1
|
Zhou J, Li M, Chen Y, Wang S, Wang D, Suo C, Chen X. Attenuated sex-related DNA methylation differences in cancer highlight the magnitude bias mediating existing disparities. Biol Sex Differ 2024; 15:106. [PMID: 39716176 DOI: 10.1186/s13293-024-00682-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 12/08/2024] [Indexed: 12/25/2024] Open
Abstract
BACKGROUND DNA methylation (DNAm) influences both sex differences and cancer development, yet the mechanisms connecting these factors remain unclear. METHODS Utilizing data from The Cancer Genome Atlas, we conducted a comprehensive analysis of sex-related DNAm effects in nine non-reproductive cancers, compared to paired normal adjacent tissues (NATs), and validated the results using independent datasets. First, we assessed the extent of sex differential DNAm between cancers and NATs to explore how sex-related DNAm differences change in cancerous tissues. Next, we employed a multivariate adaptive shrinkage approach to model the covariance of cancer-related DNAm effects between sexes, aiming to elucidate how sex impacts aberrant DNAm patterns in cancers. Finally, we investigated correlations between the methylome and transcriptome to identify key signals driving sex-biased DNAm regulation in cancers. RESULTS Our analysis revealed a significant attenuation of sex differences in DNAm within cancerous tissues compared to baseline differences in normal tissues. We identified 3,452 CpGs (Pbonf < 0.05) associated with this reduction, with 72% of the linked genes involved in X chromosome inactivation. Through covariance analysis, we demonstrated that sex differences in cancer are predominantly driven by variations in the magnitude of shared DNAm signals, referred to as "amplification." Based on these patterns, we classified cancers into female- and male-biased groups and identified key CpGs exhibiting sex-specific amplification. These CpGs were enriched in binding sites of critical transcription factors, including P53, SOX2, and CTCF. Integrative multi-omics analyses uncovered 48 CpG-gene-cancer trios for females and 380 for males, showing similar magnitude differences in DNAm and gene expression, pointing to a sex-specific regulatory role of DNAm in cancer risk. Notably, several genes regulated by these trios were previously identified as drug targets for cancers, highlighting their potential as sex-specific therapeutic targets. CONCLUSIONS These findings advance our understanding of how sex, DNAm, and gene expression interact in cancer, offering insights into the development of sex-specific biomarkers and precision medicine.
Collapse
Affiliation(s)
- Jiaqi Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Miao Li
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Yu Chen
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Shangzi Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Danke Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Chen Suo
- Fudan University Taizhou Institute of Health Sciences, Taizhou, China
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China
- Shanghai Institute of Infectious Disease and Biosecurity, Shanghai, China
| | - Xingdong Chen
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China.
- Fudan University Taizhou Institute of Health Sciences, Taizhou, China.
- Yiwu Research Institute of Fudan University, Yiwu, China.
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Pinto R, Vedeld HM, Lind GE, Jeanmougin M. Unraveling epigenetic heterogeneity across gastrointestinal adenocarcinomas through a standardized analytical framework. Mol Oncol 2024. [PMID: 39696831 DOI: 10.1002/1878-0261.13772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 09/30/2024] [Accepted: 10/31/2024] [Indexed: 12/20/2024] Open
Abstract
In this study, we propose an alternative approach for stratifying genome-scale DNA methylation profiles of gastrointestinal (GI) adenocarcinomas based on a robust analytical framework. A set of 978 GI adenocarcinomas and 120 adjacent normal tissues from public repositories was quality controlled and analyzed. Hierarchical consensus clustering of the tumors, based on differential epigenetic variability between malignant and normal samples, identified six distinct subtypes defined either by a pan-GI or a lower GI-specific phenotype. In addition to methylation levels, aberrant methylation frequencies and the degree of DNA methylation instability contributed to the characterization of each subtype. We found significant differences in the outcome of patients, with the poorest overall survival seen for those belonging to a pan-GI subtype with infrequent aberrant methylation. In conclusion, our standardized approach contributes to a refined characterization of the epigenetic heterogeneity in GI adenocarcinomas, offering insights into subtype-specific methylation with the potential to support prognostication.
Collapse
Affiliation(s)
- Rita Pinto
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital - Norwegian Radium Hospital, Oslo, Norway
| | - Hege Marie Vedeld
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital - Norwegian Radium Hospital, Oslo, Norway
| | - Guro Elisabeth Lind
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital - Norwegian Radium Hospital, Oslo, Norway
- Department of Biosciences, The Faculty of Mathematics and Natural Sciences, University of Oslo, Norway
| | - Marine Jeanmougin
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital - Norwegian Radium Hospital, Oslo, Norway
| |
Collapse
|
3
|
De Velasco MA, Sakai K, Mitani S, Kura Y, Minamoto S, Haeno T, Hayashi H, Nishio K. A machine learning-based method for feature reduction of methylation data for the classification of cancer tissue origin. Int J Clin Oncol 2024; 29:1795-1810. [PMID: 39292320 PMCID: PMC11588780 DOI: 10.1007/s10147-024-02617-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/28/2024] [Indexed: 09/19/2024]
Abstract
BACKGROUND Genome DNA methylation profiling is a promising yet costly method for cancer classification, involving substantial data. We developed an ensemble learning model to identify cancer types using methylation profiles from a limited number of CpG sites. METHODS Analyzing methylation data from 890 samples across 10 cancer types from the TCGA database, we utilized ANOVA and Gain Ratio to select the most significant CpG sites, then employed Gradient Boosting to reduce these to just 100 sites. RESULTS This approach maintained high accuracy across multiple machine learning models, with classification accuracy rates between 87.7% and 93.5% for methods including Extreme Gradient Boosting, CatBoost, and Random Forest. This method effectively minimizes the number of features needed without losing performance, helping to classify primary organs and uncover subgroups within specific cancers like breast and lung. CONCLUSIONS Using a gradient boosting feature selector shows potential for streamlining methylation-based cancer classification.
Collapse
Affiliation(s)
- Marco A De Velasco
- Department of Genome Biology, Faculty of Medicine, Kindai University, Ohnohigashi 377-2, Osaka-Sayama, 589-9511, Japan
| | - Kazuko Sakai
- Department of Genome Biology, Faculty of Medicine, Kindai University, Ohnohigashi 377-2, Osaka-Sayama, 589-9511, Japan
| | - Seiichiro Mitani
- Department of Medical Oncology, Faculty of Medicine, Kindai University, Osaka-Sayama, Japan
| | - Yurie Kura
- Department of Genome Biology, Faculty of Medicine, Kindai University, Ohnohigashi 377-2, Osaka-Sayama, 589-9511, Japan
| | - Shuji Minamoto
- Department of Molecular Tumor Pathobiology, Kindai University Graduate School of Medical Sciences, Osaka-Sayama, Japan
| | - Takahiro Haeno
- Department of Molecular Tumor Pathobiology, Kindai University Graduate School of Medical Sciences, Osaka-Sayama, Japan
| | - Hidetoshi Hayashi
- Department of Medical Oncology, Faculty of Medicine, Kindai University, Osaka-Sayama, Japan
| | - Kazuto Nishio
- Department of Genome Biology, Faculty of Medicine, Kindai University, Ohnohigashi 377-2, Osaka-Sayama, 589-9511, Japan.
- Department of Molecular Tumor Pathobiology, Kindai University Graduate School of Medical Sciences, Osaka-Sayama, Japan.
| |
Collapse
|
4
|
Wan X, Deng Q, Chen A, Zhang X, Yang W. Bioinformatics analysis and experimental validation of the oncogenic role of COL11A1 in pan-cancer. 3 Biotech 2024; 14:290. [PMID: 39507058 PMCID: PMC11534945 DOI: 10.1007/s13205-024-04133-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/19/2024] [Indexed: 11/08/2024] Open
Abstract
The intricate expression patterns and oncogenic attributes of COL11A1 across different cancer types remain largely elusive. This study used several public databases (TCGA, GTEx, and CCLE) to investigate the pan-cancer landscape of COL11A1 expression, its prognostic implications, interplay with the immune microenvironment, and enriched signaling cascades. Concurrently, western blot analyses were performed to verify COL11A1 expression in lung adenocarcinoma (LUAD) cell lines and clinical samples. In addition, COL11A1 knockout cell lines were generated to scrutinize the functional consequences of COL11AI expression on cancer cell behavior by use MTT, colony formation, and scratch wound healing assays. A comprehensive database investigation revealed that COL11A1 was upregulated in a majority of tumor tissues and its expression was highly correlated with a patient's prognosis. Notably, genetic alterations in COL11A1 predominantly occurred as mutations, while its DNA methylation status inversely mirrored gene expression levels across multiple promoter regions. Our findings suggest that COL11A1 helps to modulate the tumor immune landscape and potentially acts through the epithelial-mesenchymal transition (EMT) pathway to exert its oncogenic function. Western blot analyses further substantiated the specific upregulation of COL11A1 in LUAD cell lines and tissues, suggesting a close association with the EMT process. Ablation of COL11A1 in cancer cells significantly reduced their proliferative, clonogenic, and migratory abilities, underscoring the functional significance of COL11A1 in tumor cell behavior. Collectively, this research revealed the prevalent overexpression of COL11A1 in pan-cancer tissues, its profound prognostic and microenvironmental correlations, and the mechanistic underpinnings of its tumor-promoting effects as mediated via EMT signaling. Our findings suggest that COL11A1 could serve as a prognostic and diagnostic biomarker and therapeutic target for cancer.
Collapse
Affiliation(s)
- Xiaofeng Wan
- Department of Laboratory, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui China
| | - Qingmei Deng
- Department of Laboratory, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui China
| | - Anling Chen
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031 Anhui China
- Science Island Branch, Graduate School of University of Science and Technology of China, Hefei, China
| | - Xinhui Zhang
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031 Anhui China
| | - Wulin Yang
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031 Anhui China
| |
Collapse
|
5
|
Gorse M, Bianchi C, Proudhon C. [Epigenetics and cancer: the role of DNA methylation]. Med Sci (Paris) 2024; 40:925-934. [PMID: 39705563 DOI: 10.1051/medsci/2024180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2024] Open
Abstract
Alterations in DNA methylation profiles are typically found in cancer cells, combining genome-wide hypomethylation with hypermethylation of specific regions, such as CpG islands, which are normally unmethylated. Driving effects in cancer development have been associated with alteration of DNA methylation in certain regions, inducing, for example, the repression of tumor suppressor genes or the activation of oncogenes and retrotransposons. These alterations represent prime candidates for the development of specific markers for the detection, diagnosis and prognosis of cancer. In particular, these markers, distributed along the genome, provide a wealth of information that offers potential for innovation in the field of liquid biopsy, in particular thanks to the emergence of artificial intelligence for diagnostic purposes. This could overcome the limitations related to sensitivities and specificities, which remain too low for the most difficult applications in oncology: the detection of cancers at an early stage, the monitoring of residual disease and the analysis of brain tumors. In addition, targeting the enzymatic processes that control the epigenome offers new therapeutic strategies that could reverse the regulatory anomalies of these altered epigenomes.
Collapse
Affiliation(s)
- Marine Gorse
- Université de Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) UMR_S 1085, Rennes, France
| | - Charline Bianchi
- Université de Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) UMR_S 1085, Rennes, France
| | - Charlotte Proudhon
- Université de Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) UMR_S 1085, Rennes, France
| |
Collapse
|
6
|
Ankill J, Zhao Z, Tekpli X, Kure EH, Kristensen VN, Mathelier A, Fleischer T. Integrative pan-cancer analysis reveals a common architecture of dysregulated transcriptional networks characterized by loss of enhancer methylation. PLoS Comput Biol 2024; 20:e1012565. [PMID: 39556603 DOI: 10.1371/journal.pcbi.1012565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 10/16/2024] [Indexed: 11/20/2024] Open
Abstract
Aberrant DNA methylation contributes to gene expression deregulation in cancer. However, these alterations' precise regulatory role and clinical implications are still not fully understood. In this study, we performed expression-methylation Quantitative Trait Loci (emQTL) analysis to identify deregulated cancer-driving transcriptional networks linked to CpG demethylation pan-cancer. By analyzing 33 cancer types from The Cancer Genome Atlas, we identified and confirmed significant correlations between CpG methylation and gene expression (emQTL) in cis and trans, both across and within cancer types. Bipartite network analysis of the emQTL revealed groups of CpGs and genes related to important biological processes involved in carcinogenesis including proliferation, metabolism and hormone-signaling. These bipartite communities were characterized by loss of enhancer methylation in specific transcription factor binding regions (TFBRs) and the CpGs were topologically linked to upregulated genes through chromatin loops. Penalized Cox regression analysis showed a significant prognostic impact of the pan-cancer emQTL in many cancer types. Taken together, our integrative pan-cancer analysis reveals a common architecture where hallmark cancer-driving functions are affected by the loss of enhancer methylation and may be epigenetically regulated.
Collapse
Affiliation(s)
- Jørgen Ankill
- Department of Cancer Genetics, Institute of Cancer Research, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Zhi Zhao
- Department of Cancer Genetics, Institute of Cancer Research, Oslo University Hospital, Oslo, Norway
- Oslo Centre for Biostatistics and Epidemiology (OCBE), Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Xavier Tekpli
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Elin H Kure
- Department of Cancer Genetics, Institute of Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Vessela N Kristensen
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Medical Genetics, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Anthony Mathelier
- Department of Medical Genetics, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Norway, Oslo, Norway
| | - Thomas Fleischer
- Department of Cancer Genetics, Institute of Cancer Research, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
7
|
Mandal T, Gnanasegaran S, Rodrigues G, Kashipathi S, Tiwari A, Dubey AK, Bhattacharjee S, Manjunath Y, Krishna S, Madhusudhan MS, Ghosh M. Targeting LLT1 as a potential immunotherapy option for cancer patients non-responsive to existing checkpoint therapies in multiple solid tumors. BMC Cancer 2024; 24:1365. [PMID: 39511540 PMCID: PMC11545609 DOI: 10.1186/s12885-024-13074-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 10/17/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND High levels of LLT1 expression have been found in several cancers, where it interacts with CD161 on NK cells to facilitate tumor immune escape. Targeting LLT1 could potentially relieve this inhibitory signal and enhance anti-tumor responses mediated through NK cells. Using the 'The Cancer Genome Atlas' (TCGA) database, we investigated the role of LLT1 in the tumor microenvironment (TME) across various cancers. Identifying such biomarkers could create new therapeutic options for patients in addition to complementing existing immunotherapies. METHODS LLT1 expression was evaluated in 33 cancers using TCGA transcriptome data. Univariate Cox regression analysis was employed to assess the correlation of LLT1 expression with patient survival. The relationship between LLT1 expression with immune infiltrates, immune gene signatures, and cancer genomic biomarkers (TMB, MSI, and MMR) was also investigated. Immunofluorescence studies were conducted to validate LLT1 expression in tumors. Furthermore, using the CRI iAtlas data, we evaluated LLT1 distribution and its correlation with other immune checkpoint genes in patients non-responsive to existing immune checkpoint therapies across multiple solid cancers. RESULTS High expression of LLT1 was observed in 12 cancers, including BRCA, CHOL, ESCA, GBM, HNSC, KIRC, KIRP, LIHC, LUAD, STAD, SARC, and PCPG. In certain cancers like COAD, KICH, and KIRC, high LLT1 expression was associated with poor prognosis. Further analysis revealed that upregulated LLT1 was associated with an abundance of NK and T cell infiltrates in the TME, as well as exhaustive immune biomarkers, and inversely associated with pro-inflammatory and tumor suppressor signatures. High LLT1 expression is also positively correlated with genomic biomarkers in certain cancers. Immunofluorescence studies confirmed moderate to high LLT1 expression in immune-resistant prostate cancer, glioma, ovarian cancer, and immune-sensitive liver cancer cell lines. An independent assessment of clinical cohorts from CRI iAtlas showed a correlation of upregulated LLT1 with multiple immunosuppressive genes in patients non-responsive to current ICIs. CONCLUSIONS The biomarker analysis revealed a clear association between elevated LLT1 expression and an immunosuppressive TME in patient cohorts from TCGA and clinical databases. Therefore, this study provides a foundation for utilizing LLT1 as a potential target to improve clinical responses in ICI non-responsive patients with upregulated LLT1.
