1
|
Ursino G, Lucibello G, Teixeira PDS, Höfler A, Veyrat-Durebex C, Odouard S, Visentin F, Galgano L, Somm E, Vianna CR, Widmer A, Jornayvaz FR, Boland A, Ramadori G, Coppari R. S100A9 exerts insulin-independent antidiabetic and anti-inflammatory effects. SCIENCE ADVANCES 2024; 10:eadj4686. [PMID: 38170783 PMCID: PMC10796079 DOI: 10.1126/sciadv.adj4686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024]
Abstract
Type 1 diabetes mellitus (T1DM) is characterized by insulin deficiency leading to hyperglycemia and several metabolic defects. Insulin therapy remains the cornerstone of T1DM management, yet it increases the risk of life-threatening hypoglycemia and the development of major comorbidities. Here, we report an insulin signaling-independent pathway able to improve glycemic control in T1DM rodents. Co-treatment with recombinant S100 calcium-binding protein A9 (S100A9) enabled increased adherence to glycemic targets with half as much insulin and without causing hypoglycemia. Mechanistically, we demonstrate that the hyperglycemia-suppressing action of S100A9 is due to a Toll-like receptor 4-dependent increase in glucose uptake in specific skeletal muscles (i.e., soleus and diaphragm). In addition, we found that T1DM mice have abnormal systemic inflammation, which is resolved by S100A9 therapy alone (or in combination with low insulin), hence uncovering a potent anti-inflammatory action of S100A9 in T1DM. In summary, our findings reveal the S100A9-TLR4 skeletal muscle axis as a promising therapeutic target for improving T1DM treatment.
Collapse
Affiliation(s)
- Gloria Ursino
- Department of Cell Physiology and Metabolism, University of Geneva, 1211 Geneva, Switzerland
- Diabetes Center of the Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Giulia Lucibello
- Department of Cell Physiology and Metabolism, University of Geneva, 1211 Geneva, Switzerland
- Diabetes Center of the Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Pryscila D. S. Teixeira
- Department of Cell Physiology and Metabolism, University of Geneva, 1211 Geneva, Switzerland
- Diabetes Center of the Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Anna Höfler
- Department of Molecular Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Christelle Veyrat-Durebex
- Department of Cell Physiology and Metabolism, University of Geneva, 1211 Geneva, Switzerland
- Diabetes Center of the Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Soline Odouard
- Department of Cell Physiology and Metabolism, University of Geneva, 1211 Geneva, Switzerland
- Diabetes Center of the Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Florian Visentin
- Department of Cell Physiology and Metabolism, University of Geneva, 1211 Geneva, Switzerland
- Diabetes Center of the Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Luca Galgano
- Department of Cell Physiology and Metabolism, University of Geneva, 1211 Geneva, Switzerland
- Diabetes Center of the Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Emmanuel Somm
- Department of Cell Physiology and Metabolism, University of Geneva, 1211 Geneva, Switzerland
- Diabetes Center of the Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
- Service of Endocrinology, Diabetes, Nutrition and Therapeutic patient education, Geneva University Hospital, 1205 Geneva, Switzerland
| | - Claudia R. Vianna
- Center for Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | - Ariane Widmer
- Department of Cell Physiology and Metabolism, University of Geneva, 1211 Geneva, Switzerland
- Diabetes Center of the Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - François R. Jornayvaz
- Department of Cell Physiology and Metabolism, University of Geneva, 1211 Geneva, Switzerland
- Diabetes Center of the Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
- Service of Endocrinology, Diabetes, Nutrition and Therapeutic patient education, Geneva University Hospital, 1205 Geneva, Switzerland
| | - Andreas Boland
- Department of Molecular Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Giorgio Ramadori
- Department of Cell Physiology and Metabolism, University of Geneva, 1211 Geneva, Switzerland
- Diabetes Center of the Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Roberto Coppari
- Department of Cell Physiology and Metabolism, University of Geneva, 1211 Geneva, Switzerland
- Diabetes Center of the Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
2
|
Park MS, Lee S, Baek Y, Lee J, Park SS, Cho JH, Jin HJ, Yoo HR. Characteristics of insulin resistance in Korean adults from the perspective of circadian and metabolic sensing genes. Genes Genomics 2023; 45:1475-1487. [PMID: 37768516 PMCID: PMC10682234 DOI: 10.1007/s13258-023-01443-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 08/20/2022] [Indexed: 09/29/2023]
