1
|
Liu Y, Bech P, Tamura K, Délez LT, Crochet S, Petersen CCH. Cell class-specific long-range axonal projections of neurons in mouse whisker-related somatosensory cortices. eLife 2024; 13:RP97602. [PMID: 39392390 PMCID: PMC11469677 DOI: 10.7554/elife.97602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024] Open
Abstract
Long-range axonal projections of diverse classes of neocortical excitatory neurons likely contribute to brain-wide interactions processing sensory, cognitive and motor signals. Here, we performed light-sheet imaging of fluorescently labeled axons from genetically defined neurons located in posterior primary somatosensory barrel cortex and supplemental somatosensory cortex. We used convolutional networks to segment axon-containing voxels and quantified their distribution within the Allen Mouse Brain Atlas Common Coordinate Framework. Axonal density was analyzed for different classes of glutamatergic neurons using transgenic mouse lines selectively expressing Cre recombinase in layer 2/3 intratelencephalic projection neurons (Rasgrf2-dCre), layer 4 intratelencephalic projection neurons (Scnn1a-Cre), layer 5 intratelencephalic projection neurons (Tlx3-Cre), layer 5 pyramidal tract projection neurons (Sim1-Cre), layer 5 projection neurons (Rbp4-Cre), and layer 6 corticothalamic neurons (Ntsr1-Cre). We found distinct axonal projections from the different neuronal classes to many downstream brain areas, which were largely similar for primary and supplementary somatosensory cortices. Functional connectivity maps obtained from optogenetic activation of sensory cortex and wide-field imaging revealed topographically organized evoked activity in frontal cortex with neurons located more laterally in somatosensory cortex signaling to more anteriorly located regions in motor cortex, consistent with the anatomical projections. The current methodology therefore appears to quantify brain-wide axonal innervation patterns supporting brain-wide signaling.
Collapse
Affiliation(s)
- Yanqi Liu
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Pol Bech
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Keita Tamura
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
- Department of Physiology, Development and Neuroscience, University of CambridgeCambridgeUnited Kingdom
- International Research Center for Medical Sciences, Kumamoto UniversityKumamotoJapan
| | - Lucas T Délez
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Sylvain Crochet
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Carl CH Petersen
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| |
Collapse
|
2
|
Jiang HJ, Qi G, Duarte R, Feldmeyer D, van Albada SJ. A layered microcircuit model of somatosensory cortex with three interneuron types and cell-type-specific short-term plasticity. Cereb Cortex 2024; 34:bhae378. [PMID: 39344196 PMCID: PMC11439972 DOI: 10.1093/cercor/bhae378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 07/17/2024] [Accepted: 09/04/2024] [Indexed: 10/01/2024] Open
Abstract
Three major types of GABAergic interneurons, parvalbumin-, somatostatin-, and vasoactive intestinal peptide-expressing (PV, SOM, VIP) cells, play critical but distinct roles in the cortical microcircuitry. Their specific electrophysiology and connectivity shape their inhibitory functions. To study the network dynamics and signal processing specific to these cell types in the cerebral cortex, we developed a multi-layer model incorporating biologically realistic interneuron parameters from rodent somatosensory cortex. The model is fitted to in vivo data on cell-type-specific population firing rates. With a protocol of cell-type-specific stimulation, network responses when activating different neuron types are examined. The model reproduces the experimentally observed inhibitory effects of PV and SOM cells and disinhibitory effect of VIP cells on excitatory cells. We further create a version of the model incorporating cell-type-specific short-term synaptic plasticity (STP). While the ongoing activity with and without STP is similar, STP modulates the responses of Exc, SOM, and VIP cells to cell-type-specific stimulation, presumably by changing the dominant inhibitory pathways. With slight adjustments, the model also reproduces sensory responses of specific interneuron types recorded in vivo. Our model provides predictions on network dynamics involving cell-type-specific short-term plasticity and can serve to explore the computational roles of inhibitory interneurons in sensory functions.
Collapse
Affiliation(s)
- Han-Jia Jiang
- Institute for Advanced Simulation (IAS-6), Jülich Research Centre, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
- Institute of Zoology, University of Cologne, Albertus-Magnus-Platz, 50923 Cologne, Germany
| | - Guanxiao Qi
- JARA Institute Brain Structure-Function Relationships (INM-10), Jülich Research Centre, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| | - Renato Duarte
- Institute for Advanced Simulation (IAS-6), Jülich Research Centre, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
- Donders Institute for Brain, Cognition and Behavior, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
- Center for Neuroscience and Cell Biology (CNC-UC), University of Coimbra, Palace of Schools, 3004-531 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Palace of Schools, 3004-531 Coimbra, Portugal
| | - Dirk Feldmeyer
- JARA Institute Brain Structure-Function Relationships (INM-10), Jülich Research Centre, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Sacha J van Albada
- Institute for Advanced Simulation (IAS-6), Jülich Research Centre, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
- Institute of Zoology, University of Cologne, Albertus-Magnus-Platz, 50923 Cologne, Germany
| |
Collapse
|
3
|
Chari T, Hernandez A, Couto J, Portera-Cailliau C. A failure to discriminate social from non-social touch at the circuit level may underlie social avoidance in autism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.19.599778. [PMID: 38948773 PMCID: PMC11212975 DOI: 10.1101/2024.06.19.599778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Social touch is critical for communication and to impart emotions and intentions. However, certain autistic individuals experience aversion to social touch, especially when it is unwanted. We used a novel social touch assay and Neuropixels probes to compare neural responses to social vs. non-social interactions in three relevant brain regions: vibrissal somatosensory cortex, tail of striatum, and basolateral amygdala. We find that wild type (WT) mice showed aversion to repeated presentations of an inanimate object but not of another mouse. Cortical neurons cared most about touch context (social vs. object) and showed a preference for social interactions, while striatal neurons changed their preference depending on whether mice could choose or not to interact. Amygdalar and striatal neurons were preferentially modulated by forced object touch, which was the most aversive. In contrast, the Fmr1 knockout (KO) model of autism found social and non-social interactions equally aversive and displayed more aversive facial expressions to social touch when it invaded their personal space. Importantly, when Fmr1 KO mice could choose to interact, neurons in all three regions did not discriminate social valence. Thus, a failure to differentially encode social from non-social stimuli at the circuit level may underlie social avoidance in autism.
Collapse
Affiliation(s)
- Trishala Chari
- Department of Neurology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA 90095
- Neuroscience Interdepartmental Program, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA 90095
| | - Ariana Hernandez
- Department of Neurology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA 90095
| | - João Couto
- Department of Neurobiology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA 90095
| | - Carlos Portera-Cailliau
- Department of Neurology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA 90095
- Department of Neurobiology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA 90095
| |
Collapse
|
4
|
Taub DG, Jiang Q, Pietrafesa F, Su J, Carroll A, Greene C, Blanchard MR, Jain A, El-Rifai M, Callen A, Yager K, Chung C, He Z, Chen C, Woolf CJ. The secondary somatosensory cortex gates mechanical and heat sensitivity. Nat Commun 2024; 15:1289. [PMID: 38346995 PMCID: PMC10861531 DOI: 10.1038/s41467-024-45729-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 02/01/2024] [Indexed: 02/15/2024] Open
Abstract
The cerebral cortex is vital for the processing and perception of sensory stimuli. In the somatosensory axis, information is received primarily by two distinct regions, the primary (S1) and secondary (S2) somatosensory cortices. Top-down circuits stemming from S1 can modulate mechanical and cooling but not heat stimuli such that circuit inhibition causes blunted perception. This suggests that responsiveness to particular somatosensory stimuli occurs in a modality specific fashion and we sought to determine additional cortical substrates. In this work, we identify in a mouse model that inhibition of S2 output increases mechanical and heat, but not cooling sensitivity, in contrast to S1. Combining 2-photon anatomical reconstruction with chemogenetic inhibition of specific S2 circuits, we discover that S2 projections to the secondary motor cortex (M2) govern mechanical and heat sensitivity without affecting motor performance or anxiety. Taken together, we show that S2 is an essential cortical structure that governs mechanical and heat sensitivity.
Collapse
Affiliation(s)
- Daniel G Taub
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children's Hospital, Boston, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Qiufen Jiang
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children's Hospital, Boston, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Francesca Pietrafesa
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children's Hospital, Boston, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Junfeng Su
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children's Hospital, Boston, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Aloe Carroll
- College of Sciences, Northeastern University, Boston, MA, USA
| | - Caitlin Greene
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children's Hospital, Boston, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | | | - Aakanksha Jain
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children's Hospital, Boston, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Mahmoud El-Rifai
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Alexis Callen
- Morrissey College of Arts and Sciences, Boston College, Chestnut Hill, MA, USA
| | - Katherine Yager
- Morrissey College of Arts and Sciences, Boston College, Chestnut Hill, MA, USA
| | - Clara Chung
- Department of Neuroscience, Boston University, Boston, MA, USA
| | - Zhigang He
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children's Hospital, Boston, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Chinfei Chen
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children's Hospital, Boston, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Clifford J Woolf
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children's Hospital, Boston, MA, USA.