Collapse
Affiliation(s)
| | | | - Golding Rodrigues
- Indian Institute of Science Education and Research (IISER), Pune, India
| | | | | | | | | | | | | | - M S Madhusudhan
- Indian Institute of Science Education and Research (IISER), Pune, India
| | - Maloy Ghosh
- Zumutor Biologics, Bangalore, Karnataka, India.
| |
Collapse
|
8
|
Liu P, Jacques J, Hwang CI. Epigenetic Landscape of DNA Methylation in Pancreatic Ductal Adenocarcinoma. EPIGENOMES 2024; 8:41. [PMID: 39584964 PMCID: PMC11587027 DOI: 10.3390/epigenomes8040041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/17/2024] [Accepted: 11/01/2024] [Indexed: 11/26/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains one of the most lethal malignancies, characterized by its aggressive progression and dismal prognosis. Advances in epigenetic profiling, specifically DNA methylation analysis, have significantly deepened our understanding of PDAC pathogenesis. This review synthesizes findings from recent genome-wide DNA methylation studies, which have delineated a complex DNA methylation landscape differentiating between normal and cancerous pancreatic tissues, as well as across various stages and molecular subtypes of PDAC. These studies identified specific differentially methylated regions (DMRs) that not only enhance our grasp of the epigenetic drivers of PDAC but also offer potential biomarkers for early diagnosis and prognosis, enabling the customization of therapeutic approaches. The review further explores how DNA methylation profiling could facilitate the development of subtype-tailored therapies, potentially improving treatment outcomes based on precise molecular characterizations. Overall, leveraging DNA methylation alterations as functional biomarkers holds promise for advancing our understanding of disease progression and refining PDAC management strategies, which could lead to improved patient outcomes and a deeper comprehension of the disease's underlying biological mechanisms.
Collapse
Affiliation(s)
- Peiyi Liu
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, Davis, CA 95616, USA; (P.L.); (J.J.)
| | - Juliette Jacques
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, Davis, CA 95616, USA; (P.L.); (J.J.)
| | - Chang-Il Hwang
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, Davis, CA 95616, USA; (P.L.); (J.J.)
- University of California Davis Comprehensive Cancer Center, University of California, Davis, Sacramento, CA 95817, USA
| |
Collapse
|
9
|
Conway K, Edmiston SN, Vondras A, Reiner A, Corcoran DL, Shen R, Parrish EA, Hao H, Lin L, Kenney JM, Ilelaboye G, Kostrzewa CE, Kuan PF, Busam KJ, Lezcano C, Lee TK, Hernando E, Googe PB, Ollila DW, Moschos S, Gorlov I, Amos CI, Ernstoff MS, Cust AE, Wilmott JS, Scolyer RA, Mann GJ, Vergara IA, Ko J, Rees JR, Yan S, Nagore E, Bosenberg M, Rothberg BG, Osman I, Lee JE, Saenger Y, Bogner P, Thompson CL, Gerstenblith M, Holmen SL, Funchain P, Brunsgaard E, Depcik-Smith ND, Luo L, Boyce T, Orlow I, Begg CB, Berwick M, Thomas NE. DNA Methylation Classes of Stage II and III Primary Melanomas and Their Clinical and Prognostic Significance. JCO Precis Oncol 2024; 8:e2400375. [PMID: 39509669 DOI: 10.1200/po-24-00375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/05/2024] [Accepted: 09/20/2024] [Indexed: 11/15/2024] Open
Abstract
PURPOSE Patients with stage II and III cutaneous primary melanoma vary considerably in their risk of melanoma-related death. We explore the ability of methylation profiling to distinguish primary melanoma methylation classes and their associations with clinicopathologic characteristics and survival. MATERIALS AND METHODS InterMEL is a retrospective case-control study that assembled primary cutaneous melanomas from American Joint Committee on Cancer (AJCC) 8th edition stage II and III patients diagnosed between 1998 and 2015 in the United States and Australia. Cases are patients who died of melanoma within 5 years from original diagnosis. Controls survived longer than 5 years without evidence of melanoma recurrence or relapse. Methylation classes, distinguished by consensus clustering of 850K methylation data, were evaluated for their clinicopathologic characteristics, 5-year survival status, and differentially methylated gene sets. RESULTS Among 422 InterMEL melanomas, consensus clustering revealed three primary melanoma methylation classes (MethylClasses): a CpG island methylator phenotype (CIMP) class, an intermediate methylation (IM) class, and a low methylation (LM) class. CIMP and IM were associated with higher AJCC stage (both P = .002), Breslow thickness (CIMP P = .002; IM P = .006), and mitotic index (both P < .001) compared with LM, while IM had higher N stage than CIMP (P = .01) and LM (P = .007). CIMP and IM had a 2-fold higher likelihood of 5-year death from melanoma than LM (CIMP odds ratio [OR], 2.16 [95% CI, 1.18 to 3.96]; IM OR, 2.00 [95% CI, 1.12 to 3.58]) in a multivariable model adjusted for age, sex, log Breslow thickness, ulceration, mitotic index, and N stage. Despite more extensive CpG island hypermethylation in CIMP, CIMP and IM shared similar patterns of differential methylation and gene set enrichment compared with LM. CONCLUSION Melanoma MethylClasses may provide clinical value in predicting 5-year death from melanoma among patients with primary melanoma independent of other clinicopathologic factors.
Collapse
Affiliation(s)
- Kathleen Conway
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC
- Department of Dermatology, University of North Carolina, Chapel Hill, NC
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Sharon N Edmiston
- Department of Dermatology, University of North Carolina, Chapel Hill, NC
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Amanda Vondras
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Allison Reiner
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - David L Corcoran
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Ronglai Shen
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Eloise A Parrish
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Honglin Hao
- Department of Dermatology, University of North Carolina, Chapel Hill, NC
| | - Lan Lin
- Department of Dermatology, University of North Carolina, Chapel Hill, NC
| | - Jessica M Kenney
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Gbemisola Ilelaboye
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Caroline E Kostrzewa
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Pei Fen Kuan
- Department of Applied Mathematics and Statistics, State University of New York, Stony Brook, NY
| | - Klaus J Busam
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Cecilia Lezcano
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Tim K Lee
- British Columbia Cancer Research Center, Vancouver, BC, Canada
| | - Eva Hernando
- Grossman School of Medicine, New York University, New York, NY
| | - Paul B Googe
- Department of Dermatology, University of North Carolina, Chapel Hill, NC
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - David W Ollila
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Stergios Moschos
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Division of Oncology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Ivan Gorlov
- Department of Medicine, Baylor Medical Center, Houston, TX
| | | | - Marc S Ernstoff
- ImmunoOncology Branch, National Cancer Institute, Rockville, MD
| | - Anne E Cust
- The Daffodil Centre, The University of Sydney, a Joint Venture with Cancer Council NSW, Sydney, NSW, Australia
- Melanoma Institute of Australia, The University of Sydney, Sydney, NSW, Australia
- Sydney School of Public Health, The University of Sydney, Sydney, NSW, Australia
| | - James S Wilmott
- Melanoma Institute of Australia, The University of Sydney, Sydney, NSW, Australia
| | - Richard A Scolyer
- Melanoma Institute of Australia, The University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and NSW Health Pathology, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Graham J Mann
- Melanoma Institute of Australia, The University of Sydney, Sydney, NSW, Australia
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Ismael A Vergara
- Melanoma Institute of Australia, The University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | | | - Judy R Rees
- Department of Epidemiology, Dartmouth Medical School, Lebanon, NH
| | - Shaofeng Yan
- Department of Pathology and Laboratory Medicine, Dartmouth Hitchcock Medical Center, Lebanon, NH
| | - Eduardo Nagore
- Instituto Valenciano de Oncologia, Valencia, Spain
- Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain
| | | | | | - Iman Osman
- Grossman School of Medicine, New York University, New York, NY
| | - Jeffrey E Lee
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Yvonne Saenger
- Columbia University Medical School, New York, NY
- Albert Einstein School of Medicine, New York, NY
| | - Paul Bogner
- Departments of Pathology and Dermatology, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Cheryl L Thompson
- Case Western Reserve University, Cleveland, OH
- Penn State University, Hershey, PA
| | | | - Sheri L Holmen
- Department of Surgery, University of Utah Health Sciences Center and Huntsman Cancer Institute, Salt Lake City, UT
| | | | - Elise Brunsgaard
- Department of Dermatology, Rush University Medical Center, Chicago, IL
| | | | - Li Luo
- Department of Internal Medicine and the UNM Comprehensive Cancer Center, Albuquerque, NM
| | - Tawny Boyce
- Department of Internal Medicine and the UNM Comprehensive Cancer Center, Albuquerque, NM
| | - Irene Orlow
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Colin B Begg
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Marianne Berwick
- Department of Internal Medicine and the UNM Comprehensive Cancer Center, Albuquerque, NM
| | - Nancy E Thomas
- Department of Dermatology, University of North Carolina, Chapel Hill, NC
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
10
|
Oliveira DVNP, Biskup E, O'Rourke CJ, Hentze JL, Andersen JB, Høgdall C, Høgdall EV. Developing a DNA Methylation Signature to Differentiate High-Grade Serous Ovarian Carcinomas from Benign Ovarian Tumors. Mol Diagn Ther 2024; 28:821-834. [PMID: 39414761 PMCID: PMC11512855 DOI: 10.1007/s40291-024-00740-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2024] [Indexed: 10/18/2024]
Abstract
INTRODUCTION Epithelial ovarian cancer (EOC) represents a significant health challenge, with high-grade serous ovarian cancer (HGSOC) being the most common subtype. Early detection is hindered by nonspecific symptoms, leading to late-stage diagnoses and poor survival rates. Biomarkers are crucial for early diagnosis and personalized treatment OBJECTIVE: Our goal was to develop a robust statistical procedure to identify a set of differentially methylated probes (DMPs) that would allow differentiation between HGSOC and benign ovarian tumors. METHODOLOGY Using the Infinium EPIC Methylation array, we analyzed the methylation profiles of 48 ovarian samples diagnosed with HGSOC, borderline ovarian tumors, or benign ovarian disease. Through a multi-step statistical procedure combining univariate and multivariate logistic regression models, we aimed to identify CpG sites of interest. RESULTS AND CONCLUSIONS We discovered 21 DMPs and developed a predictive model validated in two independent cohorts. Our model, using a distance-to-centroid approach, accurately distinguished between benign and malignant disease. This model can potentially be used in other types of sample material. Moreover, the strategy of the model development and validation can also be used in other disease contexts for diagnostic purposes.
Collapse
Affiliation(s)
| | - Edyta Biskup
- Department of Pathology, Herlev Hospital, University of Copenhagen, Herlev, Denmark
| | - Colm J O'Rourke
- Biotech Research & Innovation Centre, Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Julie L Hentze
- Department of Pathology, Herlev Hospital, University of Copenhagen, Herlev, Denmark
| | - Jesper B Andersen
- Biotech Research & Innovation Centre, Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Claus Høgdall
- Department of Gynecology, Juliane Marie Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Estrid V Høgdall
- Department of Pathology, Herlev Hospital, University of Copenhagen, Herlev, Denmark.
| |
Collapse
|
11
|
Houlahan KE, Bihie M, Contreras JG, Fulop DJ, Lopez G, Huang HH, Van Loo P, Curtis C, Boutros PC, Huang KL. Deletions Rate-Limit Breast and Ovarian Cancer Initiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.17.618945. [PMID: 39484366 PMCID: PMC11526986 DOI: 10.1101/2024.10.17.618945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Optimizing prevention and early detection of cancer requires understanding the number, types and timing of driver mutations. To quantify this, we exploited the elevated cancer incidence and mutation rates in germline BRCA1 and BRCA2 (gBRCA1/2) carriers. Using novel statistical models, we identify genomic deletions as the likely rate-limiting mutational processes, with 1-3 deletions required to initiate breast and ovarian tumors. gBRCA1/2-driven hereditary and sporadic tumors undergo convergent evolution to develop a similar set of driver deletions, and deletions explain the elevated cancer risk of gBRCA1/2-carriers. Orthogonal mutation timing analysis identifies deletions of chromosome 17 and 13q as early, recurrent events. Single-cell analyses confirmed deletion rate differences in gBRCA1/2 vs. non-carrier tumors as well as cells engineered to harbor gBRCA1/2. The centrality of deletion-associated chromosomal instability to tumorigenesis shapes interpretation of the somatic evolution of non-malignant tissue and guides strategies for precision prevention and early detection.
Collapse
Affiliation(s)
- Kathleen E. Houlahan
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USATable
- Institute for Precision Health, University of California, Los Angeles, Los Angeles, CA, USA
- Vector Institute, Toronto, Canada
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | | | | | - Daniel J. Fulop
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Artificial Intelligence and Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gonzalo Lopez
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hsin-Hsiung Huang
- Department of Statistics, University of Central Florida, Orlando, FL, USA
| | - Peter Van Loo
- The Francis Crick Institute, London, UK
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Christina Curtis
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Paul C. Boutros
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USATable
- Institute for Precision Health, University of California, Los Angeles, Los Angeles, CA, USA
- Vector Institute, Toronto, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
- Department of Urology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kuan-lin Huang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Artificial Intelligence and Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
12
|
Li Y, Jia Z, Kong X, Zhao H, Liu X, Cui G, Luo J. Effect of 5-Aza-2'-deoxycytidine on T-cell acute lymphoblastic leukemia cell biological behaviors and PTEN expression. Cytojournal 2024; 21:36. [PMID: 39563669 PMCID: PMC11574681 DOI: 10.25259/cytojournal_31_2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/20/2024] [Indexed: 11/21/2024] Open
Abstract
Objective We currently face a sharp increase of T-cell acute lymphoblastic leukemia (T-ALL) incidence and a challenge of unmasking its complex etiology. The deoxycytidine analog 5-Aza-2'-deoxycytidine (5-Aza-dC) is currently the most common nucleoside methyltransferase inhibitor. The objective of this study was to clarify the role of 5-Aza-dC in T-ALL cell biological behaviors and phosphatase and tensin homolog deleted on chromosome ten (PTEN) expression. Material and Methods T-ALL cell lines were divided into the experimental group with 5-Aza-dC solution treatment, and the control group without treatment. PTEN methylation was detected using methylation-specific polymerase chain reaction (MS-PCR). Following the measurement of cell proliferation, viability, apoptosis, invasion, migration, etc., quantitative reverse transcription-polymerase chain reaction (PCR) was conducted to detect PTEN, DNA methyl-transferases (DNMT1), DNMT3a, MBD2, and MeCP2 expressions; Western blot to detect PTEN, PI3K, AKT, and mTOR protein expressions. In addition, rescue experiments to inhibit and restore the expression of PTEN in different groups were performed for further identification of the results in the former parts. Results MS-PCR results showed that in Jurkat cells, the target band was amplified using methylated primers for the PTEN gene promoter region; moreover, at 10 μmol/L of 5-Aza-dC for 24 h, PTEN methylation was completely removed without any un-methylated band observed. The experimental group had significantly lower cell proliferation and viability rates, higher apoptosis rates, decreased cell proportion in S phase, reduced invasion and migration; increased PTEN expression, decreased DNMT1, DNMT3a, MBD2, and MeCP2 mRNA expressions; and decreased PI3K, AKT, and mTOR protein expressions than those in the control group (all P < 0.05). Furthermore, according to the rescue experiment, silenced PTEN expression weakened the beneficial roles of 5-Aza-dC treatment, and resulted in significantly higher cell proliferation and viability rates, lower apoptosis rates, increased cell proportion in S phase, increased cell invasion and migration; decreased PTEN expression, elevated DNMT1, DNMT3a, MBD2, and MeCP2 mRNA expressions, and higher PI3K, AKT, and mTOR protein expressions (all P < 0.05). While restored PTEN expression enhanced functions of 5-Aza-dC treatment, leading to obviously lower cell proliferation and viability rates, higher apoptosis rates, increased cell proportion in G1 phase, and reduced cell invasion and migration; as well as increased PTEN expression, decreased DNMT1, DNMT3a, MBD2, and MeCP2 mRNA expressions, and lower PI3K, AKT, and mTOR protein expressions (all P < 0.05). Conclusion Demethylation treatment with 5-Aza-dC can inhibit T-ALL cell malignant biological behaviors and enhance the sensitivity to chemotherapy agents possibly, which may be related to the inhibited expressions of DNMT1, DNMT3a, MBD2, and MeCP2, and restored expression activity of PTEN to negatively regulate the PI3K/AKT signal transduction. Our silencing and restoration of PTEN expressions further support our findings, highlighting that demethylation with 5-Aza-dC to restore the anti-tumor activity of the tumor suppressor gene PTEN may be a promising therapeutic option for treating T-ALL.
