1
|
Emami S, Westerlund E, Rojas Converso T, Johansson-Lindbom B, Persson JJ. Protection acquired upon intraperitoneal group a Streptococcus immunization is independent of concurrent adaptive immune responses but relies on macrophages and IFN-γ. Virulence 2025; 16:2457957. [PMID: 39921669 PMCID: PMC11810095 DOI: 10.1080/21505594.2025.2457957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/09/2024] [Accepted: 01/20/2025] [Indexed: 02/10/2025] Open
Abstract
Group A Streptococcus (GAS; Streptococcus pyogenes) is an important bacterial pathogen causing over 700 million superficial infections and around 500.000 deaths due to invasive disease or severe post-infection sequelae yearly. In spite of this major impact on society, there is currently no vaccine available against this bacterium. GAS strains can be separated into >250 distinct emm (M)-types, and protective immunity against GAS is believed to in part be dependent on type-specific antibodies. Here, we analyse the nature of protective immunity generated against GAS in a model of intraperitoneal immunization in mice. We demonstrate that multiple immunizations are required for the ability to survive a subsequent lethal challenge, and although significant levels of GAS-specific antibodies are produced, these are redundant for protection. Instead, our data show that the immunization-dependent protection in this model is induced in the absence of B and T cells and is accompanied by the induction of an altered acute cytokine profile upon subsequent infection, noticeable e.g. by the absence of classical pro-inflammatory cytokines and increased IFN-γ production. Further, the ability of immunized mice to survive a lethal infection is dependent on macrophages and the macrophage-activating cytokine IFN-γ. To our knowledge these findings are the first to suggest that GAS may have the ability to induce forms of trained innate immunity. Taken together, the current study proposes a novel role for the innate immune system in response to GAS infections that potentially could be leveraged for future development of effective vaccines.
Collapse
Affiliation(s)
- Shiva Emami
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Elsa Westerlund
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | | | | | - Jenny J Persson
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
2
|
Emami S, Rojas Converso T, Persson JJ, Johansson-Lindbom B. Insertion of an immunodominant T helper cell epitope within the Group A Streptococcus M protein promotes an IFN-γ-dependent shift from a non-protective to a protective immune response. Front Immunol 2023; 14:1241485. [PMID: 37654501 PMCID: PMC10465795 DOI: 10.3389/fimmu.2023.1241485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 07/28/2023] [Indexed: 09/02/2023] Open
Abstract
The common pathogen Group A Streptococcus (GAS, Streptococcus pyogenes) is an extracellular bacterium that is associated with a multitude of infectious syndromes spanning a wide range of severity. The surface-exposed M protein is a major GAS virulence factor that is also target for protective antibody responses. In this study, we use a murine immunization model to investigate aspects of the cellular and molecular foundation for protective adaptive immune responses generated against GAS. We show that a wild type M1 GAS strain induces a non-protective antibody response, while an isogenic strain carrying the immunodominant 2W T helper cell epitope within the M protein elicits an immune response that is protective against the parental non-recombinant M1 GAS strain. Although the two strains induce total anti-GAS IgG levels of similar magnitude, only the 2W-carrying strain promotes elevated titers of the complement-fixing IgG2c subclass. Protection is dependent on IFN-γ, and IFN-γ-deficient mice show a specific reduction in IgG2c levels. Our findings suggest that inclusion of the 2W T cell epitope in the M protein confers essential qualitative alterations in the adaptive immune response against GAS, and that sparsity in IFN-γ-promoting Th cell epitopes in the M protein may constitute an immune evasion mechanism, evolved to allow the pathogen to avoid attack by complement-fixing antibodies.
