1
|
Lei W, Clark DA, Demb JB. Compartmentalized pooling generates orientation selectivity in wide-field amacrine cells. Proc Natl Acad Sci U S A 2024; 121:e2411130121. [PMID: 39602271 PMCID: PMC11626119 DOI: 10.1073/pnas.2411130121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024] Open
Abstract
Orientation is one of the most salient features in visual scenes. Neurons at multiple levels of the visual system detect orientation, but in many cases, the underlying biophysical mechanisms remain unresolved. Here, we studied mechanisms for orientation detection at the earliest stage in the visual system, in B/K wide-field amacrine cells (B/K WACs), a group of giant, nonspiking interneurons in the mouse retina that coexpress Bhlhe22 (B) and Kappa Opioid Receptor (K). B/K WACs exhibit orientation-tuned calcium signals along their long, straight, unbranching dendrites, which contain both synaptic inputs and outputs. Simultaneous dendritic calcium imaging and somatic voltage recordings reveal that individual B/K dendrites are electrotonically isolated, exhibiting a spatially confined yet extended receptive field along the dendrite, which we term "compartmentalized pooling." Further, the receptive field of a B/K WAC dendrite exhibits center-surround antagonism. Phenomenological receptive field models demonstrate that compartmentalized pooling generates orientation selectivity, and center-surround antagonism shapes band-pass spatial frequency tuning. At the microcircuit level, B/K WACs receive excitation driven by one contrast polarity (e.g., "ON") and glycinergic inhibition driven by the opposite polarity (e.g., "OFF"). However, this "crossover" inhibition is not essential for generating orientation selectivity. A minimal biophysical model reproduced compartmentalized pooling from feedforward excitatory inputs combined with a substantial increase in the specific membrane resistance between somatic and dendritic compartments. Collectively, our results reveal the biophysical mechanism for generating orientation selectivity in dendrites of B/K WACs, enriching our understanding of the diverse strategies employed throughout the visual system to detect orientation.
Collapse
Affiliation(s)
- Wanyu Lei
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT06511
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, CT06511
| | - Damon A. Clark
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT06511
- Department of Physics, Yale University, New Haven, CT06511
- Quantitative Biology Institute, Yale University, New Haven, CT06511
- Department of Neuroscience, Yale University, New Haven, CT06511
- Wu Tsai Institute, Yale University, New Haven, CT06511
| | - Jonathan B. Demb
- Department of Neuroscience, Yale University, New Haven, CT06511
- Wu Tsai Institute, Yale University, New Haven, CT06511
- Department of Ophthalmology and Visual Science, Yale University, New Haven, CT06511
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT06511
| |
Collapse
|
2
|
Ing-Esteves S, Lefebvre JL. Gamma-protocadherins regulate dendrite self-recognition and dynamics to drive self-avoidance. Curr Biol 2024; 34:4224-4239.e4. [PMID: 39214087 DOI: 10.1016/j.cub.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 06/03/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024]
Abstract
Neurons form cell-type-specific morphologies that are shaped by cell-surface molecules and their cellular events governing dendrite growth. One growth rule is dendrite self-avoidance, whereby dendrites distribute uniformly within a neuron's territory by avoiding sibling branches. In mammalian neurons, dendrite self-avoidance is regulated by a large family of cell-recognition molecules called the clustered protocadherins (cPcdhs). Genetic and molecular studies suggest that the cPcdhs mediate homophilic recognition and repulsion between self-dendrites. However, this model has not been tested through direct investigation of self-avoidance during development. Here, we performed live imaging and four-dimensional (4D) quantifications of dendrite morphogenesis to define the dynamics and cPcdh-dependent mechanisms of self-avoidance. We focused on the mouse retinal starburst amacrine cell (SAC), which requires the gamma-Pcdhs (Pcdhgs) and self/non-self-recognition to establish a stereotypic radial morphology while permitting dendritic interactions with neighboring SACs. Through morphogenesis, SACs extend dendritic protrusions that iteratively fill the growing arbor and contact and retract from nearby self-dendrites. Compared to non-self-contacting protrusions, self-contacting events have longer lifetimes, and a subset persists as loops. In the absence of the Pcdhgs, non-self-contacting dynamics are unaffected but self-contacting retractions are significantly diminished. Self-contacting bridges accumulate, leading to the bundling of dendritic processes and disruption to the arbor shape. By tracking dendrite self-avoidance in real time, our findings establish that the γ-Pcdhs mediate self-recognition and retraction between contacting sibling dendrites. Our results also illustrate how self-avoidance shapes stochastic and space-filling dendritic outgrowth for robust pattern formation in mammalian neurons.
Collapse
Affiliation(s)
- Samantha Ing-Esteves
- Program for Neuroscience and Mental Health, Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Julie L Lefebvre
- Program for Neuroscience and Mental Health, Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
3
|
Acarón Ledesma H, Ding J, Oosterboer S, Huang X, Chen Q, Wang S, Lin MZ, Wei W. Dendritic mGluR2 and perisomatic Kv3 signaling regulate dendritic computation of mouse starburst amacrine cells. Nat Commun 2024; 15:1819. [PMID: 38418467 PMCID: PMC10901804 DOI: 10.1038/s41467-024-46234-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/20/2024] [Indexed: 03/01/2024] Open
Abstract
Dendritic mechanisms driving input-output transformation in starburst amacrine cells (SACs) are not fully understood. Here, we combine two-photon subcellular voltage and calcium imaging and electrophysiological recording to determine the computational architecture of mouse SAC dendrites. We found that the perisomatic region integrates motion signals over the entire dendritic field, providing a low-pass-filtered global depolarization to dendrites. Dendrites integrate local synaptic inputs with this global signal in a direction-selective manner. Coincidental local synaptic inputs and the global motion signal in the outward motion direction generate local suprathreshold calcium transients. Moreover, metabotropic glutamate receptor 2 (mGluR2) signaling in SACs modulates the initiation of calcium transients in dendrites but not at the soma. In contrast, voltage-gated potassium channel 3 (Kv3) dampens fast voltage transients at the soma. Together, complementary mGluR2 and Kv3 signaling in different subcellular regions leads to dendritic compartmentalization and direction selectivity, highlighting the importance of these mechanisms in dendritic computation.
Collapse
Affiliation(s)
- Héctor Acarón Ledesma
- Graduate Program in Biophysical Sciences, The University of Chicago, Chicago, IL, 60637, USA
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Jennifer Ding
- The Committee on Neurobiology Graduate Program, The University of Chicago, Chicago, IL, 60637, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Swen Oosterboer
- The Committee on Neurobiology Graduate Program, The University of Chicago, Chicago, IL, 60637, USA
| | - Xiaolin Huang
- The Committee on Neurobiology Graduate Program, The University of Chicago, Chicago, IL, 60637, USA
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, University of California, Berkeley, CA, 94720, USA
| | - Qiang Chen
- The Committee on Computational Neuroscience Graduate Program, The University of Chicago, Chicago, IL, 60637, USA
- Department of Physiology & Biophysics, University of Washington, Seattle, WA, 98195, USA
| | - Sui Wang
- Department of Ophthalmology, Stanford University, Stanford, CA, 94305, USA
| | - Michael Z Lin
- Department of Neurobiology, Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Wei Wei
- Department of Neurobiology and the Neuroscience Institute, The University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
4
|
Swygart D, Yu WQ, Takeuchi S, Wong ROL, Schwartz GW. A presynaptic source drives differing levels of surround suppression in two mouse retinal ganglion cell types. Nat Commun 2024; 15:599. [PMID: 38238324 PMCID: PMC10796971 DOI: 10.1038/s41467-024-44851-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 01/05/2024] [Indexed: 01/22/2024] Open
Abstract
In early sensory systems, cell-type diversity generally increases from the periphery into the brain, resulting in a greater heterogeneity of responses to the same stimuli. Surround suppression is a canonical visual computation that begins within the retina and is found at varying levels across retinal ganglion cell types. Our results show that heterogeneity in the level of surround suppression occurs subcellularly at bipolar cell synapses. Using single-cell electrophysiology and serial block-face scanning electron microscopy, we show that two retinal ganglion cell types exhibit very different levels of surround suppression even though they receive input from the same bipolar cell types. This divergence of the bipolar cell signal occurs through synapse-specific regulation by amacrine cells at the scale of tens of microns. These findings indicate that each synapse of a single bipolar cell can carry a unique visual signal, expanding the number of possible functional channels at the earliest stages of visual processing.
Collapse
Affiliation(s)
- David Swygart
- Northwestern University Interdepartmental Neuroscience Program, Chicago, IL, USA
| | - Wan-Qing Yu
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Shunsuke Takeuchi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Rachel O L Wong
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Gregory W Schwartz
- Northwestern University Interdepartmental Neuroscience Program, Chicago, IL, USA.
