1
|
Morabito A, Zerlau Y, Dhanasobhon D, Berthaux E, Tzilivaki A, Moneron G, Cathala L, Poirazi P, Bacci A, DiGregorio D, Lourenço J, Rebola N. A dendritic substrate for temporal diversity of cortical inhibition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.09.602783. [PMID: 39026855 PMCID: PMC11257522 DOI: 10.1101/2024.07.09.602783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
In the mammalian neocortex, GABAergic interneurons (INs) inhibit cortical networks in profoundly different ways. The extent to which this depends on how different INs process excitatory signals along their dendrites is poorly understood. Here, we reveal that the functional specialization of two major populations of cortical INs is determined by the unique association of different dendritic integration modes with distinct synaptic organization motifs. We found that somatostatin (SST)-INs exhibit NMDAR-dependent dendritic integration and uniform synapse density along the dendritic tree. In contrast, dendrites of parvalbumin (PV)-INs exhibit passive synaptic integration coupled with proximally enriched synaptic distributions. Theoretical analysis shows that these two dendritic configurations result in different strategies to optimize synaptic efficacy in thin dendritic structures. Yet, the two configurations lead to distinct temporal engagement of each IN during network activity. We confirmed these predictions with in vivo recordings of IN activity in the visual cortex of awake mice, revealing a rapid and linear recruitment of PV-INs as opposed to a long-lasting integrative activation of SST-INs. Our work reveals the existence of distinct dendritic strategies that confer distinct temporal representations for the two major classes of neocortical INs and thus dynamics of inhibition.
Collapse
Affiliation(s)
- Annunziato Morabito
- ICM, Paris Brain Institute, Hôpital de la Pitié-Salpêtrière, Sorbonne Université, Inserm, CNRS, Paris, 75013, France
| | - Yann Zerlau
- ICM, Paris Brain Institute, Hôpital de la Pitié-Salpêtrière, Sorbonne Université, Inserm, CNRS, Paris, 75013, France
| | - Dhanasak Dhanasobhon
- ICM, Paris Brain Institute, Hôpital de la Pitié-Salpêtrière, Sorbonne Université, Inserm, CNRS, Paris, 75013, France
| | - Emmanuelle Berthaux
- ICM, Paris Brain Institute, Hôpital de la Pitié-Salpêtrière, Sorbonne Université, Inserm, CNRS, Paris, 75013, France
| | - Alexandra Tzilivaki
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität zu Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Neuroscience Research Center, 10117 Berlin, Germany
- Einstein Center for Neurosciences, Chariteplatz 1, 10117 Berlin, Germany
- NeuroCure Cluster of Excellence, Chariteplatz 1, 10117 Berlin, Germany
| | - Gael Moneron
- Institut Pasteur, CNRS UMR3571, Synapse and Circuit Dynamics Unit, 75015 Paris, France
| | - Laurence Cathala
- ICM, Paris Brain Institute, Hôpital de la Pitié-Salpêtrière, Sorbonne Université, Inserm, CNRS, Paris, 75013, France
| | - Panayiota Poirazi
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology Hellas (FORTH), Heraklion, 70013, Greece
| | - Alberto Bacci
- ICM, Paris Brain Institute, Hôpital de la Pitié-Salpêtrière, Sorbonne Université, Inserm, CNRS, Paris, 75013, France
| | - David DiGregorio
- Institut Pasteur, CNRS UMR3571, Synapse and Circuit Dynamics Unit, 75015 Paris, France
| | - Joana Lourenço
- ICM, Paris Brain Institute, Hôpital de la Pitié-Salpêtrière, Sorbonne Université, Inserm, CNRS, Paris, 75013, France
| | - Nelson Rebola
- ICM, Paris Brain Institute, Hôpital de la Pitié-Salpêtrière, Sorbonne Université, Inserm, CNRS, Paris, 75013, France
| |
Collapse
|
2
|
Krüssel S, Deb I, Son S, Ewall G, Chang M, Lee HK, Heo WD, Kwon HB. H-Ras induces exuberant de novo dendritic protrusion growth in mature neurons regardless of cell type. iScience 2024; 27:110535. [PMID: 39220408 PMCID: PMC11365382 DOI: 10.1016/j.isci.2024.110535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 05/03/2024] [Accepted: 07/15/2024] [Indexed: 09/04/2024] Open
Abstract
Dendritic protrusions, mainly spines and filopodia, correlate with excitatory synapses in pyramidal neurons (PyNs), but this relationship may not apply universally. We found that ectopic H-Ras expression increased protrusions across various cortical cell types, including layer 2/3 PyNs, parvalbumin (PV)-, and vasoactive intestinal peptide (VIP)-positive interneurons (INs) in the primary motor cortex. The probability of detecting protrusions correlated with local H-Ras activity, indicating its role in protrusion formation. H-Ras overexpression led to high turnover rates by adding protrusions. Two-photon photolysis of glutamate induced de novo spine formation in mature H-Ras expressing neurons, suggesting H-Ras's effect is not limited to early development. In PyNs and PV-INs, but not VIP-INs, spine neck lengths shifted to filopodia-like phenotypes. H-Ras primarily induced filopodia in PyNs and spines in PV- and VIP-INs. Increased protrusions in H-Ras-transfected PyNs lacked key excitatory synaptic proteins and did not affect miniature excitatory postsynaptic currents (mEPSCs), suggesting multifaceted roles beyond excitatory synapses.