Collapse
Affiliation(s)
- Yan Li
- Department of Hematology, Handan First Hospital, Handan, Hebei, China
| | - Zhenwei Jia
- Department of Hematology, Handan First Hospital, Handan, Hebei, China
| | - Xiaoyang Kong
- Department of Hematology, Handan First Hospital, Handan, Hebei, China
| | - Hongbo Zhao
- Department of Hematology, Handan First Hospital, Handan, Hebei, China
| | - Xiaoyan Liu
- Department of Hematology, Handan First Hospital, Handan, Hebei, China
| | - Guirong Cui
- Department of Hematology, Handan First Hospital, Handan, Hebei, China
| | - Jianmin Luo
- Department of Hematology, Handan First Hospital, Handan, Hebei, China
| |
Collapse
|
13
|
Castro JP, Shindyapina AV, Barbieri A, Ying K, Strelkova OS, Paulo JA, Tyshkovskiy A, Meinl R, Kerepesi C, Petrashen AP, Mariotti M, Meer MV, Hu Y, Karamyshev A, Losyev G, Galhardo M, Logarinho E, Indzhykulian AA, Gygi SP, Sedivy JM, Manis JP, Gladyshev VN. Age-associated clonal B cells drive B cell lymphoma in mice. NATURE AGING 2024; 4:1403-1417. [PMID: 39117982 DOI: 10.1038/s43587-024-00671-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 06/19/2024] [Indexed: 08/10/2024]
Abstract
Although cancer is an age-related disease, how the processes of aging contribute to cancer progression is not well understood. In this study, we uncovered how mouse B cell lymphoma develops as a consequence of a naturally aged system. We show here that this malignancy is associated with an age-associated clonal B cell (ACBC) population that likely originates from age-associated B cells. Driven by c-Myc activation, promoter hypermethylation and somatic mutations, IgM+ ACBCs clonally expand independently of germinal centers and show increased biological age. ACBCs become self-sufficient and support malignancy when transferred into young recipients. Inhibition of mTOR or c-Myc in old mice attenuates pre-malignant changes in B cells during aging. Although the etiology of mouse and human B cell lymphomas is considered distinct, epigenetic changes in transformed mouse B cells are enriched for changes observed in human B cell lymphomas. Together, our findings characterize the spontaneous progression of cancer during aging through both cell-intrinsic and microenvironmental changes and suggest interventions for its prevention.
Collapse
Affiliation(s)
- José P Castro
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Aging and Aneuploidy Laboratory, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | | | | | - Kejun Ying
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Olga S Strelkova
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, MA, USA
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School, Boston, MA, USA
| | - João A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | | | - Rico Meinl
- Retro Biosciences, Redwood City, CA, USA
| | - Csaba Kerepesi
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Institute for Computer Science and Control (SZTAKI), Loránd Eötvös Research Network, Budapest, Hungary
| | - Anna P Petrashen
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Marco Mariotti
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain
| | - Margarita V Meer
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- San Diego Institute of Sciences, Altos Labs, San Diego, CA, USA
| | - Yan Hu
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Grigoriy Losyev
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mafalda Galhardo
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Elsa Logarinho
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Artur A Indzhykulian
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, MA, USA
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School, Boston, MA, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - John M Sedivy
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - John P Manis
- Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Vadim N Gladyshev
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
14
|
Lei X, Mao S, Li Y, Li J, Du W, Kuang C, Yuan K. ERVcancer: a web resource designed for querying activation of human endogenous retroviruses across major cancer types. J Genet Genomics 2024:S1673-8527(24)00241-8. [PMID: 39265822 DOI: 10.1016/j.jgg.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/14/2024]
Abstract
Human endogenous retroviruses (HERVs) comprise approximately 8% of the human genome, co-opted into the dynamic regulatory network of cellular potency in early embryonic development. In recent studies, resurgent HERVs' transcriptional activity has been frequently observed in many types of human cancers, suggesting their potential functions in the occurrence and progression of malignancy. However, a dedicated web resource for querying the relationship between the activation of HERVs and cancer development is lacking. Here, we construct a database to explore the sequence information, expression profiles, survival prognosis, and genetic interactions of HERVs in diverse cancer types. Our database currently contains RNA sequencing data of 580 HERVs across 16,246 samples, including that of 6478 tumoral and 634 normal tissues, 932 cancer cell lines, as well as 151 early embryonic and 8051 human adult tissues. The primary goal is to provide an easily accessible and user-friendly database for professionals in the fields of bioinformatics, pathology, pharmacology, and related areas, enabling them to efficiently screen the activity of HERVs of interest in normal and cancerous tissues and evaluate the clinical relevance. The ERVcancer database is available at http://kyuanlab.com/ervcancer/.
Collapse
Affiliation(s)
- Xiaoyun Lei
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Guangxi Health Commission Key Laboratory of Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530007, China
| | - Song Mao
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yinshuang Li
- Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410000, China
| | - Jinchen Li
- Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410000, China
| | - Wei Du
- Department of Pathology, Changde Hospital, Xiangya School of Medicine, Central South University, Changde, Hunan 415000, China
| | - Chunmei Kuang
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Kai Yuan
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410000, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Furong Laboratory, Changsha, Hunan 410000, China; The Biobank of Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| |
Collapse
|
15
|
Siddiqui MS, Shahi MH, Castresana JS. The role of the adenylate kinase 5 gene in various diseases and cancer. J Clin Transl Sci 2024; 8:e96. [PMID: 39655021 PMCID: PMC11626602 DOI: 10.1017/cts.2024.536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/21/2024] [Accepted: 05/01/2024] [Indexed: 12/12/2024] Open
Abstract
Adenylate kinases (AKs) are important enzymes involved in cellular energy metabolism. Among AKs, AK5 (adenylate kinase 5), a cytosolic protein, is emerging as a significant contributor to various diseases and cellular processes. This comprehensive review integrates findings from various research groups on AK5 since its discovery, shedding light on its multifaceted roles in nucleotide metabolism, energy regulation, and cellular differentiation. We investigate its implications in a spectrum of diseases, including autoimmune encephalitis, epilepsy, neurodegenerative disorders such as Alzheimer's and Parkinson's, diabetes, lower extremity arterial disease, celiac disease, and various cancers. Notably, AK5's expression levels and methylation status have been associated with cancer progression and patient outcomes, indicating its potential as a prognostic indicator. Furthermore, AK5 is implicated in regulating cellular processes in breast cancer, gastric cancer, colorectal carcinoma, prostate cancer, and colon adenocarcinoma, suggesting its relevance across different cancer types. However, a limitation lies in the need for more robust clinical validation and a deeper understanding of AK5's precise mechanisms in disease pathogenesis, despite its association with various pathophysiological conditions. Nonetheless, AK5 holds promise as a therapeutic target, with emerging evidence suggesting its potential in therapy development.
Collapse
Affiliation(s)
- M. Sarim Siddiqui
- Interdisciplinary Brain Research Centre, Faculty of Medicine, Aligarh Muslim University, Aligarh202002, India
| | - Mehdi H. Shahi
- Interdisciplinary Brain Research Centre, Faculty of Medicine, Aligarh Muslim University, Aligarh202002, India
| | - Javier S. Castresana
- Department of Biochemistry and Genetics, University of Navarra School of Sciences, Pamplona31008, Spain
| |
Collapse
|
16
|
Jiang X, Wang W, Wang Z, Wang Z, Shi H, Meng L, Pang S, Fan M, Lin R. Gamma-glutamyl transferase secreted by Helicobacter pylori promotes the development of gastric cancer by affecting the energy metabolism and histone methylation status of gastric epithelial cells. Cell Commun Signal 2024; 22:402. [PMID: 39148040 PMCID: PMC11328474 DOI: 10.1186/s12964-024-01780-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 08/06/2024] [Indexed: 08/17/2024] Open
Abstract
BACKGROUND Helicobacter pylori (H. pylori) infection is critical in the development and occurrence of gastric cancer. H. pylori secretes gamma-glutamyl transferase (GGT), which affects energy metabolism and histone methylation in mesenchymal stem cells. However, its effect on human gastric epithelial cells remains unclear. This study aimed to investigate the effects of GGT on energy metabolism and histone methylation in gastric epithelial cells and determine its role in the development and progression of H. pylori-induced gastric cancer. METHODS A GGT knockout H. pylori strain and mouse gastric cancer model were constructed, and alpha-ketoglutarate (α-KG) was added. The underlying mechanism was investigated using proteomics, immunohistochemistry, Western blotting, and other experimental assays. RESULTS H. pylori can colonize the host's stomach and destroy the gastric epithelium. GGT secreted by H. pylori decreased the concentration of glutamine in the stomach and increased H3K9me3 and H3K27me3 expression, which promoted the proliferation and migration of gastric epithelial cells. Additionally, α-KG reversed this effect. GGT increased the tumorigenic ability of nude mice. GGT, secreted by H. pylori, promoted the expression of ribosomal protein L15 (RPL15), while GGT knockout and supplementation with α-KG and trimethylation inhibitors reduced RPL15 expression and Wnt signaling pathway expression. CONCLUSIONS H. pylori secreted GGT decreased the expression of glutamine and α-KG in gastric epithelial cells, increased the expression of histones H3K9me3 and H3K27me3, and activated the Wnt signaling pathway through RPL15 expression, ultimately changing the biological characteristics of the gastric epithelium and promoting the occurrence of gastric cancer. Altered energy metabolism and histone hypermethylation are important factors involved in this process.
Collapse
Affiliation(s)
- Xin Jiang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Weijun Wang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zeyu Wang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhe Wang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Huiying Shi
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lingjun Meng
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Suya Pang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Mengke Fan
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Rong Lin
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
17
|
Chen F, Zhang Y, Shen L, Creighton CJ. The DNA methylome of pediatric brain tumors appears shaped by structural variation and predicts survival. Nat Commun 2024; 15:6775. [PMID: 39117669 PMCID: PMC11310301 DOI: 10.1038/s41467-024-51276-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024] Open
Abstract
Structural variation heavily influences the molecular landscape of cancer, in part by impacting DNA methylation-mediated transcriptional regulation. Here, using multi-omic datasets involving >2400 pediatric brain and central nervous system tumors of diverse histologies from the Children's Brain Tumor Network, we report hundreds of genes and associated CpG islands (CGIs) for which the nearby presence of somatic structural variant (SV) breakpoints is recurrently associated with altered expression or DNA methylation, respectively, including tumor suppressor genes ATRX and CDKN2A. Altered DNA methylation near enhancers associates with nearby somatic SV breakpoints, including MYC and MYCN. A subset of genes with SV-CGI methylation associations also have expression associations with patient survival, including BCOR, TERT, RCOR2, and PDLIM4. DNA methylation changes in recurrent or progressive tumors compared to the initial tumor within the same patient can predict survival in pediatric and adult cancers. Our comprehensive and pan-histology genomic analyses reveal mechanisms of noncoding alterations impacting cancer genes.
Collapse
Affiliation(s)
- Fengju Chen
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Yiqun Zhang
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Lanlan Shen
- USDA Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Chad J Creighton
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA.
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA.
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
18
|
Dong Q, Gong C, Jiang Q, Liu Y, Hu Y, Wang D, Liu H, Zheng T, Song C, Wang T, Ju R, Wang C, Song D, Liu Z, Liu Y, Lu Y, Fan J, Liu M, Gao T, An Z, Zhang J, Li P, Cao C, Liu X. Identification of differentially expressed tumour-related genes regulated by UHRF1-driven DNA methylation. Sci Rep 2024; 14:18371. [PMID: 39112494 PMCID: PMC11306747 DOI: 10.1038/s41598-024-69110-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 07/31/2024] [Indexed: 08/10/2024] Open
Abstract
Ubiquitin-like with PHD and RING finger domains 1 (UHRF1) is an epigenetic regulator that plays critical roles in tumours. However, the DNA methylation alteration patterns driven by UHRF1 and the related differentially expressed tumour-related genes remain unclear. In this study, a UHRF1-shRNA MCF-7 cell line was constructed, and whole-genome bisulfite sequencing and RNA sequencing were performed. The DNA methylation alteration landscape was elucidated, and DNA methylation-altered regions (DMRs) were found to be distributed in both gene bodies and adjacent regions. The DMRs were annotated and categorized into 488 hypermethylated/1696 hypomethylated promoters and 1149 hypermethylated/5501 hypomethylated gene bodies. Through an integrated analysis with the RNA sequencing data, 217 methylation-regulated upregulated genes and 288 downregulated genes were identified, and these genes were primarily enriched in nervous system development and cancer signalling pathways. Further analysis revealed 21 downregulated oncogenes and 15 upregulated TSGs. We also showed that UHRF1 silencing inhibited cell proliferation and migration and suppressed tumour growth in vivo. Our study suggested that UHRF1 and the oncogenes or TSGs it regulates might serve as biomarkers and targets for breast cancer treatment.
Collapse
Affiliation(s)
- Qincai Dong
- Beijing Institute of Biotechnology, Beijing, 100850, China
| | - Chunxue Gong
- Institute of Health Sciences, Anhui University, Hefei, 230601, China
| | - Qian Jiang
- Institute of Health Sciences, Anhui University, Hefei, 230601, China
| | - Yue Liu
- Beijing Institute of Biotechnology, Beijing, 100850, China
| | - Yong Hu
- Beijing Institute of Biotechnology, Beijing, 100850, China
| | - Di Wang
- Beijing Institute of Biotechnology, Beijing, 100850, China
| | - Hainan Liu
- Beijing Institute of Biotechnology, Beijing, 100850, China
| | - Tong Zheng
- Beijing Institute of Biotechnology, Beijing, 100850, China
| | - Caiwei Song
- Beijing Institute of Biotechnology, Beijing, 100850, China
| | - Tingting Wang
- Institute of Health Sciences, Anhui University, Hefei, 230601, China
| | - Ruixia Ju
- Beijing Institute of Biotechnology, Beijing, 100850, China
| | - Chen Wang
- Institute of Health Sciences, Anhui University, Hefei, 230601, China
| | - Dengcen Song
- Beijing Institute of Biotechnology, Beijing, 100850, China
| | - Zijing Liu
- Beijing Institute of Biotechnology, Beijing, 100850, China
| | - Yuting Liu
- Beijing Institute of Biotechnology, Beijing, 100850, China
| | - Yuwei Lu
- Beijing Institute of Biotechnology, Beijing, 100850, China
| | - Jinlian Fan
- Beijing Institute of Biotechnology, Beijing, 100850, China
| | - Mengzi Liu
- Beijing Institute of Biotechnology, Beijing, 100850, China
| | - Ting Gao
- Beijing Institute of Biotechnology, Beijing, 100850, China
| | - Ziqian An
- Beijing Institute of Biotechnology, Beijing, 100850, China
| | - Jiaxin Zhang
- Beijing Institute of Biotechnology, Beijing, 100850, China
| | - Ping Li
- Beijing Institute of Biotechnology, Beijing, 100850, China
| | - Cheng Cao
- Beijing Institute of Biotechnology, Beijing, 100850, China.
| | - Xuan Liu
- Beijing Institute of Biotechnology, Beijing, 100850, China.
| |
Collapse
|
19
|
Xu H, Long S, Xu C, Li Z, Chen J, Yang B, He Y, Xu Z, Li Z, Wei W, Li X. TNC upregulation promotes glioma tumourigenesis through TDG-mediated active DNA demethylation. Cell Death Discov 2024; 10:347. [PMID: 39090080 PMCID: PMC11294444 DOI: 10.1038/s41420-024-02098-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 08/04/2024] Open
Abstract
Gliomas represent the most predominant primary malignant tumor in central nervous system. Thymine DNA glycosylase (TDG) is a central component in active DNA demethylation. However, the specific mechanisms of TDG-mediated active DNA demethylation in gliomas remain unclear. This research indicates TDG expression is overexpressed in gliomas and correlated with poor prognosis. TDG knockdown suppressed the malignant phenotype of gliomas both in vitro and vivo. Notably, RNA-seq analysis revealed a strong association between TDG and tenascin-C (TNC). ChIP-qPCR and MeDIP-qPCR assays were undertaken to confirm that TDG participates in TNC active DNA demethylation process, revealing decreased DNA methylation levels and elevated TNC expression as a result. Silencing TNC expression also suppressed the tumor malignant phenotype in both in vitro and in vivo experiments. Additionally, simultaneous silencing of TNC reduced or even reversed the glioma promotion caused by TDG overexpression. Based on our findings, we conclude that TDG exerts an indispensable role in TNC active DNA demethylation in gliomas. The DNA demethylation process leads to alternations in TNC methylation levels and promotes its expression, thereby contributing to the development of gliomas. These results suggest a novel epigenetic therapeutic strategy targeting active DNA demethylation in gliomas.
