1
|
Hu H, Yan HL, Nguyen THD. Structural biology of shelterin and telomeric chromatin: the pieces and an unfinished puzzle. Biochem Soc Trans 2024; 52:1551-1564. [PMID: 39109533 PMCID: PMC7617103 DOI: 10.1042/bst20230300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/19/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024]
Abstract
The six-subunit shelterin complex binds to mammalian telomeres and protects them from triggering multiple DNA damage response pathways. The loss of this protective function by shelterin can have detrimental effects on cells. In this review, we first discuss structural studies of shelterin, detailing the contributions of each subunit and inter-subunit interactions in protecting chromosome ends. We then examine the influence of telomeric chromatin dynamics on the function of shelterin at telomeres. These studies provide valuable insights and underscore the challenges that future research must tackle to attain high-resolution structures of shelterin.
Collapse
Affiliation(s)
- Hongmiao Hu
- MRC Laboratory of Molecular Biology, Cambridge, U.K
| | | | | |
Collapse
|
2
|
Li B. Telomere maintenance in African trypanosomes. Front Mol Biosci 2023; 10:1302557. [PMID: 38074093 PMCID: PMC10704157 DOI: 10.3389/fmolb.2023.1302557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/15/2023] [Indexed: 02/12/2024] Open
Abstract
Telomere maintenance is essential for genome integrity and chromosome stability in eukaryotic cells harboring linear chromosomes, as telomere forms a specialized structure to mask the natural chromosome ends from DNA damage repair machineries and to prevent nucleolytic degradation of the telomeric DNA. In Trypanosoma brucei and several other microbial pathogens, virulence genes involved in antigenic variation, a key pathogenesis mechanism essential for host immune evasion and long-term infections, are located at subtelomeres, and expression and switching of these major surface antigens are regulated by telomere proteins and the telomere structure. Therefore, understanding telomere maintenance mechanisms and how these pathogens achieve a balance between stability and plasticity at telomere/subtelomere will help develop better means to eradicate human diseases caused by these pathogens. Telomere replication faces several challenges, and the "end replication problem" is a key obstacle that can cause progressive telomere shortening in proliferating cells. To overcome this challenge, most eukaryotes use telomerase to extend the G-rich telomere strand. In addition, a number of telomere proteins use sophisticated mechanisms to coordinate the telomerase-mediated de novo telomere G-strand synthesis and the telomere C-strand fill-in, which has been extensively studied in mammalian cells. However, we recently discovered that trypanosomes lack many telomere proteins identified in its mammalian host that are critical for telomere end processing. Rather, T. brucei uses a unique DNA polymerase, PolIE that belongs to the DNA polymerase A family (E. coli DNA PolI family), to coordinate the telomere G- and C-strand syntheses. In this review, I will first briefly summarize current understanding of telomere end processing in mammals. Subsequently, I will describe PolIE-mediated coordination of telomere G- and C-strand synthesis in T. brucei and implication of this recent discovery.
Collapse
Affiliation(s)
- Bibo Li
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, College of Arts and Sciences, Cleveland State University, Cleveland, OH, United States
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, United States
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
- Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
3
|
Tornesello ML, Cerasuolo A, Starita N, Amiranda S, Bonelli P, Tuccillo FM, Buonaguro FM, Buonaguro L, Tornesello AL. Reactivation of telomerase reverse transcriptase expression in cancer: the role of TERT promoter mutations. Front Cell Dev Biol 2023; 11:1286683. [PMID: 38033865 PMCID: PMC10684755 DOI: 10.3389/fcell.2023.1286683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/02/2023] [Indexed: 12/02/2023] Open
Abstract
Telomerase activity and telomere elongation are essential conditions for the unlimited proliferation of neoplastic cells. Point mutations in the core promoter region of the telomerase reverse transcriptase (TERT) gene have been found to occur at high frequencies in several tumour types and considered a primary cause of telomerase reactivation in cancer cells. These mutations promote TERT gene expression by multiple mechanisms, including the generation of novel binding sites for nuclear transcription factors, displacement of negative regulators from DNA G-quadruplexes, recruitment of epigenetic activators and disruption of long-range interactions between TERT locus and telomeres. Furthermore, TERT promoter mutations cooperate with TPP1 promoter nucleotide changes to lengthen telomeres and with mutated BRAF and FGFR3 oncoproteins to enhance oncogenic signalling in cancer cells. TERT promoter mutations have been recognized as an early marker of tumour development or a major indicator of poor outcome and reduced patients survival in several cancer types. In this review, we summarize recent findings on the role of TERT promoter mutations, telomerase expression and telomeres elongation in cancer development, their clinical significance and therapeutic opportunities.
