1
|
Lu D, Faizi M, Drown B, Simerzin A, François J, Bradshaw G, Kelleher N, Jambhekar A, Gunawardena J, Lahav G. Temporal regulation of gene expression through integration of p53 dynamics and modifications. SCIENCE ADVANCES 2024; 10:eadp2229. [PMID: 39454005 PMCID: PMC11506164 DOI: 10.1126/sciadv.adp2229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 09/20/2024] [Indexed: 10/27/2024]
Abstract
The master regulator of the DNA damage response, the transcription factor p53, orchestrates multiple downstream responses and coordinates repair processes. In response to double-strand DNA breaks, p53 exhibits pulses of expression, but how it achieves temporal coordination of downstream responses remains unclear. Here, we show that p53's posttranslational modification state is altered between its first and second pulses of expression. We show that acetylations at two sites, K373 and K382, were reduced in the second pulse, and these acetylations differentially affected p53 target genes, resulting in changes in gene expression programs over time. This interplay between dynamics and modification may offer a strategy for cellular hubs like p53 to temporally organize multiple processes in individual cells.
Collapse
Affiliation(s)
- Dan Lu
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA
| | - Marjan Faizi
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA
| | - Bryon Drown
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Alina Simerzin
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA
| | - Joshua François
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA
| | - Gary Bradshaw
- Laboratory of Systems Pharmacology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA
| | - Neil Kelleher
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Ashwini Jambhekar
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA
- Ludwig Center at Harvard Medical School, Boston, MA 02115, USA
| | - Jeremy Gunawardena
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA
| | - Galit Lahav
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA
- Ludwig Center at Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
2
|
Song B, Yang P, Zhang S. Cell fate regulation governed by p53: Friends or reversible foes in cancer therapy. Cancer Commun (Lond) 2024; 44:297-360. [PMID: 38311377 PMCID: PMC10958678 DOI: 10.1002/cac2.12520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/03/2024] [Accepted: 01/11/2024] [Indexed: 02/10/2024] Open
Abstract
Cancer is a leading cause of death worldwide. Targeted therapies aimed at key oncogenic driver mutations in combination with chemotherapy and radiotherapy as well as immunotherapy have benefited cancer patients considerably. Tumor protein p53 (TP53), a crucial tumor suppressor gene encoding p53, regulates numerous downstream genes and cellular phenotypes in response to various stressors. The affected genes are involved in diverse processes, including cell cycle arrest, DNA repair, cellular senescence, metabolic homeostasis, apoptosis, and autophagy. However, accumulating recent studies have continued to reveal novel and unexpected functions of p53 in governing the fate of tumors, for example, functions in ferroptosis, immunity, the tumor microenvironment and microbiome metabolism. Among the possibilities, the evolutionary plasticity of p53 is the most controversial, partially due to the dizzying array of biological functions that have been attributed to different regulatory mechanisms of p53 signaling. Nearly 40 years after its discovery, this key tumor suppressor remains somewhat enigmatic. The intricate and diverse functions of p53 in regulating cell fate during cancer treatment are only the tip of the iceberg with respect to its equally complicated structural biology, which has been painstakingly revealed. Additionally, TP53 mutation is one of the most significant genetic alterations in cancer, contributing to rapid cancer cell growth and tumor progression. Here, we summarized recent advances that implicate altered p53 in modulating the response to various cancer therapies, including chemotherapy, radiotherapy, and immunotherapy. Furthermore, we also discussed potential strategies for targeting p53 as a therapeutic option for cancer.
Collapse
Affiliation(s)
- Bin Song
- Laboratory of Radiation MedicineWest China Second University HospitalSichuan UniversityChengduSichuanP. R. China
| | - Ping Yang
- Laboratory of Radiation MedicineWest China Second University HospitalSichuan UniversityChengduSichuanP. R. China
| | - Shuyu Zhang
- Laboratory of Radiation MedicineWest China Second University HospitalSichuan UniversityChengduSichuanP. R. China
- The Second Affiliated Hospital of Chengdu Medical CollegeChina National Nuclear Corporation 416 HospitalChengduSichuanP. R. China
- Laboratory of Radiation MedicineNHC Key Laboratory of Nuclear Technology Medical TransformationWest China School of Basic Medical Sciences & Forensic MedicineSichuan UniversityChengduSichuanP. R. China
| |
Collapse
|
3
|
Velmurugan GV, Hubbard WB, Prajapati P, Vekaria HJ, Patel SP, Rabchevsky AG, Sullivan PG. LRP1 Deficiency Promotes Mitostasis in Response to Oxidative Stress: Implications for Mitochondrial Targeting after Traumatic Brain Injury. Cells 2023; 12:1445. [PMID: 37408279 PMCID: PMC10217498 DOI: 10.3390/cells12101445] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 07/07/2023] Open
Abstract
The brain undergoes oxidative stress and mitochondrial dysfunction following physiological insults such as Traumatic brain injury (TBI), ischemia-reperfusion, and stroke. Pharmacotherapeutics targeting mitochondria (mitoceuticals) against oxidative stress include antioxidants, mild uncouplers, and enhancers of mitochondrial biogenesis, which have been shown to improve pathophysiological outcomes after TBI. However, to date, there is no effective treatment for TBI. Studies have suggested that the deletion of LDL receptor-related protein 1 (LRP1) in adult neurons or glial cells could be beneficial and promote neuronal health. In this study, we used WT and LRP1 knockout (LKO) mouse embryonic fibroblast cells to examine mitochondrial outcomes following exogenous oxidative stress. Furthermore, we developed a novel technique to measure mitochondrial morphometric dynamics using transgenic mitochondrial reporter mice mtD2g (mitochondrial-specific Dendra2 green) in a TBI model. We found that oxidative stress increased the quantity of fragmented and spherical-shaped mitochondria in the injury core of the ipsilateral cortex following TBI, whereas rod-like elongated mitochondria were seen in the corresponding contralateral cortex. Critically, LRP1 deficiency significantly decreased mitochondrial fragmentation, preserving mitochondrial function and cell growth following exogenous oxidative stress. Collectively, our results show that targeting LRP1 to improve mitochondrial function is a potential pharmacotherapeutic strategy against oxidative damage in TBI and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Gopal V. Velmurugan
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 405036, USA; (G.V.V.); (W.B.H.); (P.P.); (H.J.V.); (S.P.P.); (A.G.R.)
- Department of Neuroscience, University of Kentucky, Lexington, KY 40536, USA
| | - W. Brad Hubbard
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 405036, USA; (G.V.V.); (W.B.H.); (P.P.); (H.J.V.); (S.P.P.); (A.G.R.)
- Lexington Veterans’ Affairs Healthcare System, Lexington, KY 40502, USA
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA
| | - Paresh Prajapati
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 405036, USA; (G.V.V.); (W.B.H.); (P.P.); (H.J.V.); (S.P.P.); (A.G.R.)
- Department of Neuroscience, University of Kentucky, Lexington, KY 40536, USA
- Lexington Veterans’ Affairs Healthcare System, Lexington, KY 40502, USA
| | - Hemendra J. Vekaria
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 405036, USA; (G.V.V.); (W.B.H.); (P.P.); (H.J.V.); (S.P.P.); (A.G.R.)
- Department of Neuroscience, University of Kentucky, Lexington, KY 40536, USA
- Lexington Veterans’ Affairs Healthcare System, Lexington, KY 40502, USA
| | - Samir P. Patel
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 405036, USA; (G.V.V.); (W.B.H.); (P.P.); (H.J.V.); (S.P.P.); (A.G.R.)
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA
| | - Alexander G. Rabchevsky
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 405036, USA; (G.V.V.); (W.B.H.); (P.P.); (H.J.V.); (S.P.P.); (A.G.R.)
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA
| | - Patrick G. Sullivan
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 405036, USA; (G.V.V.); (W.B.H.); (P.P.); (H.J.V.); (S.P.P.); (A.G.R.)