Collapse
Affiliation(s)
- Sarah Krüssel
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ishana Deb
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Seungkyu Son
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Gabrielle Ewall
- Solomon H. Snyder Department of Neuroscience, Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Minhyeok Chang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hey-Kyoung Lee
- Solomon H. Snyder Department of Neuroscience, Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Won Do Heo
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hyung-Bae Kwon
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
3
|
Dharmasri PA, Levy AD, Blanpied TA. Differential nanoscale organization of excitatory synapses onto excitatory vs. inhibitory neurons. Proc Natl Acad Sci U S A 2024; 121:e2315379121. [PMID: 38625946 PMCID: PMC11047112 DOI: 10.1073/pnas.2315379121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 03/14/2024] [Indexed: 04/18/2024] Open
Abstract
A key feature of excitatory synapses is the existence of subsynaptic protein nanoclusters (NCs) whose precise alignment across the cleft in a transsynaptic nanocolumn influences the strength of synaptic transmission. However, whether nanocolumn properties vary between excitatory synapses functioning in different cellular contexts is unknown. We used a combination of confocal and DNA-PAINT super-resolution microscopy to directly compare the organization of shared scaffold proteins at two important excitatory synapses-those forming onto excitatory principal neurons (Ex→Ex synapses) and those forming onto parvalbumin-expressing interneurons (Ex→PV synapses). As in Ex→Ex synapses, we find that in Ex→PV synapses, presynaptic Munc13-1 and postsynaptic PSD-95 both form NCs that demonstrate alignment, underscoring synaptic nanostructure and the transsynaptic nanocolumn as conserved organizational principles of excitatory synapses. Despite the general conservation of these features, we observed specific differences in the characteristics of pre- and postsynaptic Ex→PV nanostructure. Ex→PV synapses contained larger PSDs with fewer PSD-95 NCs when accounting for size than Ex→Ex synapses. Furthermore, the PSD-95 NCs were larger and denser. The identity of the postsynaptic cell was also represented in Munc13-1 organization, as Ex→PV synapses hosted larger Munc13-1 puncta that contained less dense but larger and more numerous Munc13-1 NCs. Moreover, we measured the spatial variability of transsynaptic alignment in these synapse types, revealing protein alignment in Ex→PV synapses over a distinct range of distances compared to Ex→Ex synapses. We conclude that while general principles of nanostructure and alignment are shared, cell-specific elements of nanodomain organization likely contribute to functional diversity of excitatory synapses.
Collapse
Affiliation(s)
- Poorna A. Dharmasri
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD21201
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD21201
- University of Maryland-Medicine Institute of Neuroscience Discovery, University of Maryland School of Medicine, Baltimore, MD21201
| | - Aaron D. Levy
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD21201
- University of Maryland-Medicine Institute of Neuroscience Discovery, University of Maryland School of Medicine, Baltimore, MD21201
| | - Thomas A. Blanpied
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD21201
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD21201
- University of Maryland-Medicine Institute of Neuroscience Discovery, University of Maryland School of Medicine, Baltimore, MD21201
| |
Collapse
|
4
|
Kaufhold D, Maristany de Las Casas E, Ocaña-Fernández MDÁ, Cazala A, Yuan M, Kulik A, Cholvin T, Steup S, Sauer JF, Eyre MD, Elgueta C, Strüber M, Bartos M. Spine plasticity of dentate gyrus parvalbumin-positive interneurons is regulated by experience. Cell Rep 2024; 43:113806. [PMID: 38377001 DOI: 10.1016/j.celrep.2024.113806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/21/2023] [Accepted: 01/31/2024] [Indexed: 02/22/2024] Open
Abstract
Experience-driven alterations in neuronal activity are followed by structural-functional modifications allowing cells to adapt to these activity changes. Structural plasticity has been observed for cortical principal cells. However, how GABAergic interneurons respond to experience-dependent network activity changes is not well understood. We show that parvalbumin-expressing interneurons (PVIs) of the dentate gyrus (DG) possess dendritic spines, which undergo behaviorally induced structural dynamics. Glutamatergic inputs at PVI spines evoke signals with high spatial compartmentalization defined by neck length. Mice experiencing novel contexts form more PVI spines with elongated necks and exhibit enhanced network and PVI activity and cFOS expression. Enhanced green fluorescent protein reconstitution across synaptic partner-mediated synapse labeling shows that experience-driven PVI spine growth boosts targeting of PVI spines over shafts by glutamatergic synapses. Our findings propose a role for PVI spine dynamics in regulating PVI excitation by their inputs, which may allow PVIs to dynamically adjust their functional integration in the DG microcircuitry in relation to network computational demands.