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Kawatani M, Horio K, Ohkuma M, Li WR, Yamashita T. Interareal Synaptic Inputs Underlying Whisking-Related Activity in the Primary Somatosensory Barrel Cortex. J Neurosci 2024; 44:e1148232023. [PMID: 38050130 PMCID: PMC10860602 DOI: 10.1523/jneurosci.1148-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 12/06/2023] Open
Abstract
Body movements influence brain-wide neuronal activities. In the sensory cortex, thalamocortical bottom-up inputs and motor-sensory top-down inputs are thought to affect the dynamics of membrane potentials (Vm ) of neurons and change their processing of sensory information during movements. However, direct perturbation of the axons projecting to the sensory cortex from other remote areas during movements has remained unassessed, and therefore the interareal circuits generating motor-related signals in sensory cortices remain unclear. Using a Gi/o -coupled opsin, eOPN3, we here inhibited interareal signals incoming to the whisker primary somatosensory barrel cortex (wS1) of awake male mice and tested their effects on whisking-related changes in neuronal activities in wS1. Spontaneous whisking in air induced the changes in spike rates of a subset of wS1 neurons, which were accompanied by depolarization and substantial reduction of slow-wave oscillatory fluctuations of Vm Despite an extensive innervation, inhibition of inputs from the whisker primary motor cortex (wM1) to wS1 did not alter the spike rates and Vm dynamics of wS1 neurons during whisking. In contrast, inhibition of axons from the whisker-related thalamus (wTLM) and the whisker secondary somatosensory cortex (wS2) to wS1 largely attenuated the whisking-related supra- and sub-threshold Vm dynamics of wS1 neurons. Notably, silencing inputs from wTLM markedly decreased the modulation depth of whisking phase-tuned neurons in wS1, while inhibiting wS2 inputs did not impact the whisking variable tuning of wS1 neurons. Thus, sensorimotor integration in wS1 during spontaneous whisking is predominantly facilitated by direct synaptic inputs from wTLM and wS2 rather than from wM1.
Collapse
Affiliation(s)
- Masahiro Kawatani
- Department of Physiology, Fujita Health University School of Medicine, Toyoake, 470-1192, Japan
- Department of Functional Anatomy and Neuroscience, Graduate School of Medicine, Nagoya University, Nagoya, 466-8550, Japan
| | - Kayo Horio
- Department of Physiology, Fujita Health University School of Medicine, Toyoake, 470-1192, Japan
| | - Mahito Ohkuma
- Department of Physiology, Fujita Health University School of Medicine, Toyoake, 470-1192, Japan
| | - Wan-Ru Li
- Department of Physiology, Fujita Health University School of Medicine, Toyoake, 470-1192, Japan
- Department of Functional Anatomy and Neuroscience, Graduate School of Medicine, Nagoya University, Nagoya, 466-8550, Japan
| | - Takayuki Yamashita
- Department of Physiology, Fujita Health University School of Medicine, Toyoake, 470-1192, Japan
- International Center for Brain Science (ICBS), Fujita Health University, Toyoake, 470-1192, Japan
| |
Collapse
|
6
|
Ryan L, Sun-Yan A, Laughton M, Peron S. Cortical circuitry mediating interareal touch signal amplification. Cell Rep 2023; 42:113532. [PMID: 38064338 PMCID: PMC10842872 DOI: 10.1016/j.celrep.2023.113532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/29/2023] [Accepted: 11/16/2023] [Indexed: 12/19/2023] Open
Abstract
Sensory cortical areas are organized into topographic maps representing the sensory epithelium. Interareal projections typically connect topographically matched subregions across areas. Because matched subregions process the same stimulus, their interaction is central to many computations. Here, we ask how topographically matched subregions of primary and secondary vibrissal somatosensory cortices (vS1 and vS2) interact during active touch. Volumetric calcium imaging in mice palpating an object with two whiskers revealed a sparse population of highly responsive, broadly tuned touch neurons especially pronounced in layer 2 of both areas. These rare neurons exhibited elevated synchrony and carried most touch-evoked activity in both directions. Lesioning the subregion of either area responding to the spared whiskers degraded touch responses in the unlesioned area, with whisker-specific vS1 lesions degrading whisker-specific vS2 touch responses. Thus, a sparse population of broadly tuned touch neurons dominates vS1-vS2 communication in both directions, and topographically matched vS1 and vS2 subregions recurrently amplify whisker touch activity.
Collapse
Affiliation(s)
- Lauren Ryan
- Center for Neural Science, New York University, 4 Washington Place, Rm. 621, New York, NY 10003, USA
| | - Andrew Sun-Yan
- Center for Neural Science, New York University, 4 Washington Place, Rm. 621, New York, NY 10003, USA
| | - Maya Laughton
- Center for Neural Science, New York University, 4 Washington Place, Rm. 621, New York, NY 10003, USA
| | - Simon Peron
- Center for Neural Science, New York University, 4 Washington Place, Rm. 621, New York, NY 10003, USA.
| |
Collapse
|
7
|
Young TR, Yamamoto M, Kikuchi SS, Yoshida AC, Abe T, Inoue K, Johansen JP, Benucci A, Yoshimura Y, Shimogori T. Thalamocortical control of cell-type specificity drives circuits for processing whisker-related information in mouse barrel cortex. Nat Commun 2023; 14:6077. [PMID: 37770450 PMCID: PMC10539368 DOI: 10.1038/s41467-023-41749-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 09/15/2023] [Indexed: 09/30/2023] Open
Abstract
Excitatory spiny stellate neurons are prominently featured in the cortical circuits of sensory modalities that provide high salience and high acuity representations of the environment. These specialized neurons are considered developmentally linked to bottom-up inputs from the thalamus, however, the molecular mechanisms underlying their diversification and function are unknown. Here, we investigated this in mouse somatosensory cortex, where spiny stellate neurons and pyramidal neurons have distinct roles in processing whisker-evoked signals. Utilizing spatial transcriptomics, we identified reciprocal patterns of gene expression which correlated with these cell-types and were linked to innervation by specific thalamic inputs during development. Genetic manipulation that prevents the acquisition of spiny stellate fate highlighted an important role for these neurons in processing distinct whisker signals within functional cortical columns, and as a key driver in the formation of specific whisker-related circuits in the cortex.
Collapse
Affiliation(s)
- Timothy R Young
- Laboratory for Molecular Mechanisms of Brain Development, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Mariko Yamamoto
- Division of Visual Information Processing, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, 444-8585, Japan
| | - Satomi S Kikuchi
- Laboratory for Molecular Mechanisms of Brain Development, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Aya C Yoshida
- Laboratory for Molecular Mechanisms of Brain Development, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Takaya Abe
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 6500047, Japan
| | - Kenichi Inoue
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 6500047, Japan
| | - Joshua P Johansen
- Laboratory for Neural Circuitry of Learning and Memory, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Andrea Benucci
- Laboratory for Neural Circuits and Behavior, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Yumiko Yoshimura
- Division of Visual Information Processing, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, 444-8585, Japan
| | - Tomomi Shimogori
- Laboratory for Molecular Mechanisms of Brain Development, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| |
Collapse
|
8
|
Rowland JM, van der Plas TL, Loidolt M, Lees RM, Keeling J, Dehning J, Akam T, Priesemann V, Packer AM. Propagation of activity through the cortical hierarchy and perception are determined by neural variability. Nat Neurosci 2023; 26:1584-1594. [PMID: 37640911 PMCID: PMC10471496 DOI: 10.1038/s41593-023-01413-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/18/2023] [Indexed: 08/31/2023]
Abstract
Brains are composed of anatomically and functionally distinct regions performing specialized tasks, but regions do not operate in isolation. Orchestration of complex behaviors requires communication between brain regions, but how neural dynamics are organized to facilitate reliable transmission is not well understood. Here we studied this process directly by generating neural activity that propagates between brain regions and drives behavior, assessing how neural populations in sensory cortex cooperate to transmit information. We achieved this by imaging two densely interconnected regions-the primary and secondary somatosensory cortex (S1 and S2)-in mice while performing two-photon photostimulation of S1 neurons and assigning behavioral salience to the photostimulation. We found that the probability of perception is determined not only by the strength of the photostimulation but also by the variability of S1 neural activity. Therefore, maximizing the signal-to-noise ratio of the stimulus representation in cortex relative to the noise or variability is critical to facilitate activity propagation and perception.
Collapse
Affiliation(s)
- James M Rowland
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, UK
| | - Thijs L van der Plas
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, UK
| | - Matthias Loidolt
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, UK
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
- Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Robert M Lees
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, UK
- Science and Technology Facilities Council, Octopus Imaging Facility, Research Complex at Harwell, Harwell Campus, Oxfordshire, UK
| | - Joshua Keeling
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, UK
| | - Jonas Dehning
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
| | - Thomas Akam
- Department of Experimental Psychology, University of Oxford, Oxford, UK
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Viola Priesemann
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
- Institute for the Dynamics of Complex Systems, University of Göttingen, Göttingen, Germany
| | - Adam M Packer
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, UK.
| |
Collapse
|
9
|
Taub DG, Jiang Q, Pietrafesa F, Su J, Greene C, Blanchard MR, Jain A, El-Rifai M, Callen A, Yager K, Chung C, He Z, Chen C, Woolf CJ. The Secondary Somatosensory Cortex Gates Mechanical and Thermal Sensitivity. RESEARCH SQUARE 2023:rs.3.rs-2976953. [PMID: 37461707 PMCID: PMC10350168 DOI: 10.21203/rs.3.rs-2976953/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2023]
Abstract
The cerebral cortex is vital for the perception and processing of sensory stimuli. In the somatosensory axis, information is received by two distinct regions, the primary (S1) and secondary (S2) somatosensory cortices. Top-down circuits stemming from S1 can modulate mechanical and cooling but not heat stimuli such that circuit inhibition causes blunted mechanical and cooling perception. Using optogenetics and chemogenetics, we find that in contrast to S1, an inhibition of S2 output increases mechanical and heat, but not cooling sensitivity. Combining 2-photon anatomical reconstruction with chemogenetic inhibition of specific S2 circuits, we discover that S2 projections to the secondary motor cortex (M2) govern mechanical and thermal sensitivity without affecting motor or cognitive function. This suggests that while S2, like S1, encodes specific sensory information, that S2 operates through quite distinct neural substrates to modulate responsiveness to particular somatosensory stimuli and that somatosensory cortical encoding occurs in a largely parallel fashion.