- Departments of Ophthalmology and Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
- Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
5
|
Gaynes JA, Budoff SA, Grybko MJ, Poleg-Polsky A. Heterogeneous presynaptic receptive fields contribute to directional tuning in starburst amacrine cells. eLife 2023; 12:RP90456. [PMID: 38149980 PMCID: PMC10752589 DOI: 10.7554/elife.90456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023] Open
Abstract
The processing of visual information by retinal starburst amacrine cells (SACs) involves transforming excitatory input from bipolar cells (BCs) into directional calcium output. While previous studies have suggested that an asymmetry in the kinetic properties of BCs along the soma-dendritic axes of the postsynaptic cell could enhance directional tuning at the level of individual branches, it remains unclear whether biologically relevant presynaptic kinetics contribute to direction selectivity (DS) when visual stimulation engages the entire dendritic tree. To address this question, we built multicompartmental models of the bipolar-SAC circuit and trained them to boost directional tuning. We report that despite significant dendritic crosstalk and dissimilar directional preferences along the dendrites that occur during whole-cell stimulation, the rules that guide BC kinetics leading to optimal DS are similar to the single-dendrite condition. To correlate model predictions to empirical findings, we utilized two-photon glutamate imaging to study the dynamics of bipolar release onto ON- and OFF-starburst dendrites in the murine retina. We reveal diverse presynaptic dynamics in response to motion in both BC populations; algorithms trained on the experimental data suggested that the differences in the temporal release kinetics are likely to correspond to heterogeneous receptive field properties among the different BC types, including the spatial extent of the center and surround components. In addition, we demonstrate that circuit architecture composed of presynaptic units with experimentally recorded dynamics could enhance directional drive but not to levels that replicate empirical findings, suggesting other DS mechanisms are required to explain SAC function. Our study provides new insights into the complex mechanisms underlying DS in retinal processing and highlights the potential contribution of presynaptic kinetics to the computation of visual information by SACs.
Collapse
Affiliation(s)
- John A Gaynes
- Department of Physiology and Biophysics, University of Colorado School of MedicineAuroraUnited States
| | - Samuel A Budoff
- Department of Physiology and Biophysics, University of Colorado School of MedicineAuroraUnited States
| | - Michael J Grybko
- Department of Physiology and Biophysics, University of Colorado School of MedicineAuroraUnited States
| | - Alon Poleg-Polsky
- Department of Physiology and Biophysics, University of Colorado School of MedicineAuroraUnited States
| |
Collapse
|
6
|
Jo A, Deniz S, Cherian S, Xu J, Futagi D, DeVries SH, Zhu Y. Modular interneuron circuits control motion sensitivity in the mouse retina. Nat Commun 2023; 14:7746. [PMID: 38008788 PMCID: PMC10679153 DOI: 10.1038/s41467-023-43382-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 11/08/2023] [Indexed: 11/28/2023] Open
Abstract
Neural computations arise from highly precise connections between specific types of neurons. Retinal ganglion cells (RGCs) with similar stratification patterns are positioned to receive similar inputs but often display different response properties. In this study, we used intersectional mouse genetics to achieve single-cell type labeling and identified an object motion sensitive (OMS) AC type, COMS-AC(counter-OMS AC). Optogenetic stimulation revealed that COMS-AC makes glycinergic synapses with the OMS-insensitive HD2p-RGC, while chemogenetic inactivation showed that COMS-AC provides inhibitory control to HD2p-RGC during local motion. This local inhibition, combined with the inhibitory drive from TH2-AC during global motion, explains the OMS-insensitive feature of HD2p-RGC. In contrast, COMS-AC fails to make synapses with W3(UHD)-RGC, allowing it to exhibit OMS under the control of VGlut3-AC and TH2-AC. These findings reveal modular interneuron circuits that endow structurally similar RGC types with different responses and present a mechanism for redundancy-reduction in the retina to expand coding capacity.
Collapse
Affiliation(s)
- Andrew Jo
- Departments of Ophthalmology and Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Sercan Deniz
- Departments of Ophthalmology and Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Suraj Cherian
- Departments of Ophthalmology and Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Jian Xu
- Departments of Ophthalmology and Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Daiki Futagi
- Departments of Ophthalmology and Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Steven H DeVries
- Departments of Ophthalmology and Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Yongling Zhu
- Departments of Ophthalmology and Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
7
|
Chen J, Gish CM, Fransen JW, Salazar-Gatzimas E, Clark DA, Borghuis BG. Direct comparison reveals algorithmic similarities in fly and mouse visual motion detection. iScience 2023; 26:107928. [PMID: 37810236 PMCID: PMC10550730 DOI: 10.1016/j.isci.2023.107928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/07/2023] [Accepted: 09/12/2023] [Indexed: 10/10/2023] Open
Abstract
Evolution has equipped vertebrates and invertebrates with neural circuits that selectively encode visual motion. While similarities in the computations performed by these circuits in mouse and fruit fly have been noted, direct experimental comparisons have been lacking. Because molecular mechanisms and neuronal morphology in the two species are distinct, we directly compared motion encoding in these two species at the algorithmic level, using matched stimuli and focusing on a pair of analogous neurons, the mouse ON starburst amacrine cell (ON SAC) and Drosophila T4 neurons. We find that the cells share similar spatiotemporal receptive field structures, sensitivity to spatiotemporal correlations, and tuning to sinusoidal drifting gratings, but differ in their responses to apparent motion stimuli. Both neuron types showed a response to summed sinusoids that deviates from models for motion processing in these cells, underscoring the similarities in their processing and identifying response features that remain to be explained.
Collapse
Affiliation(s)
- Juyue Chen
- Interdepartmental Neurosciences Program, Yale University, New Haven, CT 06511, USA
| | - Caitlin M Gish
- Department of Physics, Yale University, New Haven, CT 06511, USA
| | - James W Fransen
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY 40202, USA
| | | | - Damon A Clark
- Interdepartmental Neurosciences Program, Yale University, New Haven, CT 06511, USA
- Department of Physics, Yale University, New Haven, CT 06511, USA
- Department of Molecular, Cellular, Developmental Biology, Yale University, New Haven, CT 06511, USA
- Department of Neuroscience, Yale University, New Haven, CT 06511, USA
| | - Bart G Borghuis
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
8
|
Gaynes JA, Budoff SA, Grybko MJ, Poleg-Polsky A. Heterogeneous presynaptic receptive fields contribute to directional tuning in starburst amacrine cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.02.551732. [PMID: 37577661 PMCID: PMC10418172 DOI: 10.1101/2023.08.02.551732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
The processing of visual information by retinal starburst amacrine cells (SACs) involves transforming excitatory input from bipolar cells (BCs) into directional calcium output. While previous studies have suggested that an asymmetry in the kinetic properties of bipolar cells along the soma-dendritic axes of the postsynaptic cell could enhance directional tuning at the level of individual branches, it remains unclear whether biologically relevant presynaptic kinetics contribute to direction selectivity when visual stimulation engages the entire dendritic tree. To address this question, we built multicompartmental models of the bipolar-SAC circuit and trained them to boost directional tuning. We report that despite significant dendritic crosstalk and dissimilar directional preferences along the dendrites that occur during whole-cell stimulation, the rules that guide BC kinetics leading to optimal directional selectivity are similar to the single-dendrite condition. To correlate model predictions to empirical findings, we utilized two-photon glutamate imaging to study the dynamics of bipolar release onto ON- and OFF-starburst dendrites in the murine retina. We reveal diverse presynaptic dynamics in response to motion in both BC populations; algorithms trained on the experimental data suggested that the differences in the temporal release kinetics are likely to correspond to heterogeneous receptive field (RF) properties among the different BC types, including the spatial extent of the center and surround components. In addition, we demonstrate that circuit architecture composed of presynaptic units with experimentally recorded dynamics could enhance directional drive but not to levels that replicate empirical findings, suggesting other DS mechanisms are required to explain SAC function. Our study provides new insights into the complex mechanisms underlying direction selectivity in retinal processing and highlights the potential contribution of presynaptic kinetics to the computation of visual information by starburst amacrine cells.
Collapse
Affiliation(s)
- John A. Gaynes
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Samuel A. Budoff
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Michael J. Grybko
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Alon Poleg-Polsky
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
9
|
Jo A, Deniz S, Xu J, Duvoisin RM, DeVries SH, Zhu Y. A sign-inverted receptive field of inhibitory interneurons provides a pathway for ON-OFF interactions in the retina. Nat Commun 2023; 14:5937. [PMID: 37741839 PMCID: PMC10517963 DOI: 10.1038/s41467-023-41638-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 09/11/2023] [Indexed: 09/25/2023] Open
Abstract
A fundamental organizing plan of the retina is that visual information is divided into ON and OFF streams that are processed in separate layers. This functional dichotomy originates in the ON and OFF bipolar cells, which then make excitatory glutamatergic synapses onto amacrine and ganglion cells in the inner plexiform layer. We have identified an amacrine cell (AC), the sign-inverting (SI) AC, that challenges this fundamental plan. The glycinergic, ON-stratifying SI-AC has OFF light responses. In opposition to the classical wiring diagrams, it receives inhibitory inputs from glutamatergic ON bipolar cells at mGluR8 synapses, and excitatory inputs from an OFF wide-field AC at electrical synapses. This "inhibitory ON center - excitatory OFF surround" receptive-field of the SI-AC allows it to use monostratified dendrites to conduct crossover inhibition and push-pull activation to enhance light detection by ACs and RGCs in the dark and feature discrimination in the light.