Collapse
Affiliation(s)
- Dorthe Kaufhold
- Institute of Physiology I, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | | | | | - Aurore Cazala
- Institute of Physiology I, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Mei Yuan
- Institute of Physiology I, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Akos Kulik
- Institute of Physiology II, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signaling Studies, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Thibault Cholvin
- Institute of Physiology I, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Stefanie Steup
- Institute of Physiology I, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Jonas-Frederic Sauer
- Institute of Physiology I, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Mark D Eyre
- Institute of Physiology I, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Claudio Elgueta
- Institute of Physiology I, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Michael Strüber
- Epilepsy Center Frankfurt Rhine-Main, Center of Neurology and Neurosurgery, Goethe University, 60528 Frankfurt am Main, Germany
| | - Marlene Bartos
- Institute of Physiology I, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
5
|
Sancho L, Boisvert MM, Dawoodtabar T, Burgado J, Wang E, Allen NJ. Astrocyte CCN1 stabilizes neural circuits in the adult brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.14.585077. [PMID: 38559139 PMCID: PMC10979986 DOI: 10.1101/2024.03.14.585077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Neural circuits in many brain regions are refined by experience. Sensory circuits support higher plasticity at younger ages during critical periods - times of circuit refinement and maturation - and limit plasticity in adulthood for circuit stability. The mechanisms underlying these differing plasticity levels and how they serve to maintain and stabilize the properties of sensory circuits remain largely unclear. By combining a transcriptomic approach with ex vivo electrophysiology and in vivo imaging techniques, we identify that astrocytes release cellular communication network factor 1 (CCN1) to maintain synapse and circuit stability in the visual cortex. By overexpressing CCN1 in critical period astrocytes, we find that it promotes the maturation of inhibitory circuits and limits ocular dominance plasticity. Conversely, by knocking out astrocyte CCN1 in adults, binocular circuits are destabilized. These studies establish CCN1 as a novel astrocyte-secreted factor that stabilizes neuronal circuits. Moreover, they demonstrate that the composition and properties of sensory circuits require ongoing maintenance in adulthood, and that these maintenance cues are provided by astrocytes.
Collapse
|
6
|
Krüssel S, Deb I, Son S, Ewall G, Chang M, Lee HK, do Heo W, Kwon HB. Exuberant de novo dendritic spine growth in mature neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.21.550095. [PMID: 37546796 PMCID: PMC10401948 DOI: 10.1101/2023.07.21.550095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Dendritic spines are structural correlates of excitatory synapses maintaining stable synaptic communications. However, this strong spine-synapse relationship was mainly characterized in excitatory pyramidal neurons (PyNs), raising a possibility that inferring synaptic density from dendritic spine number may not be universally applied to all neuronal types. Here we found that the ectopic expression of H-Ras increased dendritic spine numbers regardless of cortical cell types such as layer 2/3 pyramidal neurons (PyNs), parvalbumin (PV)- and vasoactive intestinal peptide (VIP)-positive interneurons (INs) in the primary motor cortex (M1). The probability of detecting dendritic spines was positively correlated with the magnitude of H-Ras activity, suggesting elevated local H-Ras activity is involved in the process of dendritic spine formation. H-Ras overexpression caused high spine turnover rate via adding more spines rather than eliminating them. Two-photon photolysis of glutamate triggered de novo dendritic spine formation in mature neurons, suggesting H-Ras induced spine formation is not restricted to the early development. In PyNs and PV-INs, but not VIP-INs, we observed a shift in average spine neck length towards longer filopodia-like phenotypes. The portion of dendritic spines lacking key excitatory synaptic proteins were significantly increased in H-Ras transfected neurons, suggesting that these increased spines have other distinct functions. High spine density caused by H-Ras did not result in change in the frequency or the amplitude of miniature excitatory postsynaptic currents (mEPSCs). Thus, our results propose that dendritic spines possess more multifaceted functions beyond the morphological proxy of excitatory synapse.
Collapse
Affiliation(s)
- Sarah Krüssel
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ishana Deb
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Seungkyu Son
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Gabrielle Ewall
- Solomon H. Snyder Department of Neuroscience, Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Minhyeok Chang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hey-Kyoung Lee
- Solomon H. Snyder Department of Neuroscience, Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, United States
| | - Won do Heo
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hyung-Bae Kwon
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
7
|
Bygrave AM, Sengupta A, Jackert EP, Ahmed M, Adenuga B, Nelson E, Goldschmidt HL, Johnson RC, Zhong H, Yeh FL, Sheng M, Huganir RL. Btbd11 supports cell-type-specific synaptic function. Cell Rep 2023; 42:112591. [PMID: 37261953 PMCID: PMC10592477 DOI: 10.1016/j.celrep.2023.112591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 04/21/2023] [Accepted: 05/16/2023] [Indexed: 06/03/2023] Open
Abstract
Synapses in the brain exhibit cell-type-specific differences in basal synaptic transmission and plasticity. Here, we evaluated cell-type-specific specializations in the composition of glutamatergic synapses, identifying Btbd11 as an inhibitory interneuron-specific, synapse-enriched protein. Btbd11 is highly conserved across species and binds to core postsynaptic proteins, including Psd-95. Intriguingly, we show that Btbd11 can undergo liquid-liquid phase separation when expressed with Psd-95, supporting the idea that the glutamatergic postsynaptic density in synapses in inhibitory interneurons exists in a phase-separated state. Knockout of Btbd11 decreased glutamatergic signaling onto parvalbumin-positive interneurons. Further, both in vitro and in vivo, Btbd11 knockout disrupts network activity. At the behavioral level, Btbd11 knockout from interneurons alters exploratory behavior, measures of anxiety, and sensitizes mice to pharmacologically induced hyperactivity following NMDA receptor antagonist challenge. Our findings identify a cell-type-specific mechanism that supports glutamatergic synapse function in inhibitory interneurons-with implications for circuit function and animal behavior.
