1
|
Calvanese AL, Cecconi V, Stäheli S, Schnepf D, Nater M, Pereira P, Gschwend J, Heikenwälder M, Schneider C, Ludewig B, Silina K, van den Broek M. Sustained innate interferon is an essential inducer of tertiary lymphoid structures. Eur J Immunol 2024; 54:e2451207. [PMID: 38980268 DOI: 10.1002/eji.202451207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/10/2024]
Abstract
Tertiary lymphoid structures (TLS) resemble follicles of secondary lymphoid organs and develop in nonlymphoid tissues during inflammation and cancer. Which cell types and signals drive the development of TLS is largely unknown. To investigate early events of TLS development in the lungs, we repeatedly instilled p(I:C) plus ovalbumin (Ova) intranasally. This induced TLS ranging from lymphocytic aggregates to organized and functional structures containing germinal centers. We found that TLS development is independent of FAP+ fibroblasts, alveolar macrophages, or CCL19 but crucially depends on type I interferon (IFN-I). Mechanistically, IFN-I initiates two synergistic pathways that culminate in the development of TLS. On the one hand, IFN-I induces lymphotoxin (LT)α in lymphoid cells, which stimulate stromal cells to produce the B-cell-attracting chemokine CXCL13 through LTβR-signaling. On the other hand, IFN-I is sensed by stromal cells that produce the T-cell-attracting chemokines CXCL9, CXCL10 as well as CCL19 and CCL21 independently of LTβR. Consequently, B-cell aggregates develop within a week, whereas follicular dendritic cells and germinal centers appear after 3 weeks. Thus, sustained production of IFN-I together with an antigen is essential for the induction of functional TLS in the lungs.
Collapse
Affiliation(s)
| | - Virginia Cecconi
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Severin Stäheli
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Daniel Schnepf
- Institute of Virology, Medical Center University of Freiburg, Freiburg im Breisgau, Germany
| | - Marc Nater
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Paulo Pereira
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Julia Gschwend
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Mathias Heikenwälder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center Heidelberg (DKFZ), Heidelberg, Germany
- M3 Research Institute, Eberhard Karls University Tübingen, Tübingen, Germany
| | | | - Burkhard Ludewig
- Institute of Immunobiology, Medical Research Center, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Karina Silina
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | | |
Collapse
|
2
|
Cleary SJ, Qiu L, Seo Y, Baluk P, Liu D, Serwas NK, Cyster JG, McDonald DM, Krummel MF, Looney MR. Intravital imaging of pulmonary lymphatics in inflammation and metastatic cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.12.612619. [PMID: 39345499 PMCID: PMC11430110 DOI: 10.1101/2024.09.12.612619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Intravital microscopy has enabled the study of immune dynamics in the pulmonary microvasculature, but many key events remain unseen because they occur in deeper lung regions. We therefore developed a technique for stabilized intravital imaging of bronchovascular cuffs and collecting lymphatics surrounding pulmonary veins in mice. Intravital imaging of pulmonary lymphatics revealed ventilation-dependence of steady-state lung lymph flow and ventilation-independent lymph flow during inflammation. We imaged the rapid exodus of migratory dendritic cells through lung lymphatics following inflammation and measured effects of pharmacologic and genetic interventions targeting chemokine signaling. Intravital imaging also captured lymphatic immune surveillance of lung-metastatic cancers and lymphatic metastasis of cancer cells. To our knowledge, this is the first imaging of lymph flow and leukocyte migration through intact pulmonary lymphatics. This approach will enable studies of protective and maladaptive processes unfolding within the lungs and in other previously inaccessible locations.
Collapse
Affiliation(s)
- Simon J. Cleary
- Department of Medicine, University of California, San Francisco (UCSF), CA, USA
- Institute of Pharmaceutical Science, King’s College London, London, UK
| | - Longhui Qiu
- Department of Medicine, University of California, San Francisco (UCSF), CA, USA
| | - Yurim Seo
- Department of Medicine, University of California, San Francisco (UCSF), CA, USA
| | - Peter Baluk
- Department of Anatomy, Cardiovascular Research Institute, and Helen Diller Family Comprehensive Cancer Center, UCSF, CA, USA
| | - Dan Liu
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, UCSF, CA, USA
- Westlake Laboratory of Life Sciences and Biomedicine, Westlake University, Hangzhou, Zhejiang, China
| | | | - Jason G. Cyster
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, UCSF, CA, USA
- Bakar ImmunoX Initiative, UCSF, CA, USA
| | - Donald M. McDonald
- Department of Anatomy, Cardiovascular Research Institute, and Helen Diller Family Comprehensive Cancer Center, UCSF, CA, USA
| | - Matthew F. Krummel
- Department of Pathology, UCSF, CA, USA
- Bakar ImmunoX Initiative, UCSF, CA, USA
| | - Mark R. Looney
- Department of Medicine, University of California, San Francisco (UCSF), CA, USA
- Bakar ImmunoX Initiative, UCSF, CA, USA
| |
Collapse
|
3
|
Gogoi M, Clark PA, Ferreira ACF, Rodriguez Rodriguez N, Heycock M, Ko M, Murphy JE, Chen V, Luan SL, Jolin HE, McKenzie ANJ. ILC2-derived LIF licences progress from tissue to systemic immunity. Nature 2024; 632:885-892. [PMID: 39112698 PMCID: PMC11338826 DOI: 10.1038/s41586-024-07746-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 06/24/2024] [Indexed: 08/17/2024]
Abstract
Migration and homing of immune cells are critical for immune surveillance. Trafficking is mediated by combinations of adhesion and chemokine receptors that guide immune cells, in response to chemokine signals, to specific locations within tissues and the lymphatic system to support tissue-localized immune reactions and systemic immunity1,2. Here we show that disruption of leukaemia inhibitory factor (LIF) production from group 2 innate lymphoid cells (ILC2s) prevents immune cells leaving the lungs to migrate to the lymph nodes (LNs). In the absence of LIF, viral infection leads to plasmacytoid dendritic cells (pDCs) becoming retained in the lungs where they improve tissue-localized, antiviral immunity, whereas chronic pulmonary allergen challenge leads to marked immune cell accumulation and the formation of tertiary lymphoid structures in the lung. In both cases immune cells fail to migrate to the lymphatics, leading to highly compromised LN reactions. Mechanistically, ILC2-derived LIF induces the production of the chemokine CCL21 from lymphatic endothelial cells lining the pulmonary lymphatic vessels, thus licensing the homing of CCR7+ immune cells (including dendritic cells) to LNs. Consequently, ILC2-derived LIF dictates the egress of immune cells from the lungs to regulate tissue-localized versus systemic immunity and the balance between allergen and viral responsiveness in the lungs.
Collapse
Affiliation(s)
- Mayuri Gogoi
- MRC Laboratory of Molecular Biology, Cambridge, UK.
| | | | | | | | | | - Michelle Ko
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | - Victor Chen
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Shi-Lu Luan
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | | |
Collapse
|
4
|
Cully MD, Nolte JE, Patel A, Vaughan AE, May MJ. Loss of Lymphatic IKKα Disrupts Lung Immune Homeostasis, Drives BALT Formation, and Protects against Influenza. Immunohorizons 2024; 8:478-491. [PMID: 39007717 PMCID: PMC11294277 DOI: 10.4049/immunohorizons.2400047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 06/19/2024] [Indexed: 07/16/2024] Open
Abstract
IκB kinase (IKK)α controls noncanonical NF-κB signaling required for lymphoid organ development. We showed previously that lymph node formation is ablated in IkkαLyve-1 mice constitutively lacking IKKα in lymphatic endothelial cells (LECs). We now reveal that loss of IKKα in LECs leads to the formation of BALT in the lung. Tertiary lymphoid structures appear only in the lungs of IkkαLyve-1 mice and are not present in any other tissues, and these highly organized BALT structures form after birth and in the absence of inflammation. Additionally, we show that IkkαLyve-1 mice challenged with influenza A virus (IAV) exhibit markedly improved survival and reduced weight loss compared with littermate controls. Importantly, we determine that the improved morbidity and mortality of IkkαLyve-1 mice is independent of viral load and rate of clearance because both mice control and clear IAV infection similarly. Instead, we show that IFN-γ levels are decreased, and infiltration of CD8 T cells and monocytes into IkkαLyve-1 lungs is reduced. We conclude that ablating IKKα in LECs promotes BALT formation and reduces the susceptibility of IkkαLyve-1 mice to IAV infection through a decrease in proinflammatory stimuli.