Collapse
Affiliation(s)
- Andrew Jo
- Departments of Ophthalmology and Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Sercan Deniz
- Departments of Ophthalmology and Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Jian Xu
- Departments of Ophthalmology and Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Robert M Duvoisin
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Steven H DeVries
- Departments of Ophthalmology and Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
| | - Yongling Zhu
- Departments of Ophthalmology and Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
10
|
Wang B, Zhang Y. Asymmetric connections with starburst amacrine cells underlie the upward motion selectivity of J-type retinal ganglion cells. PLoS Biol 2023; 21:e3002301. [PMID: 37721959 PMCID: PMC10538761 DOI: 10.1371/journal.pbio.3002301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 09/28/2023] [Accepted: 08/17/2023] [Indexed: 09/20/2023] Open
Abstract
Motion is an important aspect of visual information. The directions of visual motion are encoded in the retina by direction-selective ganglion cells (DSGCs). ON-OFF DSGCs and ON DSGCs co-stratify with starburst amacrine cells (SACs) in the inner plexiform layer and depend on SACs for their direction selectivity. J-type retinal ganglion cells (J-RGCs), a type of OFF DSGCs in the mouse retina, on the other hand, do not co-stratify with SACs, and how direction selectivity in J-RGCs emerges has not been understood. Here, we report that both the excitatory and inhibitory synaptic inputs to J-RGCs are direction-selective (DS), with the inhibitory inputs playing a more important role for direction selectivity. The DS inhibitory inputs come from SACs, and the functional connections between J-RGCs and SACs are spatially asymmetric. Thus, J-RGCs and SACs form functionally important synaptic contacts even though their dendritic arbors show little overlap. These findings underscore the need to look beyond the neurons' stratification patterns in retinal circuit studies. Our results also highlight the critical role of SACs for retinal direction selectivity.
Collapse
Affiliation(s)
- Bo Wang
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Yifeng Zhang
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
11
|
Ichinose T, Hellmer CB, Bohl JM. Presynaptic depolarization differentially regulates dual neurotransmitter release from starburst amacrine cells in the mouse retina. FRONTIERS IN OPHTHALMOLOGY 2023; 3:1225824. [PMID: 38444728 PMCID: PMC10914334 DOI: 10.3389/fopht.2023.1225824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
The retina is comprised of diverse neural networks, signaling from photoreceptors to ganglion cells to encode images. The synaptic connections between these retinal neurons are crucial points for information transfer; however, the input-output relations of many synapses are understudied. Starburst amacrine cells in the retina are known to contribute to retinal motion detection circuits, providing a unique window for understanding neural computations. We examined the dual transmitter release of GABA and acetylcholine from starburst amacrine cells by optogenetic activation of these cells, and conducted patch clamp recordings from postsynaptic ganglion cells to record excitatory and inhibitory postsynaptic currents (EPSCs and IPSCs). As starburst amacrine cells exhibit distinct kinetics in response to objects moving in a preferred or null direction, we mimicked their depolarization kinetics using optogenetic stimuli by varying slopes of the rising phase. The amplitudes of EPSCs and IPSCs in postsynaptic ganglion cells were reduced as the stimulus rising speed was prolonged. However, the sensitivity of postsynaptic currents to the stimulus slope differed. EPSC amplitudes were consistently reduced as the steepness of the rising phase fell. By contrast, IPSCs were less sensitive to the slope of the stimulus rise phase and maintained their amplitudes until the slope became shallow. These results indicate that distinct synaptic release mechanisms contribute to acetylcholine and GABA release from starburst amacrine cells, which could contribute to the ganglion cells' direction selectivity.
Collapse
Affiliation(s)
- Tomomi Ichinose
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, United States
| | | | - Jeremy M. Bohl
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
12
|
Mu S, Turner NL, Silversmith WM, Jordan CS, Kemnitz N, Sorek M, David C, Jones DL, Bland D, Moore M, Sterling AR, Seung HS. Special nuclear layer contacts between starburst amacrine cells in the mouse retina. FRONTIERS IN OPHTHALMOLOGY 2023; 3:1129463. [PMID: 38983098 PMCID: PMC11182129 DOI: 10.3389/fopht.2023.1129463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/07/2023] [Indexed: 07/11/2024]
Abstract
Starburst amacrine cells are a prominent neuron type in the mammalian retina that has been well-studied for its role in direction-selective information processing. One specific property of these cells is that their dendrites tightly stratify at specific depths within the inner plexiform layer (IPL), which, together with their unique expression of choline acetyltransferase (ChAT), has made them the most common depth marker for studying other retinal neurons in the IPL. This stratifying property makes it unexpected that they could routinely have dendrites reaching into the nuclear layer or that they could have somatic contact specializations, which is exactly what we have found in this study. Specifically, an electron microscopic image volume of sufficient size from a mouse retina provided us with the opportunity to anatomically observe both microscopic details and collective patterns, and our detailed cell reconstructions revealed interesting cell-cell contacts between starburst amacrine neurons. The contact characteristics differ between the respective On and Off starburst amacrine subpopulations, but both occur within the soma layers, as opposed to their regular contact laminae within the inner plexiform layer.
Collapse
Affiliation(s)
- Shang Mu
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, United States
| | - Nicholas L Turner
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, United States
- Computer Science Department, Princeton University, Princeton, NJ, United States
| | - William M Silversmith
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, United States
| | - Chris S Jordan
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, United States
| | - Nico Kemnitz
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, United States
| | - Marissa Sorek
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, United States
| | - Celia David
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, United States
| | - Devon L Jones
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, United States
| | - Doug Bland
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, United States
| | - Merlin Moore
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, United States
| | - Amy Robinson Sterling
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, United States
| | - H Sebastian Seung
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, United States
- Computer Science Department, Princeton University, Princeton, NJ, United States
| |
Collapse
|
13
|
Gaynes JA, Budoff SA, Grybko MJ, Hunt JB, Poleg-Polsky A. Classical center-surround receptive fields facilitate novel object detection in retinal bipolar cells. Nat Commun 2022; 13:5575. [PMID: 36163249 PMCID: PMC9512824 DOI: 10.1038/s41467-022-32761-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/16/2022] [Indexed: 11/11/2022] Open
Abstract
Antagonistic interactions between center and surround receptive field (RF) components lie at the heart of the computations performed in the visual system. Circularly symmetric center-surround RFs are thought to enhance responses to spatial contrasts (i.e., edges), but how visual edges affect motion processing is unclear. Here, we addressed this question in retinal bipolar cells, the first visual neuron with classic center-surround interactions. We found that bipolar glutamate release emphasizes objects that emerge in the RF; their responses to continuous motion are smaller, slower, and cannot be predicted by signals elicited by stationary stimuli. In our hands, the alteration in signal dynamics induced by novel objects was more pronounced than edge enhancement and could be explained by priming of RF surround during continuous motion. These findings echo the salience of human visual perception and demonstrate an unappreciated capacity of the center-surround architecture to facilitate novel object detection and dynamic signal representation.
Collapse
Affiliation(s)
- John A Gaynes
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Samuel A Budoff
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Michael J Grybko
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Joshua B Hunt
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Alon Poleg-Polsky
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
14
|
Kim YJ, Peterson BB, Crook JD, Joo HR, Wu J, Puller C, Robinson FR, Gamlin PD, Yau KW, Viana F, Troy JB, Smith RG, Packer OS, Detwiler PB, Dacey DM. Origins of direction selectivity in the primate retina. Nat Commun 2022; 13:2862. [PMID: 35606344 PMCID: PMC9126974 DOI: 10.1038/s41467-022-30405-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/27/2022] [Indexed: 12/22/2022] Open
Abstract
From mouse to primate, there is a striking discontinuity in our current understanding of the neural coding of motion direction. In non-primate mammals, directionally selective cell types and circuits are a signature feature of the retina, situated at the earliest stage of the visual process. In primates, by contrast, direction selectivity is a hallmark of motion processing areas in visual cortex, but has not been found in the retina, despite significant effort. Here we combined functional recordings of light-evoked responses and connectomic reconstruction to identify diverse direction-selective cell types in the macaque monkey retina with distinctive physiological properties and synaptic motifs. This circuitry includes an ON-OFF ganglion cell type, a spiking, ON-OFF polyaxonal amacrine cell and the starburst amacrine cell, all of which show direction selectivity. Moreover, we discovered that macaque starburst cells possess a strong, non-GABAergic, antagonistic surround mediated by input from excitatory bipolar cells that is critical for the generation of radial motion sensitivity in these cells. Our findings open a door to investigation of a precortical circuitry that computes motion direction in the primate visual system.