- Department of Neuroscience, University of Kentucky, Lexington, KY 40536, USA
- Lexington Veterans’ Affairs Healthcare System, Lexington, KY 40502, USA
| |
Collapse
|
4
|
Tatavosian R, Donovan MG, Galbraith MD, Duc HN, Szwarc MM, Joshi MU, Frieman A, Bilousova G, Cao Y, Smith KP, Song K, Rachubinski AL, Andrysik Z, Espinosa JM. Cell differentiation modifies the p53 transcriptional program through a combination of gene silencing and constitutive transactivation. Cell Death Differ 2023; 30:952-965. [PMID: 36681780 PMCID: PMC10070495 DOI: 10.1038/s41418-023-01113-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 01/22/2023] Open
Abstract
The p53 transcription factor is a master regulator of cellular responses to stress that is commonly inactivated in diverse cancer types. Despite decades of research, the mechanisms by which p53 impedes tumorigenesis across vastly different cellular contexts requires further investigation. The bulk of research has been completed using in vitro studies of cancer cell lines or in vivo studies in mouse models, but much less is known about p53 action in diverse non-transformed human tissues. Here, we investigated how different cellular states modify the p53 transcriptional program in human cells through a combination of computational analyses of publicly available large-scale datasets and in vitro studies using an isogenic system consisting of induced pluripotent stem cells (iPSCs) and two derived lineages. Analysis of publicly available mRNA expression and genetic dependency data demonstrated wide variation in terms of expression and function of a core p53 transcriptional program across various tissues and lineages. To monitor the impact of cell differentiation on the p53 transcriptome within an isogenic cell culture system, we activated p53 by pharmacological inhibition of its negative regulator MDM2. Using cell phenotyping assays and genome wide transcriptome analyses, we demonstrated that cell differentiation confines and modifies the p53 transcriptional network in a lineage-specific fashion. Although hundreds of p53 target genes are transactivated in iPSCs, only a small fraction is transactivated in each of the differentiated lineages. Mechanistic studies using small molecule inhibitors and genetic knockdowns revealed the presence of two major regulatory mechanisms contributing to this massive heterogeneity across cellular states: gene silencing by epigenetic regulatory complexes and constitutive transactivation by lineage-specific transcription factors. Altogether, these results illuminate the impact of cell differentiation on the p53 program, thus advancing our understanding of how this tumor suppressor functions in different contexts.
Collapse
Affiliation(s)
- Roubina Tatavosian
- Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Linda Crnic Institute for Down Syndrome, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Micah G Donovan
- Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Matthew D Galbraith
- Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Linda Crnic Institute for Down Syndrome, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Huy N Duc
- Functional Genomics Facility, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Maria M Szwarc
- Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Molishree U Joshi
- Functional Genomics Facility, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Amy Frieman
- Charles C. Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Ganna Bilousova
- Charles C. Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Yingqiong Cao
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Keith P Smith
- Linda Crnic Institute for Down Syndrome, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Kunhua Song
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Angela L Rachubinski
- Linda Crnic Institute for Down Syndrome, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Section of Developmental Pediatrics, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Zdenek Andrysik
- Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| | - Joaquin M Espinosa
- Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
- Linda Crnic Institute for Down Syndrome, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
- Functional Genomics Facility, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
5
|
Sanford JD, Jin A, Grois GA, Zhang Y. A role of cytoplasmic p53 in the regulation of metabolism shown by bat-mimicking p53 NLS mutant mice. Cell Rep 2023; 42:111920. [PMID: 36640361 DOI: 10.1016/j.celrep.2022.111920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 10/02/2022] [Accepted: 12/13/2022] [Indexed: 12/30/2022] Open
Abstract
The transcription factor p53 suppresses tumorigenesis via a wide-ranging, concerted set of functions. Although several studies have identified cytoplasmic, transcription-independent functions of p53, the biological relevance of these activities has not been fully elucidated, particularly in vivo. Here, we generated a mouse model with a p53K316P mutation, which mimics a naturally occurring p53 nuclear localization signal (NLS) change observed in bat species. We find that the p53K316P mutation increases cytoplasmic localization of p53 and promotes a pleiotropic metabolic phenotype that includes increased adiposity, increased de novo lipogenesis, and decreased lactate generation. Mechanistic studies show that, independent of its transactivation function, p53K316P interacts with lactate dehydrogenase B (LDHB) and alters the composition and enzymatic activities of LDH complex favoring pyruvate generation and hindering lactate production. Overall, the study identifies a role for cytoplasmic p53 in the regulation of metabolism that favors energy generation and storage.
Collapse
Affiliation(s)
- Jack D Sanford
- Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Aiwen Jin
- Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Gabriella A Grois
- Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Yanping Zhang
- Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA; Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA.
| |
Collapse
|
6
|
Sun H, Cheng R, Zhang D, Guo Y, Li F, Li Y, Li Y, Bai X, Mo J, Huang C. MIF promotes cell invasion by the LRP1-uPAR interaction in pancreatic cancer cells. Front Oncol 2023; 12:1028070. [PMID: 36703790 PMCID: PMC9871987 DOI: 10.3389/fonc.2022.1028070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/20/2022] [Indexed: 01/12/2023] Open
Abstract
Introduction Pancreatic ductal adenocarcinoma (PDAC) is characterized by high aggressiveness and a hypoxic tumour microenvironment. Macrophage migration inhibitory factor (MIF) is a hypoxia-related pleiotropic cytokine that plays important roles in cancer. However, its role in PDAC progression has not been fully elucidated. Methods The clinical significance of MIF and hypoxia inducible factor 1 subunit alpha (HIF1A) in PDAC was analysed using immunohistochemical staining on PDAC tissues and data from KM-Plotter database. Spatial distribution of MIF and HIF1A gene expression was visualized by spatial transcriptomics in PDAC cell xenografts. To monitor the role of MIF in PDAC cell malignancy, immunostaining, lentivirus shRNA, migration assays, flow cytometry, transcriptomics and in vivo tumorigenicity were performed. Results The spatial distribution of MIF and HIF1A was highly correlated and that high MIF expression was associated with poor prognosis of PDAC patients. MIF knockdown impaired cell invasion, with a decrease in the expression of urokinase-type plasminogen activator receptor (uPAR). Although PLAUR transcript was not reduced, a uPAR endocytic receptor, low-density lipoprotein receptor-related protein 1 (LRP1), was upregulated at both the mRNA and protein levels after MIF knockdown. The LRP1 antagonist RAP restored uPAR expression and invasiveness. MIF attenuated the nuclear translocation of p53, a transcriptional regulator of LRP1. Furthermore, MIF downregulation blunted the growth of PDAC cell xenografts and inhibited cell proliferation under normoxia and hypoxia. Transcriptome analysis also provided evidence for the role of MIF in cancer-associated pathways. Discussion We demonstrate a novel link between the two pro-invasive agents MIF and uPAR and explain how MIF increases PDAC cell invasion capability. This finding provides a basis for therapeutic intervention of MIF in PDAC progression.
Collapse
Affiliation(s)
- Huizhi Sun
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Runfen Cheng
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Danfang Zhang
- Department of Pathology, Tianjin Medical University, Tianjin, China
| | - Yuhong Guo
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Fan Li
- Department of Pathology, Tianjin Medical University, Tianjin, China
| | - Yanlei Li
- Department of Pathology, Tianjin Medical University, Tianjin, China
| | - Yue Li
- Department of Pathology, Tianjin Medical University, Tianjin, China
| | - Xiaoyu Bai
- Department of Pathology, Tianjin Medical University, Tianjin, China
| | - Jing Mo
- Department of Pathology, Tianjin Medical University, Tianjin, China,*Correspondence: Chongbiao Huang, ; Jing Mo,
| | - Chongbiao Huang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China,*Correspondence: Chongbiao Huang, ; Jing Mo,
| |
Collapse
|
7
|
Verma N, Velmurugan GV, Winford E, Coburn H, Kotiya D, Leibold N, Radulescu L, Despa S, Chen KC, Van Eldik LJ, Nelson PT, Wilcock DM, Jicha GA, Stowe AM, Goldstein LB, Powel DK, Walton JH, Navedo MF, Nystoriak MA, Murray AJ, Biessels GJ, Troakes C, Zetterberg H, Hardy J, Lashley T, Despa F. Aβ efflux impairment and inflammation linked to cerebrovascular accumulation of amyloid-forming amylin secreted from pancreas. Commun Biol 2023; 6:2. [PMID: 36596993 PMCID: PMC9810597 DOI: 10.1038/s42003-022-04398-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 12/21/2022] [Indexed: 01/04/2023] Open
Abstract
Impairment of vascular pathways of cerebral β-amyloid (Aβ) elimination contributes to Alzheimer disease (AD). Vascular damage is commonly associated with diabetes. Here we show in human tissues and AD-model rats that bloodborne islet amyloid polypeptide (amylin) secreted from the pancreas perturbs cerebral Aβ clearance. Blood amylin concentrations are higher in AD than in cognitively unaffected persons. Amyloid-forming amylin accumulates in circulating monocytes and co-deposits with Aβ within the brain microvasculature, possibly involving inflammation. In rats, pancreatic expression of amyloid-forming human amylin indeed induces cerebrovascular inflammation and amylin-Aβ co-deposits. LRP1-mediated Aβ transport across the blood-brain barrier and Aβ clearance through interstitial fluid drainage along vascular walls are impaired, as indicated by Aβ deposition in perivascular spaces. At the molecular level, cerebrovascular amylin deposits alter immune and hypoxia-related brain gene expression. These converging data from humans and laboratory animals suggest that altering bloodborne amylin could potentially reduce cerebrovascular amylin deposits and Aβ pathology.