Collapse
Affiliation(s)
- Daniel G. Taub
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Qiufen Jiang
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Francesca Pietrafesa
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Junfeng Su
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Caitlin Greene
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | | | - Aakanksha Jain
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Mahmoud El-Rifai
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Alexis Callen
- Morrissey College of Arts and Sciences, Boston College, Chestnut Hill, MA, USA
| | - Katherine Yager
- Morrissey College of Arts and Sciences, Boston College, Chestnut Hill, MA, USA
| | - Clara Chung
- Department of Neuroscience, Boston University, Boston, MA, USA
| | - Zhigang He
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Chinfei Chen
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Clifford J. Woolf
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
10
|
Ryan L, Sun-Yan A, Laughton M, Peron S. Cortical circuitry mediating inter-areal touch signal amplification. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.06.543886. [PMID: 37333308 PMCID: PMC10274616 DOI: 10.1101/2023.06.06.543886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Sensory cortical areas are often organized into topographic maps which represent the sensory epithelium1,2. Individual areas are richly interconnected3, in many cases via reciprocal projections that respect the topography of the underlying map4,5. Because topographically matched cortical patches process the same stimulus, their interaction is likely central to many neural computations6-10. Here, we ask how topographically matched subregions of primary and secondary vibrissal somatosensory cortices (vS1 and vS2) interact during whisker touch. In the mouse, whisker touch-responsive neurons are topographically organized in both vS1 and vS2. Both areas receive thalamic touch input and are topographically interconnected4. Volumetric calcium imaging in mice actively palpating an object with two whiskers revealed a sparse population of highly active, broadly tuned touch neurons responsive to both whiskers. These neurons were especially pronounced in superficial layer 2 in both areas. Despite their rarity, these neurons served as the main conduits of touch-evoked activity between vS1 and vS2 and exhibited elevated synchrony. Focal lesions of the whisker touch-responsive region in vS1 or vS2 degraded touch responses in the unlesioned area, with whisker-specific vS1 lesions degrading whisker-specific vS2 touch responses. Thus, a sparse and superficial population of broadly tuned touch neurons recurrently amplifies touch responses across vS1 and vS2.
Collapse
Affiliation(s)
- Lauren Ryan
- Center for Neural Science, New York University, 4 Washington Pl., Rm. 621, New York, NY 10003
| | - Andrew Sun-Yan
- Center for Neural Science, New York University, 4 Washington Pl., Rm. 621, New York, NY 10003
| | - Maya Laughton
- Center for Neural Science, New York University, 4 Washington Pl., Rm. 621, New York, NY 10003
| | - Simon Peron
- Center for Neural Science, New York University, 4 Washington Pl., Rm. 621, New York, NY 10003
| |
Collapse
|
11
|
Taub DG, Jiang Q, Pietrafesa F, Su J, Greene C, Blanchard MR, Jain A, El-Rifai M, Callen A, Yager K, Chung C, He Z, Chen C, Woolf CJ. The Secondary Somatosensory Cortex Gates Mechanical and Thermal Sensitivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.19.541449. [PMID: 37293011 PMCID: PMC10245795 DOI: 10.1101/2023.05.19.541449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The cerebral cortex is vital for the perception and processing of sensory stimuli. In the somatosensory axis, information is received by two distinct regions, the primary (S1) and secondary (S2) somatosensory cortices. Top-down circuits stemming from S1 can modulate mechanical and cooling but not heat stimuli such that circuit inhibition causes blunted mechanical and cooling perception. Using optogenetics and chemogenetics, we find that in contrast to S1, an inhibition of S2 output increases mechanical and heat, but not cooling sensitivity. Combining 2-photon anatomical reconstruction with chemogenetic inhibition of specific S2 circuits, we discover that S2 projections to the secondary motor cortex (M2) govern mechanical and thermal sensitivity without affecting motor or cognitive function. This suggests that while S2, like S1, encodes specific sensory information, that S2 operates through quite distinct neural substrates to modulate responsiveness to particular somatosensory stimuli and that somatosensory cortical encoding occurs in a largely parallel fashion.
Collapse
|
12
|
Multi-finger receptive field properties in primary somatosensory cortex: A revised account of the spatiotemporal integration functions of area 3b. Cell Rep 2023; 42:112176. [PMID: 36867529 DOI: 10.1016/j.celrep.2023.112176] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 08/14/2022] [Accepted: 02/11/2023] [Indexed: 03/04/2023] Open
Abstract
The leading view in the somatosensory system indicates that area 3b serves as a cortical relay site that primarily encodes (cutaneous) tactile features limited to individual digits. Our recent work argues against this model by showing that area 3b cells can integrate both cutaneous and proprioceptive information from the hand. Here, we further test the validity of this model by studying multi-digit (MD) integration properties in area 3b. In contrast to the prevailing view, we show that most cells in area 3b have a receptive field (RF) that extends to multiple digits, with the size of the RF (i.e., the number of responsive digits) increasing across time. Further, we show that MD cells' orientation angle preference is highly correlated across digits. Taken together, these data show that area 3b plays a larger role in generating neural representations of tactile objects, as opposed to just being a "feature detector" relay site.
Collapse
|
13
|
Banerjee A, Wang BA, Teutsch J, Helmchen F, Pleger B. Analogous cognitive strategies for tactile learning in the rodent and human brain. Prog Neurobiol 2023; 222:102401. [PMID: 36608783 DOI: 10.1016/j.pneurobio.2023.102401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 12/21/2022] [Accepted: 01/02/2023] [Indexed: 01/05/2023]
Abstract
Evolution has molded individual species' sensory capacities and abilities. In rodents, who mostly inhabit dark tunnels and burrows, the whisker-based somatosensory system has developed as the dominant sensory modality, essential for environmental exploration and spatial navigation. In contrast, humans rely more on visual and auditory inputs when collecting information from their surrounding sensory space in everyday life. As a result of such species-specific differences in sensory dominance, cognitive relevance and capacities, the evidence for analogous sensory-cognitive mechanisms across species remains sparse. However, recent research in rodents and humans yielded surprisingly comparable processing rules for detecting tactile stimuli, integrating touch information into percepts, and goal-directed rule learning. Here, we review how the brain, across species, harnesses such processing rules to establish decision-making during tactile learning, following canonical circuits from the thalamus and the primary somatosensory cortex up to the frontal cortex. We discuss concordances between empirical and computational evidence from micro- and mesoscopic circuit studies in rodents to findings from macroscopic imaging in humans. Furthermore, we discuss the relevance and challenges for future cross-species research in addressing mutual context-dependent evaluation processes underpinning perceptual learning.
Collapse
Affiliation(s)
- Abhishek Banerjee
- Adaptive Decisions Lab, Biosciences Institute, Newcastle University, United Kingdom.
| | - Bin A Wang
- Department of Neurology, BG University Hospital Bergmannsheil, Ruhr University Bochum, Germany; Collaborative Research Centre 874 "Integration and Representation of Sensory Processes", Ruhr University Bochum, Germany.
| | - Jasper Teutsch
- Adaptive Decisions Lab, Biosciences Institute, Newcastle University, United Kingdom
| | - Fritjof Helmchen
- Laboratory of Neural Circuit Dynamics, Brain Research Institute, University of Zürich, Switzerland
| | - Burkhard Pleger
- Department of Neurology, BG University Hospital Bergmannsheil, Ruhr University Bochum, Germany; Collaborative Research Centre 874 "Integration and Representation of Sensory Processes", Ruhr University Bochum, Germany
| |
Collapse
|
14
|
Oral Treatment with the Extract of Euterpe oleracea Mart. Improves Motor Dysfunction and Reduces Brain Injury in Rats Subjected to Ischemic Stroke. Nutrients 2023; 15:nu15051207. [PMID: 36904206 PMCID: PMC10005587 DOI: 10.3390/nu15051207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 03/08/2023] Open
Abstract
Ischemic stroke is one of the principal causes of morbidity and mortality around the world. The pathophysiological mechanisms that lead to the formation of the stroke lesions range from the bioenergetic failure of the cells and the intense production of reactive oxygen species to neuroinflammation. The fruit of the açaí palm, Euterpe oleracea Mart. (EO), is consumed by traditional populations in the Brazilian Amazon region, and it is known to have antioxidant and anti-inflammatory properties. We evaluated whether the clarified extract of EO was capable of reducing the area of lesion and promoting neuronal survival following ischemic stroke in rats. Animals submitted to ischemic stroke and treated with EO extract presented a significant improvement in their neurological deficit from the ninth day onward. We also observed a reduction in the extent of the cerebral injury and the preservation of the neurons of the cortical layers. Taken together, our findings indicate that treatment with EO extract in the acute phase following a stroke can trigger signaling pathways that culminate in neuronal survival and promote the partial recovery of neurological scores. However, further detailed studies of the intracellular signaling pathways are needed to better understand the mechanisms involved.
