol 2020; 11:399. [PMID: 32300303 PMCID: PMC7142222 DOI: 10.3389/fphar.2020.00399] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 03/16/2020] [Indexed: 12/11/2022] Open
Abstract
There is an increasing demand for the expansion of functional human hematopoietic stem cells (hHSCs) for various clinical applications. Based on our primary screening of antioxidant small molecule compounds library, a small molecule compound C2968 (chrysin) was identificated to expand cord blood CD34+ cells in vitro. Then we further verified the optimum concentration and explored its effect on hHSCs phenotype and biological function. C2968 could significantly increase the proportion and absolute number of CD34+CD38−CD49f+ and CD34+CD38−CD45RA−CD90+ cells under 2.5 μM. Furthermore, the total number of colony-forming units and the frequency of LT-HSCs in C2968-treated group were significantly higher than control, indicating the multipotency and long-term activity of hematopoietic stem and progenitor cells were sustained. Additionally, C2968 treatment could maintain transplantable HSCs that preserve balanced multilineage potential and promote rapid engraftment after transplantation in immunodeficient (NOG) mice. Mechanistically, the activity of chrysin might be mediated through multiple mechanisms namely delaying HSC differentiation, inhibiting ROS-activated apoptosis, and modulating of cyclin-dependent kinase inhibitors. Overall, chrysin showed good ex vivo expansion effect on hHSCs, which could maintain the self-renewal and multilineage differentiation potential of hHSCs. Through further research on its antioxidant mechanism, it may become a promising tool for further fundamental research and clinical umbilical cord blood transplantation of hHSCs.
Collapse
Affiliation(s)
- Yinghui Li
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Mei He
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Wenshan Zhang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Ming Yang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yahui Ding
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, China
| | - Shiqi Xu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Jiali Gu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yafang Li
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Jingjing Yin
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yingdai Gao
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| |
Collapse
|
25
|
The CCDC43-ADRM1 axis regulated by YY1, promotes proliferation and metastasis of gastric cancer. Cancer Lett 2020; 482:90-101. [PMID: 32278016 DOI: 10.1016/j.canlet.2020.03.026] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 03/18/2020] [Accepted: 03/26/2020] [Indexed: 12/14/2022]
Abstract
Previous studies have shown an association between coiled-coil domain-containing (CCDC) genes and different cancers. Our previous studies revealed that CCDC43 is highly expressed in colorectal cancer, but the expression and molecular mechanisms of CCDC43 in gastric cancer (GC) are yet to be determined. Here, we show that CCDC43 is overexpressed in gastric tissues. CCDC43 expression is closely related to tumor differentiation, lymph-node-metastasis, and prognosis of gastric cancer. Overexpression of CCDC43 promotes the proliferation, invasion, and metastasis of GC cells. CCDC43 may upregulate and stabilize ADRM1, resulting in the construction of the ubiquitin-mediated proteasome. In contrast, inhibition of ADRM1 could reverse the function of CCDC43 in GC both in vitro and in vivo. Our data demonstrate that transcription factor YY1 directly binds to CCDC43 and ADRM1 gene promoters, leading to over-expression of CCDC43 and ADRM1. Furthermore, in vitro experiments demonstrate that knock down of CCDC43 or ADRM1 attenuates the YY1-mediated malignant phenotypes. Finally, the association among YY1, CCDC43 and ADRM1 is validated in clinical samples. Our findings suggest that the CCDC43-ADRM1 axis regulated by YY1, promotes proliferation and metastasis of GC, and the axis may be a potential therapeutic target for GC.