Collapse
Affiliation(s)
- Michelle D. Cully
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA
| | - Julianne E. Nolte
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA
| | - Athena Patel
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA
| | - Andrew E. Vaughan
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA
| | - Michael J. May
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA
| |
Collapse
|
5
|
Gao Y, Lu Y, Liang X, Zhao M, Yu X, Fu H, Yang W. CD4 + T-Cell Senescence in Neurodegenerative Disease: Pathogenesis and Potential Therapeutic Targets. Cells 2024; 13:749. [PMID: 38727285 PMCID: PMC11083511 DOI: 10.3390/cells13090749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/07/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
With the increasing proportion of the aging population, neurodegenerative diseases have become one of the major health issues in society. Neurodegenerative diseases (NDs), including multiple sclerosis (MS), Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS), are characterized by progressive neurodegeneration associated with aging, leading to a gradual decline in cognitive, emotional, and motor functions in patients. The process of aging is a normal physiological process in human life and is accompanied by the aging of the immune system, which is known as immunosenescence. T-cells are an important part of the immune system, and their senescence is the main feature of immunosenescence. The appearance of senescent T-cells has been shown to potentially lead to chronic inflammation and tissue damage, with some studies indicating a direct link between T-cell senescence, inflammation, and neuronal damage. The role of these subsets with different functions in NDs is still under debate. A growing body of evidence suggests that in people with a ND, there is a prevalence of CD4+ T-cell subsets exhibiting characteristics that are linked to senescence. This underscores the significance of CD4+ T-cells in NDs. In this review, we summarize the classification and function of CD4+ T-cell subpopulations, the characteristics of CD4+ T-cell senescence, the potential roles of these cells in animal models and human studies of NDs, and therapeutic strategies targeting CD4+ T-cell senescence.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wei Yang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (Y.G.); (Y.L.); (X.L.); (M.Z.); (X.Y.); (H.F.)
| |
Collapse
|
6
|
Canderan G, Muehling LM, Kadl A, Ladd S, Bonham C, Cross CE, Lima SM, Yin X, Sturek JM, Wilson JM, Keshavarz B, Bryant N, Murphy DD, Cheon IS, McNamara CA, Sun J, Utz PJ, Dolatshahi S, Irish JM, Woodfolk JA. Distinct Type 1 Immune Networks Underlie the Severity of Restrictive Lung Disease after COVID-19. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.03.587929. [PMID: 38617217 PMCID: PMC11014603 DOI: 10.1101/2024.04.03.587929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
The variable etiology of persistent breathlessness after COVID-19 have confounded efforts to decipher the immunopathology of lung sequelae. Here, we analyzed hundreds of cellular and molecular features in the context of discrete pulmonary phenotypes to define the systemic immune landscape of post-COVID lung disease. Cluster analysis of lung physiology measures highlighted two phenotypes of restrictive lung disease that differed by their impaired diffusion and severity of fibrosis. Machine learning revealed marked CCR5+CD95+ CD8+ T-cell perturbations in mild-to-moderate lung disease, but attenuated T-cell responses hallmarked by elevated CXCL13 in more severe disease. Distinct sets of cells, mediators, and autoantibodies distinguished each restrictive phenotype, and differed from those of patients without significant lung involvement. These differences were reflected in divergent T-cell-based type 1 networks according to severity of lung disease. Our findings, which provide an immunological basis for active lung injury versus advanced disease after COVID-19, might offer new targets for treatment.
Collapse
|
7
|
M. S. Barron A, Fabre T, De S. Distinct fibroblast functions associated with fibrotic and immune-mediated inflammatory diseases and their implications for therapeutic development. F1000Res 2024; 13:54. [PMID: 38681509 PMCID: PMC11053351 DOI: 10.12688/f1000research.143472.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/28/2023] [Indexed: 05/01/2024] Open
Abstract
Fibroblasts are ubiquitous cells that can adopt many functional states. As tissue-resident sentinels, they respond to acute damage signals and shape the earliest events in fibrotic and immune-mediated inflammatory diseases. Upon sensing an insult, fibroblasts produce chemokines and growth factors to organize and support the response. Depending on the size and composition of the resulting infiltrate, these activated fibroblasts may also begin to contract or relax thus changing local stiffness within the tissue. These early events likely contribute to the divergent clinical manifestations of fibrotic and immune-mediated inflammatory diseases. Further, distinct changes to the cellular composition and signaling dialogue in these diseases drive progressive fibroblasts specialization. In fibrotic diseases, fibroblasts support the survival, activation and differentiation of myeloid cells, granulocytes and innate lymphocytes, and produce most of the pathogenic extracellular matrix proteins. Whereas, in immune-mediated inflammatory diseases, sequential accumulation of dendritic cells, T cells and B cells programs fibroblasts to support local, destructive adaptive immune responses. Fibroblast specialization has clear implications for the development of effective induction and maintenance therapies for patients with these clinically distinct diseases.
Collapse
Affiliation(s)
- Alexander M. S. Barron
- Inflammation & Immunology Research Unit, Pfizer, Inc., Cambridge, Massachusetts, 02139, USA
| | - Thomas Fabre
- Inflammation & Immunology Research Unit, Pfizer, Inc., Cambridge, Massachusetts, 02139, USA
| | - Saurav De
- Inflammation & Immunology Research Unit, Pfizer, Inc., Cambridge, Massachusetts, 02139, USA
| |
Collapse
|
8
|
Summers B, Kim K, Lu TM, Houghton S, Trivedi A, Quintero JR, Cala-Garcia J, Pannellini T, Polverino F, Lis R, Reed HO. Lymphatic Dysfunction Models an Autoimmune Emphysema Phenotype of Chronic Obstructive Pulmonary Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.31.564938. [PMID: 37961242 PMCID: PMC10635025 DOI: 10.1101/2023.10.31.564938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Chronic Obstructive Pulmonary Disease (COPD) is a heterogeneous disease that is characterized by many clinical phenotypes. One such phenotype of COPD is defined by emphysema, pathogenic lung tertiary lymphoid organs (TLOs), and autoantibody production. We have previously shown that lymphatic dysfunction can cause lung TLO formation and lung injury in mice. We now sought to uncover whether underlying lymphatic dysfunction may be a driver of lung injury in cigarette smoke (CS)-induced COPD. We found that lung TLOs in mice with lymphatic dysfunction produce autoantibodies and are associated with a lymphatic endothelial cell subtype that expresses antigen presentation genes. Mice with underlying lymphatic dysfunction develop increased emphysema after CS exposure, with increased size and activation of TLOs. CS further increased autoantibody production in mice with lymphatic dysfunction. B-cell blockade prevented TLO formation and decreased lung injury after CS in mice with lymphatic dysfunction. Using tissue from human COPD patients, we also found evidence of a lymphatic gene signature that was specific to patients with emphysema and prominent TLOs compared to COPD patients without emphysema. Taken together, these data suggest that lymphatic dysfunction may underlie lung injury in a subset of COPD patients with an autoimmune emphysema phenotype.
Collapse
|
9
|
Dotiwala F, Upadhyay AK. Next Generation Mucosal Vaccine Strategy for Respiratory Pathogens. Vaccines (Basel) 2023; 11:1585. [PMID: 37896988 PMCID: PMC10611113 DOI: 10.3390/vaccines11101585] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Inducing humoral and cytotoxic mucosal immunity at the sites of pathogen entry has the potential to prevent the infection from getting established. This is different from systemic vaccination, which protects against the development of systemic symptoms. The field of mucosal vaccination has seen fewer technological advances compared to nucleic acid and subunit vaccine advances for injectable vaccine platforms. The advent of the next-generation adenoviral vectors has given a boost to mucosal vaccine research. Basic research into the mechanisms regulating innate and adaptive mucosal immunity and the discovery of effective and safe mucosal vaccine adjuvants will continue to improve mucosal vaccine design. The results from clinical trials of inhaled COVID-19 vaccines demonstrate their ability to induce the proliferation of cytotoxic T cells and the production of secreted IgA and IgG antibodies locally, unlike intramuscular vaccinations. However, these mucosal vaccines induce systemic immune responses at par with systemic vaccinations. This review summarizes the function of the respiratory mucosa-associated lymphoid tissue and the advantages that the adenoviral vectors provide as inhaled vaccine platforms.
Collapse
Affiliation(s)
- Farokh Dotiwala
- Ocugen Inc., 11 Great Valley Parkway, Malvern, PA 19355, USA
| | | |
Collapse
|
10
|
Do KTH, Willenzon S, Ristenpart J, Janssen A, Volz A, Sutter G, Förster R, Bošnjak B. The effect of Toll-like receptor agonists on the immunogenicity of MVA-SARS-2-S vaccine after intranasal administration in mice. Front Cell Infect Microbiol 2023; 13:1259822. [PMID: 37854858 PMCID: PMC10580083 DOI: 10.3389/fcimb.2023.1259822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 09/14/2023] [Indexed: 10/20/2023] Open
Abstract
Background and aims Modified Vaccinia virus Ankara (MVA) represents a promising vaccine vector for respiratory administration to induce protective lung immunity including tertiary lymphoid structure, the bronchus-associated lymphoid tissue (BALT). However, MVA expressing the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Spike protein (MVA-SARS-2-S) required prime-boost administration to induce high titers of anti-Spike antibodies in serum and bronchoalveolar lavage (BAL). As the addition of adjuvants enables efficient tailoring of the immune responses even to live vaccines, we tested whether Toll-like receptor (TLR)-agonists affect immune responses induced by a single dose of intranasally applied MVA-SARS-2-S. Methods We intranasally immunized C57BL/6 mice with MVA-SARS-2-S vaccine in the presence of either TLR3 agonist polyinosinic polycytidylic acid [poly(I:C)], TLR4 agonist bacterial lipopolysaccharide (LPS) from Escherichia coli, or TLR9 agonist CpG oligodeoxynucleotide (CpG ODN) 1826. At different time-points after immunization, we analyzed induced immune responses using flow cytometry, immunofluorescent microscopy, and ELISA. Results TLR agonists had profound effects on MVA-SARS-2-S-induced immune responses. At day 1 post intranasal application, the TLR4 agonist significantly affected MVA-induced activation of dendritic cells (DCs) within the draining bronchial lymph nodes, increasing the ratio of CD11b+CD86+ to CD103+CD86+ DCs. Nevertheless, the number of Spike-specific CD8+ T cells within the lungs at day 12 after vaccination was increased in mice that received MVA-SARS-2-S co-administered with TLR3 but not TLR4 agonists. TLR9 agonist did neither significantly affect MVA-induced DC activation nor the induction of Spike-specific CD8+ T cells but reduced both number and size of bronchus-associated lymphoid tissue. Surprisingly, the addition of all TLR agonists failed to boost the levels of Spike-specific antibodies in serum and bronchoalveolar lavage. Conclusions Our study indicates a potential role of TLR-agonists as a tool to modulate immune responses to live vector vaccines. Particularly TLR3 agonists hold a promise to potentiate MVA-induced cellular immune responses. On the other hand, additional research is necessary to identify optimal combinations of agonists that could enhance MVA-induced humoral responses.