Collapse
Affiliation(s)
- Maria Lina Tornesello
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy
| | - Andrea Cerasuolo
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy
| | - Noemy Starita
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy
| | - Sara Amiranda
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy
| | - Patrizia Bonelli
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy
| | - Franca Maria Tuccillo
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy
| | - Franco M. Buonaguro
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy
| | - Luigi Buonaguro
- Innovative Immunological Models Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy
| | - Anna Lucia Tornesello
- Innovative Immunological Models Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy
| |
Collapse
|
4
|
Tesmer VM, Brenner KA, Nandakumar J. Human POT1 protects the telomeric ds-ss DNA junction by capping the 5' end of the chromosome. Science 2023; 381:771-778. [PMID: 37590346 PMCID: PMC10666826 DOI: 10.1126/science.adi2436] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/19/2023] [Indexed: 08/19/2023]
Abstract
Protection of telomeres 1 (POT1) is the 3' single-stranded overhang-binding telomeric protein that prevents an ataxia telangiectasia and Rad3-related (ATR) DNA damage response (DDR) at chromosome ends. What precludes the DDR machinery from accessing the telomeric double-stranded-single-stranded junction is unknown. We demonstrate that human POT1 binds this junction by recognizing the phosphorylated 5' end of the chromosome. High-resolution crystallographic structures reveal that the junction is capped by POT1 through a "POT-hole" surface, the mutation of which compromises junction protection in vitro and telomeric 5'-end definition and DDR suppression in human cells. Whereas both mouse POT1 paralogs bind the single-stranded overhang, POT1a, not POT1b, contains a POT-hole and binds the junction, which explains POT1a's sufficiency for end protection. Our study shifts the paradigm for DDR suppression at telomeres by highlighting the importance of protecting the double-stranded-single-stranded junction.
Collapse
Affiliation(s)
- Valerie M. Tesmer
- Department of Molecular, Cellular and Developmental Biology, University of Michigan; Ann Arbor, 48109, USA
| | - Kirsten A. Brenner
- Department of Molecular, Cellular and Developmental Biology, University of Michigan; Ann Arbor, 48109, USA
| | - Jayakrishnan Nandakumar
- Department of Molecular, Cellular and Developmental Biology, University of Michigan; Ann Arbor, 48109, USA
| |
Collapse
|
5
|
Sanford SL, Opresko PL. UV light-induced dual promoter mutations dismantle the telomeric guardrails in melanoma. DNA Repair (Amst) 2023; 122:103446. [PMID: 36603239 PMCID: PMC9892262 DOI: 10.1016/j.dnarep.2022.103446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/19/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022]
Abstract
Understanding how benign nevi can progress to invasive and metastatic Department of Environmental and Occupational Health, University of Pittsburgh School of Public Health, USAelanoma is critical for developing interventions and therapeutics for this most deadly form of skin cancer. UV-induced mutations in the telomerase TERT gene promoter occur in the majority of melanomas but fail to prevent telomere shortening despite telomerase upregulation. This suggests additional "hits" are required to enable telomere maintenance. A new study in Science identified somatic variants in the promoter of the gene that encodes telomere shelterin protein TPP1 in human melanomas. These variants show mutational signatures of UV-induced DNA damage and upregulate TPP1 expression, which synergizes with telomerase to lengthen telomeres. This study provides evidence that TPP1 promoter variants are a critical second hit to prevent telomere shortening and promote immortalization of melanoma cells.