Collapse
|
26
|
Darcy PW, Denzin LK, Sant'Angelo DB. YY1 lo NKT cells are dedicated IL-10 producers. Sci Rep 2020; 10:3897. [PMID: 32127556 PMCID: PMC7054430 DOI: 10.1038/s41598-020-60229-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 02/04/2020] [Indexed: 11/12/2022] Open
Abstract
Co-expression of Yin Yang 1 (YY1) is required for the full function of the transcription factor, PLZF, which is essential for the development of natural killer T cell (NKT cell) effector functions. Discordant expression of YY1 and PLZF, therefore, might define NKT cell subsets with distinct effector functions. A subset of NKT cells was identified that expressed low levels of YY1. YY1lo NKT cells were found in all tissues, had a mature phenotype and, distinct from other NKT cells, expressed almost no ThPOK or Tbet. When activated, YY1lo NKT cells produced little IL-4 or IFN-γ. YY1lo NKT cells were found to constitutively transcribe IL-10 mRNA and, accordingly, produced IL-10 upon primary activation. Finally, we find that tumor infiltrating NKT cells are highly enriched for the YY1lo subset. Low YY1 expression, therefore, defines a previously unrecognized NKT cell subset that is committed to producing IL-10.
Collapse
Affiliation(s)
- Patrick W Darcy
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA
| | - Lisa K Denzin
- Graduate School of Biomedical Sciences, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA
- Department of Pediatrics, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA
| | - Derek B Sant'Angelo
- Graduate School of Biomedical Sciences, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA.
- Department of Pediatrics, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA.
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
27
|
Restraining Lysosomal Activity Preserves Hematopoietic Stem Cell Quiescence and Potency. Cell Stem Cell 2020; 26:359-376.e7. [PMID: 32109377 DOI: 10.1016/j.stem.2020.01.013] [Citation(s) in RCA: 152] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 10/17/2019] [Accepted: 01/17/2020] [Indexed: 12/18/2022]
Abstract
Quiescence is a fundamental property that maintains hematopoietic stem cell (HSC) potency throughout life. Quiescent HSCs are thought to rely on glycolysis for their energy, but the overall metabolic properties of HSCs remain elusive. Using combined approaches, including single-cell RNA sequencing (RNA-seq), we show that mitochondrial membrane potential (MMP) distinguishes quiescent from cycling-primed HSCs. We found that primed, but not quiescent, HSCs relied readily on glycolysis. Notably, in vivo inhibition of glycolysis enhanced the competitive repopulation ability of primed HSCs. We further show that HSC quiescence is maintained by an abundance of large lysosomes. Repression of lysosomal activation in HSCs led to further enlargement of lysosomes while suppressing glucose uptake. This also induced increased lysosomal sequestration of mitochondria and enhanced the competitive repopulation ability of primed HSCs by over 90-fold in vivo. These findings show that restraining lysosomal activity preserves HSC quiescence and potency and may be therapeutically relevant.
Collapse
|
28
|
Darcy PW, Jin K, Osorio L, Denzin LK, Sant'Angelo DB. Coexpression of YY1 Is Required to Elaborate the Effector Functions Controlled by PLZF in NKT Cells. THE JOURNAL OF IMMUNOLOGY 2019; 203:627-638. [PMID: 31227579 DOI: 10.4049/jimmunol.1900055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 06/04/2019] [Indexed: 01/15/2023]
Abstract
The promyelocytic leukemia zinc-finger transcription factor (PLZF) is essential for nearly all of the unique, innate-like functions and characteristics of NKT cells. It is not known, however, if the activity of PLZF is regulated by other factors. In this article, we show that the function of PLZF is completely dependent on the transcription factor Yin Yang 1 (YY1). Mouse NKT cells expressing wild-type levels of PLZF, but deficient for YY1, had developmental defects, lost their characteristic "preformed" mRNA for cytokines, and failed to produce cytokine protein upon primary activation. Immunoprecipitation experiments showed that YY1 and PLZF were coassociated. Taken together, these biochemical and genetic data show that the broadly expressed transcription factor, YY1, is required for the cell-specific "master regulator" functions of PLZF.