Collapse
Affiliation(s)
- Kim Thi Hoang Do
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | | | | | - Anika Janssen
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Asisa Volz
- Institute for Virology, University of Veterinary Medicine Hannover, Hannover, Germany
- German Centre for Infection Research (DZIF), Munich, Germany
| | - Gerd Sutter
- German Centre for Infection Research (DZIF), Munich, Germany
- Division of Virology, Department of Veterinary Sciences, Ludwig Maximiliam University (LMU) Munich, Munich, Germany
| | - Reinhold Förster
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
- German Centre for Infection Research (DZIF), Hannover, Germany
| | - Berislav Bošnjak
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| |
Collapse
|
11
|
Houel A, Foloppe J, Dieu-Nosjean MC. Harnessing the power of oncolytic virotherapy and tertiary lymphoid structures to amplify antitumor immune responses in cancer patients. Semin Immunol 2023; 69:101796. [PMID: 37356421 DOI: 10.1016/j.smim.2023.101796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 06/14/2023] [Accepted: 06/14/2023] [Indexed: 06/27/2023]
Abstract
Tertiary lymphoid structures (TLS) are ectopic aggregates of immune cells that develop in non-lymphoid tissues under persistent inflammation. Since their presence has been associated with a better prognosis in cancer patients, modulating TLS formation is being part of new challenges in immunotherapy. Although mechanisms underlying TLS genesis are still not fully understood, different strategies have been developed in preclinical models to induce their formation and ultimately enhance antitumor responses. Herein, we will discuss a new approach that would consist in using oncolytic viruses (OV). These viruses have the unique feature to preferentially infect, replicate in and kill cancer cells. Their immunoadjuvant property, their use as a vector of therapeutic molecules and their selectivity for cancer cells, make them an attractive strategy to induce TLS in the tumor microenvironment. This review will examine the current knowledge about TLS neogenesis, approaches for inducing them, and relevance of using OV for this purpose, especially in combination with immunotherapy such as immune checkpoint blockade.
Collapse
Affiliation(s)
- Ana Houel
- UMRS1135 Sorbonne Université, Paris, France; Inserm U1135, Paris, France; Team " Immune Microenvironment and Immunotherapy ", Centre of Immunology and Microbial Infections (Cimi), Faculté de Médecine Sorbonne Université, Paris, France; Transgene, Illkirch-Graffenstaden, France
| | | | - Marie-Caroline Dieu-Nosjean
- UMRS1135 Sorbonne Université, Paris, France; Inserm U1135, Paris, France; Team " Immune Microenvironment and Immunotherapy ", Centre of Immunology and Microbial Infections (Cimi), Faculté de Médecine Sorbonne Université, Paris, France.
| |
Collapse
|
12
|
Kim H, Shin SJ. Pathological and protective roles of dendritic cells in Mycobacterium tuberculosis infection: Interaction between host immune responses and pathogen evasion. Front Cell Infect Microbiol 2022; 12:891878. [PMID: 35967869 PMCID: PMC9366614 DOI: 10.3389/fcimb.2022.891878] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Dendritic cells (DCs) are principal defense components that play multifactorial roles in translating innate immune responses to adaptive immunity in Mycobacterium tuberculosis (Mtb) infections. The heterogeneous nature of DC subsets follows their altered functions by interacting with other immune cells, Mtb, and its products, enhancing host defense mechanisms or facilitating pathogen evasion. Thus, a better understanding of the immune responses initiated, promoted, and amplified or inhibited by DCs in Mtb infection is an essential step in developing anti-tuberculosis (TB) control measures, such as host-directed adjunctive therapy and anti-TB vaccines. This review summarizes the recent advances in salient DC subsets, including their phenotypic classification, cytokine profiles, functional alterations according to disease stages and environments, and consequent TB outcomes. A comprehensive overview of the role of DCs from various perspectives enables a deeper understanding of TB pathogenesis and could be useful in developing DC-based vaccines and immunotherapies.
Collapse
|
13
|
Fleig S, Kapanadze T, Bernier-Latmani J, Lill JK, Wyss T, Gamrekelashvili J, Kijas D, Liu B, Hüsing AM, Bovay E, Jirmo AC, Halle S, Ricke-Hoch M, Adams RH, Engel DR, von Vietinghoff S, Förster R, Hilfiker-Kleiner D, Haller H, Petrova TV, Limbourg FP. Loss of vascular endothelial notch signaling promotes spontaneous formation of tertiary lymphoid structures. Nat Commun 2022; 13:2022. [PMID: 35440634 PMCID: PMC9018798 DOI: 10.1038/s41467-022-29701-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 03/21/2022] [Indexed: 12/20/2022] Open
Abstract
Tertiary lymphoid structures (TLS) are lymph node-like immune cell clusters that emerge during chronic inflammation in non-lymphoid organs like the kidney, but their origin remains not well understood. Here we show, using conditional deletion strategies of the canonical Notch signaling mediator Rbpj, that loss of endothelial Notch signaling in adult mice induces the spontaneous formation of bona fide TLS in the kidney, liver and lung, based on molecular, cellular and structural criteria. These TLS form in a stereotypical manner around parenchymal arteries, while secondary lymphoid structures remained largely unchanged. This effect is mediated by endothelium of blood vessels, but not lymphatics, since a lymphatic endothelial-specific targeting strategy did not result in TLS formation, and involves loss of arterial specification and concomitant acquisition of a high endothelial cell phenotype, as shown by transcriptional analysis of kidney endothelial cells. This indicates a so far unrecognized role for vascular endothelial cells and Notch signaling in TLS initiation. Loss of canonical Notch signaling in vascular endothelial cells induces spontaneous formation of proto-typical tertiary lymphoid structures in mouse kidney, liver and lungs, which form around central arteries that acquire a high endothelial cell signature
Collapse
Affiliation(s)
- Susanne Fleig
- Vascular Medicine Research, Hannover Medical School, 30625, Hannover, Germany.,Department of Nephrology and Hypertension, Hannover Medical School, 30625, Hannover, Germany.,Department of Geriatric Medicine (Medical Clinic VI), RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Tamar Kapanadze
- Vascular Medicine Research, Hannover Medical School, 30625, Hannover, Germany.,Department of Nephrology and Hypertension, Hannover Medical School, 30625, Hannover, Germany
| | - Jeremiah Bernier-Latmani
- Vascular and Tumor Biology Laboratory, Department of Oncology UNIL CHUV and Ludwig Institute for Cancer Research, Lausanne, Switzerland
| | - Julia K Lill
- Department of Immunodynamics, Institute for Experimental Immunology and Imaging, Medical Research Centre, University Hospital Essen, 45147, Essen, Germany
| | - Tania Wyss
- Vascular and Tumor Biology Laboratory, Department of Oncology UNIL CHUV and Ludwig Institute for Cancer Research, Lausanne, Switzerland.,SIB Swiss Institute of Bioinformatics, Lausanne, 1015, Switzerland
| | - Jaba Gamrekelashvili
- Vascular Medicine Research, Hannover Medical School, 30625, Hannover, Germany.,Department of Nephrology and Hypertension, Hannover Medical School, 30625, Hannover, Germany
| | - Dustin Kijas
- Vascular Medicine Research, Hannover Medical School, 30625, Hannover, Germany.,Department of Nephrology and Hypertension, Hannover Medical School, 30625, Hannover, Germany
| | - Bin Liu
- Hannover Medical School, Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Anne M Hüsing
- Department of Nephrology and Hypertension, Hannover Medical School, 30625, Hannover, Germany
| | - Esther Bovay
- Max-Planck-Institute for Molecular Biomedicine, 48149, Muenster, Germany
| | - Adan Chari Jirmo
- Hannover Medical School, Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany.,Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Stephan Halle
- Institute of Immunology, Hannover Medical School, 30625, Hannover, Germany
| | - Melanie Ricke-Hoch
- Department of Cardiology and Angiology, Hannover Medical School, 30625, Hannover, Germany
| | - Ralf H Adams
- Max-Planck-Institute for Molecular Biomedicine, 48149, Muenster, Germany
| | - Daniel R Engel
- Department of Immunodynamics, Institute for Experimental Immunology and Imaging, Medical Research Centre, University Hospital Essen, 45147, Essen, Germany
| | - Sibylle von Vietinghoff
- Department of Nephrology and Hypertension, Hannover Medical School, 30625, Hannover, Germany.,Division of Medicine I, Nephrology section, UKB Bonn University Hospital, Bonn, Germany
| | - Reinhold Förster
- Institute of Immunology, Hannover Medical School, 30625, Hannover, Germany
| | - Denise Hilfiker-Kleiner
- Department of Cardiology and Angiology, Hannover Medical School, 30625, Hannover, Germany.,Department of Cardiovascular Complications of Oncologic Therapies, Medical Faculty of the Philipps University Marburg, 35037, Marburg, Germany
| | - Hermann Haller
- Department of Nephrology and Hypertension, Hannover Medical School, 30625, Hannover, Germany
| | - Tatiana V Petrova
- Vascular and Tumor Biology Laboratory, Department of Oncology UNIL CHUV and Ludwig Institute for Cancer Research, Lausanne, Switzerland
| | - Florian P Limbourg
- Vascular Medicine Research, Hannover Medical School, 30625, Hannover, Germany. .,Department of Nephrology and Hypertension, Hannover Medical School, 30625, Hannover, Germany.