Collapse
|
15
|
English G, Ghasemi Nejad N, Sommerfelt M, Yanik MF, von der Behrens W. Bayesian surprise shapes neural responses in somatosensory cortical circuits. Cell Rep 2023; 42:112009. [PMID: 36701237 DOI: 10.1016/j.celrep.2023.112009] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 09/16/2022] [Accepted: 12/31/2022] [Indexed: 01/26/2023] Open
Abstract
Numerous psychophysical studies show that Bayesian inference governs sensory decision-making; however, the specific neural circuitry underlying this probabilistic mechanism remains unclear. We record extracellular neural activity along the somatosensory pathway of mice while delivering sensory stimulation paradigms designed to isolate the response to the surprise generated by Bayesian inference. Our results demonstrate that laminar cortical circuits in early sensory areas encode Bayesian surprise. Systematic sensitivity to surprise is not identified in the somatosensory thalamus, rather emerging in the primary (S1) and secondary (S2) somatosensory cortices. Multiunit spiking activity and evoked potentials in layer 6 of these regions exhibit the highest sensitivity to surprise. Gamma power in S1 layer 2/3 exhibits an NMDAR-dependent scaling with surprise, as does alpha power in layers 2/3 and 6 of S2. These results show a precise spatiotemporal neural representation of Bayesian surprise and suggest that Bayesian inference is a fundamental component of cortical processing.
Collapse
Affiliation(s)
- Gwendolyn English
- Institute of Neuroinformatics, ETH Zurich & University of Zurich, 8057 Zurich, Switzerland; ZNZ Neuroscience Center Zurich, ETH Zurich & University of Zurich, 8057 Zurich, Switzerland.
| | - Newsha Ghasemi Nejad
- Institute of Neuroinformatics, ETH Zurich & University of Zurich, 8057 Zurich, Switzerland; ZNZ Neuroscience Center Zurich, ETH Zurich & University of Zurich, 8057 Zurich, Switzerland
| | - Marcel Sommerfelt
- Institute of Neuroinformatics, ETH Zurich & University of Zurich, 8057 Zurich, Switzerland
| | - Mehmet Fatih Yanik
- Institute of Neuroinformatics, ETH Zurich & University of Zurich, 8057 Zurich, Switzerland; ZNZ Neuroscience Center Zurich, ETH Zurich & University of Zurich, 8057 Zurich, Switzerland
| | - Wolfger von der Behrens
- Institute of Neuroinformatics, ETH Zurich & University of Zurich, 8057 Zurich, Switzerland; ZNZ Neuroscience Center Zurich, ETH Zurich & University of Zurich, 8057 Zurich, Switzerland.
| |
Collapse
|
16
|
Gellért L, Luhmann HJ, Kilb W. Axonal connections between S1 barrel, M1, and S2 cortex in the newborn mouse. Front Neuroanat 2023; 17:1105998. [PMID: 36760662 PMCID: PMC9905141 DOI: 10.3389/fnana.2023.1105998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/09/2023] [Indexed: 01/26/2023] Open
Abstract
The development of functionally interconnected networks between primary (S1), secondary somatosensory (S2), and motor (M1) cortical areas requires coherent neuronal activity via corticocortical projections. However, the anatomical substrate of functional connections between S1 and M1 or S2 during early development remains elusive. In the present study, we used ex vivo carbocyanine dye (DiI) tracing in paraformaldehyde-fixed newborn mouse brain to investigate axonal projections of neurons in different layers of S1 barrel field (S1Bf), M1, and S2 toward the subplate (SP), a hub layer for sensory information transfer in the immature cortex. In addition, we performed extracellular recordings in neocortical slices to unravel the functional connectivity between these areas. Our experiments demonstrate that already at P0 neurons from the cortical plate (CP), layer 5/6 (L5/6), and the SP of both M1 and S2 send projections through the SP of S1Bf. Reciprocally, neurons from CP to SP of S1Bf send projections through the SP of M1 and S2. Electrophysiological recordings with multi-electrode arrays in cortical slices revealed weak, but functional synaptic connections between SP and L5/6 within and between S1 and M1. An even lower functional connectivity was observed between S1 and S2. In summary, our findings demonstrate that functional connections between SP and upper cortical layers are not confined to the same cortical area, but corticocortical connection between adjacent cortical areas exist already at the day of birth. Hereby, SP can integrate early cortical activity of M1, S1, and S2 and shape the development of sensorimotor integration at an early stage.
Collapse
|
17
|
Lu J, Chen B, Levy M, Xu P, Han BX, Takatoh J, Thompson PM, He Z, Prevosto V, Wang F. Somatosensory cortical signature of facial nociception and vibrotactile touch-induced analgesia. SCIENCE ADVANCES 2022; 8:eabn6530. [PMID: 36383651 PMCID: PMC9668294 DOI: 10.1126/sciadv.abn6530] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Pain relief by vibrotactile touch is a common human experience. Previous neurophysiological investigations of its underlying mechanism in animals focused on spinal circuits, while human studies suggested the involvement of supraspinal pathways. Here, we examine the role of primary somatosensory cortex (S1) in touch-induced mechanical and heat analgesia. We found that, in mice, vibrotactile reafferent signals from self-generated whisking significantly reduce facial nociception, which is abolished by specifically blocking touch transmission from thalamus to the barrel cortex (S1B). Using a signal separation algorithm that can decompose calcium signals into sensory-evoked, whisking, or face-wiping responses, we found that the presence of whisking altered nociceptive signal processing in S1B neurons. Analysis of S1B population dynamics revealed that whisking pushes the transition of the neural state induced by noxious stimuli toward the outcome of non-nocifensive actions. Thus, S1B integrates facial tactile and noxious signals to enable touch-mediated analgesia.
Collapse
Affiliation(s)
- Jinghao Lu
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Neurobiology, Duke University, Durham, NC 27710, USA
| | - Bin Chen
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Manuel Levy
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Peng Xu
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Bao-Xia Han
- Department of Neurobiology, Duke University, Durham, NC 27710, USA
| | - Jun Takatoh
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - P. M. Thompson
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Zhigang He
- Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Vincent Prevosto
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Fan Wang
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Neurobiology, Duke University, Durham, NC 27710, USA
| |
Collapse
|
18
|
Shen S, Jiang X, Scala F, Fu J, Fahey P, Kobak D, Tan Z, Zhou N, Reimer J, Sinz F, Tolias AS. Distinct organization of two cortico-cortical feedback pathways. Nat Commun 2022; 13:6389. [PMID: 36302912 PMCID: PMC9613627 DOI: 10.1038/s41467-022-33883-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 10/06/2022] [Indexed: 12/25/2022] Open
Abstract
Neocortical feedback is critical for attention, prediction, and learning. To mechanically understand its function requires deciphering its cell-type wiring. Recent studies revealed that feedback between primary motor to primary somatosensory areas in mice is disinhibitory, targeting vasoactive intestinal peptide-expressing interneurons, in addition to pyramidal cells. It is unknown whether this circuit motif represents a general cortico-cortical feedback organizing principle. Here we show that in contrast to this wiring rule, feedback between higher-order lateromedial visual area to primary visual cortex preferentially activates somatostatin-expressing interneurons. Functionally, both feedback circuits temporally sharpen feed-forward excitation eliciting a transient increase-followed by a prolonged decrease-in pyramidal cell activity under sustained feed-forward input. However, under feed-forward transient input, the primary motor to primary somatosensory cortex feedback facilitates bursting while lateromedial area to primary visual cortex feedback increases time precision. Our findings argue for multiple cortico-cortical feedback motifs implementing different dynamic non-linear operations.
Collapse
Affiliation(s)
- Shan Shen
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Xiaolong Jiang
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
| | - Federico Scala
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Jiakun Fu
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Paul Fahey
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Dmitry Kobak
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Zhenghuan Tan
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Na Zhou
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Jacob Reimer
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Fabian Sinz
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Bernstein Center for Computational Neuroscience, University of Tübingen, Tübingen, Germany
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany
| | - Andreas S Tolias
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA.
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
- Department of Electrical and Computational Engineering, Rice University, Houston, TX, USA.
| |
Collapse
|
19
|
Cai L, Yang JW, Wang CF, Chou SJ, Luhmann HJ, Karayannis T. Identification of a Developmental Switch in Information Transfer between Whisker S1 and S2 Cortex in Mice. J Neurosci 2022; 42:4435-4448. [PMID: 35501157 PMCID: PMC9172289 DOI: 10.1523/jneurosci.2246-21.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 12/03/2022] Open
Abstract
The whiskers of rodents are a key sensory organ that provides critical tactile information for animal navigation and object exploration throughout life. Previous work has explored the developmental sensory-driven activation of the primary sensory cortex processing whisker information (wS1), also called barrel cortex. This body of work has shown that the barrel cortex is already activated by sensory stimuli during the first postnatal week. However, it is currently unknown when over the course of development these stimuli begin being processed by higher-order cortical areas, such as secondary whisker somatosensory area (wS2). Here we investigate the developmental engagement of wS2 by whisker stimuli and the emergence of corticocortical communication from wS1 to wS2. Using in vivo wide-field imaging and multielectrode recordings in control and conditional KO mice of either sex with thalamocortical innervation defects, we find that wS1 and wS2 are able to process bottom-up information coming from the thalamus from birth. We also identify that it is only at the end of the first postnatal week that wS1 begins to provide functional excitation into wS2, switching to more inhibitory actions after the second postnatal week. Therefore, we have uncovered a developmental window when information transfer between wS1 and wS2 reaches mature function.SIGNIFICANCE STATEMENT At the end of the first postnatal week, the primary whisker somatosensory area starts providing excitatory input to the secondary whisker somatosensory area 2. This excitatory drive weakens during the second postnatal week and switches to inhibition in the adult.