Collapse
|
3
|
Research progress on Mincle as a multifunctional receptor. Int Immunopharmacol 2023; 114:109467. [PMID: 36436471 DOI: 10.1016/j.intimp.2022.109467] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/25/2022] [Accepted: 11/13/2022] [Indexed: 11/25/2022]
Abstract
Macrophage-induced C-type lectin (Mincle), a lipopolysaccharide-induced protein, is widely expressed on antigen-presenting cells. Mincle acts as a pattern recognition receptor that recognizes pathogen-associated molecular patterns of pathogens such as bacteria and fungi, mainly glycolipids, which induces an acquired immune response against microbial infection. Interestingly, Mincle can also identify patterns of lipid damage-associated molecule patterns released by injured cells, such as Sin3-associated protein 130 and β-glucosylceramides, which induces sterile inflammation and ultimately accelerates the progression of stroke, obesity, hepatitis, kidney injury, autoimmune diseases and tumors by promoting tissue inflammation. This article will review the various functions of Mincle, such as mediating sterile inflammation of tissues to accelerate disease progression, initiating immune responses to fight infection and promoting tumor progression.
Collapse
|
4
|
Matsumaru T. Lipid Conjugates as Ligands for the C-type Lectin Receptor Mincle. TRENDS GLYCOSCI GLYC 2022. [DOI: 10.4052/tigg.2029.1j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
5
|
Matsumaru T. Lipid Conjugates as Ligands for the C-type Lectin Receptor Mincle. TRENDS GLYCOSCI GLYC 2022. [DOI: 10.4052/tigg.2029.1e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
6
|
Iwabuchi R, Ide K, Terahara K, Wagatsuma R, Iwaki R, Matsunaga H, Tsunetsugu-Yokota Y, Takeyama H, Takahashi Y. Development of an Inflammatory CD14 + Dendritic Cell Subset in Humanized Mice. Front Immunol 2021; 12:643040. [PMID: 33790912 PMCID: PMC8005643 DOI: 10.3389/fimmu.2021.643040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/16/2021] [Indexed: 12/12/2022] Open
Abstract
Humanized mouse models are attractive experimental models for analyzing the development and functions of human dendritic cells (DCs) in vivo. Although various types of DC subsets, including DC type 3 (DC3s), have been identified in humans, it remains unclear whether humanized mice can reproduce heterogeneous DC subsets. CD14, classically known as a monocyte/macrophage marker, is reported as an indicator of DC3s. We previously observed that some CD14+ myeloid cells expressed CD1c, a pan marker for bona fide conventional DC2 (cDC2s), in humanized mouse models in which human FLT3L and GM-CSF genes were transiently expressed using in vivo transfection (IVT). Here, we aimed to elucidate the identity of CD14+CD1c+ DC-like cells in humanized mouse models. We found that CD14+CD1c+ cells were phenotypically different from cDC2s; CD14+CD1c+ cells expressed CD163 but not CD5, whereas cDC2s expressed CD5 but not CD163. Furthermore, CD14+CD1c+ cells primed and polarized naïve CD4+ T cells toward IFN-γ+ Th1 cells more profoundly than cDC2s. Transcriptional analysis revealed that CD14+CD1c+ cells expressed several DC3-specific transcripts, such as CD163, S100A8, and S100A9, and were clearly segregated from cDC2s and monocytes. When lipopolysaccharide was administered to the humanized mice, the frequency of CD14+CD1c+ cells producing IL-6 and TNF-α was elevated, indicating a pro-inflammatory signature. Thus, humanized mice are able to sustain development of functional CD14+CD1c+ DCs, which are equivalent to DC3 subset observed in humans, and they could be useful for analyzing the development and function of DC3s in vivo.