Collapse
Affiliation(s)
- Hongyu Xu
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shengrong Long
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Chengshi Xu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhengwei Li
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jincao Chen
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Bin Yang
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yongze He
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ziyue Xu
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhiqiang Li
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Wei Wei
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Xiang Li
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China.
- Medical Research Institute, Wuhan University, Wuhan, China.
- Sino-Italian Ascula Brain Science Joint Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
20
|
Blanchett R, Lau KH, Pfeifer GP. Homeobox and Polycomb target gene methylation in human solid tumors. Sci Rep 2024; 14:13912. [PMID: 38886487 PMCID: PMC11183203 DOI: 10.1038/s41598-024-64569-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/11/2024] [Indexed: 06/20/2024] Open
Abstract
DNA methylation is an epigenetic mark that plays an important role in defining cancer phenotypes, with global hypomethylation and focal hypermethylation at CpG islands observed in tumors. These methylation marks can also be used to define tumor types and provide an avenue for biomarker identification. The homeobox gene class is one that has potential for this use, as well as other genes that are Polycomb Repressive Complex 2 targets. To begin to unravel this relationship, we performed a pan-cancer DNA methylation analysis using sixteen Illumina HM450k array datasets from TCGA, delving into cancer-specific qualities and commonalities between tumor types with a focus on homeobox genes. Our comparisons of tumor to normal samples suggest that homeobox genes commonly harbor significant hypermethylated differentially methylated regions. We identified two homeobox genes, HOXA3 and HOXD10, that are hypermethylated in all 16 cancer types. Furthermore, we identified several potential homeobox gene biomarkers from our analysis that are uniquely methylated in only one tumor type and that could be used as screening tools in the future. Overall, our study demonstrates unique patterns of DNA methylation in multiple tumor types and expands on the interplay between the homeobox gene class and oncogenesis.
Collapse
Affiliation(s)
- Reid Blanchett
- Department of Epigenetics, Van Andel Institute, 333 Bostwick Ave. NE, Grand Rapids, MI, 49503, USA
| | - Kin H Lau
- Bioinformatics and Biostatistics Core, Van Andel Institute, Grand Rapids, MI, USA
| | - Gerd P Pfeifer
- Department of Epigenetics, Van Andel Institute, 333 Bostwick Ave. NE, Grand Rapids, MI, 49503, USA.
| |
Collapse
|
21
|
Pan W, Yun T, Ouyang X, Ruan Z, Zhang T, An Y, Wang R, Zhu P. A blood-based multi-omic landscape for the molecular characterization of kidney stone disease. Mol Omics 2024; 20:322-332. [PMID: 38623715 DOI: 10.1039/d3mo00261f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Kidney stone disease (KSD, also named renal calculi, nephrolithiasis, or urolithiasis) is a common urological disease entailing the formation of minerals and salts that form inside the urinary tract, frequently caused by diabetes, high blood pressure, hypertension, and monogenetic components in most patients. 10% of adults worldwide are affected by KSD, which continues to be highly prevalent and with increasing incidence. For the identification of novel therapeutic targets in KSD, we adopted high-throughput sequencing and mass spectrometry (MS) techniques in this study and carried out an integrative analysis of exosome proteomic data and DNA methylation data from blood samples of normal and KSD individuals. Our research delineated the profiling of exosomal proteins and DNA methylation in both healthy individuals and those afflicted with KSD, finding that the overexpressed proteins and the demethylated genes in KSD samples are associated with immune responses. The consistency of the results in proteomics and epigenetics supports the feasibility of the comprehensive strategy. Our insights into the molecular landscape of KSD pave the way for a deeper understanding of its pathogenic mechanism, providing an opportunity for more precise diagnosis and targeted treatment strategies for KSD.
Collapse
Affiliation(s)
- Weibing Pan
- Department of Urology, Shenzhen Pingshan People's Hospital, Shenzhen, Guangdong 518118, China
| | - Tianwei Yun
- Department of Urology, Shenzhen Pingshan People's Hospital, Shenzhen, Guangdong 518118, China
| | - Xin Ouyang
- Department of Laboratory Medicine, Shenzhen Pingshan People's Hospital, Shenzhen, Guangdong 518118, China.
| | - Zhijun Ruan
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518020, China.
| | - Tuanjie Zhang
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518020, China.
| | - Yuhao An
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518020, China.
| | - Rui Wang
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518020, China.
| | - Peng Zhu
- Department of Laboratory Medicine, Shenzhen Pingshan People's Hospital, Shenzhen, Guangdong 518118, China.
| |
Collapse
|
22
|
Pekkarinen M, Nordfors K, Uusi-Mäkelä J, Kytölä V, Hartewig A, Huhtala L, Rauhala M, Urhonen H, Häyrynen S, Afyounian E, Yli-Harja O, Zhang W, Helen P, Lohi O, Haapasalo H, Haapasalo J, Nykter M, Kesseli J, Rautajoki KJ. Aberrant DNA methylation distorts developmental trajectories in atypical teratoid/rhabdoid tumors. Life Sci Alliance 2024; 7:e202302088. [PMID: 38499326 PMCID: PMC10948937 DOI: 10.26508/lsa.202302088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 03/20/2024] Open
Abstract
Atypical teratoid/rhabdoid tumors (AT/RTs) are pediatric brain tumors known for their aggressiveness and aberrant but still unresolved epigenetic regulation. To better understand their malignancy, we investigated how AT/RT-specific DNA hypermethylation was associated with gene expression and altered transcription factor binding and how it is linked to upstream regulation. Medulloblastomas, choroid plexus tumors, pluripotent stem cells, and fetal brain were used as references. A part of the genomic regions, which were hypermethylated in AT/RTs similarly as in pluripotent stem cells and demethylated in the fetal brain, were targeted by neural transcriptional regulators. AT/RT-unique DNA hypermethylation was associated with polycomb repressive complex 2 and linked to suppressed genes with a role in neural development and tumorigenesis. Activity of the several NEUROG/NEUROD pioneer factors, which are unable to bind to methylated DNA, was compromised via the suppressed expression or DNA hypermethylation of their target sites, which was also experimentally validated for NEUROD1 in medulloblastomas and AT/RT samples. These results highlight and characterize the role of DNA hypermethylation in AT/RT malignancy and halted neural cell differentiation.
Collapse
Affiliation(s)
- Meeri Pekkarinen
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Kristiina Nordfors
- Tampere Center for Child Health Research, Tays Cancer Center, Tampere University and Tampere University Hospital, Tampere, Finland
- Tays Cancer Center, Tampere University Hospital, Tampere, Finland
- Unit of Pediatric Hematology and Oncology, Tampere University Hospital, Tampere, Finland
| | - Joonas Uusi-Mäkelä
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Ville Kytölä
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Anja Hartewig
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Laura Huhtala
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Minna Rauhala
- Tays Cancer Center, Tampere University Hospital, Tampere, Finland
- Department of Neurosurgery, Tays Cancer Centre, Tampere University Hospital and Tampere University, Tampere, Finland
| | - Henna Urhonen
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Sergei Häyrynen
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Ebrahim Afyounian
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Olli Yli-Harja
- Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
- Institute for Systems Biology, Seattle, WA, USA
| | - Wei Zhang
- Cancer Genomics and Precision Oncology, Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, USA
| | - Pauli Helen
- Department of Neurosurgery, Tays Cancer Centre, Tampere University Hospital and Tampere University, Tampere, Finland
| | - Olli Lohi
- Tampere Center for Child Health Research, Tays Cancer Center, Tampere University and Tampere University Hospital, Tampere, Finland
- Tays Cancer Center, Tampere University Hospital, Tampere, Finland
- Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Hannu Haapasalo
- Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
- Fimlab Laboratories Ltd, Tampere University Hospital, Tampere, Finland
| | - Joonas Haapasalo
- Tays Cancer Center, Tampere University Hospital, Tampere, Finland
- Department of Neurosurgery, Tays Cancer Centre, Tampere University Hospital and Tampere University, Tampere, Finland
- Fimlab Laboratories Ltd, Tampere University Hospital, Tampere, Finland
| | - Matti Nykter
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Juha Kesseli
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Kirsi J Rautajoki
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
- Tampere Institute for Advanced Study, Tampere University, Tampere, Finland
| |
Collapse
|
23
|
Huang F, Jin L, Zhang X, Wang M, Zhou C. Integrated pan-cancer analysis reveals the immunological and prognostic potential of RBFOX2 in human tumors. Front Pharmacol 2024; 15:1302134. [PMID: 38881877 PMCID: PMC11176534 DOI: 10.3389/fphar.2024.1302134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 05/08/2024] [Indexed: 06/18/2024] Open
Abstract
Background The role of RNA-binding fox one homolog 2 (RBFOX2) in the progression of multiple tumors is increasingly supported by evidence. However, the unclearness pertaining to the expression of RBFOX2, its prognostic potential, and its correlation with the tumor microenvironment (TME) in pan-cancer persists. This study aims to comprehensively investigate the immunological prognostic value of RBFOX2. Methods The Cancer Genome Atlas Gene Expression Omnibus Genotype-Tissue Expression (GTEx), TIMER2.0, Kaplan-Meier (K-M) Plotter, University of Alabama at Birmingham Cancer data analysis Portal (UALCAN), cbioportal, and Gene Expression Profiling Interactive Analysis 2 (GEPIA2) were utilized for a systematic analysis of RBFOX2. This analysis included studying its expression, prognostic value, DNA methylation, enrichment analysis, immune infiltration cells, and immune-related genes. Additionally, qRT-PCR, CCK-8, colony formation, transwell assays, and immunohistochemistry were employed to analyze the expression and biological function of RBFOX2 in liver cancer. Results Variations in RBFOX2 expression have been observed across diverse tumors and have been identified as indicators of unfavorable prognosis. It is closely linked to immune infiltration cells, immune checkpoints, chemokines, and chemokine receptors in the TME. Higher levels of RBFOX2 have been significantly associated with low response and poor prognosis in patients with non-small cell lung cancer (NSCLC) and melanoma who receive immunotherapy. Furthermore, the DNA methylation of RBFOX2 varies across different types of cancer and has shown better prognosis in patients with BLCA, BRCA, CESC, COAD, DLBC, HNSC, LAML, LGG, LUAD, PAAD, SKCM and THYM. Interestingly, RBFOX2 expression was found to be lower in hepatocellular carcinoma (HCC) patients' tumor tissues compared to their paired adjacent tissues. In vitro studies have shown that knockdown of RBFOX2 significantly promotes the growth and metastasis of liver cancer cells. Conclusion This study investigates the correlation between DNA methylation, prognostic value, and immune cell infiltration with the expression of RBFOX2 in pan-cancer and indicates its potential role to inhibit metastasis of liver cancer.
Collapse
Affiliation(s)
- Fengxian Huang
- Department of Radiation Oncology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Long Jin
- Department of Radiation Oncology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Xinyue Zhang
- Department of Radiation Oncology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Min Wang
- Department of Science and Education, Xi'an Children's Hospital Affiliated of Xi'an Jiaotong University, Xi'an, China
| | - Congya Zhou
- Department of Radiation Oncology, Shaanxi Provincial People's Hospital, Xi'an, China
| |
Collapse
|
24
|
Liao X, Lin R, Zhang Z, Tian D, Liu Z, Chen S, Xu G, Su M. Genome-wide DNA methylation and transcriptomic patterns of precancerous gastric cardia lesions. J Natl Cancer Inst 2024; 116:681-693. [PMID: 38258659 DOI: 10.1093/jnci/djad244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/25/2023] [Accepted: 11/15/2023] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Intestinal metaplasia (IM) and intraepithelial neoplasia (IEN) are considered precursors of gastric cardia cancer (GCC). Here, we investigated the histopathologic and molecular profiles of precancerous gastric cardia lesions (PGCLs) and biomarkers for risk stratification of gastric cardia IM. METHODS We conducted a hospital-based evaluation (n = 4578) for PGCL profiles in high-incidence and non-high-incidence regions for GCC in China. We next performed 850K methylation arrays (n = 42) and RNA-seq (n = 44) in tissues with PGCLs. We then examined the protein expression of candidate biomarker using immunohistochemistry. RESULTS Of the 4578 participants, 791 were diagnosed with PGCLs (600 IM, 62 IM with IEN, and 129 IEN). We found that individuals from high-incidence regions (26.7%) were more likely to develop PGCLs than those from non-high-incidence areas (13.5%). DNA methylation and gene expression alterations, indicated by differentially methylated probes (DMPs) and differentially expressed genes (DEGs), exhibited a progressive increase from type I IM (DMP = 210, DEG = 24), type II IM (DMP = 3402, DEG = 129), to type III IM (DMP = 3735, DEG = 328), peaking in IEN (DMP = 47 373, DEG = 2278). Three DEGs with aberrant promoter methylation were identified, shared exclusively by type III IM and IEN. Of these DEGs, we found that OLFM4 expression appears in IMs and increases remarkably in IENs (P < .001). CONCLUSIONS We highlight that type III IM and IEN share similar epigenetic and transcriptional features in gastric cardia and propose biomarkers with potential utility in risk prediction.
Collapse
Affiliation(s)
- Xiaoqi Liao
- Department of Pathology, Shantou University Medical College, Shantou, People's Republic of China
| | - Runhua Lin
- Department of Pathology, Shantou University Medical College, Shantou, People's Republic of China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, People's Republic of China
| | - Zhihua Zhang
- Department of Pathology, Shantou University Medical College, Shantou, People's Republic of China
| | - Dongping Tian
- Department of Pathology, Shantou University Medical College, Shantou, People's Republic of China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, People's Republic of China
| | - Zhaohui Liu
- Department of Gastroenterology, Shenzhen Second People's Hospital/The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, People's Republic of China
| | - Songqin Chen
- Department of Pathology, Jieyang People's Hospital, Jieyang, People's Republic of China
| | - Guohua Xu
- Department of Gastroenterology, Huiyang Sanhe Hospital, Huizhou, People's Republic of China
| | - Min Su
- Department of Pathology, Shantou University Medical College, Shantou, People's Republic of China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, People's Republic of China
| |
Collapse
|
25
|
Ding Y, Jiang Y, Zeng H, Zhou M, Zhou X, Yu Z, Pan J, Geng X, Zhu Y, Zheng H, Huang S, Gong Y, Huang H, Xiong C, Huang D. Identification of a robust biomarker LAPTM4A for glioma based on comprehensive computational biology and experimental verification. Aging (Albany NY) 2024; 16:6954-6989. [PMID: 38613802 PMCID: PMC11087115 DOI: 10.18632/aging.205736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/03/2024] [Indexed: 04/15/2024]
Abstract
BACKGROUND Glioma, a highly invasive and deadly form of human neoplasm, presents a pressing need for the exploration of potential therapeutic targets. While the lysosomal protein transmembrane 4A (LATPM4A) has been identified as a risk factor in pancreatic cancer patients, its role in glioma remains unexplored. METHODS The analysis of differentially expressed genes (DEG) was conducted from The Cancer Genome Atlas (TCGA) glioma dataset and the Genotype Tissue Expression (GTEx) dataset. Through weighted gene co-expression network analysis (WGCNA), the key glioma-related genes were identified. Among these, by using Kaplan-Meier (KM) analysis and univariate/multivariate COX methods, LAPTM4A emerged as the most influential gene. Moreover, the bioinformatics methods and experimental verification were employed to analyze its relationships with diagnosis, clinical parameters, epithelial-mesenchymal transition (EMT), metastasis, immune cell infiltration, immunotherapy, drug sensitivity, and ceRNA network. RESULTS Our findings revealed that LAPTM4A was up-regulated in gliomas and was associated with clinicopathological features, leading to poor prognosis. Furthermore, functional enrichment analysis demonstrated that LATPM4A played a role in the immune system and cancer progression. In vitro experiments indicated that LAPTM4A may influence metastasis through the EMT pathway in glioma. Additionally, we found that LAPTM4A was associated with the tumor microenvironment (TME) and immunotherapy. Notably, drug sensitivity analysis revealed that patients with high LAPTM4A expression were sensitive to doxorubicin, which contributed to a reduction in LAPTM4A expression. Finally, we uncovered the FGD5-AS1-hsa-miR-103a-3p-LAPTM4A axis as a facilitator of glioma progression. CONCLUSIONS In conclusion, our study identifies LATPM4A as a promising biomarker for prognosis and immune characteristics in glioma.