Collapse
Affiliation(s)
- Nirmal Verma
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
- The Research Center for Healthy Metabolism, University of Kentucky, Lexington, KY, USA
| | | | - Edric Winford
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
- Department of Neuroscience, University of Kentucky, Lexington, KY, USA
| | - Han Coburn
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Deepak Kotiya
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
- The Research Center for Healthy Metabolism, University of Kentucky, Lexington, KY, USA
| | - Noah Leibold
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
- The Research Center for Healthy Metabolism, University of Kentucky, Lexington, KY, USA
| | - Laura Radulescu
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
- The Research Center for Healthy Metabolism, University of Kentucky, Lexington, KY, USA
| | - Sanda Despa
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
- The Research Center for Healthy Metabolism, University of Kentucky, Lexington, KY, USA
| | - Kuey C Chen
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
- UKHC Genomics Laboratory, University of Kentucky, Lexington, KY, USA
| | - Linda J Van Eldik
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Peter T Nelson
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Donna M Wilcock
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Gregory A Jicha
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
- Department of Neurology, University of Kentucky, Lexington, KY, USA
| | - Ann M Stowe
- Department of Neurology, University of Kentucky, Lexington, KY, USA
| | | | - David K Powel
- Magnetic Resonance Imaging and Spectroscopy Center, University of Kentucky, Lexington, KY, USA
| | | | - Manuel F Navedo
- Department of Pharmacology, University of California, Davis, CA, USA
| | | | - Andrew J Murray
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK
| | - Geert Jan Biessels
- Department of Neurology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Claire Troakes
- Basic and Clinical Neuroscience Department, King's College London, London, UK
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- UK Dementia Research Institute at UCL and Department of Neurodegenerative Disease, UCL Institute of Neurology, University College London, London, UK
| | - John Hardy
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- UK Dementia Research Institute at UCL and Department of Neurodegenerative Disease, UCL Institute of Neurology, University College London, London, UK
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, 1 Wakefield Street, London, WC1N 1PJ, UK
- UCL Movement Disorders Centre, University College London, London, UK
- Institute for Advanced Study, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Tammaryn Lashley
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, London, UK
| | - Florin Despa
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA.
- The Research Center for Healthy Metabolism, University of Kentucky, Lexington, KY, USA.
- Department of Neuroscience, University of Kentucky, Lexington, KY, USA.
- Department of Neurology, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
8
|
Salama Y, Takahashi S, Tsuda Y, Okada Y, Hattori K, Heissig B. YO2 Induces Melanoma Cell Apoptosis through p53-Mediated LRP1 Downregulation. Cancers (Basel) 2022; 15:288. [PMID: 36612285 PMCID: PMC9818169 DOI: 10.3390/cancers15010288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/25/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023] Open
Abstract
The multifunctional endocytic receptor low-density lipoprotein receptor-related protein 1 (LRP1) has been implicated in melanoma growth. However, the mechanism of LRP1 expression in melanoma cells remains only partially understood. In most melanomas, the TP53 tumor suppressor is retained as a non-mutated, inactive form that fails to suppress tumors. We identify TP53 as a regulator of LRP1-mediated tumor growth. TP53 enhances the expression of miRNA miR-103/107. These miRNAs target LRP1 expression on melanoma cells. TP53 overexpression in human and murine melanoma cells was achieved using lentivirus or treatment with the small molecule YO-2, a plasmin inhibitor known to induce apoptosis in various cancer cell lines. TP53 restoration enhanced the expression of the tumor suppressor miR-103/107, resulting in the downregulation of LRP1 and suppression of tumor growth in vivo and in vitro. Furthermore, LRP1 overexpression or p53 downregulation prevented YO-2-mediated melanoma growth inhibition. We identified YO-2 as a novel p53 inducer in melanoma cells. Cotreatment of YO-2 with doxorubicin blocked tumor growth in vivo and in a murine melanoma model, suggesting that YO-2 exerts anti-melanoma effects alone or in combination with conventional myelosuppressive drugs.
Collapse
Affiliation(s)
- Yousef Salama
- An-Najah Center for Cancer and Stem Cell Research, Faculty of Medicine and Health Sciences, An-Najah National University, P.O. Box 7, Nablus 99900800, Palestine
| | - Satoshi Takahashi
- Division of Clinical Genome Research, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Yuko Tsuda
- The Faculty of Pharmaceutical Science, Kobe Gakuin University, 518 Arise, Ikawadani-Cho, Nishi-Ku, Kobe 651-2180, Japan
| | - Yoshio Okada
- The Faculty of Pharmaceutical Science, Kobe Gakuin University, 518 Arise, Ikawadani-Cho, Nishi-Ku, Kobe 651-2180, Japan
| | - Koichi Hattori
- Center for Genome and Regenerative Medicine, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-Ku, Tokyo 113-8421, Japan
| | - Beate Heissig
- Department of Research Support Utilizing Bioresource Bank, Graduate School of Medicine, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo 113-8421, Japan
| |
Collapse
|
9
|
Kang L, Luo J, Li P, Zhang G, Wei M, Ji M, Guan H. miR-125a-3p regulates apoptosis by suppressing TMBIM4 in lens epithelial cells. Int Ophthalmol 2022; 43:1261-1274. [PMID: 36173547 DOI: 10.1007/s10792-022-02524-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 09/11/2022] [Indexed: 11/27/2022]
Abstract
PURPOSE To explore the regulatory effect of miR-125a-3p on lens epithelial cells (LECs) under ultraviolet radiation B (UVB) irradiation. METHODS The expression of miR-125a-3p in age-related cataract (ARC) specimens and cell models was detected by qRT-PCR. UVB was utilized to establish DNA damage model of LECs. Cell count kit-8 was applied in detecting cell viability. Cell apoptosis ratio was analyzed by flow cytometry. Dual luciferase reports were applied to analyze the mechanism between miRNA and target genes. Nanoparticle tracking analysis, and Western blot were used to identify whether the exosomes were typical exosomes. RESULTS miR-125a-3p was upregulated in ARC tissues and LECs treated with UVB. Knockdown of miR-125a-3p in LECs significantly decreased apoptosis and increased viability of UVB-irradiated LECs. We predicted that miR-125a-3p could regulate transmembrane Bax inhibitor motif containing 4 (TMBIM4) by the bioinformatics databases TargetScan, miRBase, and miRWalk. Luciferase reporter assays demonstrated that miR-125a-3p may suppress TMBIM4 protein translation by binding to 3'UTR of TMBIM4 mRNA. Overexpression of miR-125a-3p decreased TMBIM4, which suggested that miR-125a-3p could inhibit TMBIM4. Moreover, knockdown of TMBIM4 decreased cell viability and enhanced cell apoptosis during UVB irradiation. In addition, the exosome secretion of LECs irradiated by UVB was enhanced, and the expression of miR-125a-3p was high. Cell viability was significantly decreased, and cell apoptosis was increased during UVB-exos treatment. CONCLUSION This study indicated that miR-125a-3p regulated apoptosis by suppressing TMBIM4 in LECs under oxidative damage, providing a new idea for clinical therapeutic target of cataract.
Collapse
Affiliation(s)
- Lihua Kang
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu Province, China
| | - Jiawei Luo
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu Province, China
| | - Pengfei Li
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu Province, China
| | - Guowei Zhang
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu Province, China
| | - Miao Wei
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu Province, China
| | - Min Ji
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu Province, China
| | - Huaijin Guan
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu Province, China.
| |
Collapse
|
10
|
Yamamoto K, Scavenius C, Meschis MM, Gremida AME, Mogensen EH, Thøgersen IB, Bonelli S, Scilabra SD, Jensen A, Santamaria S, Ahnström J, Bou-Gharios G, Enghild JJ, Nagase H. A top-down approach to uncover the hidden ligandome of low-density lipoprotein receptor-related protein 1 in cartilage. Matrix Biol 2022; 112:190-218. [PMID: 36028175 DOI: 10.1016/j.matbio.2022.08.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/26/2022] [Accepted: 08/17/2022] [Indexed: 11/29/2022]
Abstract
The low-density lipoprotein receptor-related protein 1 (LRP1) is a cell-surface receptor ubiquitously expressed in various tissues. It plays tissue-specific roles by mediating endocytosis of a diverse range of extracellular molecules. Dysregulation of LRP1 is involved in multiple conditions including osteoarthritis (OA) but little information is available about the specific profile of direct binding partners of LRP1 (ligandome) for each tissue, which would lead to a better understanding of its role in disease states. Here, we investigated adult articular cartilage where impaired LRP1-mediated endocytosis leads to tissue destruction. We used a top-down approach involving proteomic analysis of the LRP1 interactome in human chondrocytes, direct binding assays using purified LRP1 and ligand candidates, and validation in LRP1-deficient fibroblasts and human chondrocytes, as well as a novel Lrp1 conditional knockout (KO) mouse model. We found that inhibition of LRP1 and ligand interaction results in cell death, alteration of the entire secretome and transcriptional modulations in human chondrocytes. We identified a chondrocyte-specific LRP1 ligandome consisting of more than 50 novel ligand candidates. Surprisingly, 23 previously reported LRP1 ligands were not regulated by LRP1-mediated endocytosis in human chondrocytes. We confirmed direct LRP1 binding of HGFAC, HMGB1, HMGB2, CEMIP, SLIT2, ADAMTS1, TSG6, IGFBP7, SPARC and LIF, correlation between their affinity for LRP1 and the rate of endocytosis, and some of their intracellular localization. Moreover, a conditional LRP1 KO mouse model demonstrated a critical role of LRP1 in regulating the high-affinity ligands in cartilage in vivo. This systematic approach revealed the specificity and the extent of the chondrocyte LRP1 ligandome and identified potential novel therapeutic targets for OA.