Collapse
Affiliation(s)
- Yeon Jin Kim
- Department of Biological Structure, University of Washington, Seattle, WA, 98195, USA
| | - Beth B Peterson
- Department of Biological Structure, University of Washington, Seattle, WA, 98195, USA
| | - Joanna D Crook
- Department of Biological Structure, University of Washington, Seattle, WA, 98195, USA
| | - Hannah R Joo
- Department of Biological Structure, University of Washington, Seattle, WA, 98195, USA
| | - Jiajia Wu
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Christian Puller
- Department of Biological Structure, University of Washington, Seattle, WA, 98195, USA
| | - Farrel R Robinson
- Department of Biological Structure, University of Washington, Seattle, WA, 98195, USA
- Washington National Primate Research Center, Seattle, WA, 98195, USA
| | - Paul D Gamlin
- Department of Ophthalmology and Vision Sciences, University of Alabama at Birmingham, Birmingham, AL, 35294-4390, USA
| | - King-Wai Yau
- Departments of Neuroscience and Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205-2185, USA
| | - Felix Viana
- Institute of Neuroscience, UMH-CSIC, San Juan de Alicante, 03550, Spain
| | - John B Troy
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Robert G Smith
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Orin S Packer
- Department of Biological Structure, University of Washington, Seattle, WA, 98195, USA
| | - Peter B Detwiler
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, 98195, USA
| | - Dennis M Dacey
- Department of Biological Structure, University of Washington, Seattle, WA, 98195, USA.
- Washington National Primate Research Center, Seattle, WA, 98195, USA.
| |
Collapse
|
15
|
Yang S, Gao T, Wang J, Deng B, Azghadi MR, Lei T, Linares-Barranco B. SAM: A Unified Self-Adaptive Multicompartmental Spiking Neuron Model for Learning With Working Memory. Front Neurosci 2022; 16:850945. [PMID: 35527819 PMCID: PMC9074872 DOI: 10.3389/fnins.2022.850945] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
Working memory is a fundamental feature of biological brains for perception, cognition, and learning. In addition, learning with working memory, which has been show in conventional artificial intelligence systems through recurrent neural networks, is instrumental to advanced cognitive intelligence. However, it is hard to endow a simple neuron model with working memory, and to understand the biological mechanisms that have resulted in such a powerful ability at the neuronal level. This article presents a novel self-adaptive multicompartment spiking neuron model, referred to as SAM, for spike-based learning with working memory. SAM integrates four major biological principles including sparse coding, dendritic non-linearity, intrinsic self-adaptive dynamics, and spike-driven learning. We first describe SAM's design and explore the impacts of critical parameters on its biological dynamics. We then use SAM to build spiking networks to accomplish several different tasks including supervised learning of the MNIST dataset using sequential spatiotemporal encoding, noisy spike pattern classification, sparse coding during pattern classification, spatiotemporal feature detection, meta-learning with working memory applied to a navigation task and the MNIST classification task, and working memory for spatiotemporal learning. Our experimental results highlight the energy efficiency and robustness of SAM in these wide range of challenging tasks. The effects of SAM model variations on its working memory are also explored, hoping to offer insight into the biological mechanisms underlying working memory in the brain. The SAM model is the first attempt to integrate the capabilities of spike-driven learning and working memory in a unified single neuron with multiple timescale dynamics. The competitive performance of SAM could potentially contribute to the development of efficient adaptive neuromorphic computing systems for various applications from robotics to edge computing.
Collapse
Affiliation(s)
- Shuangming Yang
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Tian Gao
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Jiang Wang
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Bin Deng
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | | | - Tao Lei
- School of Electronic Information and Artificial Intelligence, Shaanxi University of Science and Technology, Xi’an, China
| | | |
Collapse
|
16
|
Abstract
Retinal circuits transform the pixel representation of photoreceptors into the feature representations of ganglion cells, whose axons transmit these representations to the brain. Functional, morphological, and transcriptomic surveys have identified more than 40 retinal ganglion cell (RGC) types in mice. RGCs extract features of varying complexity; some simply signal local differences in brightness (i.e., luminance contrast), whereas others detect specific motion trajectories. To understand the retina, we need to know how retinal circuits give rise to the diverse RGC feature representations. A catalog of the RGC feature set, in turn, is fundamental to understanding visual processing in the brain. Anterograde tracing indicates that RGCs innervate more than 50 areas in the mouse brain. Current maps connecting RGC types to brain areas are rudimentary, as is our understanding of how retinal signals are transformed downstream to guide behavior. In this article, I review the feature selectivities of mouse RGCs, how they arise, and how they are utilized downstream. Not only is knowledge of the behavioral purpose of RGC signals critical for understanding the retinal contributions to vision; it can also guide us to the most relevant areas of visual feature space. Expected final online publication date for the Annual Review of Vision Science, Volume 8 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Daniel Kerschensteiner
- John F. Hardesty, MD, Department of Ophthalmology and Visual Sciences; Department of Neuroscience; Department of Biomedical Engineering; and Hope Center for Neurological Disorders, Washington University School of Medicine, Saint Louis, Missouri, USA;
| |
Collapse
|
17
|
Yang S, Tan J, Chen B. Robust Spike-Based Continual Meta-Learning Improved by Restricted Minimum Error Entropy Criterion. ENTROPY 2022; 24:e24040455. [PMID: 35455118 PMCID: PMC9031894 DOI: 10.3390/e24040455] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/19/2022] [Accepted: 03/23/2022] [Indexed: 02/04/2023]
Abstract
The spiking neural network (SNN) is regarded as a promising candidate to deal with the great challenges presented by current machine learning techniques, including the high energy consumption induced by deep neural networks. However, there is still a great gap between SNNs and the online meta-learning performance of artificial neural networks. Importantly, existing spike-based online meta-learning models do not target the robust learning based on spatio-temporal dynamics and superior machine learning theory. In this invited article, we propose a novel spike-based framework with minimum error entropy, called MeMEE, using the entropy theory to establish the gradient-based online meta-learning scheme in a recurrent SNN architecture. We examine the performance based on various types of tasks, including autonomous navigation and the working memory test. The experimental results show that the proposed MeMEE model can effectively improve the accuracy and the robustness of the spike-based meta-learning performance. More importantly, the proposed MeMEE model emphasizes the application of the modern information theoretic learning approach on the state-of-the-art spike-based learning algorithms. Therefore, in this invited paper, we provide new perspectives for further integration of advanced information theory in machine learning to improve the learning performance of SNNs, which could be of great merit to applied developments with spike-based neuromorphic systems.
Collapse
Affiliation(s)
- Shuangming Yang
- School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China; (S.Y.); (J.T.)
| | - Jiangtong Tan
- School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China; (S.Y.); (J.T.)
| | - Badong Chen
- Institute of Artificial Intelligence and Robotics, Xi’an Jiaotong University, Xi’an 710049, China
- Correspondence:
| |
Collapse
|
18
|
Beltrán-Matas P, Castilho Á, Tencer B, Veruki ML, Hartveit E. Inhibitory inputs to an inhibitory interneuron: Spontaneous postsynaptic currents and GABA A receptors of A17 amacrine cells in the rat retina. Eur J Neurosci 2022; 55:1442-1470. [PMID: 35236011 PMCID: PMC9314042 DOI: 10.1111/ejn.15634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 11/29/2022]
Abstract
Amacrine cells constitute a large and heterogenous group of inhibitory interneurons in the retina. The A17 amacrine plays an important role for visual signaling in the rod pathway microcircuit of the mammalian retina. It receives excitatory input from rod bipolar cells and provides feedback inhibition to the same cells. However, from ultrastructural investigations, there is evidence for input to A17s from other types of amacrine cells, presumably inhibitory, but there is a lack of information about the identity and functional properties of the synaptic receptors and how inhibition contributes to the integrative properties of A17s. Here, we studied the biophysical and pharmacological properties of GABAergic spontaneous inhibitory postsynaptic currents (spIPSCs) and GABAA receptors of A17 amacrines, using whole-cell and outside-out patch recordings from rat retinal slices. The spIPSCs displayed fast onsets (10-90% rise time ~740 μs) and double-exponential decays (τfast ~4.5 ms [43% of amplitude]; τslow ~22 ms). Ultrafast application of brief pulses of GABA (3 mM) to patches evoked responses with deactivation kinetics best fitted by a triple-exponential function (τ1 ~5.3 ms [55% of amplitude]; τ2 ~48 ms [32% amplitude]; τ3 ~187 ms). Non-stationary noise analysis of spIPSCs and patch responses yielded single-channel conductances of ~21 and ~25 pS, respectively. Pharmacological analysis suggested that the spIPSCs are mediated by receptors with an α1βγ2 subunit composition and the somatic receptors have an α2βγ2 and/or α3βγ2 composition. These results demonstrate the presence of synaptic GABAA receptors on A17s, which may play an important role in signal integration in these cells.