| |
Collapse
|
14
|
Funk-Hilsdorf TC, Behrens F, Grune J, Simmons S. Dysregulated Immunity in Pulmonary Hypertension: From Companion to Composer. Front Physiol 2022; 13:819145. [PMID: 35250621 PMCID: PMC8891568 DOI: 10.3389/fphys.2022.819145] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 01/20/2022] [Indexed: 12/26/2022] Open
Abstract
Pulmonary hypertension (PH) represents a grave condition associated with high morbidity and mortality, emphasizing a desperate need for innovative and targeted therapeutic strategies. Cumulative evidence suggests that inflammation and dysregulated immunity interdependently affect maladaptive organ perfusion and congestion as hemodynamic hallmarks of the pathophysiology of PH. The role of altered cellular and humoral immunity in PH gains increasing attention, especially in pulmonary arterial hypertension (PAH), revealing novel mechanistic insights into the underlying immunopathology. Whether these immunophysiological aspects display a universal character and also hold true for other types of PH (e.g., PH associated with left heart disease, PH-LHD), or whether there are unique immunological signatures depending on the underlying cause of disease are points of consideration and discussion. Inflammatory mediators and cellular immune circuits connect the local inflammatory landscape in the lung and heart through inter-organ communication, involving, e.g., the complement system, sphingosine-1-phosphate (S1P), cytokines and subsets of, e.g., monocytes, macrophages, natural killer (NK) cells, dendritic cells (DCs), and T- and B-lymphocytes with distinct and organ-specific pro- and anti-inflammatory functions in homeostasis and disease. Perivascular macrophage expansion and monocyte recruitment have been proposed as key pathogenic drivers of vascular remodeling, the principal pathological mechanism in PAH, pinpointing toward future directions of anti-inflammatory therapeutic strategies. Moreover, different B- and T-effector cells as well as DCs may play an important role in the pathophysiology of PH as an imbalance of T-helper-17-cells (TH17) activated by monocyte-derived DCs, a potentially protective role of regulatory T-cells (Treg) and autoantibody-producing plasma cells occur in diverse PH animal models and human PH. This article highlights novel aspects of the innate and adaptive immunity and their interaction as disease mediators of PH and its specific subtypes, noticeable inflammatory mediators and summarizes therapeutic targets and strategies arising thereby.
Collapse
Affiliation(s)
- Teresa C. Funk-Hilsdorf
- Junior Research Group “Immunodynamics”, Institute of Physiology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Laboratory of Lung Vascular Research, Institute of Physiology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Felix Behrens
- Junior Research Group “Immunodynamics”, Institute of Physiology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Laboratory of Lung Vascular Research, Institute of Physiology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Jana Grune
- Laboratory of Lung Vascular Research, Institute of Physiology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Szandor Simmons
- Junior Research Group “Immunodynamics”, Institute of Physiology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Laboratory of Lung Vascular Research, Institute of Physiology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
- *Correspondence: Szandor Simmons,
| |
Collapse
|
15
|
Özcan A, Collado-Diaz V, Egholm C, Tomura M, Gunzer M, Halin C, Kolios AGA, Boyman O. CCR7-guided neutrophil redirection to skin-draining lymph nodes regulates cutaneous inflammation and infection. Sci Immunol 2022; 7:eabi9126. [PMID: 35119939 DOI: 10.1126/sciimmunol.abi9126] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neutrophils are the first nonresident effector immune cells that migrate to a site of infection or inflammation; however, improper control of neutrophil responses can cause considerable tissue damage. Here, we found that neutrophil responses in inflamed or infected skin were regulated by CCR7-dependent migration and phagocytosis of neutrophils in draining lymph nodes (dLNs). In mouse models of Toll-like receptor-induced skin inflammation and cutaneous Staphylococcus aureus infection, neutrophils migrated from the skin to the dLNs via lymphatic vessels in a CCR7-mediated manner. In the dLNs, these neutrophils were phagocytosed by lymph node-resident type 1 and type 2 conventional dendritic cells. CCR7 up-regulation on neutrophils was a conserved mechanism across different tissues and was induced by a broad range of microbial stimuli. In the context of cutaneous immune responses, disruption of CCR7 interactions by selective CCR7 deficiency of neutrophils resulted in increased antistaphylococcal immunity and aggravated skin inflammation. Thus, neutrophil homing to and clearance in skin-dLNs affects cutaneous immunity versus pathology.
Collapse
Affiliation(s)
- A Özcan
- Department of Immunology, University Hospital Zurich, Zurich, Switzerland
| | - V Collado-Diaz
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - C Egholm
- Department of Immunology, University Hospital Zurich, Zurich, Switzerland
| | - M Tomura
- Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka 584-8540, Japan
| | - M Gunzer
- Institute for Experimental Immunology and Imaging, University Hospital, University Duisburg-Essen, Essen, Germany.,Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
| | - C Halin
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - A G A Kolios
- Department of Immunology, University Hospital Zurich, Zurich, Switzerland
| | - O Boyman
- Department of Immunology, University Hospital Zurich, Zurich, Switzerland.,Faculty of Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
16
|
Jaiswal AK, Yadav J, Makhija S, Mazumder S, Mitra AK, Suryawanshi A, Sandey M, Mishra A. Irg1/itaconate metabolic pathway is a crucial determinant of dendritic cells immune-priming function and contributes to resolute allergen-induced airway inflammation. Mucosal Immunol 2022; 15:301-313. [PMID: 34671116 PMCID: PMC8866123 DOI: 10.1038/s41385-021-00462-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 09/29/2021] [Accepted: 10/04/2021] [Indexed: 02/04/2023]
Abstract
Itaconate is produced from the mitochondrial TCA cycle enzyme aconitase decarboxylase (encoded by immune responsive gene1; Irg1) that exerts immunomodulatory function in myeloid cells. However, the role of the Irg1/itaconate pathway in dendritic cells (DC)-mediated airway inflammation and adaptive immunity to inhaled allergens, which are the primary antigen-presenting cells in allergic asthma, remains largely unknown. House dust mite (HDM)-challenged Irg1-/- mice displayed increases in eosinophilic airway inflammation, mucous cell metaplasia, and Th2 cytokine production with a mechanism involving impaired mite antigen presentations by DC. Adoptive transfer of HDM-pulsed DC from Irg1-deficient mice into naïve WT mice induced a similar phenotype of elevated type 2 airway inflammation and allergic sensitization. Untargeted metabolite analysis of HDM-pulsed DC revealed itaconate as one of the most abundant polar metabolites that potentially suppress mitochondrial oxidative damage. Furthermore, the immunomodulatory effect of itaconate was translated in vivo, where intranasal administration of 4-octyl itaconate 4-OI following antigen priming attenuated the manifestations of HDM-induced airway disease and Th2 immune response. Taken together, these data demonstrated for the first time a direct regulatory role of the Irg1/itaconate pathway in DC for the development of type 2 airway inflammation and suggest a possible therapeutic target in modulating allergic asthma.