Collapse
Affiliation(s)
- Samantha L Sanford
- Department of Environmental and Occupational Health, University of Pittsburgh School of Public Health, USA; UPMC Hillman Cancer Center, University of Pittsburgh, 5117 Centre Avenue, Pittsburgh, PA 15213, USA
| | - Patricia L Opresko
- Department of Environmental and Occupational Health, University of Pittsburgh School of Public Health, USA; UPMC Hillman Cancer Center, University of Pittsburgh, 5117 Centre Avenue, Pittsburgh, PA 15213, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, USA.
| |
Collapse
|
6
|
Chun-on P, Hinchie AM, Beale HC, Gil Silva AA, Rush E, Sander C, Connelly CJ, Seynnaeve BK, Kirkwood JM, Vaske OM, Greider CW, Alder JK. TPP1 promoter mutations cooperate with TERT promoter mutations to lengthen telomeres in melanoma. Science 2022; 378:664-668. [PMID: 36356143 PMCID: PMC10590476 DOI: 10.1126/science.abq0607] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Overcoming replicative senescence is an essential step during oncogenesis, and the reactivation of TERT through promoter mutations is a common mechanism. TERT promoter mutations are acquired in about 75% of melanomas but are not sufficient to maintain telomeres, suggesting that additional mutations are required. We identified a cluster of variants in the promoter of ACD encoding the shelterin component TPP1. ACD promoter variants are present in about 5% of cutaneous melanoma and co-occur with TERT promoter mutations. The two most common somatic variants create or modify binding sites for E-twenty-six (ETS) transcription factors, similar to mutations in the TERT promoter. The variants increase the expression of TPP1 and function together with TERT to synergistically lengthen telomeres. Our findings suggest that TPP1 promoter variants collaborate with TERT activation to enhance telomere maintenance and immortalization in melanoma.
Collapse
Affiliation(s)
- Pattra Chun-on
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, Division of Pulmonary, Allergy, and Critical Care Medicine; Pittsburgh, PA, USA
- Environmental and Occupational Health Department, School of Public Health, University of Pittsburgh; Pittsburgh, PA, USA
- Faculty of Medicine and Public Health, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy; Bangkok, Thailand
| | - Angela M. Hinchie
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, Division of Pulmonary, Allergy, and Critical Care Medicine; Pittsburgh, PA, USA
| | - Holly C. Beale
- UC Santa Cruz, Genomics Institute, University of California, Santa Cruz; CA, USA
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz; CA, USA
| | - Agustin A. Gil Silva
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, Division of Pulmonary, Allergy, and Critical Care Medicine; Pittsburgh, PA, USA
| | - Elizabeth Rush
- University of Pittsburgh Medical Center, Hillman Cancer Institute; Pittsburgh, PA, USA
| | - Cindy Sander
- University of Pittsburgh Medical Center, Hillman Cancer Institute; Pittsburgh, PA, USA
| | - Carla J. Connelly
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine; Baltimore, MD, USA
| | - Brittani K.N. Seynnaeve
- University of Pittsburgh Medical Center, Hillman Cancer Institute; Pittsburgh, PA, USA
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - John M. Kirkwood
- University of Pittsburgh Medical Center, Hillman Cancer Institute; Pittsburgh, PA, USA
| | - Olena M. Vaske
- UC Santa Cruz, Genomics Institute, University of California, Santa Cruz; CA, USA
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz; CA, USA
| | - Carol W. Greider
- UC Santa Cruz, Genomics Institute, University of California, Santa Cruz; CA, USA
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz; CA, USA
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine; Baltimore, MD, USA
| | - Jonathan K. Alder
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, Division of Pulmonary, Allergy, and Critical Care Medicine; Pittsburgh, PA, USA
| |
Collapse
|
7
|
Stem cells at odds with telomere maintenance and protection. Trends Cell Biol 2022; 32:527-536. [DOI: 10.1016/j.tcb.2021.12.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 11/23/2022]
|
8
|
Graniel JV, Bisht K, Friedman A, White J, Perkey E, Vanderbeck A, Moroz A, Carrington LJ, Brandstadter JD, Allen F, Shami AN, Thomas P, Crayton A, Manzor M, Mychalowych A, Chase J, Hammoud SS, Keegan CE, Maillard I, Nandakumar J. Differential impact of a dyskeratosis congenita mutation in TPP1 on mouse hematopoiesis and germline. Life Sci Alliance 2021; 5:5/1/e202101208. [PMID: 34645668 PMCID: PMC8548261 DOI: 10.26508/lsa.202101208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 11/24/2022] Open
Abstract
A TPP1 mutation known to cause telomere shortening and bone marrow failure in humans recapitulates telomere loss but results in severe germline defects in mice without impacting murine hematopoiesis. Telomerase extends chromosome ends in somatic and germline stem cells to ensure continued proliferation. Mutations in genes critical for telomerase function result in telomeropathies such as dyskeratosis congenita, frequently resulting in spontaneous bone marrow failure. A dyskeratosis congenita mutation in TPP1 (K170∆) that specifically compromises telomerase recruitment to telomeres is a valuable tool to evaluate telomerase-dependent telomere length maintenance in mice. We used CRISPR-Cas9 to generate a mouse knocked in for the equivalent of the TPP1 K170∆ mutation (TPP1 K82∆) and investigated both its hematopoietic and germline compartments in unprecedented detail. TPP1 K82∆ caused progressive telomere erosion with increasing generation number but did not induce steady-state hematopoietic defects. Strikingly, K82∆ caused mouse infertility, consistent with gross morphological defects in the testis and sperm, the appearance of dysfunctional seminiferous tubules, and a decrease in germ cells. Intriguingly, both TPP1 K82∆ mice and previously characterized telomerase knockout mice show no spontaneous bone marrow failure but rather succumb to infertility at steady-state. We speculate that telomere length maintenance contributes differently to the evolutionary fitness of humans and mice.