Collapse
Affiliation(s)
- Ryutaro Iwabuchi
- Department of Immunology, National Institute of Infectious Diseases, Tokyo, Japan.,Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan.,Computational Bio Big-Data Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
| | - Keigo Ide
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan.,Computational Bio Big-Data Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
| | - Kazutaka Terahara
- Department of Immunology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Ryota Wagatsuma
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan
| | - Rieko Iwaki
- Department of Immunology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hiroko Matsunaga
- Research Organization for Nano and Life Innovation, Waseda University, Tokyo, Japan
| | - Yasuko Tsunetsugu-Yokota
- Department of Immunology, National Institute of Infectious Diseases, Tokyo, Japan.,Department of Medical Technology, School of Human Sciences, Tokyo University of Technology, Tokyo, Japan
| | - Haruko Takeyama
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan.,Computational Bio Big-Data Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, Tokyo, Japan.,Research Organization for Nano and Life Innovation, Waseda University, Tokyo, Japan.,Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Waseda University, Tokyo, Japan
| | - Yoshimasa Takahashi
- Department of Immunology, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
7
|
Matsumura T, Nishiyama A, Aiko M, Ainai A, Ikebe T, Chiba J, Ato M, Takahashi Y. An anti-perfringolysin O monoclonal antibody cross-reactive with streptolysin O protects against streptococcal toxic shock syndrome. BMC Res Notes 2020; 13:419. [PMID: 32891180 PMCID: PMC7487723 DOI: 10.1186/s13104-020-05264-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/01/2020] [Indexed: 11/17/2022] Open
Abstract
Objective Streptococcus pyogenes (Group A Streptococcus; GAS) causes a variety of infections that include life-threatening, severe invasive GAS infections, such as streptococcal toxic shock syndrome (STSS), with > 30% mortality rate, despite effective antibiotics and treatment options. STSS clinical isolates highly express streptolysin O (SLO), a member of a large family of pore-forming toxins called cholesterol-dependent cytolysins (CDCs). SLO is an important toxic factor for GAS and may be an effective therapeutic target for the treatment of STSS. Our aim was to identify a monoclonal antibody (mAb) that reacts with SLO and has therapeutic potential for STSS treatment. Results We focused on mAbs that had originally been established as neutralizing reagents to perfringolysin O (PFO), another member of the CDC family, as some cross-reactivity with SLO had been reported. Here, we confirmed cross-reactivity of an anti-PFO mAb named HS1 with SLO. In vitro analysis revealed that HS1 mAb sufficiently prevented human neutrophils from being killed by STSS clinical isolates. Furthermore, prophylactic and therapeutic injection of HS1 mAb into C57BL/6 mice significantly improved the survival rate following lethal infection with an STSS clinical isolate. These results highlight the therapeutic potential of HS1 mAb for STSS treatment.
Collapse
Affiliation(s)
- Takayuki Matsumura
- Department of Immunology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan.
| | - Ayae Nishiyama
- Department of Immunology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Michio Aiko
- Department of Immunology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Akira Ainai
- Department of Pathology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Tadayoshi Ikebe
- Department of Bacteriology I, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Joe Chiba
- Department of Pathology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Manabu Ato
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, 4-2-1 Aobacho, Higashimurayamashi, Tokyo, 189-0002, Japan
| | - Yoshimasa Takahashi
- Department of Immunology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan.
| |
Collapse
|
8
|
Matsumura T, Takahashi Y. The role of myeloid cells in prevention and control of group A streptococcal infections. BIOSAFETY AND HEALTH 2020. [DOI: 10.1016/j.bsheal.2020.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
9
|
Mnich ME, van Dalen R, van Sorge NM. C-Type Lectin Receptors in Host Defense Against Bacterial Pathogens. Front Cell Infect Microbiol 2020; 10:309. [PMID: 32733813 PMCID: PMC7358460 DOI: 10.3389/fcimb.2020.00309] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/22/2020] [Indexed: 12/11/2022] Open
Abstract
Antigen-presenting cells (APCs) are present throughout the human body—in tissues, at barrier sites and in the circulation. They are critical for processing external signals to instruct both local and systemic responses toward immune tolerance or immune defense. APCs express an extensive repertoire of pattern-recognition receptors (PRRs) to detect and transduce these signals. C-type lectin receptors (CLRs) comprise a subfamily of PRRs dedicated to sensing glycans, including those expressed by commensal and pathogenic bacteria. This review summarizes recent findings on the recognition of and responses to bacteria by membrane-expressed CLRs on different APC subsets, which are discussed according to the primary site of infection. Many CLR-bacterial interactions promote bacterial clearance, whereas other interactions are exploited by bacteria to enhance their pathogenic potential. The discrimination between protective and virulence-enhancing interactions is essential to understand which interactions to target with new prophylactic or treatment strategies. CLRs are also densely concentrated at APC dendrites that sample the environment across intact barrier sites. This suggests an–as yet–underappreciated role for CLR-mediated recognition of microbiota-produced glycans in maintaining tolerance at barrier sites. In addition to providing a concise overview of identified CLR-bacteria interactions, we discuss the main challenges and potential solutions for the identification of new CLR-bacterial interactions, including those with commensal bacteria, and for in-depth structure-function studies on CLR-bacterial glycan interactions. Finally, we highlight the necessity for more relevant tissue-specific in vitro, in vivo and ex vivo models to develop therapeutic applications in this area.