Collapse
Affiliation(s)
- Anil Kumar Jaiswal
- grid.252546.20000 0001 2297 8753From the Laboratory of Lung Inflammation, Auburn University, Auburn, AL USA ,grid.252546.20000 0001 2297 8753Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL USA
| | - Jyoti Yadav
- grid.252546.20000 0001 2297 8753From the Laboratory of Lung Inflammation, Auburn University, Auburn, AL USA ,grid.252546.20000 0001 2297 8753Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL USA
| | - Sangeet Makhija
- grid.252546.20000 0001 2297 8753From the Laboratory of Lung Inflammation, Auburn University, Auburn, AL USA ,grid.252546.20000 0001 2297 8753Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL USA
| | - Suman Mazumder
- grid.252546.20000 0001 2297 8753Department of Drug Discovery and Development, Auburn University, Auburn, AL USA ,grid.252546.20000 0001 2297 8753Center for Pharmacogenomics and Single-Cell Omics, Harrison School of Pharmacy, Auburn University, Auburn, AL USA
| | - Amit Kumar Mitra
- grid.252546.20000 0001 2297 8753Department of Drug Discovery and Development, Auburn University, Auburn, AL USA ,grid.252546.20000 0001 2297 8753Center for Pharmacogenomics and Single-Cell Omics, Harrison School of Pharmacy, Auburn University, Auburn, AL USA
| | - Amol Suryawanshi
- grid.252546.20000 0001 2297 8753Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL USA
| | - Maninder Sandey
- grid.252546.20000 0001 2297 8753Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL USA
| | - Amarjit Mishra
- grid.252546.20000 0001 2297 8753From the Laboratory of Lung Inflammation, Auburn University, Auburn, AL USA ,grid.252546.20000 0001 2297 8753Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL USA
| |
Collapse
|
17
|
Bošnjak B, Odak I, Barros-Martins J, Sandrock I, Hammerschmidt SI, Permanyer M, Patzer GE, Greorgiev H, Gutierrez Jauregui R, Tscherne A, Schwarz JH, Kalodimou G, Ssebyatika G, Ciurkiewicz M, Willenzon S, Bubke A, Ristenpart J, Ritter C, Tuchel T, Meyer zu Natrup C, Shin DL, Clever S, Limpinsel L, Baumgärtner W, Krey T, Volz A, Sutter G, Förster R. Intranasal Delivery of MVA Vector Vaccine Induces Effective Pulmonary Immunity Against SARS-CoV-2 in Rodents. Front Immunol 2021; 12:772240. [PMID: 34858430 PMCID: PMC8632543 DOI: 10.3389/fimmu.2021.772240] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/25/2021] [Indexed: 01/08/2023] Open
Abstract
Antigen-specific tissue-resident memory T cells (Trms) and neutralizing IgA antibodies provide the most effective protection of the lungs from viral infections. To induce those essential components of lung immunity against SARS-CoV-2, we tested various immunization protocols involving intranasal delivery of a novel Modified Vaccinia virus Ankara (MVA)-SARS-2-spike vaccine candidate. We show that a single intranasal MVA-SARS-CoV-2-S application in mice strongly induced pulmonary spike-specific CD8+ T cells, albeit restricted production of neutralizing antibodies. In prime-boost protocols, intranasal booster vaccine delivery proved to be crucial for a massive expansion of systemic and lung tissue-resident spike-specific CD8+ T cells and the development of Th1 - but not Th2 - CD4+ T cells. Likewise, very high titers of IgG and IgA anti-spike antibodies were present in serum and broncho-alveolar lavages that possessed high virus neutralization capacities to all current SARS-CoV-2 variants of concern. Importantly, the MVA-SARS-2-spike vaccine applied in intramuscular priming and intranasal boosting treatment regimen completely protected hamsters from developing SARS-CoV-2 lung infection and pathology. Together, these results identify intramuscular priming followed by respiratory tract boosting with MVA-SARS-2-S as a promising approach for the induction of local, respiratory as well as systemic immune responses suited to protect from SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Berislav Bošnjak
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Ivan Odak
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | | | - Inga Sandrock
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | | | - Marc Permanyer
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | | | - Hristo Greorgiev
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | | | - Alina Tscherne
- Division of Virology, Department of Veterinary Sciences, Ludwig Maximilian University (LMU) Munich, Munich, Germany
- German Centre for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Jan Hendrik Schwarz
- Division of Virology, Department of Veterinary Sciences, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Georgia Kalodimou
- Division of Virology, Department of Veterinary Sciences, Ludwig Maximilian University (LMU) Munich, Munich, Germany
- German Centre for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - George Ssebyatika
- Center of Structural and Cell Biology in Medicine, Institute of Biochemistry, University of Lübeck, Lübeck, Germany
| | | | | | - Anja Bubke
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | | | | | - Tamara Tuchel
- Institute for Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| | | | - Dai-Lun Shin
- Institute for Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Sabrina Clever
- Institute for Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Leonard Limpinsel
- Division of Virology, Department of Veterinary Sciences, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Thomas Krey
- Center of Structural and Cell Biology in Medicine, Institute of Biochemistry, University of Lübeck, Lübeck, Germany
- German Centre for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Lübeck, Germany
- Centre for Structural Systems Biology (CSSB), Hamburg, Germany
- Institute of Virology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Asisa Volz
- Division of Virology, Department of Veterinary Sciences, Ludwig Maximilian University (LMU) Munich, Munich, Germany
- German Centre for Infection Research (DZIF), Partner Site Munich, Munich, Germany
- Institute for Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Gerd Sutter
- Division of Virology, Department of Veterinary Sciences, Ludwig Maximilian University (LMU) Munich, Munich, Germany
- German Centre for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Reinhold Förster
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover, Hannover, Germany
| |
Collapse
|
18
|
Ruterbusch M, Pruner KB, Shehata L, Pepper M. In Vivo CD4 + T Cell Differentiation and Function: Revisiting the Th1/Th2 Paradigm. Annu Rev Immunol 2021; 38:705-725. [PMID: 32340571 DOI: 10.1146/annurev-immunol-103019-085803] [Citation(s) in RCA: 272] [Impact Index Per Article: 90.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The discovery of CD4+ T cell subset-defining master transcription factors and framing of the Th1/Th2 paradigm ignited the CD4+ T cell field. Advances in in vivo experimental systems, however, have revealed that more complex lineage-defining transcriptional networks direct CD4+ T cell differentiation in the lymphoid organs and tissues. This review focuses on the layers of fate decisions that inform CD4+ T cell differentiation in vivo. Cytokine production by antigen-presenting cells and other innate cells influences the CD4+ T cell effector program [e.g., T helper type 1 (Th1), Th2, Th17]. Signals downstream of the T cell receptor influence whether individual clones bearing hallmarks of this effector program become T follicular helper cells, supporting development of B cells expressing specific antibody isotypes, or T effector cells, which activate microbicidal innate cells in tissues. These bifurcated, parallel axes allow CD4+ T cells to augment their particular effector program and prevent disease.
Collapse
Affiliation(s)
- Mikel Ruterbusch
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington 98109, USA; ,
| | - Kurt B Pruner
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington 98109, USA; ,
| | - Laila Shehata
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington 98109, USA; ,
| | - Marion Pepper
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington 98109, USA; ,
| |
Collapse
|
19
|
Alternative pathways for the development of lymphoid structures in humans. Proc Natl Acad Sci U S A 2021; 118:2108082118. [PMID: 34261794 DOI: 10.1073/pnas.2108082118] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Lymphoid tissue inducer (LTi) cells are critical for inducing the differentiation of most secondary lymphoid organs (SLOs) in mice. In humans, JAK3 and γc deficiencies result in severe combined immunodeficiency (SCIDs) characterized by an absence of T cells, natural killer cells, innate lymphoid cells (ILCs), and presumably LTi cells. Some of these patients have undergone allogeneic stem cell transplantation (HSCT) in the absence of myeloablation, which leads to donor T cell engraftment, while other leukocyte subsets are of host origin. By using MRI to look for SLOs in nine of these patients 16 to 44 y after HSCT, we discovered that SLOs were exclusively found in the three areas of the abdomen that drain the intestinal tract. A postmortem examination of a child with γc-SCID who had died 3.5 mo after HSCT showed corticomedullary differentiation in the thymus, T cell zones in the spleen, and the appendix, but in neither lymph nodes nor Peyer patches. Tertiary lymphoid organs were observed in the lung. No RAR-related orphan receptor-positive LTi cells could be detected in the existing lymphoid structures. These results suggest that while LTi cells are required for the genesis of most SLOs in humans, SLO in the appendix and in gut-draining areas, as well as tertiary lymphoid organs, can be generated likely by LTi cell-independent mechanisms.
Collapse
|
20
|
Suzuki Y, Oishi H, Kanehira M, Matsuda Y, Hirama T, Noda M, Okada Y. Effect of CTLA4-Ig on Obliterative Bronchiolitis in a Mouse Intrapulmonary Tracheal Transplantation Model. Ann Thorac Cardiovasc Surg 2021; 27:355-365. [PMID: 33980752 PMCID: PMC8684841 DOI: 10.5761/atcs.oa.20-00398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objectives: One of the serious problems after lung transplantation is chronic lung allograft dysfunction (CLAD). Most CLAD patients pathologically characterized by obliterative bronchiolitis (OB). Cytotoxic T-lymphocyte-associated antigen 4 (CTLA4)-Ig is a combination protein of the Fc fragment of human IgG1 linked to the extracellular domain of CTLA4. The aim of the study was to examine the effect of CTLA4-Ig therapy on OB using a mouse intrapulmonary tracheal transplantation (IPTT) model. Methods: IPTT was performed between BALB/c (donor) and C57BL/6 (recipient) mice. Abatacept, which is a commercially available form of CTLA4-Ig, was intraperitoneally injected in recipient mice immediately after surgery, on days 7, 14, and 21. The mice in the control group received human IgG. Results: We performed semi-quantitative analysis of graft luminal obliteration at post-transplant day 28. We calculated the obliteration ratio of the lumen of the transplanted trachea in each case. The obliteration ratio was significantly lower in the CTLA4-Ig group than that in the control group (91.2 ± 2.1% vs. 47.8 ± 7.9%, p = 0.0008). Immunofluorescent staining revealed significantly decreased lymphoid neogenesis in the lung. Conclusions: CTLA4-Ig therapy attenuated tracheal obliteration with fibrous tissue in the mouse IPTT model. The attenuation of fibrous obliteration was correlated with the inhibition of lymphoid neogenesis.