Collapse
Affiliation(s)
- Yongqi Ding
- Department of Thyroid Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Yike Jiang
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Hong Zeng
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Minqin Zhou
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Xuanrui Zhou
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Zichuan Yu
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Jingying Pan
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Xitong Geng
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Yanting Zhu
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Hao Zheng
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Shuhan Huang
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Yiyang Gong
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Huabin Huang
- Department of Radiology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Chengfeng Xiong
- Department of Thyroid Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Da Huang
- Department of Thyroid Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| |
Collapse
|
26
|
Gao J, Shi W, Wang J, Guan C, Dong Q, Sheng J, Zou X, Xu Z, Ge Y, Yang C, Li J, Bao H, Zhong X, Cui Y. Research progress and applications of epigenetic biomarkers in cancer. Front Pharmacol 2024; 15:1308309. [PMID: 38681199 PMCID: PMC11048075 DOI: 10.3389/fphar.2024.1308309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 03/25/2024] [Indexed: 05/01/2024] Open
Abstract
Epigenetic changes are heritable changes in gene expression without changes in the nucleotide sequence of genes. Epigenetic changes play an important role in the development of cancer and in the process of malignancy metastasis. Previous studies have shown that abnormal epigenetic changes can be used as biomarkers for disease status and disease prediction. The reversibility and controllability of epigenetic modification changes also provide new strategies for early disease prevention and treatment. In addition, corresponding drug development has also reached the clinical stage. In this paper, we will discuss the recent progress and application status of tumor epigenetic biomarkers from three perspectives: DNA methylation, non-coding RNA, and histone modification, in order to provide new opportunities for additional tumor research and applications.
Collapse
Affiliation(s)
- Jianjun Gao
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wujiang Shi
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiangang Wang
- Department of General Surgery, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Canghai Guan
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qingfu Dong
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jialin Sheng
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xinlei Zou
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhaoqiang Xu
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yifei Ge
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chengru Yang
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiehan Li
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Haolin Bao
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiangyu Zhong
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yunfu Cui
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
27
|
He Q, Wei Y, Zhu H, Liang Q, Chen P, Li S, Song Y, Liu L, Wang B, Xu X, Dong Y. The combined effect of MTHFR C677T and A1298C polymorphisms on the risk of digestive system cancer among a hypertensive population. Discov Oncol 2024; 15:97. [PMID: 38565713 PMCID: PMC10987447 DOI: 10.1007/s12672-024-00960-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 03/29/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND AND PURPOSE The enzyme methylenetetrahydrofolate reductase (MTHFR) plays a crucial role in directing folate species towards nucleotide synthesis or DNA methylation. The MTHFR polymorphisms C677T and A1298C have been linked to cancer susceptibility, but the evidence supporting this association has been equivocal. To investigate the individual and joint associations between MTHFR C677T, A1298C, and digestive system cancer in a Chinese hypertensive population, we conducted a population-based case-control study involving 751 digestive system cancer cases and one-to-one matched controls from the China H-type Hypertension Registry Study (CHHRS). METHODS We utilized the conditional logistic regression model to evaluate multivariate odds ratios (ORs) and 95% confidence intervals (CIs) of digestive system cancer. RESULTS The analysis revealed a significantly lower risk of digestive system cancer in individuals with the CT genotype (adjusted OR: 0.71; 95% CI 0.52, 0.97; P = 0.034) and TT genotype (adjusted OR: 0.57; 95% CI 0.40, 0.82; P = 0.003; P for trend = 0.003) compared to those with the 677CC genotype. Although A1298C did not show a measurable association with digestive system cancer risk, further stratification of 677CT genotype carriers by A1298C homozygotes (AA) and heterozygotes (AC) revealed a distinct trend within these subgroups. CONCLUSION These findings indicate a potential protective effect against digestive system cancer associated with the T allele of MTHFR C677T. Moreover, we observed that the presence of different combinations of MTHFR polymorphisms may contribute to varying susceptibilities to digestive system cancer.
Collapse
Affiliation(s)
- Qiangqiang He
- Shenzhen International Graduate School, Tsinghua University, University Town of Shenzhen, No. 2279, Lishui Road. Nanshan District, Shenzhen, 518055, Guangdong, China
- Shenzhen Evergreen Medical Institute, Shenzhen, 518057, Guangdong, China
| | - Yaping Wei
- College of Public Health, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Hehao Zhu
- School of Science, China Pharmaceutical University, Nanjing, 211198, Jiangsu, China
| | - Qiongyue Liang
- State Key Laboratory of Natural Medicines, Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, China
| | - Ping Chen
- College of Pharmacy, Jinan University, Guangzhou, 510632, Guangdong, China
- Inspection and Testing Center, Key Laboratory of Cancer FSMP for State Market Regulation, Shenzhen, 518057, China
| | - Shuqun Li
- Department of Gastrointestinal Surgery/Clinical Nutrition, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing, 100038, China
| | - Yun Song
- Shenzhen Evergreen Medical Institute, Shenzhen, 518057, Guangdong, China
| | - Lishun Liu
- Shenzhen International Graduate School, Tsinghua University, University Town of Shenzhen, No. 2279, Lishui Road. Nanshan District, Shenzhen, 518055, Guangdong, China
- Shenzhen Evergreen Medical Institute, Shenzhen, 518057, Guangdong, China
- Guangdong Key Laboratory of H-Type Hypertension and Stroke Precision Prevention Research and Development Enterprise, Shenzhen, 518057, China
| | - Binyan Wang
- Shenzhen Evergreen Medical Institute, Shenzhen, 518057, Guangdong, China
- Institute of Biomedicine, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Xiping Xu
- National Clinical Research Center for Kidney Disease, State Key Laboratory for Organ Failure Research, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health, Guangdong Laboratory, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Yuhan Dong
- Shenzhen International Graduate School, Tsinghua University, University Town of Shenzhen, No. 2279, Lishui Road. Nanshan District, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|
28
|
Zhang Z, Zhang Y. Transcriptional regulation of cancer stem cell: regulatory factors elucidation and cancer treatment strategies. J Exp Clin Cancer Res 2024; 43:99. [PMID: 38561775 PMCID: PMC10986082 DOI: 10.1186/s13046-024-03021-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/21/2024] [Indexed: 04/04/2024] Open
Abstract
Cancer stem cells (CSCs) were first discovered in the 1990s, revealing the mysteries of cancer origin, migration, recurrence and drug-resistance from a new perspective. The expression of pluripotent genes and complex signal regulatory networks are significant features of CSC, also act as core factors to affect the characteristics of CSC. Transcription is a necessary link to regulate the phenotype and potential of CSC, involving chromatin environment, nucleosome occupancy, histone modification, transcription factor (TF) availability and cis-regulatory elements, which suffer from ambient pressure. Especially, the expression and activity of pluripotent TFs are deeply affected by both internal and external factors, which is the foundation of CSC transcriptional regulation in the current research framework. Growing evidence indicates that regulating epigenetic modifications to alter cancer stemness is effective, and some special promoters and enhancers can serve as targets to influence the properties of CSC. Clarifying the factors that regulate CSC transcription will assist us directly target key stem genes and TFs, or hinder CSC transcription through environmental and other related factors, in order to achieve the goal of inhibiting CSC and tumors. This paper comprehensively reviews the traditional aspects of transcriptional regulation, and explores the progress and insights of the impact on CSC transcription and status through tumor microenvironment (TME), hypoxia, metabolism and new meaningful regulatory factors in conjunction with the latest research. Finally, we present opinions on omnidirectional targeting CSCs transcription to eliminate CSCs and address tumor resistance.
Collapse
Affiliation(s)
- Zhengyue Zhang
- Department of Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201900, People's Republic of China
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, People's Republic of China
| | - Yanjie Zhang
- Department of Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201900, People's Republic of China.
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, People's Republic of China.
| |
Collapse
|
29
|
Li Y, Gong J, Sun Q, Vong EG, Cheng X, Wang B, Yuan Y, Jin L, Gamazon ER, Zhou D, Lai M, Zhang D. Alternative polyadenylation quantitative trait methylation mapping in human cancers provides clues into the molecular mechanisms of APA. Am J Hum Genet 2024; 111:562-583. [PMID: 38367620 PMCID: PMC10940021 DOI: 10.1016/j.ajhg.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/19/2024] Open
Abstract
Genetic variants are involved in the orchestration of alternative polyadenylation (APA) events, while the role of DNA methylation in regulating APA remains unclear. We generated a comprehensive atlas of APA quantitative trait methylation sites (apaQTMs) across 21 different types of cancer (1,612 to 60,219 acting in cis and 4,448 to 142,349 in trans). Potential causal apaQTMs in non-cancer samples were also identified. Mechanistically, we observed a strong enrichment of cis-apaQTMs near polyadenylation sites (PASs) and both cis- and trans-apaQTMs in proximity to transcription factor (TF) binding regions. Through the integration of ChIP-signals and RNA-seq data from cell lines, we have identified several regulators of APA events, acting either directly or indirectly, implicating novel functions of some important genes, such as TCF7L2, which is known for its involvement in type 2 diabetes and cancers. Furthermore, we have identified a vast number of QTMs that share the same putative causal CpG sites with five different cancer types, underscoring the roles of QTMs, including apaQTMs, in the process of tumorigenesis. DNA methylation is extensively involved in the regulation of APA events in human cancers. In an attempt to elucidate the potential underlying molecular mechanisms of APA by DNA methylation, our study paves the way for subsequent experimental validations into the intricate biological functions of DNA methylation in APA regulation and the pathogenesis of human cancers. To present a comprehensive catalog of apaQTM patterns, we introduce the Pancan-apaQTM database, available at https://pancan-apaqtm-zju.shinyapps.io/pancanaQTM/.
Collapse
Affiliation(s)
- Yige Li
- Department of Pathology, and Department of Medical Oncology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China; Department of Pathology, Key Laboratory of Disease Proteomics of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China; Department of Pathology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Jingwen Gong
- Department of Pathology, and Department of Medical Oncology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China; Department of Pathology, Key Laboratory of Disease Proteomics of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China; Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, Zhejiang Province, China
| | - Qingrong Sun
- Department of Pathology, Key Laboratory of Disease Proteomics of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China; Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, Zhejiang Province, China; Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, Zhejiang Province, China; College of Information Science and Technology, ZheJiang Shuren University, Hangzhou 310015, ZheJiang, China
| | - Eu Gene Vong
- Department of Pathology, Key Laboratory of Disease Proteomics of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China; Department of Biochemistry and Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China; The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Xiaoqing Cheng
- Department of Pathology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Binghong Wang
- Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Ying Yuan
- Department of Medical Oncology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China; Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, Chinese National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, China; Research Unit of Dissecting the Population Genetics and Developing New Technologies for Treatment and Prevention of Skin Phenotypes and Dermatological Diseases (2019RU058), Chinese Academy of Medical Sciences, Shanghai, China
| | - Eric R Gamazon
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Data Science Institute, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Dan Zhou
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA; School of Public Health and the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Maode Lai
- Department of Pathology, Key Laboratory of Disease Proteomics of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China; Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, Zhejiang Province, China; Department of Pathology, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences (2019RU042), Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China.
| | - Dandan Zhang
- Department of Pathology, and Department of Medical Oncology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China; Department of Pathology, Key Laboratory of Disease Proteomics of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China; Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, Zhejiang Province, China; Department of Pathology, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences (2019RU042), Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
30
|
Xie J, Deng X, Xie Y, Zhu H, Liu P, Deng W, Ning L, Tang Y, Sun Y, Tang H, Cai M, Xie X, Zou Y. Multi-omics analysis of disulfidptosis regulators and therapeutic potential reveals glycogen synthase 1 as a disulfidptosis triggering target for triple-negative breast cancer. MedComm (Beijing) 2024; 5:e502. [PMID: 38420162 PMCID: PMC10901283 DOI: 10.1002/mco2.502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 03/02/2024] Open
Abstract
Disruption of disulfide homeostasis during biological processes can have fatal consequences. Excess disulfides induce cell death in a novel manner, termed as "disulfidptosis." However, the specific mechanism of disulfidptosis has not yet been elucidated. To determine the cancer types sensitive to disulfidptosis and outline the corresponding treatment strategies, we firstly investigated the crucial functions of disulfidptosis regulators pan-cancer at multi-omics levels. We found that different tumor types expressed dysregulated levels of disulfidptosis regulators, most of which had an impact on tumor prognosis. Moreover, we calculated the disulfidptosis activity score in tumors and validated it using multiple independent datasets. Additionally, we found that disulfidptosis activity was correlated with classic biological processes and pathways in various cancers. Disulfidptosis activity was also associated with tumor immune characteristics and could predict immunotherapy outcomes. Notably, the disulfidptosis regulator, glycogen synthase 1 (GYS1), was identified as a promising target for triple-negative breast cancer and validated via in vitro and in vivo experiments. In conclusion, our study elucidated the complex molecular phenotypes and clinicopathological correlations of disulfidptosis regulators in tumors, laying a solid foundation for the development of disulfidptosis-targeting strategies for cancer treatment.
Collapse
Affiliation(s)
- Jindong Xie
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouGuangdongChina
| | - Xinpei Deng
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouGuangdongChina
| | - Yi Xie
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouGuangdongChina
| | - Hongbo Zhu
- The First Affiliated HospitalHengyang Medical SchoolUniversity of South ChinaHengyangHunanChina
| | - Peng Liu
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouGuangdongChina
| | - Wei Deng
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouGuangdongChina
| | - Li Ning
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouGuangdongChina
| | - Yuhui Tang
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouGuangdongChina
| | - Yuying Sun
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouGuangdongChina
| | - Hailin Tang
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouGuangdongChina
| | - Manbo Cai
- The First Affiliated HospitalHengyang Medical SchoolUniversity of South ChinaHengyangHunanChina
| | - Xiaoming Xie
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouGuangdongChina
| | - Yutian Zou
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouGuangdongChina
| |
Collapse
|
31
|
Agudelo MC, Agudelo S, Lorincz A, Ramírez AT, Castañeda KM, Garcés-Palacio I, Zea AH, Piyathilake C, Sanchez GI. Folate deficiency modifies the risk of CIN3+ associated with DNA methylation levels: a nested case-control study from the ASCUS-COL trial. Eur J Nutr 2024; 63:563-572. [PMID: 38129362 PMCID: PMC10899296 DOI: 10.1007/s00394-023-03289-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023]
Abstract
PURPOSE To our knowledge, there are very few studies evaluating if the levels of folate modify the risk of cervical intraepithelial neoplasia grade 2 and higher (CIN2+ and CIN3+) associated with the levels of HPV genome methylation, two cofactors related to single carbon metabolism and independently associated with cervical cancer in previous studies. We conducted a case-control study nested in a three-arm randomized clinical pragmatic trial (ASCUS-COL trial) to evaluate the risk of CIN3+ associated with methylation levels according to serum folate concentrations. METHODS Cases (n = 155) were women with histologically confirmed CIN2+ (113 CIN2, 38 CIN3, and 4 SCC) and controls were age and follow-up time at diagnosis-matched women with histologically confirmed ≤ CIN1 (n = 155), selected from the 1122 hrHPV + women of this trial. The concentrations of serum folate were determined by the radioimmunoassay SimulTRAC-SNB-VitaminB12/Folate-RIAKit and the methylation levels by the S5 classifier. Stepwise logistic regression models were used to estimate the association between folate or methylation levels and CIN2+ or CIN3+. The joint effect of folate levels and methylation on the risk of CIN3+ was estimated using combinations of categorical stratifications. RESULTS Folate levels were significantly lower in women with CIN3+ than in other diagnostic groups (p = 0.019). The risk of CIN3+ was eight times higher (OR 8.9, 95% CI 3.4-24.9) in women with folate deficiency and high methylation levels than in women with normal folate and high methylation levels (OR 1.4, 95% CI 0.4-4.6). CONCLUSION High methylation and deficient folate independently increased the risk of CIN3+ while deficient folate combined with high methylation was associated with a substantially elevated risk of CIN3+.