Abstract
BACKGROUND The biological clock allows an organism to anticipate periodic environmental changes and adjust its physiology and behavior accordingly. OBJECTIVE This retrospective cross-sectional study examined circadian gene polymorphisms and clinical characteristics associated with insulin resistance (IR). METHODS We analyzed data from 1,404 Korean adults aged 30 to 55 with no history of cancer and cardio-cerebrovascular disease. The population was classified according to sex and homeostasis model assessment of insulin resistance (HOMA-IR) values. Demographics, anthropometric and clinical characteristics, and single nucleotide polymorphisms (SNPs) were analyzed with respect to sex, age, and HOMA-IR values. We used association rule mining to identify sets of SNPs from circadian and metabolic sensing genes that may be associated with IR. RESULTS Among the subjects, 15.0% of 960 women and 24.3% of 444 men had HOMA-IR values above 2. Most of the parameters differed significantly between men and women, as well as between the groups with high and low insulin sensitivity. Body fat mass of the trunk, which was significantly higher in insulin-resistant groups, had a higher correlation with high sensitivity C-reactive protein and hemoglobin levels in women, and alanine aminotransferase and aspartate aminotransferase levels in men. Homozygous minor allele genotype sets of SNPs rs17031578 and rs228669 in the PER3 gene could be more frequently found among women with HOMA-IR values above 2 (p = .014). CONCLUSION Oxidative stress enhanced by adiposity and iron overload, which may also be linked to NRF2 and PER3-related pathways, is related to IR in adulthood. However, due to the small population size in this study, more research is needed.
Collapse
Affiliation(s)
- Miso S Park
- Clinical Trial Center, Daejeon Korean Medicine Hospital of Daejeon University, 75 Daedeok-daero 176beon-gil, Seo- gu, Daejeon, 35235, Korea.
- Department of Cardiology and Neurology of Korean Medicine, College of Korean Medicine, Daejeon University, Daejeon, Korea.
| | - Siwoo Lee
- KM Data Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon, 34054, Korea
| | - Younghwa Baek
- KM Data Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon, 34054, Korea
| | - Juho Lee
- Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology, University of Science & Technology, Daejeon, Korea
| | - Sang-Soo Park
- Clinical Trial Center, Daejeon Korean Medicine Hospital of Daejeon University, 75 Daedeok-daero 176beon-gil, Seo- gu, Daejeon, 35235, Korea
| | - Jung-Hyo Cho
- Liver and Immunology Research Center, Daejeon Korean Medicine Hospital of Daejeon University, Daejeon, Korea
| | - Hee-Jeong Jin
- KM Data Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon, 34054, Korea
| | - Ho-Ryong Yoo
- Clinical Trial Center, Daejeon Korean Medicine Hospital of Daejeon University, 75 Daedeok-daero 176beon-gil, Seo- gu, Daejeon, 35235, Korea
- Department of Cardiology and Neurology of Korean Medicine, College of Korean Medicine, Daejeon University, Daejeon, Korea
| |
Collapse
|
3
|
Obodo D, Outland EH, Hughey JJ. Sex Inclusion in Transcriptome Studies of Daily Rhythms. J Biol Rhythms 2023; 38:3-14. [PMID: 36419398 PMCID: PMC9903005 DOI: 10.1177/07487304221134160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Biomedical research on mammals has traditionally neglected females, raising the concern that some scientific findings may generalize poorly to half the population. Although this lack of sex inclusion has been broadly documented, its extent within circadian genomics remains undescribed. To address this gap, we examined sex inclusion practices in a comprehensive collection of publicly available transcriptome studies on daily rhythms. Among 148 studies having samples from mammals in vivo, we found strong underrepresentation of females across organisms and tissues. Overall, only 23 of 123 studies in mice, 0 of 10 studies in rats, and 9 of 15 studies in humans included samples from females. In addition, studies having samples from both sexes tended to have more samples from males than from females. These trends appear to have changed little over time, including since 2016, when the US National Institutes of Health began requiring investigators to consider sex as a biological variable. Our findings highlight an opportunity to dramatically improve representation of females in circadian research and to explore sex differences in daily rhythms at the genome level.