Collapse
Affiliation(s)
- Yamato Suzuki
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan
| | - Hisashi Oishi
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan
| | - Masahiko Kanehira
- Center for Life Science Research, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Yasushi Matsuda
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan.,Department of Thoracic Surgery, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Takashi Hirama
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan
| | - Masafumi Noda
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan
| | - Yoshinori Okada
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan
| |
Collapse
|
21
|
Elashiry M, Elsayed R, Elashiry MM, Rashid MH, Ara R, Arbab AS, Elawady AR, Hamrick M, Liu Y, Zhi W, Lucas R, Vazquez J, Cutler CW. Proteomic Characterization, Biodistribution, and Functional Studies of Immune-Therapeutic Exosomes: Implications for Inflammatory Lung Diseases. Front Immunol 2021; 12:636222. [PMID: 33841418 PMCID: PMC8027247 DOI: 10.3389/fimmu.2021.636222] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/25/2021] [Indexed: 12/12/2022] Open
Abstract
Dendritic cell (DC)-derived exosomes (DC EXO), natural nanoparticles of endosomal origin, are under intense scrutiny in clinical trials for various inflammatory diseases. DC EXO are eobiotic, meaning they are well-tolerated by the host; moreover, they can be custom-tailored for immune-regulatory or -stimulatory functions, thus presenting attractive opportunities for immune therapy. Previously we documented the efficacy of immunoregulatory DCs EXO (regDCs EXO) as immunotherapy for inflammatory bone disease, in an in-vivo model. We showed a key role for encapsulated TGFβ1 in promoting a bone sparing immune response. However, the on- and off-target effects of these therapeutic regDC EXO and how target signaling in acceptor cells is activated is unclear. In the present report, therapeutic regDC EXO were analyzed by high throughput proteomics, with non-therapeutic EXO from immature DCs and mature DCs as controls, to identify shared and distinct proteins and potential off-target proteins, as corroborated by immunoblot. The predominant expression in regDC EXO of immunoregulatory proteins as well as proteins involved in trafficking from the circulation to peripheral tissues, cell surface binding, and transmigration, prompted us to investigate how these DC EXO are biodistributed to major organs after intravenous injection. Live animal imaging showed preferential accumulation of regDCs EXO in the lungs, followed by spleen and liver tissue. In addition, TGFβ1 in regDCs EXO sustained downstream signaling in acceptor DCs. Blocking experiments suggested that sustaining TGFβ1 signaling require initial interaction of regDCs EXO with TGFβ1R followed by internalization of regDCs EXO with TGFβ1-TGFβ1R complex. Finally, these regDCs EXO that contain immunoregulatory cargo and showed biodistribution to lungs could downregulate the main severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) target receptor, ACE2 on recipient lung parenchymal cells via TGFβ1 in-vitro. In conclusion, these results in mice may have important immunotherapeutic implications for lung inflammatory disorders.
Collapse
Affiliation(s)
- Mahmoud Elashiry
- Department of Periodontics, Dental College of Georgia at Augusta University, Augusta, GA, United States
| | - Ranya Elsayed
- Department of Periodontics, Dental College of Georgia at Augusta University, Augusta, GA, United States
| | - Mohamed M Elashiry
- Department of Periodontics, Dental College of Georgia at Augusta University, Augusta, GA, United States.,Department of Endodontics, College of Dentistry, Ainshams University, Cairo, Egypt
| | - Mohammad H Rashid
- Georgia Cancer Center, Department of Biochemistry and Molecular Biology, at Augusta University, Augusta, GA, United States
| | - Roxan Ara
- Georgia Cancer Center, Department of Biochemistry and Molecular Biology, at Augusta University, Augusta, GA, United States
| | - Ali S Arbab
- Georgia Cancer Center, Department of Biochemistry and Molecular Biology, at Augusta University, Augusta, GA, United States
| | - Ahmed R Elawady
- Department of Periodontics, Dental College of Georgia at Augusta University, Augusta, GA, United States
| | - Mark Hamrick
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Yutao Liu
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Wenbo Zhi
- Center of Biotechnology and Genomic Medicine, at Augusta University, Augusta, GA, United States
| | - Rudolf Lucas
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, United States.,Division of Pulmonary and Critical Care Medicine, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Jose Vazquez
- Division of Infectious Diseases, Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Christopher W Cutler
- Department of Periodontics, Dental College of Georgia at Augusta University, Augusta, GA, United States
| |
Collapse
|
22
|
Liu R, Americo JL, Cotter CA, Earl PL, Erez N, Peng C, Moss B. One or two injections of MVA-vectored vaccine shields hACE2 transgenic mice from SARS-CoV-2 upper and lower respiratory tract infection. Proc Natl Acad Sci U S A 2021; 118:e2026785118. [PMID: 33688035 PMCID: PMC8000198 DOI: 10.1073/pnas.2026785118] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Modified vaccinia virus Ankara (MVA) is a replication-restricted smallpox vaccine, and numerous clinical studies of recombinant MVAs (rMVAs) as vectors for prevention of other infectious diseases, including COVID-19, are in progress. Here, we characterize rMVAs expressing the S protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Modifications of full-length S individually or in combination included two proline substitutions, mutations of the furin recognition site, and deletion of the endoplasmic retrieval signal. Another rMVA in which the receptor binding domain (RBD) is flanked by the signal peptide and transmembrane domains of S was also constructed. Each modified S protein was displayed on the surface of rMVA-infected cells and was recognized by anti-RBD antibody and soluble hACE2 receptor. Intramuscular injection of mice with the rMVAs induced antibodies, which neutralized a pseudovirus in vitro and, upon passive transfer, protected hACE2 transgenic mice from lethal infection with SARS-CoV-2, as well as S-specific CD3+CD8+IFNγ+ T cells. Antibody boosting occurred following a second rMVA or adjuvanted purified RBD protein. Immunity conferred by a single vaccination of hACE2 mice prevented morbidity and weight loss upon intranasal infection with SARS-CoV-2 3 wk or 7 wk later. One or two rMVA vaccinations also prevented detection of infectious SARS-CoV-2 and subgenomic viral mRNAs in the lungs and greatly reduced induction of cytokine and chemokine mRNAs. A low amount of virus was found in the nasal turbinates of only one of eight rMVA-vaccinated mice on day 2 and none later. Detection of low levels of subgenomic mRNAs in turbinates indicated that replication was aborted in immunized animals.
Collapse
Affiliation(s)
- Ruikang Liu
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | - Jeffrey L Americo
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | - Catherine A Cotter
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | - Patricia L Earl
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | - Noam Erez
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | - Chen Peng
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | - Bernard Moss
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| |
Collapse
|
23
|
Stock C. Circulating Tumor Cells: Does Ion Transport Contribute to Intravascular Survival, Adhesion, Extravasation, and Metastatic Organotropism? Rev Physiol Biochem Pharmacol 2021; 182:139-175. [DOI: 10.1007/112_2021_68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
Guignabert C. Dendritic Cells in Pulmonary Hypertension: Foot Soldiers or Hidden Enemies? Am J Respir Cell Mol Biol 2020; 63:551-552. [PMID: 32804536 PMCID: PMC7605161 DOI: 10.1165/rcmb.2020-0330ed] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Christophe Guignabert
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France, and.,Institut National de la Santé et de la Recherche Médicale (INSERM) - Unité Mixte de Recherche en Santé (UMR_S) 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| |
Collapse
|
25
|
Förster R, Fleige H, Sutter G. Combating COVID-19: MVA Vector Vaccines Applied to the Respiratory Tract as Promising Approach Toward Protective Immunity in the Lung. Front Immunol 2020; 11:1959. [PMID: 32849655 PMCID: PMC7426738 DOI: 10.3389/fimmu.2020.01959] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/21/2020] [Indexed: 02/02/2023] Open
Abstract
The lung is the vital target organ of coronavirus disease 2019 (COVID-19) caused by infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In the majority of patients the most active virus replication seems to be found in the upper respiratory tract, severe cases however suffer from SARS-like disease associated with virus replication in lung tissues. Due to the current lack of suitable anti-viral drugs the induction of protective immunity such as neutralizing antibodies in the lung is the key aim of the only alternative approach—the development and application of SARS-CoV-2 vaccines. However, past experience from experimental animals, livestock, and humans showed that induction of immunity in the lung is limited following application of vaccines at peripheral sides such as skin or muscles. Based on several considerations we therefore propose here to consider the application of a Modified Vaccinia virus Ankara (MVA)-based vaccine to mucosal surfaces of the respiratory tract as a favorable approach to combat COVID-19.
Collapse
Affiliation(s)
- Reinhold Förster
- Institute of Immunology, Hannover Medical School, Hanover, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hanover, Germany
| | - Henrike Fleige
- Institute of Immunology, Hannover Medical School, Hanover, Germany
| | - Gerd Sutter
- Division of Virology, Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-Universität München, Munich, Germany.,German Center for Infection Research, Partner Site Munich, Munich, Germany
| |
Collapse
|
26
|
Chen L, Bai J, Li Y. The Change of Interleukin-6 Level-Related Genes and Pathways Induced by Exercise in Sedentary Individuals. J Interferon Cytokine Res 2020; 40:236-244. [PMID: 32401165 DOI: 10.1089/jir.2019.0169] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Sedentary behavior increases the risk of many chronic disorders, in addition, these chronic diseases are associated with elevated markers interleukin-6 (IL-6). Increasing evidence indicates that physical activity can prevent chronic inflammatory disease. However, the effect of exercise on sedentary individuals with disparate basal serum IL-6 level was not well elucidated. In this study, the gene expression profile of GES12384 was downloaded from the Gene Expression Omnibus (GEO) database. This data set contained 12 sedentary middle-aged men (6 high IL-6 and 6 low IL-6 level), and their blood samples were taken in the pre-exercise period and at the end of 24 weeks of exercise. The differentially expressed genes (DEGs) of 24 weeks group were identified, followed by functional enrichment analysis. Subsequently, protein-protein interaction (PPI) network and transcription factors (TFs)-DEGs network were constructed. A total of 193 DEGs were identified between high and low IL-6 level in the 24 weeks group. Functional enrichment analysis showed that DEGs were mainly involved in African trypanosomiasis pathway. PPI network revealed that the hub genes included C-C motif chemokine receptor 7 (CCR7), hemoglobin subunit delta (HBD), and interferon gamma (IFNG). Subnetworks analysis indicated that these genes were relevant to immune response, and participated in African trypanosomiasis pathway. The TF targets network found that myocyte enhancer factor 2A (MEF2A) was a key regulatory factor. In conclusion, the inflammation-related genes (CCR7, HBD, and IFNG) in sedentary individuals could be affected by exercise, and the identified DEGs and TFs in this study promoted our understanding of exercise inhibited the development of chronic disease. [Figure: see text].