Collapse
Affiliation(s)
- Linbi Cai
- Laboratory of Neural Circuit Assembly, Brain Research Institute, University of Zürich, CH-8057, Zürich, Switzerland
| | - Jenq-Wei Yang
- Laboratory of Neural Circuit Assembly, Brain Research Institute, University of Zürich, CH-8057, Zürich, Switzerland
- Institute of Physiology, University Medical Center, Johannes Gutenberg University Mainz, 55128, Mainz, Germany
| | - Chia-Fang Wang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Shen-Ju Chou
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Heiko J Luhmann
- Institute of Physiology, University Medical Center, Johannes Gutenberg University Mainz, 55128, Mainz, Germany
| | - Theofanis Karayannis
- Laboratory of Neural Circuit Assembly, Brain Research Institute, University of Zürich, CH-8057, Zürich, Switzerland
| |
Collapse
|
20
|
Pala A, Stanley GB. Ipsilateral Stimulus Encoding in Primary and Secondary Somatosensory Cortex of Awake Mice. J Neurosci 2022; 42:2701-2715. [PMID: 35135855 PMCID: PMC8973421 DOI: 10.1523/jneurosci.1417-21.2022] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 11/21/2022] Open
Abstract
Lateralization is a hallmark of somatosensory processing in the mammalian brain. However, in addition to their contralateral representation, unilateral tactile stimuli also modulate neuronal activity in somatosensory cortices of the ipsilateral hemisphere. The cellular organization and functional role of these ipsilateral stimulus responses in awake somatosensory cortices, especially regarding stimulus coding, are unknown. Here, we targeted silicon probe recordings to the vibrissa region of primary (S1) and secondary (S2) somatosensory cortex of awake head-fixed mice of either sex while delivering ipsilateral and contralateral whisker stimuli. Ipsilateral stimuli drove larger and more reliable responses in S2 than in S1, and activated a larger fraction of stimulus-responsive neurons. Ipsilateral stimulus-responsive neurons were rare in layer 4 of S1, but were located in equal proportion across all layers in S2. Linear classifier analyses further revealed that decoding of the ipsilateral stimulus was more accurate in S2 than S1, whereas S1 decoded contralateral stimuli most accurately. These results reveal substantial encoding of ipsilateral stimuli in S1 and especially S2, consistent with the hypothesis that higher cortical areas may integrate tactile inputs across larger portions of space, spanning both sides of the body.SIGNIFICANCE STATEMENT Tactile information obtained by one side of the body is represented in the activity of neurons of the opposite brain hemisphere. However, unilateral tactile stimulation also modulates neuronal activity in the other, or ipsilateral, brain hemisphere. This ipsilateral activity may play an important role in the representation and processing of tactile information, in particular when the sense of touch involves both sides of the body. Our work in the whisker system of awake mice reveals that neocortical ipsilateral activity, in particular that of deep layer excitatory neurons of secondary somatosensory cortex (S2), contains information about the presence and the velocity of unilateral tactile stimuli, which supports a key role for S2 in integrating tactile information across both body sides.
Collapse
Affiliation(s)
- Aurélie Pala
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, 30332
| | - Garrett B Stanley
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, 30332
| |
Collapse
|
21
|
Chevée M, Finkel EA, Kim SJ, O’Connor DH, Brown SP. Neural activity in the mouse claustrum in a cross-modal sensory selection task. Neuron 2022; 110:486-501.e7. [PMID: 34863367 PMCID: PMC8829966 DOI: 10.1016/j.neuron.2021.11.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 09/28/2021] [Accepted: 11/12/2021] [Indexed: 02/04/2023]
Abstract
The claustrum, a subcortical nucleus forming extensive connections with the neocortex, has been implicated in sensory selection. Sensory-evoked claustrum activity is thought to modulate the neocortex's context-dependent response to sensory input. Recording from claustrum neurons while mice performed a tactile-visual sensory-selection task, we found that neurons in the anterior claustrum, including putative optotagged claustrocortical neurons projecting to the primary somatosensory cortex (S1), were rarely modulated by sensory input. Rather, they exhibited different types of direction-tuned motor responses. Furthermore, we found that claustrum neurons encoded upcoming movement during intertrial intervals and that pairs of claustrum neurons exhibiting synchronous firing were enriched for pairs preferring contralateral lick directions, suggesting that the activity of specific ensembles of similarly tuned claustrum neurons may modulate cortical activity. Chemogenetic inhibition of claustrocortical neurons decreased lick responses to inappropriate sensory stimuli. Altogether, our data indicate that the claustrum is integrated into higher-order premotor circuits recently implicated in decision-making.
Collapse
Affiliation(s)
- Maxime Chevée
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA.,Biochemistry, Cellular and Molecular Biology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Eric A. Finkel
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Su-Jeong Kim
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Daniel H. O’Connor
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA.,Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA.,Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Solange P. Brown
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA.,Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA.,Lead contact,Correspondence:
| |
Collapse
|
22
|
Whilden CM, Chevée M, An SY, Brown SP. The synaptic inputs and thalamic projections of two classes of layer 6 corticothalamic neurons in primary somatosensory cortex of the mouse. J Comp Neurol 2021; 529:3751-3771. [PMID: 33908623 PMCID: PMC8551307 DOI: 10.1002/cne.25163] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 12/11/2022]
Abstract
Although corticothalamic neurons (CThNs) represent the largest source of synaptic input to thalamic neurons, their role in regulating thalamocortical interactions remains incompletely understood. CThNs in sensory cortex have historically been divided into two types, those with cell bodies in Layer 6 (L6) that project back to primary sensory thalamic nuclei and those with cell bodies in Layer 5 (L5) that project to higher-order thalamic nuclei and subcortical structures. Recently, diversity among L6 CThNs has increasingly been appreciated. In the rodent somatosensory cortex, two major classes of L6 CThNs have been identified: one projecting to the ventral posterior medial nucleus (VPM-only L6 CThNs) and one projecting to both VPM and the posterior medial nucleus (VPM/POm L6 CThNs). Using rabies-based tracing methods in mice, we asked whether these L6 CThN populations integrate similar synaptic inputs. We found that both types of L6 CThNs received local input from somatosensory cortex and thalamic input from VPM and POm. However, VPM/POm L6 CThNs received significantly more input from a number of additional cortical areas, higher order thalamic nuclei, and subcortical structures. We also found that the two types of L6 CThNs target different functional regions within the thalamic reticular nucleus (TRN). Together, our results indicate that these two types of L6 CThNs represent distinct information streams in the somatosensory cortex and suggest that VPM-only L6 CThNs regulate, via their more restricted circuits, sensory responses related to a cortical column while VPM/POm L6 CThNs, which are integrated into more widespread POm-related circuits, relay contextual information.
Collapse
Affiliation(s)
- Courtney Michelle Whilden
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Program in Neuroscience, Harvard Medical School, Boston, Massachusetts, USA
| | - Maxime Chevée
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Biochemistry, Cellular and Molecular Biology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
| | - Seong Yeol An
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Solange Pezon Brown
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
23
|
Schmidt ERE, Zhao HT, Park JM, Dipoppa M, Monsalve-Mercado MM, Dahan JB, Rodgers CC, Lejeune A, Hillman EMC, Miller KD, Bruno RM, Polleux F. A human-specific modifier of cortical connectivity and circuit function. Nature 2021; 599:640-644. [PMID: 34707291 PMCID: PMC9161439 DOI: 10.1038/s41586-021-04039-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 09/17/2021] [Indexed: 01/04/2023]
Abstract
The cognitive abilities that characterize humans are thought to emerge from unique features of the cortical circuit architecture of the human brain, which include increased cortico-cortical connectivity. However, the evolutionary origin of these changes in connectivity and how they affected cortical circuit function and behaviour are currently unknown. The human-specific gene duplication SRGAP2C emerged in the ancestral genome of the Homo lineage before the major phase of increase in brain size1,2. SRGAP2C expression in mice increases the density of excitatory and inhibitory synapses received by layer 2/3 pyramidal neurons (PNs)3-5. Here we show that the increased number of excitatory synapses received by layer 2/3 PNs induced by SRGAP2C expression originates from a specific increase in local and long-range cortico-cortical connections. Mice humanized for SRGAP2C expression in all cortical PNs displayed a shift in the fraction of layer 2/3 PNs activated by sensory stimulation and an enhanced ability to learn a cortex-dependent sensory-discrimination task. Computational modelling revealed that the increased layer 4 to layer 2/3 connectivity induced by SRGAP2C expression explains some of the key changes in sensory coding properties. These results suggest that the emergence of SRGAP2C at the birth of the Homo lineage contributed to the evolution of specific structural and functional features of cortical circuits in the human cortex.