Collapse
Affiliation(s)
- Patrick W Darcy
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901
| | - Kangxin Jin
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901
| | - Louis Osorio
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901
| | - Lisa K Denzin
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901.,Graduate School of Biomedical Sciences, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901; and.,Department of Pediatrics, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901
| | - Derek B Sant'Angelo
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901; .,Graduate School of Biomedical Sciences, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901; and.,Department of Pediatrics, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901
| |
Collapse
|
29
|
Cho IJ, Lui PP, Obajdin J, Riccio F, Stroukov W, Willis TL, Spagnoli F, Watt FM. Mechanisms, Hallmarks, and Implications of Stem Cell Quiescence. Stem Cell Reports 2019; 12:1190-1200. [PMID: 31189093 PMCID: PMC6565921 DOI: 10.1016/j.stemcr.2019.05.012] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/14/2019] [Accepted: 05/14/2019] [Indexed: 02/08/2023] Open
Abstract
Cellular quiescence is a dormant but reversible cellular state in which cell-cycle entry and proliferation are prevented. Recent studies both in vivo and in vitro demonstrate that quiescence is actively maintained through synergistic interactions between intrinsic and extrinsic signals. Subtypes of adult mammalian stem cells can be maintained in this poised, quiescent state, and subsequently reactivated upon tissue injury to restore homeostasis. However, quiescence can become deregulated in pathological settings. In this review, we discuss the recent advances uncovering intracellular signaling pathways, transcriptional changes, and extracellular cues within the stem cell niche that control induction and exit from quiescence in tissue stem cells. We discuss the implications of quiescence as well as the pharmacological and genetic approaches that are being explored to either induce or prevent quiescence as a therapeutic strategy.
Collapse
Affiliation(s)
- Inchul J Cho
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital, Floor 28, Tower Wing, Great Maze Pond, London SE1 9RT, UK
| | - Prudence PokWai Lui
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital, Floor 28, Tower Wing, Great Maze Pond, London SE1 9RT, UK
| | - Jana Obajdin
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital, Floor 28, Tower Wing, Great Maze Pond, London SE1 9RT, UK
| | - Federica Riccio
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital, Floor 28, Tower Wing, Great Maze Pond, London SE1 9RT, UK
| | - Wladislaw Stroukov
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital, Floor 28, Tower Wing, Great Maze Pond, London SE1 9RT, UK
| | - Thea Louise Willis
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital, Floor 28, Tower Wing, Great Maze Pond, London SE1 9RT, UK
| | - Francesca Spagnoli
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital, Floor 28, Tower Wing, Great Maze Pond, London SE1 9RT, UK
| | - Fiona M Watt
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital, Floor 28, Tower Wing, Great Maze Pond, London SE1 9RT, UK.
| |
Collapse
|
30
|
Zhao Y, Li X, Zhao W, Wang J, Yu J, Wan Z, Gao K, Yi G, Wang X, Fan B, Wu Q, Chen B, Xie F, Wu J, Zhang W, Chen F, Yang H, Wang J, Xu X, Li B, Liu S, Hou Y, Liu X. Single-cell transcriptomic landscape of nucleated cells in umbilical cord blood. Gigascience 2019; 8:giz047. [PMID: 31049560 PMCID: PMC6497034 DOI: 10.1093/gigascience/giz047] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/30/2019] [Accepted: 04/01/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND For both pediatric and adult patients, umbilical cord blood (UCB) transplant is a therapeutic option for a variety of hematologic diseases, such as blood cancers, myeloproliferative disorders, genetic diseases, and metabolic disorders. However, the level of cellular heterogeneity and diversity of nucleated cells in UCB has not yet been assessed in an unbiased and systemic fashion. In the present study, nucleated cells from UCB were subjected to single-cell RNA sequencing to simultaneously profile the gene expression signatures of thousands of cells, generating a rich resource for further functional studies. Here, we report the transcriptomes of 17,637 UCB cells, covering 12 major cell types, many of which can be further divided into distinct subpopulations. RESULTS Pseudotemporal ordering of nucleated red blood cells identifies wave-like activation and suppression of transcription regulators, leading to a polarized cellular state, which may reflect nucleated red blood cell maturation. Progenitor cells in UCB also comprise 2 subpopulations with activation of divergent transcription programs, leading to specific cell fate commitment. Detailed profiling of cytotoxic cell populations unveiled granzymes B and K signatures in natural killer and natural killer T-cell types in UCB. CONCLUSIONS Taken together, our data form a comprehensive single-cell transcriptomic landscape that reveals previously unrecognized cell types, pathways, and mechanisms of gene expression regulation. These data may contribute to the efficacy and outcome of UCB transplant, broadening the scope of research and clinical innovations.