Collapse
Affiliation(s)
- María C Agudelo
- Infection and Cancer Group, School of Medicine, Universidad de Antioquia, Carrera 51D No 62-29, 050010, Medellín, Colombia
| | - Samuel Agudelo
- Infection and Cancer Group, School of Medicine, Universidad de Antioquia, Carrera 51D No 62-29, 050010, Medellín, Colombia
| | - Attila Lorincz
- Centre for Cancer Prevention, Wolfson Institute of Population Health, Queen Mary University of London, London, UK
| | - Arianis Tatiana Ramírez
- Infection and Cancer Group, School of Medicine, Universidad de Antioquia, Carrera 51D No 62-29, 050010, Medellín, Colombia
- Postdoctoral Fellow at the Prevention and Implementation Group, International Agency for Research On Cancer/World Health Organization, Lyon, France
| | - Kelly Melisa Castañeda
- Infection and Cancer Group, School of Medicine, Universidad de Antioquia, Carrera 51D No 62-29, 050010, Medellín, Colombia
| | - Isabel Garcés-Palacio
- Epidemiology Group, School of Public Health, Universidad de Antioquia, Medellín, Colombia
| | - Arnold H Zea
- Stanley S. Scott Cancer Center, Microbiology, Immunology and Parasitology, LSU Health Sciences Center, New Orleans, USA
| | - Chandrika Piyathilake
- Department of Nutrition Sciences, The University of Alabama at Birmingham, Birmingham, USA
| | - Gloria Ines Sanchez
- Infection and Cancer Group, School of Medicine, Universidad de Antioquia, Carrera 51D No 62-29, 050010, Medellín, Colombia.
| |
Collapse
|
32
|
Xue X, Feng Q, Hong X, Lin Z, Luo Y, Li Y, Yao G, Wang N, Chen L. Comprehensive analysis of ALG3 in pan-cancer and validation of ALG3 as an onco-immunological biomarker in breast cancer. Aging (Albany NY) 2024; 16:2320-2339. [PMID: 38329424 PMCID: PMC10911369 DOI: 10.18632/aging.205483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/14/2023] [Indexed: 02/09/2024]
Abstract
ALG3 has significant modulatory function in the process of tumor development. Yet how ALG3 involves in the advancement of different malignancies isn't fully understood. We performed a pan-cancer assessment on ALG3 utilizing datasets from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) to examine its tumor-related roles across malignancies and its link to particular molecules and cells in the tumor microenvironment (TME). Furthermore, we focused on breast cancer to examine the influence of ALG3-mediated signaling pathways and intercellular interactions in the advancement of tumors. The biological effects of ALG3 were verified by breast cancer cells. Enhanced ALG3 expression was discovered to be substantially linked to patients' grim prognoses in a number of malignancies. Furthermore, the expression of ALG3 in the TME was linked to the infiltration of stromal and immune cells, and ALG3-related immune checkpoints, TMB, and MSI were also discovered. We also discovered that cancer patients having a high level of ALG3 exhibited a lower probability of benefiting from immunotherapy. Furthermore, our research found that KEGG enrichment, single-cell RNA and spatial sequencing analyses were effective in identifying key signaling pathways in ALG3-associated tumor growth. In vitro, knockdown of ALG3 could decrease the proliferation of breast cancer cells. In summary, our research offers a comprehensive insight into the advancement of tumors under the mediation of ALG3. ALG3 appears to be intimately associated with tumor development in the TME. ALG3 might be a viable treatment target for cancer therapy, particularly in the case of breast cancer.
Collapse
Affiliation(s)
- Xiaolei Xue
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Qiaoli Feng
- Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Xi Hong
- Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Zhousheng Lin
- Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yingrui Luo
- Basic Medical Academy, Cancer Research Institute, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yingshi Li
- Basic Medical Academy, Cancer Research Institute, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Guangyu Yao
- Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Nisha Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Lujia Chen
- Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
33
|
Geissler F, Nesic K, Kondrashova O, Dobrovic A, Swisher EM, Scott CL, J. Wakefield M. The role of aberrant DNA methylation in cancer initiation and clinical impacts. Ther Adv Med Oncol 2024; 16:17588359231220511. [PMID: 38293277 PMCID: PMC10826407 DOI: 10.1177/17588359231220511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/21/2023] [Indexed: 02/01/2024] Open
Abstract
Epigenetic alterations, including aberrant DNA methylation, are now recognized as bone fide hallmarks of cancer, which can contribute to cancer initiation, progression, therapy responses and therapy resistance. Methylation of gene promoters can have a range of impacts on cancer risk, clinical stratification and therapeutic outcomes. We provide several important examples of genes, which can be silenced or activated by promoter methylation and highlight their clinical implications. These include the mismatch DNA repair genes MLH1 and MSH2, homologous recombination DNA repair genes BRCA1 and RAD51C, the TERT oncogene and genes within the P15/P16/RB1/E2F tumour suppressor axis. We also discuss how these methylation changes might occur in the first place - whether in the context of the CpG island methylator phenotype or constitutional DNA methylation. The choice of assay used to measure methylation can have a significant impact on interpretation of methylation states, and some examples where this can influence clinical decision-making are presented. Aberrant DNA methylation patterns in circulating tumour DNA (ctDNA) are also showing great promise in the context of non-invasive cancer detection and monitoring using liquid biopsies; however, caution must be taken in interpreting these results in cases where constitutional methylation may be present. Thus, this review aims to provide researchers and clinicians with a comprehensive summary of this broad, but important subject, illustrating the potentials and pitfalls of assessing aberrant DNA methylation in cancer.
Collapse
Affiliation(s)
- Franziska Geissler
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Ksenija Nesic
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Olga Kondrashova
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Alexander Dobrovic
- University of Melbourne Department of Surgery, Austin Health, Heidelberg, VIC, Australia
| | | | - Clare L. Scott
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, VIC, Australia
- Peter MacCallum Cancer Centre and Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
- Royal Women’s Hospital, Parkville, VIC, Australia
- Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Matthew J. Wakefield
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
34
|
Waseem M, Wang BD. Organoids: An Emerging Precision Medicine Model for Prostate Cancer Research. Int J Mol Sci 2024; 25:1093. [PMID: 38256166 PMCID: PMC10816550 DOI: 10.3390/ijms25021093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Prostate cancer (PCa) has been known as the most prevalent cancer disease and the second leading cause of cancer mortality in men almost all over the globe. There is an urgent need for establishment of PCa models that can recapitulate the progress of genomic landscapes and molecular alterations during development and progression of this disease. Notably, several organoid models have been developed for assessing the complex interaction between PCa and its surrounding microenvironment. In recent years, PCa organoids have been emerged as powerful in vitro 3D model systems that recapitulate the molecular features (such as genomic/epigenomic changes and tumor microenvironment) of PCa metastatic tumors. In addition, application of organoid technology in mechanistic studies (i.e., for understanding cellular/subcellular and molecular alterations) and translational medicine has been recognized as a promising approach for facilitating the development of potential biomarkers and novel therapeutic strategies. In this review, we summarize the application of PCa organoids in the high-throughput screening and establishment of relevant xenografts for developing novel therapeutics for metastatic, castration resistant, and neuroendocrine PCa. These organoid-based studies are expected to expand our knowledge from basic research to clinical applications for PCa diseases. Furthermore, we also highlight the optimization of PCa cultures and establishment of promising 3D organoid models for in vitro and in vivo investigations, ultimately facilitating mechanistic studies and development of novel clinical diagnosis/prognosis and therapies for PCa.
Collapse
Affiliation(s)
- Mohammad Waseem
- Department of Pharmaceutical Sciences, School of Pharmacy and Health Professions, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA;
| | - Bi-Dar Wang
- Department of Pharmaceutical Sciences, School of Pharmacy and Health Professions, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA;
- Hormone Related Cancers Program, University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA
| |
Collapse
|
35
|
Wu W, Li H, Wang Z, Dai Z, Liang X, Luo P, Liu K, Zhang H, Zhang N, Li S, Zhang C. The tertiary lymphoid structure-related signature identified PTGDS in regulating PD-L1 and promoting the proliferation and migration of glioblastoma. Heliyon 2024; 10:e23915. [PMID: 38205335 PMCID: PMC10777022 DOI: 10.1016/j.heliyon.2023.e23915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 12/12/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
Background Tertiary lymphoid structure (TLS) is a unique organ that carries out tumor cell elimination at tumor sites. It is continuously stimulated by inflammatory tumor signals and has been found to augment immunotherapy response. However, the detailed mechanisms behind it still need to be defined. Methods To explore and grasp the whole picture of TLS from a pan-cancer view, we collected nine TLS-related genes from previous studies. We performed a comprehensive analysis of 9637 samples across 33 tumor types accessed from The Cancer Genome Atlas (TCGA) database. EdU, Transwell, and flow cytometry were performed on the feature gene PTGDS in U251 cells. The regulatory role of PTGDS on PD-L1 expression and macrophage polarization was verified. Results Alteration analysis showed that mutations of TLS-related genes were widespread and relatively high. Clustering analysis based on the expression of these nine genes obtained two distinct clusters, with high EIF1AY and PTGDS in cluster 2 and better overall survival in cluster 1. To distinguish the two clusters, we utilized six machine learning algorithms and filtrated EIF1AY, PTGDS, SKAP1, and RBP5 as the characteristic genes, among which the former two genes were proved to be hazardous. PTGDS was found to regulate PD-L1 expression and also promoted the proliferation and migration of U251 cells. The knockdown of PTGDS could reduce the migration of macrophages and inhibit the polarization of macrophages into M2-phenotype. In addition, we established a TLS score to demonstrate patients' TLS activity. The low TLS-score group overlapped with cluster 1 and displayed a better prognosis. Besides, the low TLS-score group was related to better immunotherapy responses. The HE staining of histopathological sections confirmed that the low TLS-score group exhibited higher infiltration of immune cells. Conclusion This study reveals broad molecular, tumorigenic, and immunogenic signatures for further functional and therapeutic studies of tertiary lymphoid structure. The TLS score we established effectively predicted immunotherapy response and patients' survival. Its future application and combination await more research.
Collapse
Affiliation(s)
- Wantao Wu
- The Animal Laboratory Center, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - He Li
- The Animal Laboratory Center, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Changsha Medical University, Changsha, China
| | - Zeyu Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ziyu Dai
- Department of Neurosurgery, Xiangya Hospital, Central South University Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xisong Liang
- Department of Neurosurgery, Xiangya Hospital, Central South University Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Kun Liu
- Department of Neurosugery, The Second People's Hospital of Hunan Province, The Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Hao Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Nan Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- College of Bioinformatics Science and Technology, Harbin Medical University Harbin, China
| | - Shuyu Li
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Chi Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
36
|
Zhang WJ, Yue KL, Wang JZ, Zhang Y. Association between heat shock factor protein 4 methylation and colorectal cancer risk and potential molecular mechanisms: A bioinformatics study. World J Gastrointest Oncol 2023; 15:2150-2168. [PMID: 38173437 PMCID: PMC10758642 DOI: 10.4251/wjgo.v15.i12.2150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/16/2023] [Accepted: 11/17/2023] [Indexed: 12/14/2023] Open
Abstract
BACKGROUND We previously demonstrated that heat shock factor protein 4 (HSF4) facilitates colorectal cancer (CRC) progression. DNA methylation, a major modifier of gene expression and stability, is involved in CRC development and outcome. AIM To investigate the correlation between HSF4 methylation and CRC risk, and to uncover the underlying molecular mechanisms. METHODS Differences in β values of HSF4 methylation loci in multiple malignancies and their correlation with HSF4 mRNA expression were analyzed based on Shiny Methylation Analysis Resource Tool. HSF4 methylation-related genes were identified by LinkedOmics in CRC, and Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were performed. Protein-protein interaction network of HSF4 methylation-related genes was constructed by String database and MCODE algorithm. RESULTS A total of 19 CpG methylation loci were identified in HSF4, and their β values were significantly increased in CRC tissues and exhibited a positive correlation with HSF4 mRNA expression. Unfortunately, the prognostic and diagnostic performance of these CpG loci in CRC patients was mediocre. In CRC, there were 1694 HSF4 methylation-related genes; 1468 of which displayed positive and 226 negative associations, and they were involved in regulating phenotypes such as immune, inflammatory, and metabolic reprogramming. EGFR, RELA, STAT3, FCGR3A, POLR2K, and AXIN1 are hub genes among the HSF4 methylation-related genes. CONCLUSION HSF4 is highly methylated in CRC, but there is no significant correlation between it and the prognosis and diagnosis of CRC. HSF4 methylation may serve as one of the ways in which HSF4 mediates the CRC process.
Collapse
Affiliation(s)
- Wen-Jing Zhang
- Department of Medical Oncology, The First People’s Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, Yunnan Province, China
| | - Ke-Lin Yue
- Department of Gastroenterology, The First People’s Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, Yunnan Province, China
| | - Jing-Zhai Wang
- Department of Gastroenterology, The First People’s Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, Yunnan Province, China
| | - Yu Zhang
- Department of Gastroenterology, The First People’s Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, Yunnan Province, China
| |
Collapse
|
37
|
Liu Y, Yin Z, Wang Y, Chen H. Exploration and validation of key genes associated with early lymph node metastasis in thyroid carcinoma using weighted gene co-expression network analysis and machine learning. Front Endocrinol (Lausanne) 2023; 14:1247709. [PMID: 38144565 PMCID: PMC10739373 DOI: 10.3389/fendo.2023.1247709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 11/17/2023] [Indexed: 12/26/2023] Open
Abstract
Background Thyroid carcinoma (THCA), the most common endocrine neoplasm, typically exhibits an indolent behavior. However, in some instances, lymph node metastasis (LNM) may occur in the early stages, with the underlying mechanisms not yet fully understood. Materials and methods LNM potential was defined as the tumor's capability to metastasize to lymph nodes at an early stage, even when the tumor volume is small. We performed differential expression analysis using the 'Limma' R package and conducted enrichment analyses using the Metascape tool. Co-expression networks were established using the 'WGCNA' R package, with the soft threshold power determined by the 'pickSoftThreshold' algorithm. For unsupervised clustering, we utilized the 'ConsensusCluster Plus' R package. To determine the topological features and degree centralities of each node (protein) within the Protein-Protein Interaction (PPI) network, we used the CytoNCA plugin integrated with the Cytoscape tool. Immune cell infiltration was assessed using the Immune Cell Abundance Identifier (ImmuCellAI) database. We applied the Least Absolute Shrinkage and Selection Operator (LASSO), Support Vector Machine (SVM), and Random Forest (RF) algorithms individually, with the 'glmnet,' 'e1071,' and 'randomForest' R packages, respectively. Ridge regression was performed using the 'oncoPredict' algorithm, and all the predictions were based on data from the Genomics of Drug Sensitivity in Cancer (GDSC) database. To ascertain the protein expression levels and subcellular localization of genes, we consulted the Human Protein Atlas (HPA) database. Molecular docking was carried out using the mcule 1-click Docking server online. Experimental validation of gene and protein expression levels was conducted through Real-Time Quantitative PCR (RT-qPCR) and immunohistochemistry (IHC) assays. Results Through WGCNA and PPI network analysis, we identified twelve hub genes as the most relevant to LNM potential from these two modules. These 12 hub genes displayed differential expression in THCA and exhibited significant correlations with the downregulation of neutrophil infiltration, as well as the upregulation of dendritic cell and macrophage infiltration, along with activation of the EMT pathway in THCA. We propose a novel molecular classification approach and provide an online web-based nomogram for evaluating the LNM potential of THCA (http://www.empowerstats.net/pmodel/?m=17617_LNM). Machine learning algorithms have identified ERBB3 as the most critical gene associated with LNM potential in THCA. ERBB3 exhibits high expression in patients with THCA who have experienced LNM or have advanced-stage disease. The differential methylation levels partially explain this differential expression of ERBB3. ROC analysis has identified ERBB3 as a diagnostic marker for THCA (AUC=0.89), THCA with high LNM potential (AUC=0.75), and lymph nodes with tumor metastasis (AUC=0.86). We have presented a comprehensive review of endocrine disruptor chemical (EDC) exposures, environmental toxins, and pharmacological agents that may potentially impact LNM potential. Molecular docking revealed a docking score of -10.1 kcal/mol for Lapatinib and ERBB3, indicating a strong binding affinity. Conclusion In conclusion, our study, utilizing bioinformatics analysis techniques, identified gene modules and hub genes influencing LNM potential in THCA patients. ERBB3 was identified as a key gene with therapeutic implications. We have also developed a novel molecular classification approach and a user-friendly web-based nomogram tool for assessing LNM potential. These findings pave the way for investigations into the mechanisms underlying differences in LNM potential and provide guidance for personalized clinical treatment plans.