Collapse
Affiliation(s)
- Alexei M Bygrave
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Ayesha Sengupta
- National Institute on Drug Abuse, Bayview Boulevard, Baltimore, MD 21224, USA
| | - Ella P Jackert
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Mehroz Ahmed
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Beloved Adenuga
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Erik Nelson
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hana L Goldschmidt
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Richard C Johnson
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Haining Zhong
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Felix L Yeh
- Department of Neuroscience, Genentech, Inc, South San Francisco, CA 94080, USA
| | - Morgan Sheng
- Department of Neuroscience, Genentech, Inc, South San Francisco, CA 94080, USA
| | - Richard L Huganir
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
8
|
Bose M, Nawaz MS, Pal R, Chattarji S. Stress Elicits Contrasting Effects on Rac1-Cofilin Signaling in the Hippocampus and Amygdala. Front Mol Neurosci 2022; 15:880382. [PMID: 35592113 PMCID: PMC9110925 DOI: 10.3389/fnmol.2022.880382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/07/2022] [Indexed: 12/02/2022] Open
Abstract
There is accumulating evidence for contrasting patterns of stress-induced morphological and physiological plasticity in glutamatergic synapses of the hippocampus and amygdala. The same chronic stress that leads to the formation of dendritic spines in the basolateral amygdala (BLA) of rats, leads to a loss of spines in the hippocampus. However, the molecular underpinnings of these divergent effects of stress on dendritic spines are not well understood. Since the activity of the Rho GTPase Rac1 and the actin-depolymerizing factor cofilin are known to play a pivotal role in spine morphogenesis, we investigated if alterations in this signaling pathway reflect the differential effects of stress on spine plasticity in the hippocampus and amygdala. A day after the end of chronic immobilization stress (2 h/day for 10 days), we found a reduction in the activity of Rac1, as well as its effector p21-activated kinase 1 (PAK1), in the rat hippocampus. These changes, in turn, decreased cofilin phosphorylation alongside a reduction in the levels of profilin isoforms. In striking contrast, the same chronic stress increased Rac1, PAK1 activity, cofilin phosphorylation, and profilin levels in the BLA, which is consistent with enhanced actin polymerization leading to spinogenesis in the BLA. In the hippocampus, on the other hand, the same stress caused the opposite changes, the functional consequences of which would be actin depolymerization leading to the elimination of spines. Together, these findings reveal a role for brain-region specific differences in the dysregulation of Rac1-to-cofilin signaling in the effects of repeated stress on two brain areas that are implicated in the emotional and cognitive symptoms of stress-related psychiatric disorders.
Collapse
|
9
|
Larkum ME, Wu J, Duverdin SA, Gidon A. The guide to dendritic spikes of the mammalian cortex in vitro and in vivo. Neuroscience 2022; 489:15-33. [PMID: 35182699 DOI: 10.1016/j.neuroscience.2022.02.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 02/01/2022] [Accepted: 02/10/2022] [Indexed: 12/23/2022]
Abstract
Half a century since their discovery by Llinás and colleagues, dendritic spikes have been observed in various neurons in different brain regions, from the neocortex and cerebellum to the basal ganglia. Dendrites exhibit a terrifically diverse but stereotypical repertoire of spikes, sometimes specific to subregions of the dendrite. Despite their prevalence, we only have a glimpse into their role in the behaving animal. This article aims to survey the full range of dendritic spikes found in excitatory and inhibitory neurons, compare them in vivo versus in vitro, and discuss new studies describing dendritic spikes in the human cortex. We focus on dendritic spikes in neocortical and hippocampal neurons and present a roadmap to identify and understand the broader role of dendritic spikes in single-cell computation.