Collapse
Affiliation(s)
- Kazuhiro Yamamoto
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, United Kingdom.
| | - Carsten Scavenius
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Maria M Meschis
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, United Kingdom
| | - Abdulrahman M E Gremida
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, United Kingdom
| | - Emilie H Mogensen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Ida B Thøgersen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Simone Bonelli
- Fondazione RiMED - ISMETT via Ernesto Tricomi 5, 90127 Palermo, Italy
| | - Simone D Scilabra
- Fondazione RiMED - ISMETT via Ernesto Tricomi 5, 90127 Palermo, Italy
| | - Anders Jensen
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, United Kingdom
| | - Salvatore Santamaria
- Department of Immunology and Inflammation, Imperial College London, Du Cane Road, W12 0NN, London, United Kingdom
| | - Josefin Ahnström
- Department of Immunology and Inflammation, Imperial College London, Du Cane Road, W12 0NN, London, United Kingdom
| | - George Bou-Gharios
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, United Kingdom
| | - Jan J Enghild
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Hideaki Nagase
- Kennedy Institute of Rheumatology, University of Oxford, Headington, Oxford OX3 7FY, United Kingdom
| |
Collapse
|
11
|
Sansone C, Balestra C, Pistelli L, Del Mondo A, Osca D, Brunet C, Crocetta F. A Comparative Analysis of Mucus Immunomodulatory Properties from Seven Marine Gastropods from the Mediterranean Sea. Cells 2022; 11:cells11152340. [PMID: 35954185 PMCID: PMC9367618 DOI: 10.3390/cells11152340] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/07/2022] [Accepted: 07/28/2022] [Indexed: 12/10/2022] Open
Abstract
The treatment of inflammatory and immune-related diseases due to dysfunctioning of the immune system necessitates modulation of the immune response through immunomodulatory compounds. Marine environments are considered as a new frontier for health benefit product implementations. Marine biodiversity is still a low explored resource, despite it is expected to represent an important platform for chemical bioactive compounds. Within the phylum Mollusca, gastropods are known to synthetize mucus, the latter presenting relevant bioactive properties, e.g., related to immunomodulant molecules able to activate the innate and acquired immune system. This study proposes a bioprospecting of the immunomodulant activity of mucus isolated from seven common gastropod species from the Gulf of Naples (Mediterranean Sea). Results showed that not all mucus displayed a significant cytotoxic activity on the two human cancer cell lines A549 and A2058. On the other hand, the mucus from Bolinus brandaris was strongly bioactive and was therefore thoroughly investigated at cellular, molecular, and protein levels on the human monocytes U937 line. It can conclusively induce monocyte differentiation in vitro and significantly stimulate natural immunity response.
Collapse
Affiliation(s)
- Clementina Sansone
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, I-80121 Napoli, Italy; (C.B.); (L.P.); (A.D.M.); (C.B.)
- Institute of Biomolecular Chemistry, National Council of Reasearch, Via Campi Flegrei 34, I-80078 Pozzuoli, Italy
- Correspondence:
| | - Cecilia Balestra
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, I-80121 Napoli, Italy; (C.B.); (L.P.); (A.D.M.); (C.B.)
- National Institute of Oceanography and Applied Geophysics—OGS, I-34100 Trieste, Italy
| | - Luigi Pistelli
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, I-80121 Napoli, Italy; (C.B.); (L.P.); (A.D.M.); (C.B.)
| | - Angelo Del Mondo
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, I-80121 Napoli, Italy; (C.B.); (L.P.); (A.D.M.); (C.B.)
| | - David Osca
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, I-80121 Napoli, Italy; (D.O.); (F.C.)
| | - Christophe Brunet
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, I-80121 Napoli, Italy; (C.B.); (L.P.); (A.D.M.); (C.B.)
| | - Fabio Crocetta
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, I-80121 Napoli, Italy; (D.O.); (F.C.)
| |
Collapse
|
12
|
Zhang L, Zhang Y, Yu F, Li X, Gao H, Li P. The circRNA-miRNA/RBP regulatory network in myocardial infarction. Front Pharmacol 2022; 13:941123. [PMID: 35924059 PMCID: PMC9340152 DOI: 10.3389/fphar.2022.941123] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Myocardial infarction (MI) is a serious heart disease that causes high mortality rate worldwide. Noncoding RNAs are widely involved in the pathogenesis of MI. Circular RNAs (circRNAs) are recently validated to be crucial modulators of MI. CircRNAs are circularized RNAs with covalently closed loops, which make them stable under various conditions. CircRNAs can function by different mechanisms, such as serving as sponges of microRNAs (miRNAs) and RNA-binding proteins (RBPs), regulating mRNA transcription, and encoding peptides. Among these mechanisms, sponging miRNAs/RBPs is the main pathway. In this paper, we systematically review the current knowledge on the properties and action modes of circRNAs, elaborate on the roles of the circRNA-miRNA/RBP network in MI, and explore the value of circRNAs in MI diagnosis and clinical therapies. CircRNAs are widely involved in MI. CircRNAs have many advantages, such as stability, specificity, and wide distribution, which imply that circRNAs have a great potential to act as biomarkers for MI diagnosis and prognosis.
Collapse
Affiliation(s)
- Lei Zhang
- *Correspondence: Lei Zhang, ; Peifeng Li,
| | | | | | | | | | - Peifeng Li
- *Correspondence: Lei Zhang, ; Peifeng Li,
| |
Collapse
|
13
|
Alqahtani A. Application of Artificial Intelligence in Discovery and Development of Anticancer and Antidiabetic Therapeutic Agents. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:6201067. [PMID: 35509623 PMCID: PMC9060979 DOI: 10.1155/2022/6201067] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/17/2022] [Accepted: 04/05/2022] [Indexed: 11/18/2022]
Abstract
Spectacular developments in molecular and cellular biology have led to important discoveries in cancer research. Despite cancer is one of the major causes of morbidity and mortality globally, diabetes is one of the most leading sources of group of disorders. Artificial intelligence (AI) has been considered the fourth industrial revolution machine. The most major hurdles in drug discovery and development are the time and expenditures required to sustain the drug research pipeline. Large amounts of data can be explored and generated by AI, which can then be converted into useful knowledge. Because of this, the world's largest drug companies have already begun to use AI in their drug development research. In the present era, AI has a huge amount of potential for the rapid discovery and development of new anticancer drugs. Clinical studies, electronic medical records, high-resolution medical imaging, and genomic assessments are just a few of the tools that could aid drug development. Large data sets are available to researchers in the pharmaceutical and medical fields, which can be analyzed by advanced AI systems. This review looked at how computational biology and AI technologies may be utilized in cancer precision drug development by combining knowledge of cancer medicines, drug resistance, and structural biology. This review also highlighted a realistic assessment of the potential for AI in understanding and managing diabetes.