Collapse
Affiliation(s)
- Ewoud R E Schmidt
- Department of Neuroscience, Columbia University, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Hanzhi T Zhao
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
- Department of Biomedical Engineering and Radiology, Columbia University, New York, NY, USA
| | - Jung M Park
- Department of Neuroscience, Columbia University, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Mario Dipoppa
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
- Center for Theoretical Neuroscience, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Mauro M Monsalve-Mercado
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
- Center for Theoretical Neuroscience, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Jacob B Dahan
- Department of Neuroscience, Columbia University, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Chris C Rodgers
- Department of Neuroscience, Columbia University, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
- Kavli Institute for Brain Science, Columbia University, New York, NY, USA
| | - Amélie Lejeune
- Department of Neuroscience, Columbia University, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Elizabeth M C Hillman
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
- Department of Biomedical Engineering and Radiology, Columbia University, New York, NY, USA
| | - Kenneth D Miller
- Department of Neuroscience, Columbia University, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
- Center for Theoretical Neuroscience, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Kavli Institute for Brain Science, Columbia University, New York, NY, USA
| | - Randy M Bruno
- Department of Neuroscience, Columbia University, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
- Kavli Institute for Brain Science, Columbia University, New York, NY, USA
| | - Franck Polleux
- Department of Neuroscience, Columbia University, New York, NY, USA.
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA.
- Kavli Institute for Brain Science, Columbia University, New York, NY, USA.
| |
Collapse
|
24
|
Di Volo M, Férézou I. Nonlinear collision between propagating waves in mouse somatosensory cortex. Sci Rep 2021; 11:19630. [PMID: 34608205 PMCID: PMC8490437 DOI: 10.1038/s41598-021-99057-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 09/13/2021] [Indexed: 11/22/2022] Open
Abstract
How does cellular organization shape the spatio-temporal patterns of activity in the cortex while processing sensory information? After measuring the propagation of activity in the mouse primary somatosensory cortex (S1) in response to single whisker deflections with Voltage Sensitive Dye (VSD) imaging, we developed a two dimensional model of S1. We designed an inference method to reconstruct model parameters from VSD data, revealing that a spatially heterogeneous organization of synaptic strengths between pyramidal neurons in S1 is likely to be responsible for the heterogeneous spatio-temporal patterns of activity measured experimentally. The model shows that, for strong enough excitatory cortical interactions, whisker deflections generate a propagating wave in S1. Finally, we report that two consecutive stimuli activating different spatial locations in S1 generate two waves which collide sub-linearly, giving rise to a suppressive wave. In the inferred model, the suppressive wave is explained by a lower sensitivity to external perturbations of neural networks during activated states.
Collapse
Affiliation(s)
- M Di Volo
- Laboratoire de Physique Théorique et Modélisation, CY Cergy Paris Université, 95302, Cergy-Pontoise Cedex, France.
| | - I Férézou
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
25
|
Oka Y, Doi M, Taniguchi M, Tiong SYX, Akiyama H, Yamamoto T, Iguchi T, Sato M. Interstitial Axon Collaterals of Callosal Neurons Form Association Projections from the Primary Somatosensory to Motor Cortex in Mice. Cereb Cortex 2021; 31:5225-5238. [PMID: 34228058 PMCID: PMC8491696 DOI: 10.1093/cercor/bhab153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/12/2021] [Accepted: 05/12/2021] [Indexed: 11/14/2022] Open
Abstract
Association projections from cortical pyramidal neurons connect disparate intrahemispheric cortical areas, which are implicated in higher cortical functions. The underlying developmental processes of these association projections, especially the initial phase before reaching the target areas, remain unknown. To visualize developing axons of individual neurons with association projections in the mouse neocortex, we devised a sparse labeling method that combined in utero electroporation and confocal imaging of flattened and optically cleared cortices. Using the promoter of an established callosal neuron marker gene that was expressed in over 80% of L2/3 neurons in the primary somatosensory cortex (S1) that project to the primary motor cortex (M1), we found that an association projection of a single neuron was the longest among the interstitial collaterals that branched out in L5 from the earlier-extended callosal projection. Collaterals to M1 elongated primarily within the cortical gray matter with little branching before reaching the target. Our results suggest that dual-projection neurons in S1 make a significant fraction of the association projections to M1, supporting the directed guidance mechanism in long-range corticocortical circuit formation over random projections followed by specific pruning.
Collapse
Affiliation(s)
- Yuichiro Oka
- Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan.,Molecular Brain Science, Division of Developmental Neuroscience, Department of Child Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui (UGSCD), Osaka University, Suita, Osaka 565-0871, Japan.,Division of Cell Biology and Neuroscience, Department of Morphological and Physiological Sciences, Faculty of Medical Sciences, University of Fukui, Eiheiji, Fukui 910-1193, Japan.,Research Center for Child Mental Development, University of Fukui, Eiheiji, Fukui 910-1193, Japan
| | - Miyuki Doi
- Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Manabu Taniguchi
- Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Sheena Y X Tiong
- Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan.,Molecular Brain Science, Division of Developmental Neuroscience, Department of Child Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui (UGSCD), Osaka University, Suita, Osaka 565-0871, Japan.,Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Hisanori Akiyama
- Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Takuto Yamamoto
- Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Tokuichi Iguchi
- Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan.,Division of Cell Biology and Neuroscience, Department of Morphological and Physiological Sciences, Faculty of Medical Sciences, University of Fukui, Eiheiji, Fukui 910-1193, Japan.,Department of Nursing, Faculty of Health Science, Fukui Health Science University, Fukui, Fukui 910-3190, Japan
| | - Makoto Sato
- Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan.,Molecular Brain Science, Division of Developmental Neuroscience, Department of Child Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui (UGSCD), Osaka University, Suita, Osaka 565-0871, Japan.,Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan.,Division of Cell Biology and Neuroscience, Department of Morphological and Physiological Sciences, Faculty of Medical Sciences, University of Fukui, Eiheiji, Fukui 910-1193, Japan.,Research Center for Child Mental Development, University of Fukui, Eiheiji, Fukui 910-1193, Japan
| |
Collapse
|
26
|
Burns TF, Rajan R. Sensing and processing whisker deflections in rodents. PeerJ 2021; 9:e10730. [PMID: 33665005 PMCID: PMC7906041 DOI: 10.7717/peerj.10730] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 12/17/2020] [Indexed: 11/20/2022] Open
Abstract
The classical view of sensory information mainly flowing into barrel cortex at layer IV, moving up for complex feature processing and lateral interactions in layers II and III, then down to layers V and VI for output and corticothalamic feedback is becoming increasingly undermined by new evidence. We review the neurophysiology of sensing and processing whisker deflections, emphasizing the general processing and organisational principles present along the entire sensory pathway—from the site of physical deflection at the whiskers to the encoding of deflections in the barrel cortex. Many of these principles support the classical view. However, we also highlight the growing number of exceptions to these general principles, which complexify the system and which investigators should be mindful of when interpreting their results. We identify gaps in the literature for experimentalists and theorists to investigate, not just to better understand whisker sensation but also to better understand sensory and cortical processing.
Collapse
Affiliation(s)
- Thomas F Burns
- Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Ramesh Rajan
- Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
27
|
Wenzel M, Leunig A, Han S, Peterka DS, Yuste R. Prolonged anesthesia alters brain synaptic architecture. Proc Natl Acad Sci U S A 2021; 118:e2023676118. [PMID: 33568534 PMCID: PMC7924219 DOI: 10.1073/pnas.2023676118] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Prolonged medically induced coma (pMIC) is carried out routinely in intensive care medicine. pMIC leads to cognitive impairment, yet the underlying neuromorphological correlates are still unknown, as no direct studies of MIC exceeding ∼6 h on neural circuits exist. Here, we establish pMIC (up to 24 h) in adolescent and mature mice, and combine longitudinal two-photon imaging of cortical synapses with repeated behavioral object recognition assessments. We find that pMIC affects object recognition, and that it is associated with enhanced synaptic turnover, generated by enhanced synapse formation during pMIC, while the postanesthetic period is dominated by synaptic loss. Our results demonstrate major side effects of prolonged anesthesia on neural circuit structure.
Collapse
Affiliation(s)
- Michael Wenzel
- Neurotechnology Center, Department of Biological Sciences, Columbia University, New York, NY 10027
| | - Alexander Leunig
- Neurotechnology Center, Department of Biological Sciences, Columbia University, New York, NY 10027
| | - Shuting Han
- Neurotechnology Center, Department of Biological Sciences, Columbia University, New York, NY 10027
| | - Darcy S Peterka
- Neurotechnology Center, Department of Biological Sciences, Columbia University, New York, NY 10027
| | - Rafael Yuste
- Neurotechnology Center, Department of Biological Sciences, Columbia University, New York, NY 10027
| |
Collapse
|
28
|
Young H, Belbut B, Baeta M, Petreanu L. Laminar-specific cortico-cortical loops in mouse visual cortex. eLife 2021; 10:e59551. [PMID: 33522479 PMCID: PMC7877907 DOI: 10.7554/elife.59551] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 01/29/2021] [Indexed: 11/13/2022] Open
Abstract
Many theories propose recurrent interactions across the cortical hierarchy, but it is unclear if cortical circuits are selectively wired to implement looped computations. Using subcellular channelrhodopsin-2-assisted circuit mapping in mouse visual cortex, we compared feedforward (FF) or feedback (FB) cortico-cortical (CC) synaptic input to cells projecting back to the input source (looped neurons) with cells projecting to a different cortical or subcortical area. FF and FB afferents showed similar cell-type selectivity, making stronger connections with looped neurons than with other projection types in layer (L)5 and L6, but not in L2/3, resulting in selective modulation of activity in looped neurons. In most cases, stronger connections in looped L5 neurons were located on their apical tufts, but not on their perisomatic dendrites. Our results reveal that CC connections are selectively wired to form monosynaptic excitatory loops and support a differential role of supragranular and infragranular neurons in hierarchical recurrent computations.