Collapse
Affiliation(s)
- Matthew E Larkum
- Institute for Biology, Humboldt-Universität zu Berlin, Berlin, Germany; NeuroCure Cluster, Charité - Universitätsmedizin Berlin, Germany
| | - Jiameng Wu
- Institute for Biology, Humboldt-Universität zu Berlin, Berlin, Germany; Einstein Center for Neurosciences Berlin, Berlin, Germany
| | - Sarah A Duverdin
- Institute for Biology, Humboldt-Universität zu Berlin, Berlin, Germany; Department of Integrative Neurophysiology, Amsterdam Neuroscience, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Albert Gidon
- Institute for Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
10
|
Beating Pain with Psychedelics: Matter over Mind? Neurosci Biobehav Rev 2021; 134:104482. [PMID: 34922987 DOI: 10.1016/j.neubiorev.2021.12.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/19/2021] [Accepted: 12/04/2021] [Indexed: 02/08/2023]
Abstract
Basic pain research has shed light on key cellular and molecular mechanisms underlying nociceptive and phenomenological aspects of pain. Despite these advances, [[we still yearn for] the discovery of novel therapeutic strategies to address the unmet needs of about 70% of chronic neuropathic pain patients whose pain fails to respond to opioids as well as to other conventional analgesic agents. Importantly, a substantial body of clinical observations over the past decade cumulatively suggests that the psychedelic class of drugs may possess heuristic value for understanding and treating chronic pain conditions. The present review presents a theoretical framework for hitherto insufficiently understood neuroscience-based mechanisms of psychedelics' potential analgesic effects. To that end, searches of PubMed-indexed journals were performed using the following Medical Subject Headings' terms: pain, analgesia, inflammatory, brain connectivity, ketamine, psilocybin, functional imaging, and dendrites. Recursive sets of scientific and clinical evidence extracted from this literature review were summarized within the following key areas: (1) studies employing psychedelics for alleviation of physical and emotional pain; (2) potential neuro-restorative effects of psychedelics to remediate the impaired connectivity underlying the dissociation between pain-related conscious states/cognitions and the subcortical activity/function leading to the eventual chronicity through immediate and long-term effects on dentritic plasticity; (3) anti-neuroinflammatory and pro-immunomodulatory actions of psychedelics as the may pertain to the role of these factors in the pathogenesis of neuropathic pain; (4) safety, legal, and ethical consideration inherent in psychedelics' pharmacotherapy. In addition to direct beneficial effects in terms of reduction of pain and suffering, psychedelics' inclusion in the analgesic armamentarium will contribute to deeper and more sophisticated insights not only into pain syndromes but also into frequently comorbid psychiatric condition associated with emotional pain, e.g., depressive and anxiety disorders. Further inquiry is clearly warranted into the above areas that have potential to evolve into further elucidate the mechanisms of chronic pain and affective disorders, and lead to the development of innovative, safe, and more efficacious neurobiologically-based therapeutic approaches.
Collapse
|
11
|
Melander JB, Nayebi A, Jongbloets BC, Fortin DA, Qin M, Ganguli S, Mao T, Zhong H. Distinct in vivo dynamics of excitatory synapses onto cortical pyramidal neurons and parvalbumin-positive interneurons. Cell Rep 2021; 37:109972. [PMID: 34758304 PMCID: PMC8631347 DOI: 10.1016/j.celrep.2021.109972] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/03/2021] [Accepted: 10/19/2021] [Indexed: 11/18/2022] Open
Abstract
Cortical function relies on the balanced activation of excitatory and inhibitory neurons. However, little is known about the organization and dynamics of shaft excitatory synapses onto cortical inhibitory interneurons. Here, we use the excitatory postsynaptic marker PSD-95, fluorescently labeled at endogenous levels, as a proxy for excitatory synapses onto layer 2/3 pyramidal neurons and parvalbumin-positive (PV+) interneurons in the barrel cortex of adult mice. Longitudinal in vivo imaging under baseline conditions reveals that, although synaptic weights in both neuronal types are log-normally distributed, synapses onto PV+ neurons are less heterogeneous and more stable. Markov model analyses suggest that the synaptic weight distribution is set intrinsically by ongoing cell-type-specific dynamics, and substantial changes are due to accumulated gradual changes. Synaptic weight dynamics are multiplicative, i.e., changes scale with weights, although PV+ synapses also exhibit an additive component. These results reveal that cell-type-specific processes govern cortical synaptic strengths and dynamics. Melander et al. use a genetic strategy to visualize excitatory neuronal connections that cannot be inferred from morphology, and they monitor how the connections change over weeks in mice. They find distinct characteristics between synapses onto cells that “suppress” brain activity and those onto cells that “excite” brain activity.
Collapse
Affiliation(s)
- Joshua B Melander
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA; Neurosciences PhD Program, Stanford University, Stanford, CA 94305, USA
| | - Aran Nayebi
- Neurosciences PhD Program, Stanford University, Stanford, CA 94305, USA
| | - Bart C Jongbloets
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Dale A Fortin
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Maozhen Qin
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Surya Ganguli
- Department of Applied Physics, Stanford University, Stanford, CA 94305, USA.
| | - Tianyi Mao
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA.