Collapse
Affiliation(s)
- Amal Alqahtani
- College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, 31541, Saudi Arabia
- Department of Basic Sciences, Deanship of Preparatory Year and Supporting Studies, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 34212, Saudi Arabia
| |
Collapse
|
14
|
Jiménez A, Lu D, Kalocsay M, Berberich MJ, Balbi P, Jambhekar A, Lahav G. Time‐series transcriptomics and proteomics reveal alternative modes to decode p53 oscillations. Mol Syst Biol 2022; 18:e10588. [PMID: 35285572 PMCID: PMC8919251 DOI: 10.15252/msb.202110588] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 02/16/2022] [Accepted: 02/19/2022] [Indexed: 12/21/2022] Open
Affiliation(s)
- Alba Jiménez
- Department of Systems Biology Blavatnik Institute at Harvard Medical School Boston MA USA
| | - Dan Lu
- Department of Systems Biology Blavatnik Institute at Harvard Medical School Boston MA USA
| | - Marian Kalocsay
- Department of Systems Biology Blavatnik Institute at Harvard Medical School Boston MA USA
- Laboratory of Systems Pharmacology Blavatnik Institute at Harvard Medical School Boston MA USA
| | - Matthew J Berberich
- Laboratory of Systems Pharmacology Blavatnik Institute at Harvard Medical School Boston MA USA
- Center for Protein Degradation Dana‐Farber Cancer Institute Boston MA USA
| | - Petra Balbi
- Department of Systems Biology Blavatnik Institute at Harvard Medical School Boston MA USA
| | - Ashwini Jambhekar
- Department of Systems Biology Blavatnik Institute at Harvard Medical School Boston MA USA
- Ludwig Center at Harvard Medical School Boston MA USA
| | - Galit Lahav
- Department of Systems Biology Blavatnik Institute at Harvard Medical School Boston MA USA
- Ludwig Center at Harvard Medical School Boston MA USA
| |
Collapse
|
15
|
Visser H, Thomas AD. MicroRNAs and the DNA damage response: How is cell fate determined? DNA Repair (Amst) 2021; 108:103245. [PMID: 34773895 DOI: 10.1016/j.dnarep.2021.103245] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/25/2021] [Accepted: 10/29/2021] [Indexed: 12/12/2022]
Abstract
It is becoming clear that the DNA damage response orchestrates an appropriate response to a given level of DNA damage, whether that is cell cycle arrest and repair, senescence or apoptosis. It is plausible that the alternative regulation of the DNA damage response (DDR) plays a role in deciding cell fate following damage. MicroRNAs (miRNAs) are associated with the transcriptional regulation of many cellular processes. They have diverse functions, affecting, presumably, all aspects of cell biology. Many have been shown to be DNA damage inducible and it is conceivable that miRNA species play a role in deciding cell fate following DNA damage by regulating the expression and activation of key DDR proteins. From a clinical perspective, miRNAs are attractive targets to improve cancer patient outcomes to DNA-damaging chemotherapy. However, cancer tissue is known to be, or to become, well adapted to DNA damage as a means of inducing chemoresistance. This frequently results from an altered DDR, possibly owing to miRNA dysregulation. Though many studies provide an overview of miRNAs that are dysregulated within cancerous tissues, a tangible, functional association is often lacking. While miRNAs are well-documented in 'ectopic biology', the physiological significance of endogenous miRNAs in the context of the DDR requires clarification. This review discusses miRNAs of biological relevance and their role in DNA damage response by potentially 'fine-tuning' the DDR towards a particular cell fate in response to DNA damage. MiRNAs are thus potential therapeutic targets/strategies to limit chemoresistance, or improve chemotherapeutic efficacy.
Collapse
Affiliation(s)
- Hartwig Visser
- Centre for Research in Biosciences, University of the West of England, Frenchay Campus, Bristol BS16 1QY, United Kingdom
| | - Adam D Thomas
- Centre for Research in Biosciences, University of the West of England, Frenchay Campus, Bristol BS16 1QY, United Kingdom.
| |
Collapse
|
16
|
Role of Dietary Antioxidants in p53-Mediated Cancer Chemoprevention and Tumor Suppression. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9924328. [PMID: 34257824 PMCID: PMC8257365 DOI: 10.1155/2021/9924328] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/31/2021] [Indexed: 02/07/2023]
Abstract
Cancer arises through a complex interplay between genetic, behavioral, metabolic, and environmental factors that combined trigger cellular changes that over time promote malignancy. In terms of cancer prevention, behavioral interventions such as diet can promote genetic programs that may facilitate tumor suppression; and one of the key tumor suppressors responsible for initiating such programs is p53. The p53 protein is activated by various cellular events such as DNA damage, hypoxia, heat shock, and overexpression of oncogenes. Due to its role in cell fate decisions after DNA damage, regulatory pathways controlled by p53 help to maintain genome stability and thus “guard the genome” against mutations that cause cancer. Dietary intake of flavonoids, a C15 group of polyphenols, is known to inhibit cancer progression and assist DNA repair through p53-mediated mechanisms in human cells via their antioxidant activities. For example, quercetin arrests human cervical cancer cell growth by blocking the G2/M phase cell cycle and inducing mitochondrial apoptosis through a p53-dependent mechanism. Other polyphenols such as resveratrol upregulate p53 expression in several cancer cell lines by promoting p53 stability, which in colon cancer cells results in the activation of p53-mediated apoptosis. Finally, among vitamins, folic acid seems to play an important role in the chemoprevention of gastric carcinogenesis by enhancing gastric epithelial apoptosis in patients with premalignant lesions by significantly increased expression of p53. In this review, we discuss the role of these and other dietary antioxidants in p53-mediated cell signaling in relation to cancer chemoprevention and tumor suppression in normal and cancer cells.
Collapse
|
17
|
Zhu Y, Zhao P, Sun L, Lu Y, Zhu W, Zhang J, Xiang C, Mao Y, Chen Q, Zhang F. Overexpression of circRNA SNRK targets miR-103-3p to reduce apoptosis and promote cardiac repair through GSK3β/β-catenin pathway in rats with myocardial infarction. Cell Death Discov 2021; 7:84. [PMID: 33875647 PMCID: PMC8055694 DOI: 10.1038/s41420-021-00467-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/25/2021] [Accepted: 03/12/2021] [Indexed: 02/06/2023] Open
Abstract
Ischemic cardiomyopathy seriously endangers human health leading to a poor prognosis. Acute myocardial infarction (AMI) is the primary etiology, and the pathophysiological process concludes with the death of cardiomyocytes caused by acute and persistent ischemia and hypoxia in the coronary arteries. We identified a circRNA (circSNRK) which was downregulated in rats with myocardial infarction (MI), however, the role it plays in the MI environment is still unclear. This study contained experiments to investigate the role of circSNRK in the regulation of cardiac survival and explore the mechanisms underlying circSNRK functions. Quantitative real-time PCR (qRT-PCR) was performed to determine the circSNRK expression patterns in hearts. Gain-of-function assays were also conducted in vitro and in vivo to determine the role of circSNRK in cardiac repair. qRT-PCR, western blot, and luciferase reporter assays were used to study circRNA interactions with micro RNAs (miRNAs). Overexpression of circSNRK in cardiomyocytes reduced apoptosis and increased proliferation. Adeno associated virus 9 (AAV9) mediated myocardium overexpression of circSNRK in post MI hearts reduced cardiomyocyte apoptosis, promoted cardiomyocyte proliferation, enhanced angiogenesis, and improved cardiac functions. Overall, upregulation of circSNRK promotes cardiac survival and functional recovery after MI. Mechanistically, circSNRK regulates cardiomyocyte apoptosis and proliferation by acting as a miR-103-3p sponge and inducing increased expression of SNRK which can bind GSK3β to regulate its phosphorylated activity. And thus circSNRK may be a promising therapeutic target for improving clinical prognosis after MI.
Collapse
Affiliation(s)
- Yeqian Zhu
- Section of Pacing and Electrophysiology, Division of Cardiology, the First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Pengcheng Zhao
- Section of Pacing and Electrophysiology, Division of Cardiology, the First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Ling Sun
- Section of Pacing and Electrophysiology, Division of Cardiology, the First Affiliated Hospital with Nanjing Medical University, Nanjing, China.,Department of Cardiology, the Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Yao Lu
- Section of Pacing and Electrophysiology, Division of Cardiology, the First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Wenwu Zhu
- Section of Pacing and Electrophysiology, Division of Cardiology, the First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Jian Zhang
- Section of Pacing and Electrophysiology, Division of Cardiology, the First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Chengyu Xiang
- Section of Pacing and Electrophysiology, Division of Cardiology, the First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Yangming Mao
- Section of Pacing and Electrophysiology, Division of Cardiology, the First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Qiushi Chen
- Section of Pacing and Electrophysiology, Division of Cardiology, the First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Fengxiang Zhang
- Section of Pacing and Electrophysiology, Division of Cardiology, the First Affiliated Hospital with Nanjing Medical University, Nanjing, China.
| |
Collapse
|
18
|
Heissig B, Salama Y, Osada T, Okumura K, Hattori K. The Multifaceted Role of Plasminogen in Cancer. Int J Mol Sci 2021; 22:ijms22052304. [PMID: 33669052 PMCID: PMC7956603 DOI: 10.3390/ijms22052304] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 12/12/2022] Open
Abstract
Fibrinolytic factors like plasminogen, tissue-type plasminogen activator (tPA), and urokinase plasminogen activator (uPA) dissolve clots. Though mere extracellular-matrix-degrading enzymes, fibrinolytic factors interfere with many processes during primary cancer growth and metastasis. Their many receptors give them access to cellular functions that tumor cells have widely exploited to promote tumor cell survival, growth, and metastatic abilities. They give cancer cells tools to ensure their own survival by interfering with the signaling pathways involved in senescence, anoikis, and autophagy. They can also directly promote primary tumor growth and metastasis, and endow tumor cells with mechanisms to evade myelosuppression, thus acquiring drug resistance. In this review, recent studies on the role fibrinolytic factors play in metastasis and controlling cell-death-associated processes are presented, along with studies that describe how cancer cells have exploited plasminogen receptors to escape myelosuppression.