Collapse
Affiliation(s)
- Dora Obodo
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee,Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Elliot H. Outland
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jacob J. Hughey
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee,Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, Tennessee,Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee,Jacob J. Hughey, Department of Biomedical Informatics, Vanderbilt University Medical Center, 2525 West End Ave., Suite 1475, Nashville, TN 37232, USA; e-mail:
| |
Collapse
|
4
|
Yan J, Tang X, Zhou ZQ, Zhang J, Zhao Y, Li S, Luo A. Sirtuins functions in central nervous system cells under neurological disorders. Front Physiol 2022; 13:886087. [PMID: 36111151 PMCID: PMC9468898 DOI: 10.3389/fphys.2022.886087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/25/2022] [Indexed: 11/14/2022] Open
Abstract
The sirtuins (SIRTs), a class of NAD+ -dependent deacylases, contain seven SIRT family members in mammals, from SIRT1 to SIRT7. Extensive studies have revealed that SIRT proteins regulate virous cell functions. Central nervous system (CNS) decline resulted in progressive cognitive impairment, social and physical abilities dysfunction. Therefore, it is of vital importance to have a better understanding of potential target to promote homeostasis of CNS. SIRTs have merged as the underlying regulating factors of the process of neurological disorders. In this review, we profile multiple functions of SIRT proteins in different cells during brain function and under CNS injury.
Collapse
Affiliation(s)
- Jing Yan
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaole Tang
- Department of Anesthesiology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhi-qiang Zhou
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yilin Zhao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiyong Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Shiyong Li, ; Ailin Luo,
| | - Ailin Luo
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Shiyong Li, ; Ailin Luo,
| |
Collapse
|
5
|
Kinouchi K, Miyashita K, Itoh H. Chromatin Immunoprecipitation and Circadian Rhythms. Methods Mol Biol 2022; 2482:341-351. [PMID: 35610438 DOI: 10.1007/978-1-0716-2249-0_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Organisms exhibit daily changes of physiology and behavior to exert homeostatic adaptations to day-night cycles. The cyclic fluctuation also takes place at transcriptional levels, giving rise to rhythmic gene expression. Central to this oscillatory transcription is the core clock machinery which constitutes a circuit of transcriptional-translational feedback and achieves circadian functions accordingly. Chromatin immunoprecipitation provides understanding of such mechanisms that clock and non-clock transcription factors along with co-regulators and chromatin modifications dictate circadian epigenome through cyclic alterations of chromatin structures and molecular functions in a concerted fashion. Besides, innovation of high-throughput sequencing technology has broadened our horizon and renewed perspectives in circadian research. This article summarizes the methodology of a chromatin immunoprecipitation experiment in light of circadian rhythm research.
Collapse
Affiliation(s)
- Kenichiro Kinouchi
- Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan.
| | - Kazutoshi Miyashita
- Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Hiroshi Itoh
- Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
6
|
Kinouchi K, Mikami Y, Kanai T, Itoh H. Circadian rhythms in the tissue-specificity from metabolism to immunity; insights from omics studies. Mol Aspects Med 2021; 80:100984. [PMID: 34158177 DOI: 10.1016/j.mam.2021.100984] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/04/2021] [Accepted: 06/07/2021] [Indexed: 12/31/2022]
Abstract
Creatures on earth have the capacity to preserve homeostasis in response to changing environments. The circadian clock enables organisms to adapt to daily predictable rhythms in surrounding conditions. In mammals, circadian clocks constitute hierarchical network, where the central pacemaker in hypothalamic suprachiasmatic nucleus (SCN) serves as a time-keeping machinery and governs peripheral clocks in every other organ through descending neural and humoral factors. The central clock in SCN is reset by light, whilst peripheral clocks are entrained by feeding-fasting rhythms, emphasizing the point that temporal patterns of nutrient availability specifies peripheral clock functions. Indeed, emerging evidence revealed various types of diets or timing of food intake reprogram circadian rhythms in a tissue specific manner. This advancement in understanding of mechanisms underlying tissue specific responsiveness of circadian oscillators to nutrients at the genomic and epigenomic levels is largely owing to employment of state-of-the-art technologies. Specifically, high-throughput transcriptome, proteome, and metabolome have provided insights into how genes, proteins, and metabolites behave over circadian cycles in a given tissue under a certain dietary condition in an unbiased fashion. Additionally, combinations with specialized types of sequencing such as nascent-seq and ribosomal profiling allow us to dissect how circadian rhythms are generated or obliterated at each step of gene regulation. Importantly, chromatin immunoprecipitation followed by deep sequencing methods provide chromatin landscape in terms of regulatory mechanisms of circadian gene expression. In this review, we outline recent discoveries on temporal genomic and epigenomic regulation of circadian rhythms, discussing entrainment of the circadian rhythms by feeding as a fundamental new comprehension of metabolism and immune response, and as a potential therapeutic strategy of metabolic and inflammatory diseases.