| | - Haining Zhong
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
12
|
Gutman-Wei AY, Brown SP. Mechanisms Underlying Target Selectivity for Cell Types and Subcellular Domains in Developing Neocortical Circuits. Front Neural Circuits 2021; 15:728832. [PMID: 34630048 PMCID: PMC8497978 DOI: 10.3389/fncir.2021.728832] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/25/2021] [Indexed: 11/25/2022] Open
Abstract
The cerebral cortex contains numerous neuronal cell types, distinguished by their molecular identity as well as their electrophysiological and morphological properties. Cortical function is reliant on stereotyped patterns of synaptic connectivity and synaptic function among these neuron types, but how these patterns are established during development remains poorly understood. Selective targeting not only of different cell types but also of distinct postsynaptic neuronal domains occurs in many brain circuits and is directed by multiple mechanisms. These mechanisms include the regulation of axonal and dendritic guidance and fine-scale morphogenesis of pre- and postsynaptic processes, lineage relationships, activity dependent mechanisms and intercellular molecular determinants such as transmembrane and secreted molecules, many of which have also been implicated in neurodevelopmental disorders. However, many studies of synaptic targeting have focused on circuits in which neuronal processes target different lamina, such that cell-type-biased connectivity may be confounded with mechanisms of laminar specificity. In the cerebral cortex, each cortical layer contains cell bodies and processes from intermingled neuronal cell types, an arrangement that presents a challenge for the development of target-selective synapse formation. Here, we address progress and future directions in the study of cell-type-biased synaptic targeting in the cerebral cortex. We highlight challenges to identifying developmental mechanisms generating stereotyped patterns of intracortical connectivity, recent developments in uncovering the determinants of synaptic target selection during cortical synapse formation, and current gaps in the understanding of cortical synapse specificity.
Collapse
Affiliation(s)
- Alan Y. Gutman-Wei
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Solange P. Brown
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
13
|
Development, Diversity, and Death of MGE-Derived Cortical Interneurons. Int J Mol Sci 2021; 22:ijms22179297. [PMID: 34502208 PMCID: PMC8430628 DOI: 10.3390/ijms22179297] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/17/2022] Open
Abstract
In the mammalian brain, cortical interneurons (INs) are a highly diverse group of cells. A key neurophysiological question concerns how each class of INs contributes to cortical circuit function and whether specific roles can be attributed to a selective cell type. To address this question, researchers are integrating knowledge derived from transcriptomic, histological, electrophysiological, developmental, and functional experiments to extensively characterise the different classes of INs. Our hope is that such knowledge permits the selective targeting of cell types for therapeutic endeavours. This review will focus on two of the main types of INs, namely the parvalbumin (PV+) or somatostatin (SOM+)-containing cells, and summarise the research to date on these classes.
Collapse
|
14
|
Booker SA, Wyllie DJA. NMDA receptor function in inhibitory neurons. Neuropharmacology 2021; 196:108609. [PMID: 34000273 DOI: 10.1016/j.neuropharm.2021.108609] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 12/26/2022]
Abstract
N-methyl-d-aspartate receptors (NMDARs) are present in the majority of brain circuits and play a key role in synaptic information transfer and synaptic plasticity. A key element of many brain circuits are inhibitory GABAergic interneurons that in themselves show diverse and cell-type-specific NMDAR expression and function. Indeed, NMDARs located on interneurons control cellular excitation in a synapse-type specific manner which leads to divergent dendritic integration properties amongst the plethora of interneuron subtypes known to exist. In this review, we explore the documented diversity of NMDAR subunit expression in identified subpopulations of interneurons and assess the NMDAR subtype-specific control of their function. We also highlight where knowledge still needs to be obtained, if a full appreciation is to be gained of roles played by NMDARs in controlling GABAergic modulation of synaptic and circuit function. This article is part of the 'Special Issue on Glutamate Receptors - NMDA receptors'.
Collapse
Affiliation(s)
- Sam A Booker
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, EH8 9XD, UK; Patrick Wild Centre for Research into Autism, Fragile X Syndrome & Intellectual Disabilities, University of Edinburgh, Edinburgh, EH8 9XD, UK; Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK.
| | - David J A Wyllie
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, EH8 9XD, UK; Patrick Wild Centre for Research into Autism, Fragile X Syndrome & Intellectual Disabilities, University of Edinburgh, Edinburgh, EH8 9XD, UK; Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK; Centre for Brain Development and Repair, InStem, Bangalore, 560065, India.
| |
Collapse
|
15
|
Hwang YS, Maclachlan C, Blanc J, Dubois A, Petersen CCH, Knott G, Lee SH. 3D Ultrastructure of Synaptic Inputs to Distinct GABAergic Neurons in the Mouse Primary Visual Cortex. Cereb Cortex 2021; 31:2610-2624. [PMID: 33350443 PMCID: PMC8023854 DOI: 10.1093/cercor/bhaa378] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 10/13/2020] [Accepted: 11/18/2020] [Indexed: 12/16/2022] Open
Abstract
Synapses are the fundamental elements of the brain's complicated neural networks. Although the ultrastructure of synapses has been extensively studied, the difference in how synaptic inputs are organized onto distinct neuronal types is not yet fully understood. Here, we examined the cell-type-specific ultrastructure of proximal processes from the soma of parvalbumin-positive (PV+) and somatostatin-positive (SST+) GABAergic neurons in comparison with a pyramidal neuron in the mouse primary visual cortex (V1), using serial block-face scanning electron microscopy. Interestingly, each type of neuron organizes excitatory and inhibitory synapses in a unique way. First, we found that a subset of SST+ neurons are spiny, having spines on both soma and dendrites. Each of those spines has a highly complicated structure that has up to eight synaptic inputs. Next, the PV+ and SST+ neurons receive more robust excitatory inputs to their perisoma than does the pyramidal neuron. Notably, excitatory synapses on GABAergic neurons were often multiple-synapse boutons, making another synapse on distal dendrites. On the other hand, inhibitory synapses near the soma were often single-targeting multiple boutons. Collectively, our data demonstrate that synaptic inputs near the soma are differentially organized across cell types and form a network that balances inhibition and excitation in the V1.