Collapse
Affiliation(s)
- Beate Heissig
- Immunological Diagnosis, Juntendo University, School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo 113-8421, Japan;
- Correspondence: ; Tel.: +81-3-3813-3111
| | - Yousef Salama
- An-Najah Center for Cancer and Stem Cell Research, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus P.O. Box 7, Palestine;
| | - Taro Osada
- Department of Gastroenterology Juntendo University Urayasu Hospital, 2-1-1 Tomioka, Urayasu-shi, Chiba 279-0021, Japan;
| | - Ko Okumura
- Immunological Diagnosis, Juntendo University, School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo 113-8421, Japan;
| | - Koichi Hattori
- Center for Genomic & Regenerative Medicine, Juntendo University, School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo 113-8421, Japan;
| |
Collapse
|
19
|
Liu Y, Leslie PL, Zhang Y. Life and Death Decision-Making by p53 and Implications for Cancer Immunotherapy. Trends Cancer 2020; 7:226-239. [PMID: 33199193 DOI: 10.1016/j.trecan.2020.10.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/11/2020] [Accepted: 10/15/2020] [Indexed: 12/20/2022]
Abstract
The tumor-suppressor protein p53 is mutated in approximately half of all cancers, whereas the p53 signaling network is perturbed in almost all cancers. In response to different stress stimuli, p53 selectively activates genes to elicit a cell survival or cell death response. How p53 makes the decision between life and death remains a fascinating question and an exciting field of research. Understanding how this decision is made has major implications for improving cancer treatments, particularly in recently evolved immune checkpoint inhibition therapy. We highlight progress and challenges in understanding the mechanisms governing the p53 life and death decision-making process, and discuss how this decision is relevant to immune system regulation. Finally, we discuss how knowledge of the p53 pro-survival and pro-death decision node can be applied to optimize immune checkpoint inhibitor therapy for cancer treatment.
Collapse
Affiliation(s)
- Yong Liu
- Department of Radiation Oncology and Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7461, USA; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China.
| | - Patrick L Leslie
- Department of Radiation Oncology and Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7461, USA
| | - Yanping Zhang
- Department of Radiation Oncology and Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7461, USA.
| |
Collapse
|
20
|
Interleukin-1β Triggers p53-Mediated Downmodulation of CCR5 and HIV-1 Entry in Macrophages through MicroRNAs 103 and 107. mBio 2020; 11:mBio.02314-20. [PMID: 32994328 PMCID: PMC7527731 DOI: 10.1128/mbio.02314-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Macrophages are a target of human immunodeficiency virus type 1 (HIV-1) and may serve as a viral reservoir during antiretroviral therapy (ART). Their susceptibility to HIV-1 infection is subject to variations from permissiveness to resistance depending on their origin, tissue localization, and polarization profile. This is in part due to the expression of regulatory microRNAs. Here, we identify two microRNA paralogs, microRNA 103 (miR-103) and miR-107, as regulators of CCR5 expression that are upregulated in noninfected bystander cells of HIV-1-infected-monocyte-derived macrophage (MDM) cultures. Transfection of microRNA 103 mimics in MDMs reduced CCR5 expression levels and inhibited CCR5-dependent HIV-1 entry, whereas the corresponding antagomirs enhanced virus spread in HIV-infected MDMs. Treatment of MDMs with interleukin-1β (IL-1β) enhanced microRNA 103 expression, a condition that we found contributed to the reduction of CCR5 mRNA in IL-1β-exposed MDMs. Interestingly, we show that the induction of miR-103/107 expression is part of a tumor suppressor p53 response triggered by secreted IL-1β that renders macrophages refractory to HIV-1 entry. In a more physiological context, the levels of microRNAs 103 and 107 were found enriched in tissue-resident colon macrophages of healthy donors and alveolar macrophages of individuals under antiretroviral therapy, conceivably contributing to their relative resistance to HIV-1 infection. Overall, these findings highlight the role of p53 in enforcing proinflammatory antiviral responses in macrophages, at least in part, through miR-103/107-mediated downmodulation of CCR5 expression and HIV-1 entry.IMPORTANCE Macrophages are heterogeneous immune cells that display varying susceptibilities to HIV-1 infection, in part due to the expression of small noncoding microRNAs involved in the posttranscriptional regulation of gene expression and silencing. Here, we identify microRNAs 103 and 107 as important p53-regulated effectors of the antiviral response triggered by the proinflammatory cytokine IL-1β in macrophages. These microRNAs, which are enriched in colon macrophages of healthy donors and alveolar macrophages of HIV-infected individuals under antiretroviral therapy, act as inhibitors of HIV-1 entry through their capacity to downregulate the CCR5 coreceptor. These results highlight the important role played by miR-103/107 in modulating CCR5 expression and HIV-1 entry in macrophages. They further underscore a distinct function of the tumor suppressor p53 in enforcing proinflammatory antiviral responses in macrophages, thus providing insight into a cellular pathway that could be targeted to limit the establishment of viral reservoirs in these cells.
Collapse
|
21
|
Liberale L, Bertolotto M, Minetti S, Contini P, Verzola D, Ameri P, Ghigliotti G, Pende A, Camici GG, Carbone F, Montecucco F. Recombinant Tissue Plasminogen Activator (r-tPA) Induces In-Vitro Human Neutrophil Migration via Low Density Lipoprotein Receptor-Related Protein 1 (LRP-1). Int J Mol Sci 2020; 21:7014. [PMID: 32977685 PMCID: PMC7582901 DOI: 10.3390/ijms21197014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 01/04/2023] Open
Abstract
Thrombolysis is the gold standard treatment for acute ischemic stroke. Besides its fibrinolytic role, recombinant tissue plasminogen activator (r-tPA) holds several non-fibrinolytic functions. Here, we investigated the potential role of r-tPA on human primary neutrophil migration in vitro. By means of modified Boyden chamber migration assay and checkerboard analysis we showed a dose-dependent chemotactic effect of r-TPA with a maximum effect reached by 0.03 mg/mL (0.003-1 mg/mL). Pre-incubation with MAP kinases inhibitors allowed the identification of PI3K/Akt, but not ERK1/2 as the intracellular pathway mediating the observed effects. Furthermore, by means of real-time PCR, immunocytochemistry and cytofluorimetry we demonstrated that the r-tPA receptor low density lipoprotein receptor-related protein 1 (LRP-1) is synthetized and expressed by neutrophils in response to r-tPA and TNF-α. Inhibition of LRP-1 by receptor-associated protein (RAP), prevented r-tPA-mediated F-actin polymerization, migration and signal through Akt but not ERK1/2. Lastly, also neutrophil degranulation in response to r-tPA seems to be mediated by LRP-1 under adhesion conditions. In conclusion, we show that r-tPA induces neutrophil chemotaxis through LRP-1/Akt pathway. Blunting r-tPA-mediated neutrophil activation might be beneficial as an adjuvant therapy to thrombolysis in this setting.
Collapse
Affiliation(s)
- Luca Liberale
- Center for Molecular Cardiology, University of Zürich, Wagistrasse 12, 8952 Schlieren, Switzerland; (L.L.); (G.G.C.)
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 Viale Benedetto XV, 16132 Genoa, Italy; (M.B.); (S.M.); (F.C.)
| | - Maria Bertolotto
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 Viale Benedetto XV, 16132 Genoa, Italy; (M.B.); (S.M.); (F.C.)
| | - Silvia Minetti
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 Viale Benedetto XV, 16132 Genoa, Italy; (M.B.); (S.M.); (F.C.)
| | - Paola Contini
- Clinical Immunology, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy;
| | - Daniela Verzola
- Division of Nephrology, Dialysis and Transplantation, Department of Internal Medicine, University of Genoa, 6 Viale Benedetto XV, 16132 Genoa, Italy;
| | - Pietro Ameri
- IRCCS Ospedale Policlinico San Martino Genoa—Italian Cardiovascular Network, 10 Largo Benzi, 16132 Genoa, Italy; (P.A.); (G.G.); (A.P.)
- Laboratory of Cardiovascular Biology, IRCCS Ospedale Policlinico San Martino & Department of Internal Medicine, University of Genoa, 16126 Genoa, Italy
| | - Giorgio Ghigliotti
- IRCCS Ospedale Policlinico San Martino Genoa—Italian Cardiovascular Network, 10 Largo Benzi, 16132 Genoa, Italy; (P.A.); (G.G.); (A.P.)
- Laboratory of Cardiovascular Biology, IRCCS Ospedale Policlinico San Martino & Department of Internal Medicine, University of Genoa, 16126 Genoa, Italy
| | - Aldo Pende
- IRCCS Ospedale Policlinico San Martino Genoa—Italian Cardiovascular Network, 10 Largo Benzi, 16132 Genoa, Italy; (P.A.); (G.G.); (A.P.)
- Clinic of Emergency Medicine, Department of Emergency Medicine, University of Genoa, 16126 Genoa, Italy
| | - Giovanni G. Camici
- Center for Molecular Cardiology, University of Zürich, Wagistrasse 12, 8952 Schlieren, Switzerland; (L.L.); (G.G.C.)
| | - Federico Carbone
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 Viale Benedetto XV, 16132 Genoa, Italy; (M.B.); (S.M.); (F.C.)
- IRCCS Ospedale Policlinico San Martino Genoa—Italian Cardiovascular Network, 10 Largo Benzi, 16132 Genoa, Italy; (P.A.); (G.G.); (A.P.)