Collapse
Affiliation(s)
- Hedi Young
- Champalimaud Research, Champalimaud Center for the UnknownLisbonPortugal
| | - Beatriz Belbut
- Champalimaud Research, Champalimaud Center for the UnknownLisbonPortugal
| | - Margarida Baeta
- Champalimaud Research, Champalimaud Center for the UnknownLisbonPortugal
| | - Leopoldo Petreanu
- Champalimaud Research, Champalimaud Center for the UnknownLisbonPortugal
| |
Collapse
|
29
|
Naskar S, Qi J, Pereira F, Gerfen CR, Lee S. Cell-type-specific recruitment of GABAergic interneurons in the primary somatosensory cortex by long-range inputs. Cell Rep 2021; 34:108774. [PMID: 33626343 PMCID: PMC7995594 DOI: 10.1016/j.celrep.2021.108774] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 10/12/2020] [Accepted: 01/29/2021] [Indexed: 12/14/2022] Open
Abstract
Extensive hierarchical yet highly reciprocal interactions among cortical areas are fundamental for information processing. However, connectivity rules governing the specificity of such corticocortical connections, and top-down feedback projections in particular, are poorly understood. We analyze synaptic strength from functionally relevant brain areas to diverse neuronal types in the primary somatosensory cortex (S1). Long-range projections from different areas preferentially engage specific sets of GABAergic neurons in S1. Projections from other somatosensory cortices strongly recruit parvalbumin (PV)-positive GABAergic neurons and lead to PV neuron-mediated feedforward inhibition of pyramidal neurons in S1. In contrast, inputs from whisker-related primary motor cortex are biased to vasoactive intestinal peptide (VIP)-positive GABAergic neurons and potentially result in VIP neuron-mediated disinhibition. Regardless of the input areas, somatostatin-positive neurons receive relatively weak long-range inputs. Computational analyses suggest that a characteristic combination of synaptic inputs to different GABAergic IN types in S1 represents a specific long-range input area. Naskar et al. show how functionally relevant brain areas interact with neurons in the primary somatosensory cortex, demonstrating that long-range projections from diverse brain areas differentially recruit specific subtypes of GABAergic neurons in S1, and each distinct subtype of GABAergic neurons differentially affects local network activity in S1.
Collapse
Affiliation(s)
- Shovan Naskar
- Unit on Functional Neural Circuits, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jia Qi
- Unit on Functional Neural Circuits, National Institutes of Health, Bethesda, MD 20892, USA
| | - Francisco Pereira
- Machine Learning Team, National Institutes of Health, Bethesda, MD 20892, USA
| | - Charles R Gerfen
- Section on Neuroanatomy, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Soohyun Lee
- Unit on Functional Neural Circuits, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
30
|
Staiger JF, Petersen CCH. Neuronal Circuits in Barrel Cortex for Whisker Sensory Perception. Physiol Rev 2020; 101:353-415. [PMID: 32816652 DOI: 10.1152/physrev.00019.2019] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The array of whiskers on the snout provides rodents with tactile sensory information relating to the size, shape and texture of objects in their immediate environment. Rodents can use their whiskers to detect stimuli, distinguish textures, locate objects and navigate. Important aspects of whisker sensation are thought to result from neuronal computations in the whisker somatosensory cortex (wS1). Each whisker is individually represented in the somatotopic map of wS1 by an anatomical unit named a 'barrel' (hence also called barrel cortex). This allows precise investigation of sensory processing in the context of a well-defined map. Here, we first review the signaling pathways from the whiskers to wS1, and then discuss current understanding of the various types of excitatory and inhibitory neurons present within wS1. Different classes of cells can be defined according to anatomical, electrophysiological and molecular features. The synaptic connectivity of neurons within local wS1 microcircuits, as well as their long-range interactions and the impact of neuromodulators, are beginning to be understood. Recent technological progress has allowed cell-type-specific connectivity to be related to cell-type-specific activity during whisker-related behaviors. An important goal for future research is to obtain a causal and mechanistic understanding of how selected aspects of tactile sensory information are processed by specific types of neurons in the synaptically connected neuronal networks of wS1 and signaled to downstream brain areas, thus contributing to sensory-guided decision-making.
Collapse
Affiliation(s)
- Jochen F Staiger
- University Medical Center Göttingen, Institute for Neuroanatomy, Göttingen, Germany; and Laboratory of Sensory Processing, Faculty of Life Sciences, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Carl C H Petersen
- University Medical Center Göttingen, Institute for Neuroanatomy, Göttingen, Germany; and Laboratory of Sensory Processing, Faculty of Life Sciences, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
31
|
Affiliation(s)
- Henry Kennedy
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, France
- Institute of Neuroscience, Chinese Academy of Sciences, China
| | - Colette Dehay
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, France
| |
Collapse
|
32
|
Condylis C, Lowet E, Ni J, Bistrong K, Ouellette T, Josephs N, Chen JL. Context-Dependent Sensory Processing across Primary and Secondary Somatosensory Cortex. Neuron 2020; 106:515-525.e5. [PMID: 32164873 DOI: 10.1016/j.neuron.2020.02.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 11/11/2019] [Accepted: 02/06/2020] [Indexed: 12/16/2022]
Abstract
To interpret the environment, our brain must evaluate external stimuli against internal representations from past experiences. How primary (S1) and secondary (S2) somatosensory cortices process stimuli depending on recent experiences is unclear. Using simultaneous multi-area population imaging of projection neurons and focal optogenetic inactivation, we studied mice performing a whisker-based working memory task. We find that activity reflecting a current stimulus, the recollection of a previous stimulus (cued recall), and the stimulus category are distributed across S1 and S2. Despite this overlapping representation, S2 is important for processing cued recall responses and transmitting these responses to S1. S2 network properties differ from S1, wherein S2 persistently encodes cued recall and the stimulus category under passive conditions. Although both areas encode the stimulus category, only information in S1 is important for task performance through pathways that do not necessarily include S2. These findings reveal both distributed and segregated roles for S1 and S2 in context-dependent sensory processing.
Collapse
Affiliation(s)
- Cameron Condylis
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Eric Lowet
- Department of Biology, Boston University, Boston, MA 02215, USA; Center for Systems Neuroscience, Boston University, Boston, MA 02215, USA
| | - Jianguang Ni
- Department of Biology, Boston University, Boston, MA 02215, USA; Center for Systems Neuroscience, Boston University, Boston, MA 02215, USA
| | - Karina Bistrong
- Department of Biology, Boston University, Boston, MA 02215, USA
| | | | - Nathaniel Josephs
- Department of Mathematics and Statistics, Boston University, Boston, MA 02215, USA
| | - Jerry L Chen
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; Department of Biology, Boston University, Boston, MA 02215, USA; Center for Systems Neuroscience, Boston University, Boston, MA 02215, USA.
| |
Collapse
|
33
|
Layer-specific sensory processing impairment in the primary somatosensory cortex after motor cortex infarction. Sci Rep 2020; 10:3771. [PMID: 32111927 PMCID: PMC7048762 DOI: 10.1038/s41598-020-60662-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 02/13/2020] [Indexed: 12/21/2022] Open
Abstract
Primary motor cortex (M1) infarctions sometimes cause sensory impairment. Because sensory signals play a vital role in motor control, sensory impairment compromises the recovery and rehabilitation of motor disability. However, the neural mechanism of the sensory impairment is poorly understood. We show that sensory processing in mouse primary somatosensory cortex (S1) was impaired in the acute phase of M1 infarctions and recovered in a layer-specific manner in the subacute phase. This layer-dependent recovery process and the anatomical connection pattern from M1 to S1 suggested that functional connectivity from M1 to S1 plays a key role in the sensory processing impairment. A simulation study demonstrated that the loss of inhibition from M1 to S1 in the acute phase of M1 infarctions could impair sensory processing in S1, and compensation for the inhibition could recover the temporal coding. Consistently, the optogenetic activation of M1 suppressed the sustained response in S1. Taken together, we revealed how focal stroke in M1 alters the cortical network activity of sensory processing, in which inhibitory input from M1 to S1 may be involved.
Collapse
|
34
|
Hubatz S, Hucher G, Shulz DE, Férézou I. Spatiotemporal properties of whisker-evoked tactile responses in the mouse secondary somatosensory cortex. Sci Rep 2020; 10:763. [PMID: 31964984 PMCID: PMC6972923 DOI: 10.1038/s41598-020-57684-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 12/27/2019] [Indexed: 01/08/2023] Open
Abstract
The representation of rodents' mystacial vibrissae within the primary somatosensory (S1) cortex has become a major model for studying the cortical processing of tactile sensory information. However, upon vibrissal stimulation, tactile information first reaches S1 but also, almost simultaneously, the secondary somatosensory cortex (S2). To further understand the role of S2 in the processing of whisker inputs, it is essential to characterize the spatio-temporal properties of whisker-evoked response dynamics in this area. Here we describe the topography of the whiskers representation in the mouse S2 with voltage sensitive dye imaging. Analysis of the spatial properties of the early S2 responses induced by stimulating individually 22 to 24 whiskers revealed that they are spatially ordered in a mirror symmetric map with respect to S1 responses. Evoked signals in S2 and S1 are of similar amplitude and closely correlated at the single trial level. They confirm a short delay (~3 ms) between S1 and S2 early activation. In both S1 and S2 caudo-dorsal whiskers induce stronger responses than rostro-ventral ones. Finally, analysis of early C2-evoked responses indicates a faster activation of neighboring whisker representations in S2 relative to S1, probably due to the reduced size of the whisker map in S2.