Collapse
Affiliation(s)
- Yi Zhao
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
- BGI-Shenzhen, Shenzhen 518083, China
| | - Xiao Li
- BGI-Shenzhen, Shenzhen 518083, China
| | - Weihua Zhao
- Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen 518035, Guangdong Province, China
| | | | - Jiawei Yu
- BGI-Shenzhen, Shenzhen 518083, China
| | - Ziyun Wan
- BGI-Shenzhen, Shenzhen 518083, China
| | - Kai Gao
- BGI-Shenzhen, Shenzhen 518083, China
| | - Gang Yi
- Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai 200025, China
| | - Xie Wang
- BGI-Shenzhen, Shenzhen 518083, China
| | - Bingbing Fan
- Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen 518035, Guangdong Province, China
| | - Qinkai Wu
- BGI-Shenzhen, Shenzhen 518083, China
| | | | - Feng Xie
- Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai 200025, China
| | | | - Wei Zhang
- BGI-Shenzhen, Shenzhen 518083, China
| | - Fang Chen
- BGI-Shenzhen, Shenzhen 518083, China
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen 518083, China
- James D. Watson Institute of Genome Sciences, Hangzhou 310058, China
| | - Jian Wang
- BGI-Shenzhen, Shenzhen 518083, China
- James D. Watson Institute of Genome Sciences, Hangzhou 310058, China
| | - Xun Xu
- BGI-Shenzhen, Shenzhen 518083, China
| | - Bin Li
- BGI-Shenzhen, Shenzhen 518083, China
- Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai 200025, China
- Department of Immunology and Microbiology, Shanghai JiaoTong University School of Medicine, Shanghai 200025, China
| | | | - Yong Hou
- BGI-Shenzhen, Shenzhen 518083, China
| | - Xiao Liu
- BGI-Shenzhen, Shenzhen 518083, China
| |
Collapse
|
31
|
Berg DA, Su Y, Jimenez-Cyrus D, Patel A, Huang N, Morizet D, Lee S, Shah R, Ringeling FR, Jain R, Epstein JA, Wu QF, Canzar S, Ming GL, Song H, Bond AM. A Common Embryonic Origin of Stem Cells Drives Developmental and Adult Neurogenesis. Cell 2019; 177:654-668.e15. [PMID: 30929900 PMCID: PMC6496946 DOI: 10.1016/j.cell.2019.02.010] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 12/20/2018] [Accepted: 02/08/2019] [Indexed: 02/07/2023]
Abstract
New neurons arise from quiescent adult neural progenitors throughout life in specific regions of the mammalian brain. Little is known about the embryonic origin and establishment of adult neural progenitors. Here, we show that Hopx+ precursors in the mouse dentate neuroepithelium at embryonic day 11.5 give rise to proliferative Hopx+ neural progenitors in the primitive dentate region, and they, in turn, generate granule neurons, but not other neurons, throughout development and then transition into Hopx+ quiescent radial glial-like neural progenitors during an early postnatal period. RNA-seq and ATAC-seq analyses of Hopx+ embryonic, early postnatal, and adult dentate neural progenitors further reveal common molecular and epigenetic signatures and developmental dynamics. Together, our findings support a "continuous" model wherein a common neural progenitor population exclusively contributes to dentate neurogenesis throughout development and adulthood. Adult dentate neurogenesis may therefore represent a lifelong extension of development that maintains heightened plasticity in the mammalian hippocampus.
Collapse
Affiliation(s)
- Daniel A Berg
- Department of Neuroscience and Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yijing Su
- Department of Neuroscience and Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Dennisse Jimenez-Cyrus
- Department of Neuroscience and Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA 19104, USA; The Cellular and Molecular Medicine Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Aneek Patel
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Nancy Huang
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - David Morizet
- Department of Neuroscience and Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stephanie Lee
- Department of Neuroscience and Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Reeti Shah
- Department of Neuroscience and Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Rajan Jain
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jonathan A Epstein
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; The Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Qing-Feng Wu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Stefan Canzar
- Gene Center, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; The Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Allison M Bond
- Department of Neuroscience and Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|