Collapse
Affiliation(s)
- Kenichiro Kinouchi
- Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, 160-8582, Japan.
| | - Yohei Mikami
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan.
| | - Takanori Kanai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Hiroshi Itoh
- Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, 160-8582, Japan
| |
Collapse
|
7
|
Van Der Spek R, Foppen E, Fliers E, La Fleur S, Kalsbeek A. Thermal lesions of the SCN do not abolish all gene expression rhythms in rat white adipose tissue, NAMPT remains rhythmic. Chronobiol Int 2021; 38:1354-1366. [PMID: 34058931 DOI: 10.1080/07420528.2021.1930027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Obesity and type 2 diabetes mellitus are major health concerns worldwide. In obese-type 2 diabetic patients, the function of the central brain clock in the hypothalamus, as well as rhythmicity in white adipose tissue (WAT), are reduced. To better understand how peripheral clocks in white adipose tissue (WAT) are synchronized, we assessed the importance of the central brain clock for daily WAT rhythms. We compared gene expression rhythms of core clock genes (Bmal1, Per2, Cry1, Cry2, RevErbα, and DBP) and metabolic genes (SREBP1c, PPARα, PPARγ, FAS, LPL, HSL, CPT1b, Glut4, leptin, adiponectin, visfatin/NAMPT, and resistin) in epididymal and subcutaneous white adipose tissue (eWAT and sWAT) of SCN-lesioned and sham-lesioned rats housed in regular L/D conditions. Despite complete behavioral and hormonal arrhythmicity, SCN lesioning only abolished Cry2 and DBP rhythmicity in WAT, whereas the other clock gene rhythms were significantly reduced, but not completely abolished. We observed no major differences in the effect of SCN lesions between the two WAT depots. In contrast to clock genes, all metabolic genes lost their daily rhythmicity in WAT, with the exception of NAMPT. Interestingly, NAMPT rhythmicity was even less affected by SCN lesioning than the core clock genes, suggesting that it is either strongly coupled to the remaining rhythmicity in clock gene expression, or very sensitive to other external rhythmic factors. The L/D cycle could be such a rhythmic external factor that generates modulating signals by photic masking via the intrinsic photosensitive retinal ganglion cells in combination with the autonomic nervous system. Our findings indicate that in normal weight rats, gene expression rhythms in WAT can be maintained independent of the central brain clock.
Collapse
Affiliation(s)
- Rianne Van Der Spek
- Department of Internal Medicine Endocrinology and Metabolism, Amsterdam UMC, Amsterdam, The Netherlands
| | - Ewout Foppen
- Department of Internal Medicine Endocrinology and Metabolism, Amsterdam UMC, Amsterdam, The Netherlands.,Kalsbeek Group, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Eric Fliers
- Department of Internal Medicine Endocrinology and Metabolism, Amsterdam UMC, Amsterdam, The Netherlands
| | - Susanne La Fleur
- Department of Internal Medicine Endocrinology and Metabolism, Amsterdam UMC, Amsterdam, The Netherlands.,La Fleur Group, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Andries Kalsbeek
- Department of Internal Medicine Endocrinology and Metabolism, Amsterdam UMC, Amsterdam, The Netherlands.,Kalsbeek Group, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| |
Collapse
|
8
|
FKBP10 Regulates Protein Translation to Sustain Lung Cancer Growth. Cell Rep 2021; 30:3851-3863.e6. [PMID: 32187554 DOI: 10.1016/j.celrep.2020.02.082] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 10/29/2019] [Accepted: 02/20/2020] [Indexed: 12/13/2022] Open
Abstract
Cancer therapy is limited, in part, by lack of specificity. Thus, identifying molecules that are selectively expressed by, and relevant for, cancer cells is of paramount medical importance. Here, we show that peptidyl-prolyl-cis-trans-isomerase (PPIase) FK506-binding protein 10 (FKBP10)-positive cells are present in cancer lesions but absent in the healthy parenchyma of human lung. FKBP10 expression negatively correlates with survival of lung cancer patients, and its downregulation causes a dramatic diminution of lung tumor burden in mice. Mechanistically, our results from gain- and loss-of-function assays show that FKBP10 boosts cancer growth and stemness via its PPIase activity. Also, FKBP10 interacts with ribosomes, and its downregulation leads to reduction of translation elongation at the beginning of open reading frames (ORFs), particularly upon insertion of proline residues. Thus, our data unveil FKBP10 as a cancer-selective molecule with a key role in translational reprogramming, stem-like traits, and growth of lung cancer.