Collapse
Affiliation(s)
- Yang-Sun Hwang
- Department of Biological Sciences, KAIST, Daejeon, 34141, Republic of Korea
| | - Catherine Maclachlan
- Biological Electron Microscopy Facility, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| | - Jérôme Blanc
- Biological Electron Microscopy Facility, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| | - Anaëlle Dubois
- Biological Electron Microscopy Facility, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| | - Carl C H Petersen
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| | - Graham Knott
- Biological Electron Microscopy Facility, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| | - Seung-Hee Lee
- Department of Biological Sciences, KAIST, Daejeon, 34141, Republic of Korea
| |
Collapse
|
16
|
Bird AD, Deters LH, Cuntz H. Excess Neuronal Branching Allows for Local Innervation of Specific Dendritic Compartments in Mature Cortex. Cereb Cortex 2020; 31:1008-1031. [DOI: 10.1093/cercor/bhaa271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/14/2020] [Accepted: 08/14/2020] [Indexed: 12/12/2022] Open
Abstract
Abstract
The connectivity of cortical microcircuits is a major determinant of brain function; defining how activity propagates between different cell types is key to scaling our understanding of individual neuronal behavior to encompass functional networks. Furthermore, the integration of synaptic currents within a dendrite depends on the spatial organization of inputs, both excitatory and inhibitory. We identify a simple equation to estimate the number of potential anatomical contacts between neurons; finding a linear increase in potential connectivity with cable length and maximum spine length, and a decrease with overlapping volume. This enables us to predict the mean number of candidate synapses for reconstructed cells, including those realistically arranged. We identify an excess of potential local connections in mature cortical data, with densities of neurite higher than is necessary to reliably ensure the possible implementation of any given axo-dendritic connection. We show that the number of local potential contacts allows specific innervation of distinct dendritic compartments.
Collapse
Affiliation(s)
- A D Bird
- Frankfurt Institute for Advanced Studies, Frankfurt-am-Main 60438, Germany
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with the Max Planck Society, Frankfurt-am-Main 60528, Germany
| | - L H Deters
- Frankfurt Institute for Advanced Studies, Frankfurt-am-Main 60438, Germany
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with the Max Planck Society, Frankfurt-am-Main 60528, Germany
| | - H Cuntz
- Frankfurt Institute for Advanced Studies, Frankfurt-am-Main 60438, Germany
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with the Max Planck Society, Frankfurt-am-Main 60528, Germany
| |
Collapse
|
17
|
Bannon NM, Chistiakova M, Volgushev M. Synaptic Plasticity in Cortical Inhibitory Neurons: What Mechanisms May Help to Balance Synaptic Weight Changes? Front Cell Neurosci 2020; 14:204. [PMID: 33100968 PMCID: PMC7500144 DOI: 10.3389/fncel.2020.00204] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/10/2020] [Indexed: 01/29/2023] Open
Abstract
Inhibitory neurons play a fundamental role in the normal operation of neuronal networks. Diverse types of inhibitory neurons serve vital functions in cortical networks, such as balancing excitation and taming excessive activity, organizing neuronal activity in spatial and temporal patterns, and shaping response selectivity. Serving these, and a multitude of other functions effectively requires fine-tuning of inhibition, mediated by synaptic plasticity. Plasticity of inhibitory systems can be mediated by changes at inhibitory synapses and/or by changes at excitatory synapses at inhibitory neurons. In this review, we consider that latter locus: plasticity at excitatory synapses to inhibitory neurons. Despite the fact that plasticity of excitatory synaptic transmission to interneurons has been studied in much less detail than in pyramids and other excitatory cells, an abundance of forms and mechanisms of plasticity have been observed in interneurons. Specific requirements and rules for induction, while exhibiting a broad diversity, could correlate with distinct sources of excitatory inputs and distinct types of inhibitory neurons. One common requirement for the induction of plasticity is the rise of intracellular calcium, which could be mediated by a variety of ligand-gated, voltage-dependent, and intrinsic mechanisms. The majority of the investigated forms of plasticity can be classified as Hebbian-type associative plasticity. Hebbian-type learning rules mediate adaptive changes of synaptic transmission. However, these rules also introduce intrinsic positive feedback on synaptic weight changes, making plastic synapses and learning networks prone to runaway dynamics. Because real inhibitory neurons do not express runaway dynamics, additional plasticity mechanisms that counteract imbalances introduced by Hebbian-type rules must exist. We argue that weight-dependent heterosynaptic plasticity has a number of characteristics that make it an ideal candidate mechanism to achieve homeostatic regulation of synaptic weight changes at excitatory synapses to inhibitory neurons.