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 Viale Benedetto XV, 16132 Genoa, Italy; (M.B.); (S.M.); (F.C.)
- IRCCS Ospedale Policlinico San Martino Genoa—Italian Cardiovascular Network, 10 Largo Benzi, 16132 Genoa, Italy; (P.A.); (G.G.); (A.P.)
| |
Collapse
|
22
|
Shang N, Bhullar KS, Wu J. Ovotransferrin Exhibits Osteogenic Activity Partially via Low-Density Lipoprotein Receptor-Related Protein 1 (LRP1) Activation in MC3T3-E1 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:9427-9435. [PMID: 32786820 DOI: 10.1021/acs.jafc.0c04064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ovotransferrin, a major protein in egg white, induces osteoblast proliferation and survival in vitro. However, it is unclear which receptor(s) drive the beneficial activities of this bioactive glycoprotein. We examined the role of the low-density lipoprotein receptor-related protein 1 (LRP1) in the actions of ovotransferrin on osteoblasts. Here, we showed that LRP1 in part regulates osteogenic action of ovotransferrin. Mouse osteoblasts, MC3T3-E1, with LRP1 deletion displayed diminished osteogenic activity. Our findings indicate that the bone-stimulatory impact of ovotransferrin on RUNX2, COL1A2, and Ca2+ signaling is LRP1-dependent. This shows that LRP1 not only acts as a scavenger receptor but also participates in ovotransferrin-mediated gene transcription. However, some of the key bone formatting factors such as ALP synthesis and serine residue phosphorylation of Akt by ovotransferrin remained independent of LRP1. Overall, this study shows that LRP1-ovotransferrin interaction might underline in part the ability of ovotransferrin to promote bone formation.
Collapse
Affiliation(s)
- Nan Shang
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Khushwant S Bhullar
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
- Department of Pharmacology, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Jianping Wu
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| |
Collapse
|
23
|
Good Cop, Bad Cop: Defining the Roles of Δ40p53 in Cancer and Aging. Cancers (Basel) 2020; 12:cancers12061659. [PMID: 32585821 PMCID: PMC7352174 DOI: 10.3390/cancers12061659] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/11/2020] [Accepted: 06/18/2020] [Indexed: 01/10/2023] Open
Abstract
The tumour suppressor p53 is essential for maintaining DNA integrity, and plays a major role in cellular senescence and aging. Understanding the mechanisms that contribute to p53 dysfunction can uncover novel possibilities for improving cancer therapies and diagnosis, as well as cognitive decline associated with aging. In recent years, the complexity of p53 signalling has become increasingly apparent owing to the discovery of the p53 isoforms. These isoforms play important roles in regulating cell growth and turnover in response to different stressors, depending on the cellular context. In this review, we focus on Δ40p53, an N-terminally truncated p53 isoform. Δ40p53 can alter p53 target gene expression in both a positive and negative manner, modulating the biological outcome of p53 activation; it also functions independently of p53. Therefore, proper control of the Δ40p53: p53 ratio is essential for normal cell growth, aging, and responses to cancer therapy. Defining the contexts and the mechanisms by which Δ40p53 behaves as a "good cop or bad cop" is critical if we are to target this isoform therapeutically.
Collapse
|
24
|
Turco C, Donzelli S, Fontemaggi G. miR-15/107 microRNA Gene Group: Characteristics and Functional Implications in Cancer. Front Cell Dev Biol 2020; 8:427. [PMID: 32626702 PMCID: PMC7311568 DOI: 10.3389/fcell.2020.00427] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 05/07/2020] [Indexed: 12/15/2022] Open
Abstract
The miR-15/107 group of microRNAs (miRNAs) encloses 10 annotated human members and is defined based on the presence of the sequence AGCAGC near the mature miRNAs’ 5′ end. Members of the miR-15/107 group expressed in humans are highly evolutionarily conserved, and seven of these miRNAs are widespread in vertebrate species. Contrary to the majority of miRNAs, which recognize complementary sequences on the 3′UTR region, some members of the miR-15/107 group are peculiarly characterized by the ability to target the coding sequence (CDS) of their target mRNAs, inhibiting translation without strongly affecting their mRNA levels. There is compelling evidence that different members of the miR-15/107 group regulate overlapping lists of mRNA targets but also show target specificity. The ubiquitously expressed miR-15/107 gene group controls several human cellular pathways, such as proliferation, angiogenesis, and lipid metabolism, and might be altered in various diseases, such as neurodegenerative diseases and cancer. Intriguingly, despite sharing the same seed sequence, different members of this family of miRNAs may behave as oncomiRs or as tumor suppressor miRNAs in the context of cancer cells. This review discusses the regulation and functional contribution of the miR-15/107 group to the control of gene expression. Moreover, we particularly focus on the contribution of specific miR-15/107 group members as tumor suppressors in breast cancer, reviewing literature reporting their ability to function as major controllers of a variety of cell pathways and to act as powerful biomarkers in this disease.
Collapse
Affiliation(s)
- Chiara Turco
- Oncogenomic and Epigenetic Unit, Department of Diagnostic Research and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Sara Donzelli
- Oncogenomic and Epigenetic Unit, Department of Diagnostic Research and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Giulia Fontemaggi
- Oncogenomic and Epigenetic Unit, Department of Diagnostic Research and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
25
|
Muhammad I, Rahman N, Nayab GE, Niaz S, Shah M, Afridi SG, Khan H, Daglia M, Capanoglu E. The Molecular Docking of Flavonoids Isolated from Daucus carota as a Dual Inhibitor of MDM2 and MDMX. Recent Pat Anticancer Drug Discov 2020; 15:154-164. [PMID: 32101134 DOI: 10.2174/1574892815666200226112506] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/22/2020] [Accepted: 02/23/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Cancer is characterized by overexpression of p53 associated proteins, which down-regulate P53 signaling pathway. In cancer therapy, p53 activity can be restored by inhibiting the interaction of MDMX (2N0W) and MDM2 (4JGR) proteins with P53 protein. OBJECTIVE In the current, study in silico approaches were adapted to use a natural product as a source of cancer therapy. METHODS In the current study in silico approaches were adapted to use a natural product as a source of cancer therapy. For in silico studies, Chemdraw and Molecular Operating Environment were used for structure drawing and molecular docking, respectively. Flavonoids isolated from D. carota were docked with cancerous proteins. RESULT Based on the docking score analysis, we found that compound 7 was the potent inhibitor of both cancerous proteins and can be used as a potent molecule for inhibition of 2N0W and 4JGR interaction with p53. CONCLUSION Thus the compound 7 can be used for the revival of p53 signaling pathway function however, intensive in vitro and in vivo experiments are required to prove the in silico analysis.
Collapse
Affiliation(s)
- Ijaz Muhammad
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan-23200, KP, Pakistan
| | - Noor Rahman
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan-23200, KP, Pakistan
| | - Gul E Nayab
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan-23200, KP, Pakistan
| | - Sadaf Niaz
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan-23200, KP, Pakistan
| | - Mohibullah Shah
- Department of Biochemistry, Bahauddin Zakariya University, Multan-66000, Pakistan
| | - Sahib G Afridi
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan-23200, KP, Pakistan
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan-23200, KP, Pakistan
| | - Maria Daglia
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| |
Collapse
|
26
|
Xi Z, Qiao Y, Wang J, Su H, Bao Z, Li H, Liao X, Zhong X. Gastrodin relieves inflammation injury induced by lipopolysaccharides in MRC-5 cells by up-regulation of miR-103. J Cell Mol Med 2019; 24:1451-1459. [PMID: 31769187 PMCID: PMC6991667 DOI: 10.1111/jcmm.14826] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 10/14/2019] [Accepted: 11/06/2019] [Indexed: 02/06/2023] Open
Abstract
The beneficial function of gastrodin towards many inflammatory diseases has been identified. This study designed to see the influence of gastrodin in a cell model of chronic obstructive pulmonary disease (COPD). MRC-5 cells were treated by LPS, before which gastrodin was administrated. The effects of gastrodin were evaluated by conducting CCK-8, FITC-PI double staining, Western blot, qRT-PCR and ELISA. Besides this, the downstream effector and signalling were studied to decode how gastrodin exerted its function. And dual-luciferase assay was used to detect the targeting link between miR-103 and lipoprotein receptor-related protein 1 (LRP1). LPS induced apoptosis and the release of MCP-1, IL-6 and TNF-α in MRC-5 cells. Pre-treating MRC-5 cells with gastrodin attenuated LPS-induced cell damage. Meanwhile, p38/JNK and NF-κB pathways induced by LPS were repressed by gastrodin. miR-103 expression was elevated by gastrodin. Further, the protective functions of gastrodin were attenuated by miR-103 silencing. And LRP1 was a target of miR-103 and negatively regulated by miR-103. The in vitro data illustrated the protective function of gastrodin in LPS-injured MRC-5 cells. Gastrodin exerted its function possibly by up-regulating miR-103 and modulating p38/JNK and NF-κB pathways.