Collapse
Affiliation(s)
- Malgorzata E Mnich
- Medical Microbiology, UMC Utrecht, Utrecht University, Utrecht, Netherlands.,GSK, Siena, Italy
| | - Rob van Dalen
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Nina M van Sorge
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Netherlands Reference Laboratory for Bacterial Meningitis, Amsterdam University Medical Center, Amsterdam, Netherlands
| |
Collapse
|
10
|
Zhang X, Wei D, Zhao Y, Zhong Z, Wang Y, Song Y, Cai M, Zhang W, Zhao J, Lv C, Zhu H. Immunization With a Secreted Esterase Protects Mice Against Multiple Serotypes (M1, M3, and M28) of Group A Streptococcus. Front Microbiol 2020; 11:565. [PMID: 32308652 PMCID: PMC7145942 DOI: 10.3389/fmicb.2020.00565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 03/16/2020] [Indexed: 11/13/2022] Open
Abstract
Streptococcal secreted esterase (Sse) is a platelet-activating factor acetylhydrolase that is critical for Group A Streptococcus (GAS) skin invasion and innate immune evasion. There are two Sse variant complexes that share >98% identity within each complex but display about 37% variation between the complexes in amino acid sequences. Sse immunization protects mice against lethal infection and skin invasion in subcutaneous infection with the hypervirulent CovRS mutant strain, MGAS5005. However, it is not known whether Sse immunization provides significant protection against infection of GAS with functional CovRS and whether immunization with Sse of one variant complex provides protection against infection of GAS that produces Sse of another variant complex. This study was designed to address these questions. Mice were immunized with recombinant Sse of M1 GAS (SseM1) and challenged with MGAS5005 (serotype M1, CovS mutant, and Sse of variant complex I), MGAS315 (M3, CovS mutant, and Sse of variant complex I), MGAS2221 (M1, wild-type CovRS, and Sse of variant complex I), and MGAS6180 (M28, wild-type CovRS, and Sse of variant complex II). SseM1 immunization significantly increased survival rates of mice in subcutaneous MGAS5005 and intraperitoneal MGAS6180 challenges and showed consistently higher or longer survival in the other challenges. Immunized mice had smaller skin lesion and higher neutrophil responses in subcutaneous infections and lower GAS burdens in spleen, liver, and kidney in most of the challenge experiments than control mice. SseM1 immunization enhanced proinflammatory responses. These data suggest that Sse immunization has a broad benefit against GAS infections that can vary in extent from strain to strain and that the benefit may be due to the immunization-enhanced proinflammatory responses. In particular, immunization with SseM1 can provide protection against M28 GAS infection even though its Sse and SseM1 have significant variations.
Collapse
Affiliation(s)
- Xiaolan Zhang
- College of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Deqin Wei
- College of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Yuan Zhao
- College of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Zhaohua Zhong
- College of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Yue Wang
- College of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Yingli Song
- College of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Minghui Cai
- College of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Wenli Zhang
- College of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Jizi Zhao
- College of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Chunmei Lv
- College of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Hui Zhu
- College of Basic Medical Sciences, Harbin Medical University, Harbin, China
| |
Collapse
|