Collapse
Affiliation(s)
| | - Áurea Castilho
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Barbora Tencer
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | | | - Espen Hartveit
- Department of Biomedicine, University of Bergen, Bergen, Norway
| |
Collapse
|
19
|
Jain V, Hanson L, Sethuramanujam S, Michaels T, Gawley J, Gregg RG, Pyle I, Zhang C, Smith RG, Berson D, McCall MA, Awatramani GB. Gain control by sparse, ultra-slow glycinergic synapses. Cell Rep 2022; 38:110410. [PMID: 35196487 DOI: 10.1016/j.celrep.2022.110410] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 10/21/2021] [Accepted: 01/28/2022] [Indexed: 12/23/2022] Open
Abstract
In the retina, ON starburst amacrine cells (SACs) play a crucial role in the direction-selective circuit, but the sources of inhibition that shape their response properties remain unclear. Previous studies demonstrate that ∼95% of their inhibitory synapses are GABAergic, yet we find that the light-evoked inhibitory currents measured in SACs are predominantly glycinergic. Glycinergic inhibition is extremely slow, relying on non-canonical glycine receptors containing α4 subunits, and is driven by both the ON and OFF retinal pathways. These attributes enable glycine inputs to summate and effectively control the output gain of SACs, expanding the range over which they compute direction. Serial electron microscopic reconstructions reveal three specific types of ON and OFF narrow-field amacrine cells as the presumptive sources of glycinergic inhibition. Together, these results establish an unexpected role for specific glycinergic amacrine cells in the retinal computation of stimulus direction by SACs.
Collapse
Affiliation(s)
- Varsha Jain
- Department of Biology, University of Victoria, Victoria, BC V8W 3N5 Canada
| | - Laura Hanson
- Department of Biology, University of Victoria, Victoria, BC V8W 3N5 Canada
| | | | - Tracy Michaels
- Department of Biology, University of Victoria, Victoria, BC V8W 3N5 Canada
| | - Jerram Gawley
- Department of Biology, University of Victoria, Victoria, BC V8W 3N5 Canada
| | - Ronald G Gregg
- Department of Ophthalmology & Visual Sciences, University of Louisville, Louisville, KY 40202, USA
| | - Ian Pyle
- Department of Anatomical Sciences & Neurobiology, University of Louisville, Louisville, KY 40202, USA
| | - Chi Zhang
- Department of Anatomical Sciences & Neurobiology, University of Louisville, Louisville, KY 40202, USA
| | - Robert G Smith
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David Berson
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
| | - Maureen A McCall
- Department of Ophthalmology & Visual Sciences, University of Louisville, Louisville, KY 40202, USA; Department of Anatomical Sciences & Neurobiology, University of Louisville, Louisville, KY 40202, USA.
| | | |
Collapse
|
20
|
Srivastava P, de Rosenroll G, Matsumoto A, Michaels T, Turple Z, Jain V, Sethuramanujam S, Murphy-Baum BL, Yonehara K, Awatramani GB. Spatiotemporal properties of glutamate input support direction selectivity in the dendrites of retinal starburst amacrine cells. eLife 2022; 11:81533. [PMID: 36346388 PMCID: PMC9674338 DOI: 10.7554/elife.81533] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
The asymmetric summation of kinetically distinct glutamate inputs across the dendrites of retinal 'starburst' amacrine cells is one of the several mechanisms that have been proposed to underlie their direction-selective properties, but experimentally verifying input kinetics has been a challenge. Here, we used two-photon glutamate sensor (iGluSnFR) imaging to directly measure the input kinetics across individual starburst dendrites. We found that signals measured from proximal dendrites were relatively sustained compared to those measured from distal dendrites. These differences were observed across a range of stimulus sizes and appeared to be shaped mainly by excitatory rather than inhibitory network interactions. Temporal deconvolution analysis suggests that the steady-state vesicle release rate was ~3 times larger at proximal sites compared to distal sites. Using a connectomics-inspired computational model, we demonstrate that input kinetics play an important role in shaping direction selectivity at low stimulus velocities. Taken together, these results provide direct support for the 'space-time wiring' model for direction selectivity.
Collapse
Affiliation(s)
| | | | - Akihiro Matsumoto
- Danish Research Institute of Translational Neuroscience, Nordic-EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus UniversityAarhusDenmark
| | - Tracy Michaels
- Department of Biology, University of VictoriaVictoriaCanada
| | - Zachary Turple
- Department of Biology, University of VictoriaVictoriaCanada
| | - Varsha Jain
- Department of Biology, University of VictoriaVictoriaCanada
| | | | | | - Keisuke Yonehara
- Danish Research Institute of Translational Neuroscience, Nordic-EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus UniversityAarhusDenmark
| | | |
Collapse
|
21
|
Hellmer CB, Hall LM, Bohl JM, Sharpe ZJ, Smith RG, Ichinose T. Cholinergic feedback to bipolar cells contributes to motion detection in the mouse retina. Cell Rep 2021; 37:110106. [PMID: 34910920 PMCID: PMC8793255 DOI: 10.1016/j.celrep.2021.110106] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 08/11/2021] [Accepted: 11/16/2021] [Indexed: 11/25/2022] Open
Abstract
Retinal bipolar cells are second-order neurons that transmit basic features of the visual scene to postsynaptic partners. However, their contribution to motion detection has not been fully appreciated. Here, we demonstrate that cholinergic feedback from starburst amacrine cells (SACs) to certain presynaptic bipolar cells via alpha-7 nicotinic acetylcholine receptors (α7-nAChRs) promotes direction-selective signaling. Patch clamp recordings reveal that distinct bipolar cell types making synapses at proximal SAC dendrites also express α7-nAChRs, producing directionally skewed excitatory inputs. Asymmetric SAC excitation contributes to motion detection in On-Off direction-selective ganglion cells (On-Off DSGCs), predicted by computational modeling of SAC dendrites and supported by patch clamp recordings from On-Off DSGCs when bipolar cell α7-nAChRs is eliminated pharmacologically or by conditional knockout. Altogether, these results show that cholinergic feedback to bipolar cells enhances direction-selective signaling in postsynaptic SACs and DSGCs, illustrating how bipolar cells provide a scaffold for postsynaptic microcircuits to cooperatively enhance retinal motion detection.
Collapse
Affiliation(s)
- Chase B Hellmer
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48201, USA; Present address: Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, KY 40202, USA
| | - Leo M Hall
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48201, USA; Present address: Department of Internal Medicine, St. Mary Mercy Livonia Hospital, Livonia, MI 48154, USA
| | - Jeremy M Bohl
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Zachary J Sharpe
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Robert G Smith
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tomomi Ichinose
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| |
Collapse
|
22
|
Ezra-Tsur E, Amsalem O, Ankri L, Patil P, Segev I, Rivlin-Etzion M. Realistic retinal modeling unravels the differential role of excitation and inhibition to starburst amacrine cells in direction selectivity. PLoS Comput Biol 2021; 17:e1009754. [PMID: 34968385 PMCID: PMC8754344 DOI: 10.1371/journal.pcbi.1009754] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/12/2022] [Accepted: 12/14/2021] [Indexed: 11/19/2022] Open
Abstract
Retinal direction-selectivity originates in starburst amacrine cells (SACs), which display a centrifugal preference, responding with greater depolarization to a stimulus expanding from soma to dendrites than to a collapsing stimulus. Various mechanisms were hypothesized to underlie SAC centrifugal preference, but dissociating them is experimentally challenging and the mechanisms remain debatable. To address this issue, we developed the Retinal Stimulation Modeling Environment (RSME), a multifaceted data-driven retinal model that encompasses detailed neuronal morphology and biophysical properties, retina-tailored connectivity scheme and visual input. Using a genetic algorithm, we demonstrated that spatiotemporally diverse excitatory inputs-sustained in the proximal and transient in the distal processes-are sufficient to generate experimentally validated centrifugal preference in a single SAC. Reversing these input kinetics did not produce any centrifugal-preferring SAC. We then explored the contribution of SAC-SAC inhibitory connections in establishing the centrifugal preference. SAC inhibitory network enhanced the centrifugal preference, but failed to generate it in its absence. Embedding a direction selective ganglion cell (DSGC) in a SAC network showed that the known SAC-DSGC asymmetric connectivity by itself produces direction selectivity. Still, this selectivity is sharpened in a centrifugal-preferring SAC network. Finally, we use RSME to demonstrate the contribution of SAC-SAC inhibitory connections in mediating direction selectivity and recapitulate recent experimental findings. Thus, using RSME, we obtained a mechanistic understanding of SACs' centrifugal preference and its contribution to direction selectivity.
Collapse
Affiliation(s)
- Elishai Ezra-Tsur
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Mathematics and Computer Science, The Open University of Israel, Ra’anana, Israel
| | - Oren Amsalem
- Department of Neurobiology, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Lea Ankri
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Pritish Patil
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Idan Segev
- Department of Neurobiology, Hebrew University of Jerusalem, Jerusalem, Israel
- Edmond and Lily Safra Center for Brain Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | | |
Collapse
|
23
|
Matsumoto A, Agbariah W, Nolte SS, Andrawos R, Levi H, Sabbah S, Yonehara K. Direction selectivity in retinal bipolar cell axon terminals. Neuron 2021; 109:2928-2942.e8. [PMID: 34390651 PMCID: PMC8478419 DOI: 10.1016/j.neuron.2021.07.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 06/18/2021] [Accepted: 07/09/2021] [Indexed: 12/20/2022]
Abstract
The ability to encode the direction of image motion is fundamental to our sense of vision. Direction selectivity along the four cardinal directions is thought to originate in direction-selective ganglion cells (DSGCs) because of directionally tuned GABAergic suppression by starburst cells. Here, by utilizing two-photon glutamate imaging to measure synaptic release, we reveal that direction selectivity along all four directions arises earlier than expected at bipolar cell outputs. Individual bipolar cells contained four distinct populations of axon terminal boutons with different preferred directions. We further show that this bouton-specific tuning relies on cholinergic excitation from starburst cells and GABAergic inhibition from wide-field amacrine cells. DSGCs received both tuned directionally aligned inputs and untuned inputs from among heterogeneously tuned glutamatergic bouton populations. Thus, directional tuning in the excitatory visual pathway is incrementally refined at the bipolar cell axon terminals and their recipient DSGC dendrites by two different neurotransmitters co-released from starburst cells.