Collapse
Affiliation(s)
- Sophie Hubatz
- Department of Integrative and Computational Neuroscience (ICN), Université Paris-Saclay, CNRS, Institut des Neurosciences Paris Saclay, Gif-sur-Yvette, 91190, France
- Institut de biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, 75005, France
| | - Guillaume Hucher
- Department of Integrative and Computational Neuroscience (ICN), Université Paris-Saclay, CNRS, Institut des Neurosciences Paris Saclay, Gif-sur-Yvette, 91190, France
| | - Daniel E Shulz
- Department of Integrative and Computational Neuroscience (ICN), Université Paris-Saclay, CNRS, Institut des Neurosciences Paris Saclay, Gif-sur-Yvette, 91190, France.
| | - Isabelle Férézou
- Department of Integrative and Computational Neuroscience (ICN), Université Paris-Saclay, CNRS, Institut des Neurosciences Paris Saclay, Gif-sur-Yvette, 91190, France.
| |
Collapse
|
35
|
Harris JA, Mihalas S, Hirokawa KE, Whitesell JD, Choi H, Bernard A, Bohn P, Caldejon S, Casal L, Cho A, Feiner A, Feng D, Gaudreault N, Gerfen CR, Graddis N, Groblewski PA, Henry AM, Ho A, Howard R, Knox JE, Kuan L, Kuang X, Lecoq J, Lesnar P, Li Y, Luviano J, McConoughey S, Mortrud MT, Naeemi M, Ng L, Oh SW, Ouellette B, Shen E, Sorensen SA, Wakeman W, Wang Q, Wang Y, Williford A, Phillips JW, Jones AR, Koch C, Zeng H. Hierarchical organization of cortical and thalamic connectivity. Nature 2019; 575:195-202. [PMID: 31666704 PMCID: PMC8433044 DOI: 10.1038/s41586-019-1716-z] [Citation(s) in RCA: 341] [Impact Index Per Article: 68.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 09/24/2019] [Indexed: 01/23/2023]
Abstract
The mammalian cortex is a laminar structure containing many areas and cell types that are densely interconnected in complex ways, and for which generalizable principles of organization remain mostly unknown. Here we describe a major expansion of the Allen Mouse Brain Connectivity Atlas resource1, involving around a thousand new tracer experiments in the cortex and its main satellite structure, the thalamus. We used Cre driver lines (mice expressing Cre recombinase) to comprehensively and selectively label brain-wide connections by layer and class of projection neuron. Through observations of axon termination patterns, we have derived a set of generalized anatomical rules to describe corticocortical, thalamocortical and corticothalamic projections. We have built a model to assign connection patterns between areas as either feedforward or feedback, and generated testable predictions of hierarchical positions for individual cortical and thalamic areas and for cortical network modules. Our results show that cell-class-specific connections are organized in a shallow hierarchy within the mouse corticothalamic network.
Collapse
Affiliation(s)
| | | | | | | | - Hannah Choi
- Allen Institute for Brain Science, Seattle, WA, USA
- University of Washington, Department of Applied Mathematics, Seattle, WA, USA
| | - Amy Bernard
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Phillip Bohn
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Linzy Casal
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Andrew Cho
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Aaron Feiner
- Allen Institute for Brain Science, Seattle, WA, USA
| | - David Feng
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Charles R Gerfen
- Laboratory of Systems Neuroscience, National Institute of Mental Health, Bethesda, MD, USA
| | - Nile Graddis
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Alex M Henry
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Anh Ho
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | - Leonard Kuan
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Xiuli Kuang
- Wenzhou Medical University, Wenzhou, P. R. China
| | - Jerome Lecoq
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Phil Lesnar
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Yaoyao Li
- Wenzhou Medical University, Wenzhou, P. R. China
| | | | | | | | | | - Lydia Ng
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | - Elise Shen
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | - Quanxin Wang
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Yun Wang
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | | | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA, USA
| |
Collapse
|
36
|
Hafner G, Witte M, Guy J, Subhashini N, Fenno LE, Ramakrishnan C, Kim YS, Deisseroth K, Callaway EM, Oberhuber M, Conzelmann KK, Staiger JF. Mapping Brain-Wide Afferent Inputs of Parvalbumin-Expressing GABAergic Neurons in Barrel Cortex Reveals Local and Long-Range Circuit Motifs. Cell Rep 2019; 28:3450-3461.e8. [PMID: 31553913 PMCID: PMC6897332 DOI: 10.1016/j.celrep.2019.08.064] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 07/23/2019] [Accepted: 08/21/2019] [Indexed: 12/22/2022] Open
Abstract
Parvalbumin (PV)-expressing GABAergic neurons are the largest class of inhibitory neocortical cells. We visualize brain-wide, monosynaptic inputs to PV neurons in mouse barrel cortex. We develop intersectional rabies virus tracing to specifically target GABAergic PV cells and exclude a small fraction of excitatory PV cells from our starter population. Local inputs are mainly from layer (L) IV and excitatory cells. A small number of inhibitory inputs originate from LI neurons, which connect to LII/III PV neurons. Long-range inputs originate mainly from other sensory cortices and the thalamus. In visual cortex, most transsynaptically labeled neurons are located in LIV, which contains a molecularly mixed population of projection neurons with putative functional similarity to LIII neurons. This study expands our knowledge of the brain-wide circuits in which PV neurons are embedded and introduces intersectional rabies virus tracing as an applicable tool to dissect the circuitry of more clearly defined cell types.
Collapse
Affiliation(s)
- Georg Hafner
- Institute for Neuroanatomy, University Medical Center Göttingen, Georg-August-University Göttingen, 37075 Göttingen, Germany
| | - Mirko Witte
- Institute for Neuroanatomy, University Medical Center Göttingen, Georg-August-University Göttingen, 37075 Göttingen, Germany
| | - Julien Guy
- Institute for Neuroanatomy, University Medical Center Göttingen, Georg-August-University Göttingen, 37075 Göttingen, Germany
| | - Nidhi Subhashini
- Institute for Neuroanatomy, University Medical Center Göttingen, Georg-August-University Göttingen, 37075 Göttingen, Germany
| | - Lief E Fenno
- Departments of Bioengineering and Psychiatry and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Charu Ramakrishnan
- Departments of Bioengineering and Psychiatry and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Yoon Seok Kim
- Departments of Bioengineering and Psychiatry and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Karl Deisseroth
- Departments of Bioengineering and Psychiatry and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Edward M Callaway
- Systems Neurobiology Laboratories, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Martina Oberhuber
- Max von Pettenkofer-Institute, Virology & Gene Center, Faculty of Medicine, Ludwig-Maximilians-University Munich, 80336 Munich, Germany
| | - Karl-Klaus Conzelmann
- Max von Pettenkofer-Institute, Virology & Gene Center, Faculty of Medicine, Ludwig-Maximilians-University Munich, 80336 Munich, Germany
| | - Jochen F Staiger
- Institute for Neuroanatomy, University Medical Center Göttingen, Georg-August-University Göttingen, 37075 Göttingen, Germany.
| |
Collapse
|
37
|
Abstract
Tactile sensory information from facial whiskers provides nocturnal tunnel-dwelling rodents, including mice and rats, with important spatial and textural information about their immediate surroundings. Whiskers are moved back and forth to scan the environment (whisking), and touch signals from each whisker evoke sparse patterns of neuronal activity in whisker-related primary somatosensory cortex (wS1; barrel cortex). Whisking is accompanied by desynchronized brain states and cell-type-specific changes in spontaneous and evoked neuronal activity. Tactile information, including object texture and location, appears to be computed in wS1 through integration of motor and sensory signals. wS1 also directly controls whisker movements and contributes to learned, whisker-dependent, goal-directed behaviours. The cell-type-specific neuronal circuitry in wS1 that contributes to whisker sensory perception is beginning to be defined.
Collapse
|
38
|
Zhang W, Bruno RM. High-order thalamic inputs to primary somatosensory cortex are stronger and longer lasting than cortical inputs. eLife 2019; 8:44158. [PMID: 30741160 PMCID: PMC6370338 DOI: 10.7554/elife.44158] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 01/28/2019] [Indexed: 11/15/2022] Open
Abstract
Layer (L) 2/3 pyramidal neurons in the primary somatosensory cortex (S1) are sparsely active, spontaneously and during sensory stimulation. Long-range inputs from higher areas may gate L2/3 activity. We investigated their in vivo impact by expressing channelrhodopsin in three main sources of feedback to rat S1: primary motor cortex, secondary somatosensory cortex, and secondary somatosensory thalamic nucleus (the posterior medial nucleus, POm). Inputs from cortical areas were relatively weak. POm, however, more robustly depolarized L2/3 cells and, when paired with peripheral stimulation, evoked action potentials. POm triggered not only a stronger fast-onset depolarization but also a delayed all-or-none persistent depolarization, lasting up to 1 s and exhibiting alpha/beta-range oscillations. Inactivating POm somata abolished persistent but not initial depolarization, indicating a recurrent circuit mechanism. We conclude that secondary thalamus can enhance L2/3 responsiveness over long periods. Such timescales could provide a potential modality-specific substrate for attention, working memory, and plasticity.
Collapse
Affiliation(s)
- Wanying Zhang
- Department of Neuroscience, Columbia University, New York, United States
| | - Randy M Bruno
- Department of Neuroscience, Columbia University, New York, United States.,Kavli Institute for Brain Science, Columbia University, New York, United States.,Zuckerman Mind Brain Behavior Institute, Columbia University, New York, United States
| |
Collapse
|