Collapse
Affiliation(s)
- Nicholas M Bannon
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, United States
| | - Marina Chistiakova
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, United States
| | - Maxim Volgushev
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
18
|
Foggetti A, Baccini G, Arnold P, Schiffelholz T, Wulff P. Spiny and Non-spiny Parvalbumin-Positive Hippocampal Interneurons Show Different Plastic Properties. Cell Rep 2020; 27:3725-3732.e5. [PMID: 31242406 PMCID: PMC6613043 DOI: 10.1016/j.celrep.2019.05.098] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 04/06/2019] [Accepted: 05/22/2019] [Indexed: 01/14/2023] Open
Abstract
Dendritic spines control synaptic transmission and plasticity by augmenting post-synaptic potentials and providing biochemical compartmentalization. In principal cells, spines cover the dendritic tree at high densities, receive the overwhelming majority of excitatory inputs, and undergo experience-dependent structural re-organization. Although GABAergic interneurons have long been considered to be devoid of spines, a number of studies have reported the sparse existence of spines in interneurons. However, little is known about their organization or function at the cellular and network level. Here, we show that a subset of hippocampal parvalbumin-positive interneurons forms numerous dendritic spines with highly variable densities and input-selective organization. These spines form in areas with reduced perineuronal net sheathing, predispose for plastic changes in protein expression, and show input-specific re-organization after behavioral experience.
Collapse
Affiliation(s)
- Angelica Foggetti
- Institute of Physiology, Christian-Albrechts-University Kiel, 24098 Kiel, Germany.
| | - Gilda Baccini
- Institute of Physiology, Christian-Albrechts-University Kiel, 24098 Kiel, Germany
| | - Philipp Arnold
- Anatomical Institute, Christian-Albrechts-University Kiel, 24118 Kiel, Germany
| | - Thomas Schiffelholz
- Department of Psychiatry and Psychotherapy, Christian-Albrechts-University Kiel, 24105 Kiel, Germany
| | - Peer Wulff
- Institute of Physiology, Christian-Albrechts-University Kiel, 24098 Kiel, Germany.
| |
Collapse
|
19
|
Bartholome O, de la Brassinne Bonardeaux O, Neirinckx V, Rogister B. A Composite Sketch of Fast-Spiking Parvalbumin-Positive Neurons. Cereb Cortex Commun 2020; 1:tgaa026. [PMID: 34296100 PMCID: PMC8153048 DOI: 10.1093/texcom/tgaa026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/15/2020] [Accepted: 06/15/2020] [Indexed: 01/28/2023] Open
Abstract
Parvalbumin-positive neurons are inhibitory neurons that release GABA and are mostly represented by fast-spiking basket or chandelier cells. They constitute a minor neuronal population, yet their peculiar profiles allow them to react quickly to any event in the brain under normal or pathological conditions. In this review, we will summarize the current knowledge about the fundamentals of fast-spiking parvalbumin-positive neurons, focusing on their morphology and specific channel/protein content. Next, we will explore their development, maturation, and migration in the brain. Finally, we will unravel their potential contribution to the physiopathology of epilepsy.
Collapse
Affiliation(s)
| | | | | | - Bernard Rogister
- GIGA-Neurosciences, University of Liege, 4000 Liège, Belgium
- Neurology Department, CHU, Academic Hospital, University of Liege, 4000 Liège, Belgium
| |
Collapse
|
20
|
Lalanne T, Oyrer J, Farrant M, Sjöström PJ. Synapse Type-Dependent Expression of Calcium-Permeable AMPA Receptors. Front Synaptic Neurosci 2018; 10:34. [PMID: 30369875 PMCID: PMC6194349 DOI: 10.3389/fnsyn.2018.00034] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 09/24/2018] [Indexed: 12/13/2022] Open
Abstract
Calcium-permeable (CP) AMPA-type glutamate receptors (AMPARs) are known to mediate synaptic plasticity in several different interneuron (IN) types. Recent evidence suggests that CP-AMPARs are synapse-specifically expressed at excitatory connections onto a subset of IN types in hippocampus and neocortex. For example, CP-AMPARs are found at connections from pyramidal cells (PCs) to basket cells (BCs), but not to Martinotti cells (MCs). This synapse type-specific expression of CP-AMPARs suggests that synaptic dynamics as well as learning rules are differentially implemented in local circuits and has important implications not just in health but also in disease states such as epilepsy.
Collapse
Affiliation(s)
- Txomin Lalanne
- Department of Biomedicine, Institute of Physiology, University of Basel, Basel, Switzerland
| | - Julia Oyrer
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Mark Farrant
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - P Jesper Sjöström
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, Brain Repair and Integrative Neuroscience Program, Montreal General Hospital, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|