Collapse
Affiliation(s)
- Zhuona Xi
- Department of Respiration Ward II, Henan Provincial Chest Hospital, Zhengzhou, China
| | - Yahong Qiao
- Department of Respiration Ward II, Henan Provincial Chest Hospital, Zhengzhou, China
| | - Jifang Wang
- Department of Respiration Ward II, Henan Provincial Chest Hospital, Zhengzhou, China
| | - Hongjian Su
- Department of Respiration Ward II, Henan Provincial Chest Hospital, Zhengzhou, China
| | - Zhen Bao
- Department of Respiration Ward II, Henan Provincial Chest Hospital, Zhengzhou, China
| | - Hongyan Li
- Department of Internal Medicine, Huadu District People's Hospital of Guangzhou, Guangzhou, China
| | - Xiaoming Liao
- Department of Integrated Chinese and Western Internal Medicine, Huadu District People's Hospital of Guangzhou, Guangzhou, China
| | - Xiaolan Zhong
- Department of Quality Control, Huadu District People's Hospital of Guangzhou, Guangzhou, China
| |
Collapse
|
27
|
Zhou W, Xu J, Wang C, Shi D, Yan Q. miR-23b-3p regulates apoptosis and autophagy via suppressing SIRT1 in lens epithelial cells. J Cell Biochem 2019; 120:19635-19646. [PMID: 31338869 DOI: 10.1002/jcb.29270] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 01/30/2019] [Indexed: 12/13/2022]
Abstract
Age-related cataract is one of the prior causes of blindness and the incidence rates of cataract are even rising. Oxidative stress plays an important role in the pathogenesis of cataracts. Under oxidative stress, lens epithelial cell (LEC cell) apoptosis is activated, which might lead to the opacity of the lens and accelerate the progression of cataract development. Meanwhile, autophagy is also active to face oxidative stress. miRNAs have been reported to involve cataract. However, the underlying mechanism is not clear. The present study aimed to investigate the regulatory effect of miR23b-3p on apoptosis and autophagy in LEC cells under oxidative stress. The expression levels of miR-23b-3p were examined in age-related cataract tissues and LEC cells treated with hydrogen peroxide, showing that miR23b-3p expression levels were upregulated. Knockdown of miR23b-3p expression in LEC cells brought about apoptosis significantly decreased while autophagy significantly increased during hydrogen peroxide. We predicted microRNA miRNA-23b-3p might participate in regulating silent information regulator 1 (SIRT1) by bioinformatics database of TargetScan. Luciferase reporter assays confirmed that miRNA-23b-p could suppress SIRT1 expression by binding its 3'UTR. In addition, overexpression or knockdown of miR-23b-3p could decrease or increase SIRT1 expression, which indicated that Mir-23b-3p could suppress SIRT1 expression. In addition, enhanced SIRT1 could attenuate the regulation of cell apoptosis and autophagy induced by overexpression of miR-23b-3p. Taken together, our findings revealed that miR-23b-3p regulated apoptosis and autophagy via suppressing SIRT1 in LEC cell under oxidative stress, which could provide new ideas for clinical treatment of cataract.
Collapse
Affiliation(s)
- Wenkai Zhou
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Jun Xu
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Chunxia Wang
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Dong Shi
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Qichang Yan
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
28
|
Anti-cancer effects of polyphenols via targeting p53 signaling pathway: updates and future directions. Biotechnol Adv 2019; 38:107385. [PMID: 31004736 DOI: 10.1016/j.biotechadv.2019.04.007] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 04/14/2019] [Accepted: 04/16/2019] [Indexed: 02/06/2023]
Abstract
The anticancer effects of polyphenols are ascribed to several signaling pathways including the tumor suppressor gene tumor protein 53 (p53). Expression of endogenous p53 is silent in various types of cancers. A number of polyphenols from a wide variety of dietary sources could upregulate p53 expression in several cancer cell lines through distinct mechanisms of action. The aim of this review is to focus the significance of p53 signaling pathways and to provide molecular intuitions of dietary polyphenols in chemoprevention by monitoring p53 expression that have a prominent role in tumor suppression.
Collapse
|
29
|
Over-expression of low-density lipoprotein receptor-related Protein-1 is associated with poor prognosis and invasion in pancreatic ductal adenocarcinoma. Pancreatology 2019; 19:429-435. [PMID: 30902418 DOI: 10.1016/j.pan.2019.02.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 02/16/2019] [Accepted: 02/23/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Low-density lipoprotein receptor-Related Protein-1 (LRP-1) has been reported to involve in tumor development. However, its role in pancreatic cancer has not been elucidated. The present study was designed to evaluate the expression of LRP-1 in Pancreatic Ductal Adenocarcinoma Cancer (PDAC) as well as its association with prognosis. METHODS Here, 478 pancreatic cancers were screened for suitable primary PDAC tumors. The samples were analyzed using qRT-PCR, western blotting, and Immunohistochemistry (IHC) staining as well as LRP-1 expression in association with clinicopathological features. RESULTS The relative LRP-1 mRNA expression was up-regulated in 82.3% (42/51) of the PDAC tumors and its expression (3.72 ± 1.25) was significantly higher than that in pancreatic normal margins (1.0 ± 0.23, P < 0.05). This up-regulation was stage dependent (P < 0.05). A similar pattern of LRP-1 protein expression was discovered (P < 0.05). The high expression of LRP-1 in the PDAC tissues was strongly correlated with the low survival time (P = 0.001), TNM classification (P = 0.001), low differentiations status (P = 0.001), lymphatic invasion (P = 0.01) and Perineural Invasion (PNI) status (P = 0.001). CONCLUSIONS Our finding for the first time revealed that LRP-1 expression inversely associated with poor prognosis and PNI in PDAC tumor.
Collapse
|
30
|
Zucker MM, Wujak L, Gungl A, Didiasova M, Kosanovic D, Petrovic A, Klepetko W, Schermuly RT, Kwapiszewska G, Schaefer L, Wygrecka M. LRP1 promotes synthetic phenotype of pulmonary artery smooth muscle cells in pulmonary hypertension. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1604-1616. [PMID: 30910704 DOI: 10.1016/j.bbadis.2019.03.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 03/19/2019] [Accepted: 03/20/2019] [Indexed: 02/09/2023]
Abstract
Pulmonary hypertension (PH) is characterized by a thickening of the distal pulmonary arteries caused by medial hypertrophy, intimal proliferation and vascular fibrosis. Low density lipoprotein receptor-related protein 1 (LRP1) maintains vascular homeostasis by mediating endocytosis of numerous ligands and by initiating and regulating signaling pathways. Here, we demonstrate the increased levels of LRP1 protein in the lungs of idiopathic pulmonary arterial hypertension (IPAH) patients, hypoxia-exposed mice, and monocrotaline-treated rats. Platelet-derived growth factor (PDGF)-BB upregulated LRP1 expression in pulmonary artery smooth muscle cells (PASMC). This effect was reversed by the PDGF-BB neutralizing antibody or the PDGF receptor antagonist. Depletion of LRP1 decreased proliferation of donor and IPAH PASMC in a β1-integrin-dependent manner. Furthermore, LRP1 silencing attenuated the expression of fibronectin and collagen I and increased the levels of α-smooth muscle actin and myocardin in donor, but not in IPAH, PASMC. In addition, smooth muscle cell (SMC)-specific LRP1 knockout augmented α-SMA expression in pulmonary vessels and reduced SMC proliferation in 3D ex vivo murine lung tissue cultures. In conclusion, our results indicate that LRP1 promotes the dedifferentiation of PASMC from a contractile to a synthetic phenotype thus suggesting its contribution to vascular remodeling in PH.
Collapse
Affiliation(s)
- Marius M Zucker
- Department of Biochemistry, Universities of Giessen and Marburg Lung Center, Giessen, Germany
| | - Lukasz Wujak
- Department of Biochemistry, Universities of Giessen and Marburg Lung Center, Giessen, Germany
| | - Anna Gungl
- Ludwig Boltzmann Institute for Lung Vascular Research, Medical University Graz, Graz, Austria
| | - Miroslava Didiasova
- Department of Biochemistry, Universities of Giessen and Marburg Lung Center, Giessen, Germany
| | - Djuro Kosanovic
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center, Giessen, Germany; Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Aleksandar Petrovic
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center, Giessen, Germany
| | - Walter Klepetko
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Ralph T Schermuly
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center, Giessen, Germany
| | - Grazyna Kwapiszewska
- Ludwig Boltzmann Institute for Lung Vascular Research, Medical University Graz, Graz, Austria
| | - Liliana Schaefer
- Goethe University, School of Medicine, Frankfurt am Main, Germany
| | - Malgorzata Wygrecka
- Department of Biochemistry, Universities of Giessen and Marburg Lung Center, Giessen, Germany.
| |
Collapse
|