Collapse
Affiliation(s)
- Lei Chen
- Department of Physical Education, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Bai
- Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanfei Li
- Office of Academic Research, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| |
Collapse
|
27
|
Tanaka S, Gauthier JM, Fuchs A, Li W, Tong AY, Harrison MS, Higashikubo R, Terada Y, Hachem RR, Ruiz-Perez D, Ritter JH, Cella M, Colonna M, Turnbull IR, Krupnick AS, Gelman AE, Kreisel D. IL-22 is required for the induction of bronchus-associated lymphoid tissue in tolerant lung allografts. Am J Transplant 2020; 20:1251-1261. [PMID: 31721409 PMCID: PMC7183893 DOI: 10.1111/ajt.15701] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 10/28/2019] [Accepted: 11/11/2019] [Indexed: 01/25/2023]
Abstract
Long-term survival after lung transplantation remains profoundly limited by graft rejection. Recent work has shown that bronchus-associated lymphoid tissue (BALT), characterized by the development of peripheral nodal addressin (PNAd)-expressing high endothelial venules and enriched in B and Foxp3+ T cells, is important for the maintenance of allograft tolerance. Mechanisms underlying BALT induction in tolerant pulmonary allografts, however, remain poorly understood. Here, we show that the development of PNAd-expressing high endothelial venules within intragraft lymphoid follicles and the recruitment of B cells, but not Foxp3+ cells depends on IL-22. We identify graft-infiltrating gamma-delta (γδ) T cells and Type 3 innate lymphoid cells (ILC3s) as important producers of IL-22. Reconstitution of IL-22 at late time points through retransplantation into wildtype hosts mediates B cell recruitment into lymphoid follicles within the allograft, resulting in a significant increase in their size, but does not induce PNAd expression. Our work has identified cellular and molecular requirements for the induction of BALT in pulmonary allografts during tolerance induction and may provide a platform for the development of new therapies for lung transplant patients.
Collapse
Affiliation(s)
- Satona Tanaka
- Division of Cardiothoracic Surgery, Washington University, Saint Louis, Missouri
| | - Jason M. Gauthier
- Division of Cardiothoracic Surgery, Washington University, Saint Louis, Missouri
| | - Anja Fuchs
- Section of Acute and Critical Care Surgery, Department of Surgery, Washington University, Saint Louis, Missouri
| | - Wenjun Li
- Division of Cardiothoracic Surgery, Washington University, Saint Louis, Missouri
| | - Alice Y. Tong
- Division of Cardiothoracic Surgery, Washington University, Saint Louis, Missouri
| | - M. Shea Harrison
- Division of Cardiothoracic Surgery, Washington University, Saint Louis, Missouri
| | - Ryuji Higashikubo
- Division of Cardiothoracic Surgery, Washington University, Saint Louis, Missouri
| | - Yuriko Terada
- Division of Cardiothoracic Surgery, Washington University, Saint Louis, Missouri
| | - Ramsey R. Hachem
- Department of Medicine, Washington University, Saint Louis, Missouri
| | - Daniel Ruiz-Perez
- Department of Pathology & Immunology, Washington University, Saint Louis, Missouri
| | - Jon H. Ritter
- Division of Experimental Surgery, La Paz University Hospital, Madrid, Spain
| | - Marina Cella
- Division of Experimental Surgery, La Paz University Hospital, Madrid, Spain
| | - Marco Colonna
- Division of Experimental Surgery, La Paz University Hospital, Madrid, Spain
| | - Isaiah R. Turnbull
- Section of Acute and Critical Care Surgery, Department of Surgery, Washington University, Saint Louis, Missouri
| | - Alexander S. Krupnick
- Division of Thoracic Surgery, Department of Surgery, University of Virginia, Charlottesville, Virginia
- Carter Immunology Center, University of Virginia, Charlottesville, Virginia
| | - Andrew E. Gelman
- Division of Cardiothoracic Surgery, Washington University, Saint Louis, Missouri
- Division of Experimental Surgery, La Paz University Hospital, Madrid, Spain
| | - Daniel Kreisel
- Division of Cardiothoracic Surgery, Washington University, Saint Louis, Missouri
- Division of Experimental Surgery, La Paz University Hospital, Madrid, Spain
| |
Collapse
|
28
|
Rizeq B, Malki MI. The Role of CCL21/CCR7 Chemokine Axis in Breast Cancer Progression. Cancers (Basel) 2020; 12:E1036. [PMID: 32340161 PMCID: PMC7226115 DOI: 10.3390/cancers12041036] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/01/2020] [Accepted: 04/11/2020] [Indexed: 12/14/2022] Open
Abstract
Breast cancer is a leading cause of cancer-related deaths worldwide, predominantly caused by metastasis. It is generally accepted that the pattern of breast cancer metastasis is largely determined by the interaction between the chemokine receptors on cancer cells and the chemokines expressed at the sites of metastatic disease. Chemokine receptors belong to the G-protein-coupled receptors (GPCRs) family that appear to be implicated in inflammatory diseases, tumor growth and metastasis. One of its members, C-C Chemokine receptor 7 (CCR7), binds chemokines CCL19 and CCL21, which are important for tissue homeostasis, immune surveillance and tumorigenesis. These receptors have been shown to induce the pathobiology of breast cancer due to their ability to induce cellular proliferation and migration upon the binding of the cognate chemokine receptors. The underlying signaling pathways and exact cellular interactions within this biological system are not fully understood and need further insights. Thus, in this review, we summarize the essential roles of CCR7 and its receptors in breast cancer progression. Furthermore, we discuss the mechanisms of regulation that may lead to novel opportunities for therapeutic intervention. Despite the enormous advances in our knowledge of the nature of the chemokines in breast cancer metastasis, research about the involvement of CCR7 in cancer progression is still limited. Therefore, further studies are essential to illustrate the distinct roles of CCR7 in cancer progression and validate its potential as a preventive bio-factor for human breast cancer metastasis by targeting chemokine receptor genes.
Collapse
Affiliation(s)
| | - Mohammed Imad Malki
- College of Medicine, QU Health, Qatar University, P. O. Box. 2713, Doha, Qatar;
| |
Collapse
|
29
|
Marin ND, Dunlap MD, Kaushal D, Khader SA. Friend or Foe: The Protective and Pathological Roles of Inducible Bronchus-Associated Lymphoid Tissue in Pulmonary Diseases. THE JOURNAL OF IMMUNOLOGY 2019; 202:2519-2526. [PMID: 31010841 DOI: 10.4049/jimmunol.1801135] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 12/26/2018] [Indexed: 02/06/2023]
Abstract
Inducible bronchus-associated lymphoid tissue (iBALT) is a tertiary lymphoid structure that resembles secondary lymphoid organs. iBALT is induced in the lung in response to Ag exposure. In some cases, such as infection with Mycobacterium tuberculosis, the formation of iBALT structure is indicative of an effective protective immune response. However, with persistent exposure to Ags during chronic inflammation, allergy, or autoimmune diseases, iBALT may be associated with exacerbation of inflammation. iBALT is characterized by well-organized T and B areas enmeshed with conventional dendritic cells, follicular dendritic cells, and stromal cells, usually located surrounding airways or blood vessels. Several of the molecular signals and cellular contributors that mediate formation of iBALT structures have been recently identified. This review will outline the recent findings associated with the formation and maintenance of iBALT and their contributions toward a protective or pathogenic function in pulmonary disease outcome.
Collapse
Affiliation(s)
- Nancy D Marin
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
| | - Micah D Dunlap
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110.,Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110; and
| | - Deepak Kaushal
- Division of Bacteriology and Parasitology, Tulane National Primate Research Center, Covington, LA 70118
| | - Shabaana A Khader
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110;
| |
Collapse
|
30
|
Cai D, Liu L, Han C, Ma X, Qian J, Zhou J, Zhu W. Cancer cell membrane-coated mesoporous silica loaded with superparamagnetic ferroferric oxide and Paclitaxel for the combination of Chemo/Magnetocaloric therapy on MDA-MB-231 cells. Sci Rep 2019; 9:14475. [PMID: 31597929 PMCID: PMC6785558 DOI: 10.1038/s41598-019-51029-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 09/24/2019] [Indexed: 12/31/2022] Open
Abstract
To effectively inhibit the growth of breast cancer cells (MDA-MB-231 cells) by the combination method of chemotherapy and magnetic hyperthermia, we fabricated a biomimetic drug delivery (CSiFePNs) system composed of mesoporous silica nanoparticles (MSNs) containing superparamagnetic ferroferric oxide and Paclitaxel (PTX) coated with MDA-MB-231 cell membranes (CMs). In the in vitro cytotoxicity tests, the MDA-MB-231 cells incubated with CSiFePNs obtained IC50 value of 0.8 μgL-1, 3.5-fold higher than that of SiFePNs. The combination method of chemotherapy and magnetic hyperthermia can effectively inhibit the growth of MDA-MB-231 cells.