Collapse
|
9
|
Abstract
The endogenous timekeeping system evolved to anticipate the time of the day through the 24 hours cycle of the Earth's rotation. In mammals, the circadian clock governs rhythmic physiological and behavioral processes, including the daily oscillation in glucose metabolism, food intake, energy expenditure, and whole-body insulin sensitivity. The results from a series of studies have demonstrated that environmental or genetic alterations of the circadian cycle in humans and rodents are strongly associated with metabolic diseases such as obesity and type 2 diabetes. Emerging evidence suggests that astrocyte clocks have a crucial role in regulating molecular, physiological, and behavioral circadian rhythms such as glucose metabolism and insulin sensitivity. Given the concurrent high prevalence of type 2 diabetes and circadian disruption, understanding the mechanisms underlying glucose homeostasis regulation by the circadian clock and its dysregulation may improve glycemic control. In this review, we summarize the current knowledge on the tight interconnection between the timekeeping system, glucose homeostasis, and insulin sensitivity. We focus specifically on the involvement of astrocyte clocks, at the organism, cellular, and molecular levels, in the regulation of glucose metabolism.
Collapse
Affiliation(s)
- Olga Barca-Mayo
- Circadian and Glial Biology Lab, Physiology Department, Molecular Medicine and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Miguel López
- NeurObesity Lab, Physiology Department, Molecular Medicine and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
10
|
Vav2 catalysis-dependent pathways contribute to skeletal muscle growth and metabolic homeostasis. Nat Commun 2020; 11:5808. [PMID: 33199701 PMCID: PMC7669868 DOI: 10.1038/s41467-020-19489-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 10/16/2020] [Indexed: 12/17/2022] Open
Abstract
Skeletal muscle promotes metabolic balance by regulating glucose uptake and the stimulation of multiple interorgan crosstalk. We show here that the catalytic activity of Vav2, a Rho GTPase activator, modulates the signaling output of the IGF1- and insulin-stimulated phosphatidylinositol 3-kinase pathway in that tissue. Consistent with this, mice bearing a Vav2 protein with decreased catalytic activity exhibit reduced muscle mass, lack of proper insulin responsiveness and, at much later times, a metabolic syndrome-like condition. Conversely, mice expressing a catalytically hyperactive Vav2 develop muscle hypertrophy and increased insulin responsiveness. Of note, while hypoactive Vav2 predisposes to, hyperactive Vav2 protects against high fat diet-induced metabolic imbalance. These data unveil a regulatory layer affecting the signaling output of insulin family factors in muscle. Skeletal muscle plays a key role in regulating systemic glucose and metabolic homeostasis. Here, the authors show that the catalytic activity of Vav2, an activator of Rho GTPases, modulates those processes by favoring the responsiveness of this tissue to insulin and related factors.