Collapse
Affiliation(s)
- Yanyan Liu
- Department of General Surgery, The Third Affiliated Hospital of Anhui Medical University (The First People’s Hospital of Hefei), Hefei, Anhui, China
| | - Zhenglang Yin
- Department of General Surgery, The Third Affiliated Hospital of Anhui Medical University (The First People’s Hospital of Hefei), Hefei, Anhui, China
| | - Yao Wang
- Digestive Endoscopy Department, Jiangsu Province Hospital, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| | - Haohao Chen
- Department of General Surgery, The Third Affiliated Hospital of Anhui Medical University (The First People’s Hospital of Hefei), Hefei, Anhui, China
| |
Collapse
|
38
|
Yang Y, Tang X, Lin Z, Zheng T, Zhang S, Liu T, Yang X. An integrative evaluation of circadian gene TIMELESS as a pan-cancer immunological and predictive biomarker. Eur J Med Res 2023; 28:563. [PMID: 38053143 DOI: 10.1186/s40001-023-01519-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/09/2023] [Indexed: 12/07/2023] Open
Abstract
BACKGROUND The gene TIMELESS, which is involved in the circadian clock and the cell cycle, has recently been linked to various human cancers. Nevertheless, the association between TIMELESS expression and the prognosis of individuals afflicted with pan-cancer remains largely unknown. OBJECTIVES The present study aims to exhaustively scrutinize the expression patterns, functional attributes, prognostic implications, and immunological contributions of TIMELESS across diverse types of human cancer. METHODS The expression of TIMELESS in normal and malignant tissues was examined, as well as their clinicopathologic and survival data. The characteristics of genetic alteration and molecular subtypes of cancers were also investigated. In addition, the relationship of TIMELESS with immune infiltration, tumor mutation burden (TMB), microsatellite instability (MSI), and drug sensitivity was illustrated. Immunohistochemistry (IHC) was used to validate the expression of TIMELESS in clinical patients with several types of cancer. RESULTS In contrast to the matching normal controls, most tumor types were found to often overexpress TIMELESS. Abnormal expression of TIMELESS was significantly related to more advanced tumor stage and poorer prognosis of breast cancer, as well as infiltrating immune cells such as cancer-associated fibroblast infiltration in various tumors. Multiple cancer types exhibited abnormal expression of TIMELESS, which was also highly correlated with MSI and TMB. More crucially, TIMELESS showed promise in predicting the effectiveness of immunotherapy and medication sensitivity in cancer therapy. Moreover, cell cycle, DNA replication, circadian rhythm, and mismatch repair were involved in the functional mechanisms of TIMELESS on carcinogenesis. Furthermore, immunohistochemical results manifested that the TIMELESS expression was abnormal in some cancers. CONCLUSIONS This study provides new insights into the link between the circadian gene TIMELESS and the development of various malignant tumors. The findings suggest that TIMELESS could be a prospective prognostic and immunological biomarker for pan-cancer.
Collapse
Affiliation(s)
- Yaocheng Yang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, 136 Renmin Middle Road, Changsha, Hunan, 410011, People's Republic of China
| | - Xianzhe Tang
- Department of Orthopedics, Chenzhou First People's Hospital, Chenzhou, Hunan, China
| | - Zhengjun Lin
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, 136 Renmin Middle Road, Changsha, Hunan, 410011, People's Republic of China
| | - Tao Zheng
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, 136 Renmin Middle Road, Changsha, Hunan, 410011, People's Republic of China
| | - Sheng Zhang
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Tang Liu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, 136 Renmin Middle Road, Changsha, Hunan, 410011, People's Republic of China
| | - Xiaolun Yang
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 136 Renmin Middle Road, Changsha, Hunan, 410011, People's Republic of China.
| |
Collapse
|
39
|
Li J, Yin Y, Huang H, Li M, Li H, Zhang M, Jiang C, Yang R. RUNX1 methylation as a cancer biomarker in differentiating papillary thyroid cancer from benign thyroid nodules. Epigenomics 2023; 15:1257-1272. [PMID: 38126720 DOI: 10.2217/epi-2023-0338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Aim: It remains a challenge to accurately identify malignancy of thyroid nodules when biopsy is indeterminate. The authors aimed to investigate the abnormal DNA methylation signatures in papillary thyroid cancer (PTC) compared with benign thyroid nodules (BTNs). Methods: The authors performed genome profiling by 850K array and RNA sequencing in early-stage PTC and BTN tissue samples. The identified gene was validated in two independent case-control studies using mass spectrometry. Results: Hypomethylation of RUNX1 in PTC was identified and verified (all odds ratios: ≥1.50). RUNX1 methylation achieved good accuracy in differentiating early-stage PTC from BTNs, especially for younger women. Conclusion: The authors disclosed a significant association between RUNX1 hypomethylation and PTC, suggesting RUNX1 methylation as a potential biomarker for companion diagnosis of malignant thyroid nodules.
Collapse
Affiliation(s)
- Junjie Li
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, 210000, China
| | - Yifei Yin
- Department of Thyroid & Breast Surgery, Affiliated Huai'an Hospital of Xuzhou Medical University & Second People's Hospital of Huai'an, Huai'an, 223000, China
| | - Haixia Huang
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, 210000, China
| | - Mengxia Li
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, 210000, China
| | - Hong Li
- Department of Pathology, Affiliated Huai'an Hospital of Xuzhou Medical University & Second People's Hospital of Huai'an, Huai'an, 223000, China
| | - Minmin Zhang
- Department of Thyroid & Breast Surgery, Affiliated Huai'an Hospital of Xuzhou Medical University & Second People's Hospital of Huai'an, Huai'an, 223000, China
| | - Chenxia Jiang
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Rongxi Yang
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, 210000, China
| |
Collapse
|
40
|
Dewenter I, Kumbrink J, Poxleitner P, Smolka W, Liokatis P, Fliefel R, Otto S, Obermeier KT. New insights into redox-related risk factors and therapeutic targets in oral squamous cell carcinoma. Oral Oncol 2023; 147:106573. [PMID: 37951115 DOI: 10.1016/j.oraloncology.2023.106573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 11/13/2023]
Abstract
Oral squamous cell carcinoma (OSCC) is the most common cancer in the oral cavity accounting for 90 % of oral cancer with a global incidence of 350.000 new cases per year. Curative resection along with adjuvant radiation therapy or a combination of radiotherapy with chemotherapy remain as gold standard in treating OSCC. Still, local recurrence, lymph nodal recurrence, and complications of radiation remain the main cause of tumor-related mortality. Reactive oxygen species are not only correlated to the etiology of OSCC due to oxidative DNA damage, lipid peroxidation or effecting signal transduction cascades that effect cell proliferation and tumorigenesis, but are also of great interest in the therapy of OSCC patients. As induced oxidative stress can be used therapeutically for the induction of tumor cell death, redox targets might be a therapeutic addition to the conventional treatment options. In this review, we discuss markers of impaired redox homeostasis as well as potential redox-related treatment targets in OSCC.
Collapse
Affiliation(s)
- Ina Dewenter
- Department of Oral and Maxillofacial Surgery and Facial Plastic Surgery, University Hospital, Ludwig Maximilians University, 80337 Munich, Germany.
| | - Joerg Kumbrink
- Institute of Pathology, Faculty of Medicine, Ludwig Maximilians University, Munich, Germany
| | - Philipp Poxleitner
- Department of Oral and Maxillofacial Surgery and Facial Plastic Surgery, University Hospital, Ludwig Maximilians University, 80337 Munich, Germany
| | - Wenko Smolka
- Department of Oral and Maxillofacial Surgery and Facial Plastic Surgery, University Hospital, Ludwig Maximilians University, 80337 Munich, Germany
| | - Paris Liokatis
- Department of Oral and Maxillofacial Surgery and Facial Plastic Surgery, University Hospital, Ludwig Maximilians University, 80337 Munich, Germany
| | - Riham Fliefel
- Department of Oral and Maxillofacial Surgery and Facial Plastic Surgery, University Hospital, Ludwig Maximilians University, 80337 Munich, Germany
| | - Sven Otto
- Department of Oral and Maxillofacial Surgery and Facial Plastic Surgery, University Hospital, Ludwig Maximilians University, 80337 Munich, Germany
| | - Katharina Theresa Obermeier
- Department of Oral and Maxillofacial Surgery and Facial Plastic Surgery, University Hospital, Ludwig Maximilians University, 80337 Munich, Germany
| |
Collapse
|
41
|
Liu Q, Qi J, Li W, Tian X, Zhang J, Liu F, Lu X, Zang H, Liu C, Ma C, Yu Y, Jiang S. Therapeutic effect and transcriptome-methylome characteristics of METTL3 inhibition in liver hepatocellular carcinoma. Cancer Cell Int 2023; 23:298. [PMID: 38012755 PMCID: PMC10683134 DOI: 10.1186/s12935-023-03096-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/11/2023] [Indexed: 11/29/2023] Open
Abstract
Methyltransferase-like 3 (METTL3) is the key subunit of methyltransferase complex responsible for catalyzing N6-methyladenosine (m6A) modification on mRNA, which is the most prevalent post-transcriptional modification in eukaryotes. In this study, we utilized online databases to analyze the association between METTL3 expression and various aspects of tumorigenesis, including gene methylation, immunity, and prognosis. Our investigation revealed that METTL3 serves as a prognostic marker and therapeutic target for liver hepatocellular carcinoma (LIHC). Through experimental studies, we observed frequent upregulation of METTL3 in LIHC tumor tissue and cells. Subsequent inhibition of METTL3 using a novel small molecule inhibitor, STM2457, significantly impeded tumor growth in LIHC cell lines, spheroids, and xenograft tumor model. Further, transcriptome and m6A sequencing of xenograft bodies unveiled that inhibition of METTL3-m6A altered genes enriched in SMAD and MAPK signaling pathways that are critical for tumorigenesis. These findings suggest that targeting METTL3 represents a promising therapeutic strategy for LIHC.
Collapse
Affiliation(s)
- Qingbin Liu
- Clinical Medical Laboratory Center, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, People's Republic of China
- Cisen Pharmaceutical Co. Ltd, Jining, 272000, China
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250100, Shandong, China
| | - Jingjing Qi
- Johannes Kepler University Linz, Altenberger Strasse 69, 4040, Linz, Austria
| | - Weiyang Li
- School of Biological Science, Jining Medical University, Rizhao, Shandong, China
| | - Xinchen Tian
- Clinical Medical Laboratory Center, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, People's Republic of China
| | - Jiaqi Zhang
- Clinical Medical Laboratory Center, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, People's Republic of China
| | - Fen Liu
- Clinical Medical Laboratory Center, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, People's Republic of China
| | - Xiulian Lu
- Cisen Pharmaceutical Co. Ltd, Jining, 272000, China
| | - Hengchang Zang
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250100, Shandong, China
| | - Chenqiao Liu
- Hepatobiliary Surgery Department, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, China
| | - Changlin Ma
- Hepatobiliary Surgery Department, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, China.
| | - Yong Yu
- Johannes Kepler University Linz, Altenberger Strasse 69, 4040, Linz, Austria.
| | - Shulong Jiang
- Clinical Medical Laboratory Center, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, People's Republic of China.
| |
Collapse
|
42
|
Cheng MW, Mitra M, Coller HA. Pan-cancer landscape of epigenetic factor expression predicts tumor outcome. Commun Biol 2023; 6:1138. [PMID: 37973839 PMCID: PMC10654613 DOI: 10.1038/s42003-023-05459-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 10/13/2023] [Indexed: 11/19/2023] Open
Abstract
Oncogenic pathways that drive cancer progression reflect both genetic changes and epigenetic regulation. Here we stratified primary tumors from each of 24 TCGA adult cancer types based on the gene expression patterns of epigenetic factors (epifactors). The tumors for five cancer types (ACC, KIRC, LGG, LIHC, and LUAD) separated into two robust clusters that were better than grade or epithelial-to-mesenchymal transition in predicting clinical outcomes. The majority of epifactors that drove the clustering were also individually prognostic. A pan-cancer machine learning model deploying epifactor expression data for these five cancer types successfully separated the patients into poor and better outcome groups. Single-cell analysis of adult and pediatric tumors revealed that expression patterns associated with poor or worse outcomes were present in individual cells within tumors. Our study provides an epigenetic map of cancer types and lays a foundation for discovering pan-cancer targetable epifactors.
Collapse
Affiliation(s)
- Michael W Cheng
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA, USA
| | - Mithun Mitra
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Hilary A Coller
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA, USA.
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA.
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
- Molecular Biology Institute, University of California, Los Angeles, CA, USA.
| |
Collapse
|
43
|
Yamada Y, Venkadakrishnan VB, Mizuno K, Bakht M, Ku SY, Garcia MM, Beltran H. Targeting DNA methylation and B7-H3 in RB1-deficient and neuroendocrine prostate cancer. Sci Transl Med 2023; 15:eadf6732. [PMID: 37967200 PMCID: PMC10954288 DOI: 10.1126/scitranslmed.adf6732] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 10/25/2023] [Indexed: 11/17/2023]
Abstract
Aberrant DNA methylation has been implicated as a key driver of prostate cancer lineage plasticity and histologic transformation to neuroendocrine prostate cancer (NEPC). DNA methyltransferases (DNMTs) are highly expressed, and global DNA methylation is dysregulated in NEPC. We identified that deletion of DNMT genes decreases expression of neuroendocrine lineage markers and substantially reduced NEPC tumor development and metastasis in vivo. Decitabine, a pan-DNMT inhibitor, attenuated tumor growth in NEPC patient-derived xenograft models, as well as retinoblastoma gene (RB1)-deficient castration-resistant prostate adenocarcinoma (CRPC) models compared with RB1-proficient CRPC. We further found that DNMT inhibition increased expression of B7 homolog 3 (B7-H3), an emerging druggable target, via demethylation of B7-H3. We tested DS-7300a (i-DXd), an antibody-drug conjugate targeting B7-H3, alone and in combination with decitabine in models of advanced prostate cancer. There was potent single-agent antitumor activity of DS-7300a in both CRPC and NEPC bearing high expression of B7-H3. In B7-H3-low models, combination therapy of decitabine plus DS-7300a resulted in enhanced response. DNMT inhibition may therefore be a promising therapeutic target for NEPC and RB1-deficient CRPC and may sensitize B7-H3-low prostate cancer to DS-7300a through increasing target expression. NEPC and RB1-deficient CRPC represent prostate cancer subgroups with poor prognosis, and the development of biomarker-driven therapeutic strategies for these populations may ultimately help improve patient outcomes.
Collapse
Affiliation(s)
- Yasutaka Yamada
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02215, USA
| | - Varadha Balaji Venkadakrishnan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02215, USA
| | - Kei Mizuno
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02215, USA
| | - Martin Bakht
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02215, USA
| | - Sheng-Yu Ku
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02215, USA
| | - Maria Mica Garcia
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02215, USA
| | - Himisha Beltran
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
44
|
Yan K, Niu L, Wu B, He C, Deng L, Chen C, Lan Z, Lin C, Kuang W, Lin H, Zou J, Zhang W, Luo Z. Copy number variants landscape of multiple cancers and clinical applications based on NGS gene panel. Ann Med 2023; 55:2280708. [PMID: 37967237 PMCID: PMC10653745 DOI: 10.1080/07853890.2023.2280708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/30/2023] [Indexed: 11/17/2023] Open
Abstract
BACKGROUND The rapid adoption of next-generation sequencing in clinical oncology has enabled detection of molecular biomarkers which are shared between multiple tumour types. Intra-tumour heterogeneity is a mechanism of therapeutic resistance and therefore an important clinical challenge. However, the tumour-related copy number variants (CNVs), as key regulators of cancer origination, development, and progression, across various types of cancers are poorly understood. METHODS We performed pan-cancer CNV analysis of cancer-related genes in 15 types of cancers including 1438 cancerous patients by next-generation sequencing using a commercially available pan-cancer panel (Onco PanScan™). Downstream bioinformatics analysis was performed in order to detect CNVs, cluster analysis of the found CNVs, and comparison of the frequency of gained CNVs between different types of cancers. LASSO analysis was used for identification of the most important CNVs. RESULTS We also identified 523 CNVs among which 16 CNVs were common while 22 CNVs were caner-specific CNVs. Meanwhile, FAM58A was most commonly found in all studied cancers in this study and significant differences were found in FAM58A between female and male patients (p = .001). Common CNVs, such as FOXA1, NFKBIA, HEY1, MECOM, CHD7, AGO2, were mutated in 6.79%, 8.45%, 7.51%, 6.43%, 7.59%, 8.16% of tumours, while most of these mutations have proven roles in positive regulation of transcription from RNA polymerase II promoter. 11 features including sex, DIS3, EPHB1, ERBB2, FLT1, HCK, KEAP1, MYD88, PARP3, TBX3, and TOP2A were found as the key features for classification of cancers using CNVs. CONCLUSION The 16 common CNVs between cancers can be used to identify the target of pan-cancer drug design and targeted therapies. Additionally, 22 caner-specific CNVs can be used as unique diagnostic markers for each cancer type.