Collapse
Affiliation(s)
- Akihiro Matsumoto
- Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, Ole Worms Allé 8, 8000 Aarhus C, Denmark
| | - Weaam Agbariah
- Department of Medical Neurobiology, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Stella Solveig Nolte
- Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, Ole Worms Allé 8, 8000 Aarhus C, Denmark
| | - Rawan Andrawos
- Department of Medical Neurobiology, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Hadara Levi
- Department of Medical Neurobiology, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Shai Sabbah
- Department of Medical Neurobiology, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, Israel.
| | - Keisuke Yonehara
- Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, Ole Worms Allé 8, 8000 Aarhus C, Denmark.
| |
Collapse
|
24
|
Pottackal J, Singer JH, Demb JB. Computational and Molecular Properties of Starburst Amacrine Cell Synapses Differ With Postsynaptic Cell Type. Front Cell Neurosci 2021; 15:660773. [PMID: 34381333 PMCID: PMC8351878 DOI: 10.3389/fncel.2021.660773] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 06/08/2021] [Indexed: 11/22/2022] Open
Abstract
A presynaptic neuron can increase its computational capacity by transmitting functionally distinct signals to each of its postsynaptic cell types. To determine whether such computational specialization occurs over fine spatial scales within a neurite arbor, we investigated computation at output synapses of the starburst amacrine cell (SAC), a critical component of the classical direction-selective (DS) circuit in the retina. The SAC is a non-spiking interneuron that co-releases GABA and acetylcholine and forms closely spaced (<5 μm) inhibitory synapses onto two postsynaptic cell types: DS ganglion cells (DSGCs) and neighboring SACs. During dynamic optogenetic stimulation of SACs in mouse retina, whole-cell recordings of inhibitory postsynaptic currents revealed that GABAergic synapses onto DSGCs exhibit stronger low-pass filtering than those onto neighboring SACs. Computational analyses suggest that this filtering difference can be explained primarily by presynaptic properties, rather than those of the postsynaptic cells per se. Consistent with functionally diverse SAC presynapses, blockade of N-type voltage-gated calcium channels abolished GABAergic currents in SACs but only moderately reduced GABAergic and cholinergic currents in DSGCs. These results jointly demonstrate how specialization of synaptic outputs could enhance parallel processing in a compact interneuron over fine spatial scales. Moreover, the distinct transmission kinetics of GABAergic SAC synapses are poised to support the functional diversity of inhibition within DS circuitry.
Collapse
Affiliation(s)
- Joseph Pottackal
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, United States.,Department of Biology, University of Maryland, College Park, College Park, MD, United States
| | - Joshua H Singer
- Department of Biology, University of Maryland, College Park, College Park, MD, United States
| | - Jonathan B Demb
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, United States.,Department of Ophthalmology and Visual Science, Yale University, New Haven, CT, United States.,Department of Cellular and Molecular Physiology, Yale University, New Haven, CT, United States.,Department of Neuroscience, Yale University, New Haven, CT, United States
| |
Collapse
|
25
|
Antagonistic Center-Surround Mechanisms for Direction Selectivity in the Retina. Cell Rep 2021; 31:107608. [PMID: 32375036 PMCID: PMC7221349 DOI: 10.1016/j.celrep.2020.107608] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/22/2020] [Accepted: 04/13/2020] [Indexed: 12/29/2022] Open
Abstract
An antagonistic center-surround receptive field is a key feature in sensory processing, but how it contributes to specific computations such as direction selectivity is often unknown. Retinal On-starburst amacrine cells (SACs), which mediate direction selectivity in direction-selective ganglion cells (DSGCs), exhibit antagonistic receptive field organization: depolarizing to light increments and decrements in their center and surround, respectively. We find that a repetitive stimulation exhausts SAC center and enhances its surround and use it to study how center-surround responses contribute to direction selectivity. Center, but not surround, activation induces direction-selective responses in SACs. Nevertheless, both SAC center and surround elicited direction-selective responses in DSGCs, but to opposite directions. Physiological and modeling data suggest that the opposing direction selectivity can result from inverted temporal balance between excitation and inhibition in DSGCs, implying that SAC's response timing dictates direction selectivity. Our findings reveal antagonistic center-surround mechanisms for direction selectivity and demonstrate how context-dependent receptive field reorganization enables flexible computations.
Collapse
|
26
|
Sethuramanujam S, Matsumoto A, deRosenroll G, Murphy-Baum B, Grosman C, McIntosh JM, Jing M, Li Y, Berson D, Yonehara K, Awatramani GB. Rapid multi-directed cholinergic transmission in the central nervous system. Nat Commun 2021; 12:1374. [PMID: 33654091 PMCID: PMC7925691 DOI: 10.1038/s41467-021-21680-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 01/27/2021] [Indexed: 01/31/2023] Open
Abstract
In many parts of the central nervous system, including the retina, it is unclear whether cholinergic transmission is mediated by rapid, point-to-point synaptic mechanisms, or slower, broad-scale 'non-synaptic' mechanisms. Here, we characterized the ultrastructural features of cholinergic connections between direction-selective starburst amacrine cells and downstream ganglion cells in an existing serial electron microscopy data set, as well as their functional properties using electrophysiology and two-photon acetylcholine (ACh) imaging. Correlative results demonstrate that a 'tripartite' structure facilitates a 'multi-directed' form of transmission, in which ACh released from a single vesicle rapidly (~1 ms) co-activates receptors expressed in multiple neurons located within ~1 µm of the release site. Cholinergic signals are direction-selective at a local, but not global scale, and facilitate the transfer of information from starburst to ganglion cell dendrites. These results suggest a distinct operational framework for cholinergic signaling that bears the hallmarks of synaptic and non-synaptic forms of transmission.
Collapse
Affiliation(s)
| | - Akihiro Matsumoto
- Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | | | | | - Claudio Grosman
- Department of Molecular and Integrative Physiology, 407 S. Goodwin Ave, Urbana, IL, 61801, USA
| | - J Michael McIntosh
- George E. Whalen Veterans Affairs Medical Center, Department of Psychiatry, School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
- Department of Psychiatry; School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Miao Jing
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
| | - David Berson
- Neuroscience, Brown University, Providence, RI, USA
| | - Keisuke Yonehara
- Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, Aarhus C, Denmark.
| | | |
Collapse
|
27
|
Wybo WA, Jordan J, Ellenberger B, Marti Mengual U, Nevian T, Senn W. Data-driven reduction of dendritic morphologies with preserved dendro-somatic responses. eLife 2021; 10:60936. [PMID: 33494860 PMCID: PMC7837682 DOI: 10.7554/elife.60936] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 01/04/2021] [Indexed: 11/13/2022] Open
Abstract
Dendrites shape information flow in neurons. Yet, there is little consensus on the level of spatial complexity at which they operate. Through carefully chosen parameter fits, solvable in the least-squares sense, we obtain accurate reduced compartmental models at any level of complexity. We show that (back-propagating) action potentials, Ca2+ spikes, and N-methyl-D-aspartate spikes can all be reproduced with few compartments. We also investigate whether afferent spatial connectivity motifs admit simplification by ablating targeted branches and grouping affected synapses onto the next proximal dendrite. We find that voltage in the remaining branches is reproduced if temporal conductance fluctuations stay below a limit that depends on the average difference in input resistance between the ablated branches and the next proximal dendrite. Furthermore, our methodology fits reduced models directly from experimental data, without requiring morphological reconstructions. We provide software that automatizes the simplification, eliminating a common hurdle toward including dendritic computations in network models.