Collapse
|
11
|
Fleury G, Masís‐Vargas A, Kalsbeek A. Metabolic Implications of Exposure to Light at Night: Lessons from Animal and Human Studies. Obesity (Silver Spring) 2020; 28 Suppl 1:S18-S28. [PMID: 32700826 PMCID: PMC7497102 DOI: 10.1002/oby.22807] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/13/2020] [Accepted: 03/14/2020] [Indexed: 02/06/2023]
Abstract
Lately, the incidence of overweight, obesity, and type 2 diabetes has shown a staggering increase. To prevent and treat these conditions, one must look at their etiology. As life on earth has evolved under the conditions of nature's 24-hour light/dark cycle, it seems likely that exposure to artificial light at night (LAN) would affect physiology. Indeed, ample evidence has shown that LAN impacts many metabolic parameters, at least partly via the biological clock in the suprachiasmatic nucleus of the hypothalamus. This review focuses on the impact of chronic and acute effects of LAN of different wavelengths on locomotor activity, food intake, the sleep/wake cycle, body temperature, melatonin, glucocorticoids, and glucose and lipid metabolism. While chronic LAN disturbs daily rhythms in these parameters, experiments using short-term LAN exposure also have shown acute negative effects in metabolically active peripheral tissues. Experiments using LAN of different wavelengths not only have indicated an important role for melanopsin, the photopigment found in intrinsically photosensitive retinal ganglion cells, but also provided evidence that each wavelength may have a specific impact on energy metabolism. Importantly, exposure to LAN has been shown to impact glucose homeostasis also in humans and to be associated with an increased incidence of overweight, obesity, and atherosclerosis.
Collapse
Affiliation(s)
- Giulia Fleury
- Department of Endocrinology and MetabolismAmsterdam UMCUniversity of AmsterdamAmsterdamthe Netherlands
| | - Anayanci Masís‐Vargas
- Department of Endocrinology and MetabolismAmsterdam UMCUniversity of AmsterdamAmsterdamthe Netherlands
- Hypothalamic Integration MechanismsNetherlands Institute for Neuroscience (NIN)Amsterdamthe Netherlands
- Institute of Cellular and Integrative Neurosciences (INCI)UPR‐3212 CNRSUniversity of StrasbourgStrasbourgFrance
| | - Andries Kalsbeek
- Department of Endocrinology and MetabolismAmsterdam UMCUniversity of AmsterdamAmsterdamthe Netherlands
- Hypothalamic Integration MechanismsNetherlands Institute for Neuroscience (NIN)Amsterdamthe Netherlands
| |
Collapse
|
12
|
Sinturel F, Petrenko V, Dibner C. Circadian Clocks Make Metabolism Run. J Mol Biol 2020; 432:3680-3699. [PMID: 31996313 DOI: 10.1016/j.jmb.2020.01.018] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/16/2020] [Accepted: 01/16/2020] [Indexed: 12/12/2022]
Abstract
Most organisms adapt to the 24-h cycle of the Earth's rotation by anticipating the time of the day through light-dark cycles. The internal time-keeping system of the circadian clocks has been developed to ensure this anticipation. The circadian system governs the rhythmicity of nearly all physiological and behavioral processes in mammals. In this review, we summarize current knowledge stemming from rodent and human studies on the tight interconnection between the circadian system and metabolism in the body. In particular, we highlight recent advances emphasizing the roles of the peripheral clocks located in the metabolic organs in regulating glucose, lipid, and protein homeostasis at the organismal and cellular levels. Experimental disruption of circadian system in rodents is associated with various metabolic disturbance phenotypes. Similarly, perturbation of the clockwork in humans is linked to the development of metabolic diseases. We discuss recent studies that reveal roles of the circadian system in the temporal coordination of metabolism under physiological conditions and in the development of human pathologies.
Collapse
Affiliation(s)
- Flore Sinturel
- Department of Medicine, Division of Endocrinology, Diabetes, Hypertension and Nutrition, Faculty of Medicine, University of Geneva, Rue Michel-Servet, 1, CH-1211, Geneva, 14, Switzerland; Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Diabetes Center, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, Geneva, Switzerland.
| | - Volodymyr Petrenko
- Department of Medicine, Division of Endocrinology, Diabetes, Hypertension and Nutrition, Faculty of Medicine, University of Geneva, Rue Michel-Servet, 1, CH-1211, Geneva, 14, Switzerland; Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Diabetes Center, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Charna Dibner
- Department of Medicine, Division of Endocrinology, Diabetes, Hypertension and Nutrition, Faculty of Medicine, University of Geneva, Rue Michel-Servet, 1, CH-1211, Geneva, 14, Switzerland; Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Diabetes Center, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, Geneva, Switzerland.
| |
Collapse
|