Collapse
Affiliation(s)
- Defu Cai
- Institute of Medicine and Drug Research, Qiqihar Medical University, Qiqihar, 161006, China
| | - Likun Liu
- Institute of Medicine and Drug Research, Qiqihar Medical University, Qiqihar, 161006, China
| | - Cuiyan Han
- College of Pharmacy, Qiqihar Medical University, Qiqihar, 161006, China
| | - Xiaoxing Ma
- College of Pharmacy, Qiqihar Medical University, Qiqihar, 161006, China
| | - Jiayi Qian
- College of Pharmacy, Qiqihar Medical University, Qiqihar, 161006, China
| | - Jianwen Zhou
- Institute of Medicine and Drug Research, Qiqihar Medical University, Qiqihar, 161006, China
| | - Wenquan Zhu
- College of Pharmacy, Qiqihar Medical University, Qiqihar, 161006, China.
| |
Collapse
|
31
|
Liu Z, Li M, Yan P, Zhu Z, Liao L, Chen Q, Luo Y, Li H, Li J, Wang Q, Huang Y, Wu Y. Transcriptome analysis of the effects of Hericium erinaceus polysaccharide on the lymphocyte homing in Muscovy duck reovirus-infected ducklings. Int J Biol Macromol 2019; 140:697-708. [PMID: 31422190 DOI: 10.1016/j.ijbiomac.2019.08.130] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/11/2019] [Accepted: 08/14/2019] [Indexed: 01/15/2023]
Abstract
Hericium erinaceus polysaccharide (HEP) is a bioactive substance present in the fruiting bodies of H. erinaceus. Previously we have shown that HEP can repair the intestinal injury caused by Muscovy duck reovirus (MDRV) infection in Muscovy ducklings. To examine the effect of HEP on intestine mucosal MDRV immunity and explore its possible mechanisms, an MDRV contact-infection model in the Muscovy ducklings was established. Transcriptome sequencing analysis was then performed to investigate the mechanism of action of HEP on intestine mucosal MDRV immunity. During the infection, the expression levels of genes involved in cellular activities (protein translation and binding, cytokine interaction, and adhesion molecules activities) in the infected ducklings were increased. The expression levels of adhesion molecules (α4β7, LFA-1) and chemotaxis cytokine receptors (CCR7, CCR9, and CCR10) were also significantly upregulated. Following HEP treatment, cellular activities and cytokines upregulated to various degrees play crucial roles in the immune defenses and antiviral activities of Muscovy ducklings. ELISA analysis results were consistent with the results of the transcriptome analysis. Overall, our results provide a basis for further studying the underlying mechanisms of HEP in regulating mucosal immunity and for the clinical application of HEP in controlling MDRV infection in the Muscovy duck industry.
Collapse
Affiliation(s)
- Zhenni Liu
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, People's Republic of China; Ganzhou Animal Husbandry Research Institute, Gannan Academy of Sciences, Ganzhou, 341000, People's Republic of China
| | - Minghui Li
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, People's Republic of China
| | - Ping Yan
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, People's Republic of China
| | - Zheng Zhu
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, People's Republic of China
| | - Lvyan Liao
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, People's Republic of China; Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agricultural and Forestry University, Fuzhou 350002, People's Republic of China
| | - Qiang Chen
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, People's Republic of China
| | - Yu Luo
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, People's Republic of China
| | - Hongwen Li
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, People's Republic of China
| | - Jian Li
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, People's Republic of China; Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agricultural and Forestry University, Fuzhou 350002, People's Republic of China
| | - Quanxi Wang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, People's Republic of China; Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agricultural and Forestry University, Fuzhou 350002, People's Republic of China
| | - Yifan Huang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, People's Republic of China; Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agricultural and Forestry University, Fuzhou 350002, People's Republic of China
| | - Yijian Wu
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, People's Republic of China; Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agricultural and Forestry University, Fuzhou 350002, People's Republic of China.
| |
Collapse
|
32
|
Hashizume-Takizawa T, Kobayashi R, Tsuzukibashi O, Saito M, Kurita-Ochiai T. CCR7-deficient mice exhibit a delayed antigen-specific mucosal IgA antibody response to an oral recombinant Salmonella strain. Pathog Dis 2019; 77:5480464. [DOI: 10.1093/femspd/ftz024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 04/25/2019] [Indexed: 12/11/2022] Open
Abstract
ABSTRACT
The migration of antigen (Ag)-loading dendritic cells (DCs) from Peyer's patches (PPs) to the draining mesenteric lymph nodes (MLNs) via chemokine receptor 7 (CCR7) is thought to be an important step in the initiation of acquired immunity. Our previous study showed that PPs were indispensable for Ag-specific secretory (S)IgA antibody (Ab) responses against oral recombinant Salmonella (rSalmonella). In this study, we attempted to show direct PP DC migration to MLNs by employing photoconvertible protein transgenic mice and investigated the role of the CCR7 signaling pathway in mucosal IgA induction. Our results demonstrated an actual flux of DCs from PPs to MLNs. The frequency of CCR7+ CD11c+ DCs in MLNs of PP-deficient mice was reduced, suggesting that some PP DCs migrated via CCR7. Immunization of CCR7−/− mice elicited significantly lower levels of Ag-specific SIgA Ab responses, which was associated with diminished formation of the germinal center in PPs. However, increased SIgA Ab production and dissemination of rSalmonella were observed at later time points. These results suggest that, although CCR7 was required for SIgA induction at normal velocity, the CCR7-mediated pathway is not essential for the induction of Ag-specific SIgA Ab responses to rSalmonella.
Collapse
Affiliation(s)
- Tomomi Hashizume-Takizawa
- Departments of Microbiology and Immunology, Nihon University School of Dentistry at Matsudo, 2-870-1 Sakaecho-Nishi, Matsudo, Chiba 271-8587, Japan
| | - Ryoki Kobayashi
- Community Oral Health, Nihon University School of Dentistry at Matsudo, 2-870-1 Sakaecho-Nishi, Matsudo, Chiba 271–8587, Japan
| | - Osamu Tsuzukibashi
- Division of Laboratory Medicine for Dentistry, Department of Oral Health Science, Nihon University School of Dentistry at Matsudo, 2-870-1 Sakaecho-Nishi, Matsudo, Chiba 271–8587, Japan
| | - Masanori Saito
- Departments of Microbiology and Immunology, Nihon University School of Dentistry at Matsudo, 2-870-1 Sakaecho-Nishi, Matsudo, Chiba 271-8587, Japan
| | - Tomoko Kurita-Ochiai
- Departments of Microbiology and Immunology, Nihon University School of Dentistry at Matsudo, 2-870-1 Sakaecho-Nishi, Matsudo, Chiba 271-8587, Japan
| |
Collapse
|
33
|
van Uden D, Boomars K, Kool M. Dendritic Cell Subsets and Effector Function in Idiopathic and Connective Tissue Disease-Associated Pulmonary Arterial Hypertension. Front Immunol 2019; 10:11. [PMID: 30723471 PMCID: PMC6349774 DOI: 10.3389/fimmu.2019.00011] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 01/04/2019] [Indexed: 01/11/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a cardiopulmonary disease characterized by an incurable condition of the pulmonary vasculature, leading to increased pulmonary vascular resistance, elevated pulmonary arterial pressure resulting in progressive right ventricular failure and ultimately death. PAH has different underlying causes. In approximately 30–40% of the patients no underlying risk factor or cause can be found, so-called idiopathic PAH (IPAH). Patients with an autoimmune connective tissue disease (CTD) can develop PAH [CTD-associated PAH (CTD-PAH)], suggesting a prominent role of immune cell activation in PAH pathophysiology. This is further supported by the presence of tertiary lymphoid organs (TLOs) near pulmonary blood vessels in IPAH and CTD-PAH. TLOs consist of myeloid cells, like monocytes and dendritic cells (DCs), T-cells, and B-cells. Next to their T-cell activating function, DCs are crucial for the preservation of TLOs. Multiple DC subsets can be found in steady state, such as conventional DCs (cDCs), including type 1 cDCs (cDC1s), and type 2 cDCs (cDC2s), AXL+Siglec6+ DCs (AS-DCs), and plasmacytoid DCs (pDCs). Under inflammatory conditions monocytes can differentiate into monocyte-derived-DCs (mo-DCs). DC subset distribution and activation status play an important role in the pathobiology of autoimmune diseases and most likely in the development of IPAH and CTD-PAH. DCs can contribute to pathology by activating T-cells (production of pro-inflammatory cytokines) and B-cells (pathogenic antibody secretion). In this review we therefore describe the latest knowledge about DC subset distribution, activation status, and effector functions, and polymorphisms involved in DC function in IPAH and CTD-PAH to gain a better understanding of PAH pathology.
Collapse
Affiliation(s)
- Denise van Uden
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, Netherlands
| | - Karin Boomars
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, Netherlands
| | - Mirjam Kool
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, Netherlands
| |
Collapse
|
34
|
Abstract
Pulmonary respiration inevitably exposes the mucosal surface of the lung to potentially noxious stimuli, including pathogens, allergens, and particulates, each of which can trigger pulmonary damage and inflammation. As inflammation resolves, B and T lymphocytes often aggregate around large bronchi to form inducible Bronchus-Associated Lymphoid Tissue (iBALT). iBALT formation can be initiated by a diverse array of molecular pathways that converge on the activation and differentiation of chemokine-expressing stromal cells that serve as the scaffolding for iBALT and facilitate the recruitment, retention, and organization of leukocytes. Like conventional lymphoid organs, iBALT recruits naïve lymphocytes from the blood, exposes them to local antigens, in this case from the airways, and supports their activation and differentiation into effector cells. The activity of iBALT is demonstrably beneficial for the clearance of respiratory pathogens; however, it is less clear whether it dampens or exacerbates inflammatory responses to non-infectious agents. Here, we review the evidence regarding the role of iBALT in pulmonary immunity and propose that the final outcome depends on the context of the disease.
Collapse
|