Collapse
Affiliation(s)
- Willem Am Wybo
- Department of Physiology, University of Bern, Bern, Switzerland
| | - Jakob Jordan
- Department of Physiology, University of Bern, Bern, Switzerland
| | | | | | - Thomas Nevian
- Department of Physiology, University of Bern, Bern, Switzerland
| | - Walter Senn
- Department of Physiology, University of Bern, Bern, Switzerland
| |
Collapse
|
28
|
Pottackal J, Singer JH, Demb JB. Receptoral Mechanisms for Fast Cholinergic Transmission in Direction-Selective Retinal Circuitry. Front Cell Neurosci 2020; 14:604163. [PMID: 33324168 PMCID: PMC7726240 DOI: 10.3389/fncel.2020.604163] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/22/2020] [Indexed: 01/09/2023] Open
Abstract
Direction selectivity represents an elementary sensory computation that can be related to underlying synaptic mechanisms. In mammalian retina, direction-selective ganglion cells (DSGCs) respond strongly to visual motion in a "preferred" direction and weakly to motion in the opposite, "null" direction. The DS mechanism depends on starburst amacrine cells (SACs), which provide null direction-tuned GABAergic inhibition and untuned cholinergic excitation to DSGCs. GABAergic inhibition depends on conventional synaptic transmission, whereas cholinergic excitation apparently depends on paracrine (i.e., non-synaptic) transmission. Despite its paracrine mode of transmission, cholinergic excitation is more transient than GABAergic inhibition, yielding a temporal difference that contributes essentially to the DS computation. To isolate synaptic mechanisms that generate the distinct temporal properties of cholinergic and GABAergic transmission from SACs to DSGCs, we optogenetically stimulated SACs while recording postsynaptic currents (PSCs) from DSGCs in mouse retina. Direct recordings from channelrhodopsin-2-expressing (ChR2+) SACs during quasi-white noise (WN) (0-30 Hz) photostimulation demonstrated precise, graded optogenetic control of SAC membrane current and potential. Linear systems analysis of ChR2-evoked PSCs recorded in DSGCs revealed cholinergic transmission to be faster than GABAergic transmission. A deconvolution-based analysis showed that distinct postsynaptic receptor kinetics fully account for the temporal difference between cholinergic and GABAergic transmission. Furthermore, GABAA receptor blockade prolonged cholinergic transmission, identifying a new functional role for GABAergic inhibition of SACs. Thus, fast cholinergic transmission from SACs to DSGCs arises from at least two distinct mechanisms, yielding temporal properties consistent with conventional synapses despite its paracrine nature.
Collapse
Affiliation(s)
- Joseph Pottackal
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, United States
| | - Joshua H. Singer
- Department of Biology, University of Maryland, College Park, MD, United States
| | - Jonathan B. Demb
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, United States
- Department of Ophthalmology and Visual Science, Yale University, New Haven, CT, United States
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT, United States
- Department of Neuroscience, Yale University, New Haven, CT, United States
| |
Collapse
|
29
|
Cameron MA, Morley JW, Pérez-Fernández V. Seeing the light: different photoreceptor classes work together to drive adaptation in the mammalian retina. CURRENT OPINION IN PHYSIOLOGY 2020. [DOI: 10.1016/j.cophys.2020.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
30
|
Ran Y, Huang Z, Baden T, Schubert T, Baayen H, Berens P, Franke K, Euler T. Type-specific dendritic integration in mouse retinal ganglion cells. Nat Commun 2020; 11:2101. [PMID: 32355170 PMCID: PMC7193577 DOI: 10.1038/s41467-020-15867-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 03/30/2020] [Indexed: 11/17/2022] Open
Abstract
Neural computation relies on the integration of synaptic inputs across a neuron’s dendritic arbour. However, it is far from understood how different cell types tune this process to establish cell-type specific computations. Here, using two-photon imaging of dendritic Ca2+ signals, electrical recordings of somatic voltage and biophysical modelling, we demonstrate that four morphologically distinct types of mouse retinal ganglion cells with overlapping excitatory synaptic input (transient Off alpha, transient Off mini, sustained Off, and F-mini Off) exhibit type-specific dendritic integration profiles: in contrast to the other types, dendrites of transient Off alpha cells were spatially independent, with little receptive field overlap. The temporal correlation of dendritic signals varied also extensively, with the highest and lowest correlation in transient Off mini and transient Off alpha cells, respectively. We show that differences between cell types can likely be explained by differences in backpropagation efficiency, arising from the specific combinations of dendritic morphology and ion channel densities. Neurons compute by integrating synaptic inputs across their dendritic arbor. Here, the authors show that distinct cell-types of mouse retinal ganglion cells that receive similar excitatory inputs have different biophysical mechanisms of input integration to generate their unique response tuning.
Collapse
Affiliation(s)
- Yanli Ran
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany.,Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| | - Ziwei Huang
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany.,Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| | - Tom Baden
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany.,Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, UK
| | - Timm Schubert
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany.,Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| | - Harald Baayen
- Department of Linguistics, University of Tübingen, Tübingen, Germany
| | - Philipp Berens
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany.,Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany.,Bernstein Centre for Computational Neuroscience, University of Tübingen, Tübingen, Germany.,Institute of Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany
| | - Katrin Franke
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany.,Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany.,Bernstein Centre for Computational Neuroscience, University of Tübingen, Tübingen, Germany
| | - Thomas Euler
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany. .,Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany. .,Bernstein Centre for Computational Neuroscience, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
31
|
Wybo WAM, Torben-Nielsen B, Nevian T, Gewaltig MO. Electrical Compartmentalization in Neurons. Cell Rep 2020; 26:1759-1773.e7. [PMID: 30759388 DOI: 10.1016/j.celrep.2019.01.074] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 10/03/2018] [Accepted: 01/17/2019] [Indexed: 12/31/2022] Open
Abstract
The dendritic tree of neurons plays an important role in information processing in the brain. While it is thought that dendrites require independent subunits to perform most of their computations, it is still not understood how they compartmentalize into functional subunits. Here, we show how these subunits can be deduced from the properties of dendrites. We devised a formalism that links the dendritic arborization to an impedance-based tree graph and show how the topology of this graph reveals independent subunits. This analysis reveals that cooperativity between synapses decreases slowly with increasing electrical separation and thus that few independent subunits coexist. We nevertheless find that balanced inputs or shunting inhibition can modify this topology and increase the number and size of the subunits in a context-dependent manner. We also find that this dynamic recompartmentalization can enable branch-specific learning of stimulus features. Analysis of dendritic patch-clamp recording experiments confirmed our theoretical predictions.
Collapse
Affiliation(s)
- Willem A M Wybo
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland; Laboratory of Computational Neuroscience, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Department of Physiology, University of Bern, Bern, Switzerland
| | - Benjamin Torben-Nielsen
- Biocomputation Group, University of Hertfordshire, Hertfordshire, UK; Neurolinx Research Institute, La Jolla, CA, USA.
| | - Thomas Nevian
- Department of Physiology, University of Bern, Bern, Switzerland
| | - Marc-Oliver Gewaltig
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| |
Collapse
|
32
|
Jain V, Murphy-Baum BL, deRosenroll G, Sethuramanujam S, Delsey M, Delaney KR, Awatramani GB. The functional organization of excitation and inhibition in the dendrites of mouse direction-selective ganglion cells. eLife 2020; 9:52949. [PMID: 32096758 PMCID: PMC7069718 DOI: 10.7554/elife.52949] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 02/24/2020] [Indexed: 12/14/2022] Open
Abstract
Recent studies indicate that the precise timing and location of excitation and inhibition (E/I) within active dendritic trees can significantly impact neuronal function. How synaptic inputs are functionally organized at the subcellular level in intact circuits remains unclear. To address this issue, we took advantage of the retinal direction-selective ganglion cell circuit, where directionally tuned inhibition is known to shape non-directional excitatory signals. We combined two-photon calcium imaging with genetic, pharmacological, and single-cell ablation methods to examine the extent to which inhibition ‘vetoes’ excitation at the level of individual dendrites of direction-selective ganglion cells. We demonstrate that inhibition shapes direction selectivity independently within small dendritic segments (<10µm) with remarkable accuracy. The data suggest that the parallel processing schemes proposed for direction encoding could be more fine-grained than previously envisioned.
Collapse
Affiliation(s)
- Varsha Jain
- Department of Biology, University of Victoria, Victoria, Canada
| | | | | | | | - Mike Delsey
- Department of Biology, University of Victoria, Victoria, Canada
| | - Kerry R Delaney
- Department of Biology, University of Victoria, Victoria, Canada
| | | |
Collapse
|
33
|
Soto F, Tien NW, Goel A, Zhao L, Ruzycki PA, Kerschensteiner D. AMIGO2 Scales Dendrite Arbors in the Retina. Cell Rep 2019; 29:1568-1578.e4. [PMID: 31693896 PMCID: PMC6871773 DOI: 10.1016/j.celrep.2019.09.085] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 08/21/2019] [Accepted: 09/27/2019] [Indexed: 12/24/2022] Open
Abstract
The size of dendrite arbors shapes their function and differs vastly between neuron types. The signals that control dendritic arbor size remain obscure. Here, we find that in the retina, starburst amacrine cells (SACs) and rod bipolar cells (RBCs) express the homophilic cell-surface protein AMIGO2. In Amigo2 knockout (KO) mice, SAC and RBC dendrites expand while arbors of other retinal neurons remain stable. SAC dendrites are divided into a central input region and a peripheral output region that provides asymmetric inhibition to direction-selective ganglion cells (DSGCs). Input and output compartments scale precisely with increased arbor size in Amigo2 KO mice, and SAC dendrites maintain asymmetric connectivity with DSGCs. Increased coverage of SAC dendrites is accompanied by increased direction selectivity of DSGCs without changes to other ganglion cells. Our results identify AMIGO2 as a cell-type-specific dendritic scaling factor and link dendrite size and coverage to visual feature detection.