Collapse
Affiliation(s)
- Kangpeng Yan
- Department of Abdominal Oncology Surgery, Jiangxi Cancer Hospital, Nanchang, China
| | - Li Niu
- CheerLand Clinical Laboratory Co., Ltd., Peking University Medical Industrial Park, Zhongguancun Life Science Park, Beijing, China
| | - Boyu Wu
- Department of General Surgery, Shangrao Municipal Hospital, Shangrao, China
| | - Chongwu He
- Department of Breast Surgery, Jiangxi Cancer Hospital, Nanchang, China
| | - Lei Deng
- Department of Medical Oncology, Jiangxi Cancer Hospital, Nanchang, China
| | - Chuan Chen
- Shenzhen Cheerland Biotechnology Co., Ltd., Shenzhen, China
| | - Zhangzhang Lan
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Chao Lin
- Department of Abdominal Oncology Surgery, Jiangxi Cancer Hospital, Nanchang, China
| | - Weihua Kuang
- Department of Abdominal Oncology Surgery, Jiangxi Cancer Hospital, Nanchang, China
| | - Huihong Lin
- Operating Room, Jiangxi Cancer Hospital, Nanchang, China
| | - Jun Zou
- Department of Abdominal Oncology Surgery, Jiangxi Cancer Hospital, Nanchang, China
| | - Wenyong Zhang
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Zhiqiang Luo
- Chest Radiotherapy Department 1, Jiangxi Cancer Hospital, Nanchang, China
| |
Collapse
|
45
|
Barnell EK, Wurtzler EM, La Rocca J, Fitzgerald T, Petrone J, Hao Y, Kang Y, Holmes FL, Lieberman DA. Multitarget Stool RNA Test for Colorectal Cancer Screening. JAMA 2023; 330:1760-1768. [PMID: 37870871 PMCID: PMC10594178 DOI: 10.1001/jama.2023.22231] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/10/2023] [Indexed: 10/24/2023]
Abstract
Importance Noninvasive tests for colorectal cancer screening must include sensitive detection of colorectal cancer and precancerous lesions. These tests must be validated for the intended-use population, which includes average-risk individuals 45 years or older. Objective To evaluate the sensitivity and specificity of a noninvasive, multitarget stool RNA (mt-sRNA) test (ColoSense) test compared with results from a colonoscopy. Design, Setting, and Participants This phase 3 clinical trial (CRC-PREVENT) was a blinded, prospective, cross-sectional study to support a premarket approval application for a class III medical device. A total of 8920 participants were identified online using social media platforms and enrolled from June 2021 to June 2022 using a decentralized nurse call center. All participants completed the mt-sRNA test, which incorporated a commercially available fecal immunochemical test (FIT), concentration of 8 RNA transcripts, and participant-reported smoking status. Stool samples were collected prior to participants completing a colonoscopy at their local endoscopy center. The mt-sRNA test results (positive or negative) were compared with index lesions observed on colonoscopy. Over the course of 12 months, individuals 45 years and older were enrolled in the clinical trial using the decentralized recruitment strategy. Participants were enrolled from 49 US states and obtained colonoscopies at more than 3800 different endoscopy centers. Main Outcomes and Measures The primary outcomes included the sensitivity of the mt-sRNA test for detecting colorectal cancer and advanced adenomas and the specificity for no lesions on colonoscopy. Results The mean (range) age of participants was 55 (45-90) years, with 4% self-identified as Asian, 11% as Black, and 7% as Hispanic. Of the 8920 eligible participants, 36 (0.40%) had colorectal cancer and 606 (6.8%) had advanced adenomas. The mt-sRNA test sensitivity for detecting colorectal cancer was 94%, sensitivity for detecting advanced adenomas was 46%, and specificity for no lesions on colonoscopy was 88%. The mt-sRNA test showed significant improvement in sensitivity for colorectal cancer (94% vs 78%; McNemar P = .01) and advanced adenomas (46% vs 29%; McNemar P < .001) compared with results of the FIT. Conclusions and Relevance In individuals 45 years and older, the mt-sRNA test showed high sensitivity for colorectal neoplasia (colorectal cancer and advanced adenoma) with significant improvement in sensitivity relative to the FIT. Specificity for no lesions on colonoscopy was comparable to existing molecular diagnostic tests. Trial Registration ClinicalTrials.gov Identifier: NCT04739722.
Collapse
Affiliation(s)
- Erica K. Barnell
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri
- McDonnell Genome Institute, Washington University School of Medicine, St Louis, Missouri
- Geneoscopy Inc, St Louis, Missouri
| | | | | | | | | | - Yansheng Hao
- University of Rochester Medical Center, Rochester, New York
| | | | | | - David A. Lieberman
- Division of Gastroenterology, Department of Medicine, Oregon Health and Science University, Portland
| |
Collapse
|
46
|
Fan YC, Wu W, Leng XF, Zhang HW. Utility of G protein-coupled oestrogen receptor 1 as a biomarker for pan-cancer diagnosis, prognosis and immune infiltration: a comprehensive bioinformatics analysis. Aging (Albany NY) 2023; 15:12021-12067. [PMID: 37921845 PMCID: PMC10683611 DOI: 10.18632/aging.205162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 10/02/2023] [Indexed: 11/04/2023]
Abstract
BACKGROUND The G protein-coupled oestrogen receptor (GPER) 1 mediates non-genomic oestrogen-related signalling and plays an important role in the regulation of cell growth and programmed cell death through multiple downstream pathways. Despite the increasing interest in the role of GPER1 in cancer development, no pan-cancer analysis has been available for GPER1. METHODS In this study we performed a comprehensive analysis of the role of GPER1 in pan-cancer via Human Protein Atlas (HPA), The Cancer Genome Atlas (TCGA), University of California, Santa Cruz Xena (UCSC XENA), Genotype-Tissue Expression (GTEx), MethSurv, The University of Alabama at Birmingham CANcer data analysis Portal (UALCAN), cBioPortal, STRING and TISIDB detabases, followed by enrichment analysis using R software. RESULTS GPER1 was widely expressed in tissues and organs and differed in expression from normal tissue in a variety of cancers. In diagnostic assessment, it's Area Under the Curve (AUC) surpassed 0.9 in nine cancer types. Survival analysis showed that GPER1 was correlated with the prognosis of 11 cancer types. Moreover, GPER1 expression was associated with immune infiltration in multiple cancers. CONCLUSIONS In summary, GPER1 has good diagnostic or prognostic value across various malignancies. Together with its extensive correlation with immune components, the aforementioned results suggests that GPER1 shows promise in tumour diagnosis and prognosis, providing new ideas for precise and personalised anti-tumour strategies.
Collapse
Affiliation(s)
- Yu-Chao Fan
- Department of Anesthesiology, Sichuan Cancer Center, Sichuan Cancer Hospital and Institute, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| | - Wen Wu
- Department of Anesthesiology, Xichang People’s Hospital, Xichang, Sichuan, China
| | - Xue-Feng Leng
- Division of Thoracic Surgery, Sichuan Cancer Center, Sichuan Cancer Hospital and Institute, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| | - Hong-Wei Zhang
- Department of Anesthesiology, Sichuan Cancer Center, Sichuan Cancer Hospital and Institute, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| |
Collapse
|
47
|
Huang C, Zhang K, Guo Y, Shen C, Liu X, Huang H, Dou X, Yu B. The crucial roles of m 6A RNA modifications in cutaneous cancers: Implications in pathogenesis, metastasis, drug resistance, and targeted therapies. Genes Dis 2023; 10:2320-2330. [PMID: 37554186 PMCID: PMC10404882 DOI: 10.1016/j.gendis.2022.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/11/2022] [Accepted: 03/02/2022] [Indexed: 10/18/2022] Open
Abstract
N6-methyladenosine (m6A) is the most abundant internal modification on RNA. It is a dynamical and reversible process, which is regulated by m6A methyltransferase and m6A demethylase. The m6A modified RNA can be specifically recognized by the m6A reader, leading to RNA splicing, maturation, degradation or translation. The abnormality of m6A RNA modification is closely related to a variety of biological processes, especially the occurrence and development of tumors. Recent studies have shown that m6A RNA modification is involved in the pathogenesis of skin cancers. However, the precise molecular mechanisms of m6A-mediated cutaneous tumorigenesis have not been fully elucidated. Therefore, this review will summarize the biological characteristics of m6A modification, its regulatory role and mechanism in skin cancers, and the recent research progress of m6A-related molecular drugs, aiming to provide new ideas for clinical diagnosis and targeted therapy of cutaneous cancers.
Collapse
Affiliation(s)
- Cong Huang
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong 518036, China
| | - Kaoyuan Zhang
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China
| | - Yang Guo
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong 518036, China
| | - Changbing Shen
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China
| | - Xiaoming Liu
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China
| | - Haiyan Huang
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China
| | - Xia Dou
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China
| | - Bo Yu
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong 518036, China
| |
Collapse
|
48
|
Desaulniers D, Zhou G, Stalker A, Cummings-Lorbetskie C. Effects of Copper or Zinc Organometallics on Cytotoxicity, DNA Damage and Epigenetic Changes in the HC-04 Human Liver Cell Line. Int J Mol Sci 2023; 24:15580. [PMID: 37958568 PMCID: PMC10650525 DOI: 10.3390/ijms242115580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/13/2023] [Accepted: 10/19/2023] [Indexed: 11/15/2023] Open
Abstract
Copper and zinc organometallics have multiple applications and many are considered "data-poor" because the available toxicological information is insufficient for comprehensive health risk assessments. To gain insight into the chemical prioritization and potential structure activity relationship, the current work compares the in vitro toxicity of nine "data-poor" chemicals to five structurally related chemicals and to positive DNA damage inducers (4-nitroquinoline-oxide, aflatoxin-B1). The HC-04 non-cancer human liver cell line was used to investigate the concentration-response effects (24 h and 72 h exposure) on cell proliferation, DNA damage (γH2AX and DNA unwinding assays), and epigenetic effects (global genome changes in DNA methylation and histone modifications using flow cytometry). The 24 h exposure screening data (DNA abundance and damage) suggest a toxicity hierarchy, starting with copper dimethyldithiocarbamate (CDMDC, CAS#137-29-1) > zinc diethyldithiocarbamate (ZDEDC, CAS#14324-55-1) > benzenediazonium, 4-chloro-2-nitro-, and tetrachlorozincate(2-) (2:1) (BDCN4CZ, CAS#14263-89-9); the other chemicals were less toxic and had alternate ranking positions depending on assays. The potency of CDMDC for inducing DNA damage was close to that of the human hepatocarcinogen aflatoxin-B1. Further investigation using sodium-DMDC (SDMDC, CAS#128-04-1), CDMDC and copper demonstrated the role of the interactions between copper and the DMDC organic moiety in generating a high level of CDMDC toxicity. In contrast, additive interactions were not observed with respect to the DNA methylation flow cytometry data in 72 h exposure experiments. They revealed chemical-specific effects, with hypo and hypermethylation induced by copper chloride (CuCl2, CAS#10125-13-0) and zinc-DMDC (ZDMDC, CAS#137-30-4), respectively, but did not show any significant effect of CDMDC or SDMDC. Histone-3 hypoacetylation was a sensitive flow cytometry marker of 24 h exposure to CDMDC. This study can provide insights regarding the prioritization of chemicals for future study, with the aim being to mitigate chemical hazards.
Collapse
Affiliation(s)
- Daniel Desaulniers
- Health Canada, Environmental Health Science and Research Bureau, Ottawa, ON K1A 0K9, Canada; (D.D.)
| | - Gu Zhou
- Health Canada, Environmental Health Science and Research Bureau, Ottawa, ON K1A 0K9, Canada; (D.D.)
| | - Andrew Stalker
- Health Canada, Regulatory Research Division, Biologics and Radiopharmaceutical Drugs Directorate, Ottawa, ON K1A 0K9, Canada
| | | |
Collapse
|
49
|
Zhao J, Dong Y, Bai H, Bai F, Yan X, Duan J, Wan R, Xu J, Fei K, Wang J, Wang Z. Multi-omics indicators of long-term survival benefits after immune checkpoint inhibitor therapy. CELL REPORTS METHODS 2023; 3:100596. [PMID: 37738982 PMCID: PMC10626191 DOI: 10.1016/j.crmeth.2023.100596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/08/2023] [Accepted: 08/30/2023] [Indexed: 09/24/2023]
Abstract
Molecular indicators of long-term survival (LTS) in response to immune-checkpoint inhibitor (ICI) treatment have the potential to provide both mechanistic and therapeutic insights. In this study, we construct predictive models of LTS following ICI therapy based on data from 158 clinical trials involving 21,023 patients of 25 cancer types with available 1-year overall survival (OS) rates. We present evidence for the use of 1-year OS rate as a surrogate for LTS. Based on these and corresponding TCGA multi-omics data, total neoantigen, metabolism score, CD8+ T cell, and MHC_score were identified as predictive biomarkers. These were integrated into a Gaussian process regression model that estimates "long-term survival predictive score of immunotherapy" (iLSPS). We found that iLSPS outperformed the predictive capabilities of individual biomarkers and successfully predicted LTS of patient groups with melanoma and lung cancer. Our study explores the feasibility of modeling LTS based on multi-omics indicators and machine-learning methods.
Collapse
Affiliation(s)
- Jie Zhao
- CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China
| | - Yiting Dong
- CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China
| | - Hua Bai
- CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China
| | - Fan Bai
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100021, China
| | - Xiaoyan Yan
- Clinical Research Institute, Peking University, Beijing 100021, China
| | - Jianchun Duan
- CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China
| | - Rui Wan
- CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China
| | - Jiachen Xu
- CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China
| | - Kailun Fei
- CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China
| | - Jie Wang
- CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China.
| | - Zhijie Wang
- CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China.
| |
Collapse
|
50
|
Loo CE, Hix MA, Wang T, Cisneros GA, Kohli RM. Revealing Drivers for Carboxy- S-adenosyl-l-methionine Use by Neomorphic Variants of a DNA Methyltransferase. ACS Chem Biol 2023; 18:2224-2232. [PMID: 37379458 PMCID: PMC10592258 DOI: 10.1021/acschembio.3c00184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
Methylation of DNA plays a key role in diverse biological processes spanning from bacteria to mammals. DNA methyltransferases (MTases) typically employ S-adenosyl-l-methionine (SAM) as a critical cosubstrate and the relevant methyl donor for modification of the C5 position of cytosine. Recently, work on the CpG-specific bacterial MTase, M.MpeI, has shown that a single N374K point mutation can confer the enzyme with the neomorphic ability to use the sparse, naturally occurring metabolite carboxy-S-adenosyl-l-methionine (CxSAM) in order to generate the unnatural DNA modification, 5-carboxymethylcytosine (5cxmC). Here, we aimed to investigate the mechanistic basis for this DNA carboxymethyltransferase (CxMTase) activity by employing a combination of computational modeling and in vitro characterization. Modeling of substrate interactions with the enzyme variant allowed us to identify a favorable salt bridge between CxSAM and N374K that helps to rationalize selectivity of the CxMTase. Unexpectedly, we also discovered a potential role for a key active site E45 residue that makes a bidentate interaction with the ribosyl sugar of CxSAM, located on the opposite face of the CxMTase active site. Prompted by these modeling results, we further explored the space-opening E45D mutation and found that the E45D/N374K double mutant in fact inverts selectivity, preferring CxSAM over SAM in biochemical assays. These findings provide new insight into CxMTase active site architecture and may offer broader utility given the numerous opportunities offered by using SAM analogs for selective molecular labeling in concert with nucleic acid or even protein-modifying MTases.
Collapse
Affiliation(s)
- Christian E. Loo
- Graduate Group in Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Mark A. Hix
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Tong Wang
- Graduate Group in Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - G. Andrés Cisneros
- Department of Physics, University of Texas at Dallas, Richardson, Texas 75801, United States; Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75801, United States
| | - Rahul M. Kohli
- Department of Medicine and Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|