Collapse
Affiliation(s)
- Florentina Soto
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| | - Nai-Wen Tien
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO 63110, USA; Graduate Program in Neuroscience, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Anurag Goel
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Lei Zhao
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Philip A Ruzycki
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Daniel Kerschensteiner
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Neuroscience, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University School of Medicine, Saint Louis, MO 63110, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| |
Collapse
|
34
|
Dendritic Spikes Expand the Range of Well Tolerated Population Noise Structures. J Neurosci 2019; 39:9173-9184. [PMID: 31558617 DOI: 10.1523/jneurosci.0638-19.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 08/08/2019] [Accepted: 09/14/2019] [Indexed: 12/11/2022] Open
Abstract
The brain operates surprisingly well despite the noisy nature of individual neurons. The central mechanism for noise mitigation in the nervous system is thought to involve averaging over multiple noise-corrupted inputs. Subsequently, there has been considerable interest in identifying noise structures that can be integrated linearly in a way that preserves reliable signal encoding. By analyzing realistic synaptic integration in biophysically accurate neuronal models, I report a complementary denoising approach that is mediated by focal dendritic spikes. Dendritic spikes might seem to be unlikely candidates for noise reduction due to their miniscule integration compartments and poor averaging abilities. Nonetheless, the extra thresholding step introduced by dendritic spike generation increases neuronal tolerance for a broad category of noise structures, some of which cannot be resolved well with averaging. This property of active dendrites compensates for compartment size constraints and expands the repertoire of conditions that can be processed by neuronal populations.SIGNIFICANCE STATEMENT Noise, or random variability, is a prominent feature of the neuronal code and poses a fundamental challenge for information processing. To reconcile the surprisingly accurate output of the brain with the inherent noisiness of biological systems, previous work examined signal integration in idealized neurons. The notion that emerged from this body of work is that accurate signal representation relies largely on input averaging in neuronal dendrites. In contrast to the prevailing view, I show that denoising in simulated neurons with realistic morphology and biophysical properties follows a different strategy: dendritic spikes act as classifiers that assist in extracting information from a variety of noise structures that have been considered before to be particularly disruptive for reliable brain function.
Collapse
|
35
|
Hanson L, Sethuramanujam S, deRosenroll G, Jain V, Awatramani GB. Retinal direction selectivity in the absence of asymmetric starburst amacrine cell responses. eLife 2019; 8:42392. [PMID: 30714905 PMCID: PMC6377229 DOI: 10.7554/elife.42392] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 02/01/2019] [Indexed: 01/18/2023] Open
Abstract
In the mammalian retina, direction-selectivity is thought to originate in the dendrites of GABAergic/cholinergic starburst amacrine cells, where it is first observed. However, here we demonstrate that direction selectivity in downstream ganglion cells remains remarkably unaffected when starburst dendrites are rendered non-directional, using a novel strategy combining a conditional GABAA α2 receptor knockout mouse with optogenetics. We show that temporal asymmetries between excitation/inhibition, arising from the differential connectivity patterns of starburst cholinergic and GABAergic synapses to ganglion cells, form the basis for a parallel mechanism generating direction selectivity. We further demonstrate that these distinct mechanisms work in a coordinated way to refine direction selectivity as the stimulus crosses the ganglion cell’s receptive field. Thus, precise spatiotemporal patterns of inhibition and excitation that determine directional responses in ganglion cells are shaped by two ‘core’ mechanisms, both arising from distinct specializations of the starburst network.
Collapse
Affiliation(s)
- Laura Hanson
- Department of Biology, University of Victoria, Victoria, Canada
| | | | | | - Varsha Jain
- Department of Biology, University of Victoria, Victoria, Canada
| | | |
Collapse
|
36
|
Abstract
Visual motion on the retina activates a cohort of retinal ganglion cells (RGCs). This population activity encodes multiple streams of information extracted by parallel retinal circuits. Motion processing in the retina is best studied in the direction-selective circuit. The main focus of this review is the neural basis of direction selectivity, which has been investigated in unprecedented detail using state-of-the-art functional, connectomic, and modeling methods. Mechanisms underlying the encoding of other motion features by broader RGC populations are also discussed. Recent discoveries at both single-cell and population levels highlight the dynamic and stimulus-dependent engagement of multiple mechanisms that collectively implement robust motion detection under diverse visual conditions.
Collapse
Affiliation(s)
- Wei Wei
- Department of Neurobiology, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
37
|
Prigge CL, Kay JN. Dendrite morphogenesis from birth to adulthood. Curr Opin Neurobiol 2018; 53:139-145. [PMID: 30092409 DOI: 10.1016/j.conb.2018.07.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 07/19/2018] [Accepted: 07/30/2018] [Indexed: 01/04/2023]
Abstract
Dendrites are the conduits for receiving (and in some cases transmitting) neural signals; their ability to do these jobs is a direct result of their morphology. Developmental patterning mechanisms are critical to ensuring concordance between dendritic form and function. This article reviews recent studies in vertebrate retina and brain that elucidate key strategies for dendrite functional maturation. Specific cellular and molecular signals control the initiation and elaboration of dendritic arbors, and facilitate integration of young neurons into particular circuits. In some cells, dendrite growth and remodeling continues into adulthood. Once formed, dendrites subdivide into compartments with distinct physiological properties that enable dendritic computations. Understanding these key stages of dendrite patterning will help reveal how circuit functional properties arise during development.
Collapse
Affiliation(s)
- Cameron L Prigge
- Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Ophthalmology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jeremy N Kay
- Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Ophthalmology, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
38
|
Abstract
Motion in the visual world provides critical information to guide the behavior of sighted animals. Furthermore, as visual motion estimation requires comparisons of signals across inputs and over time, it represents a paradigmatic and generalizable neural computation. Focusing on the Drosophila visual system, where an explosion of technological advances has recently accelerated experimental progress, we review our understanding of how, algorithmically and mechanistically, motion signals are first computed.
Collapse
Affiliation(s)
- Helen H Yang
- Department of Neurobiology, Stanford University, Stanford, California 94305, USA; .,Current affiliation: Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA;
| | - Thomas R Clandinin
- Department of Neurobiology, Stanford University, Stanford, California 94305, USA;
| |
Collapse
|
39
|
Chen Q, Wei W. Stimulus-dependent engagement of neural mechanisms for reliable motion detection in the mouse retina. J Neurophysiol 2018; 120:1153-1161. [PMID: 29897862 DOI: 10.1152/jn.00716.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Direction selectivity is a fundamental computation in the visual system and is first computed by the direction-selective circuit in the mammalian retina. Although landmark discoveries on the neural basis of direction selectivity have been made in the rabbit, many technological advances designed for the mouse have emerged, making this organism a favored model for investigating the direction-selective circuit at the molecular, synaptic, and network levels. Studies using diverse motion stimuli in the mouse retina demonstrate that retinal direction selectivity is implemented by multilayered mechanisms. This review begins with a set of central mechanisms that are engaged under a wide range of visual conditions and then focuses on additional layers of mechanisms that are dynamically recruited under different visual stimulus conditions. Together, recent findings allude to an emerging theme: robust motion detection in the natural environment requires flexible neural mechanisms.
Collapse
Affiliation(s)
- Qiang Chen
- Department of Neurobiology, The University of Chicago , Chicago, Illinois.,Committee on Computational Neuroscience, The University of Chicago , Chicago, Illinois
| | - Wei Wei
- Department of Neurobiology, The University of Chicago , Chicago, Illinois.,Committee on Computational Neuroscience, The University of Chicago , Chicago, Illinois
| |
Collapse
|
40
|
Morrie RD, Feller MB. A Dense Starburst Plexus Is Critical for Generating Direction Selectivity. Curr Biol 2018; 28:1204-1212.e5. [PMID: 29606419 PMCID: PMC5916530 DOI: 10.1016/j.cub.2018.03.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 02/27/2018] [Accepted: 03/01/2018] [Indexed: 01/02/2023]
Abstract
Starburst amacrine cell (SAC) morphology is considered central to retinal direction selectivity. In Sema6A-/- mice, SAC dendritic arbors are smaller and no longer radially symmetric, leading to a reduction in SAC dendritic plexus density. Sema6A-/- mice also have a dramatic reduction in the directional tuning of retinal direction-selective ganglion cells (DSGCs). Here we show that the loss of DSGC tuning in Sema6A-/- mice is due to reduced null direction inhibition, even though strong asymmetric SAC-DSGC connectivity and SAC dendritic direction selectivity are maintained. Hence, the reduced coverage factor of SAC dendrites leads specifically to a loss of null direction inhibition. Moreover, SAC dendrites are no longer strictly tuned to centrifugal motion, indicating that SAC morphology is critical in coordinating synaptic connectivity and dendritic integration to generate direction selectivity.
Collapse
Affiliation(s)
- Ryan D Morrie
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Marla B Feller
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|