Collapse
Affiliation(s)
- Jacqueline V Graniel
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.,Medical Scientist Training Program, University of Michigan, Ann Arbor, MI, USA.,Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Kamlesh Bisht
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.,Oncology Therapeutic Area, Sanofi, Cambridge, MA, USA
| | - Ann Friedman
- Department of Internal Medicine, Michigan Medicine, Ann Arbor, MI, USA
| | - James White
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA.,Department of Pediatrics, Michigan Medicine, Ann Arbor, MI, USA
| | - Eric Perkey
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI, USA.,Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA.,Division of Hematology/Oncology, Department of Medicine; Abramson Family Cancer Research Institute, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Ashley Vanderbeck
- Division of Hematology/Oncology, Department of Medicine; Abramson Family Cancer Research Institute, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Alina Moroz
- Department of Pediatrics, Michigan Medicine, Ann Arbor, MI, USA
| | - Léolène J Carrington
- Division of Hematology/Oncology, Department of Medicine; Abramson Family Cancer Research Institute, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Joshua D Brandstadter
- Division of Hematology/Oncology, Department of Medicine; Abramson Family Cancer Research Institute, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Frederick Allen
- Division of Hematology/Oncology, Department of Medicine; Abramson Family Cancer Research Institute, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Adrienne Niederriter Shami
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI, USA.,Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Peedikayil Thomas
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA.,Department of Pediatrics, Michigan Medicine, Ann Arbor, MI, USA
| | - Aniela Crayton
- Department of Pediatrics, Michigan Medicine, Ann Arbor, MI, USA
| | - Mariel Manzor
- Department of Pediatrics, Michigan Medicine, Ann Arbor, MI, USA
| | | | - Jennifer Chase
- Department of Internal Medicine, Michigan Medicine, Ann Arbor, MI, USA.,Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA
| | - Saher S Hammoud
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Catherine E Keegan
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA .,Department of Pediatrics, Michigan Medicine, Ann Arbor, MI, USA
| | - Ivan Maillard
- Division of Hematology/Oncology, Department of Medicine; Abramson Family Cancer Research Institute, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Jayakrishnan Nandakumar
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
9
|
Multifunctionality of the Telomere-Capping Shelterin Complex Explained by Variations in Its Protein Composition. Cells 2021; 10:cells10071753. [PMID: 34359923 PMCID: PMC8305809 DOI: 10.3390/cells10071753] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/03/2021] [Accepted: 07/09/2021] [Indexed: 12/31/2022] Open
Abstract
Protecting telomere from the DNA damage response is essential to avoid the entry into cellular senescence and organismal aging. The progressive telomere DNA shortening in dividing somatic cells, programmed during development, leads to critically short telomeres that trigger replicative senescence and thereby contribute to aging. In several organisms, including mammals, telomeres are protected by a protein complex named Shelterin that counteract at various levels the DNA damage response at chromosome ends through the specific function of each of its subunits. The changes in Shelterin structure and function during development and aging is thus an intense area of research. Here, we review our knowledge on the existence of several Shelterin subcomplexes and the functional independence between them. This leads us to discuss the possibility that the multifunctionality of the Shelterin complex is determined by the formation of different subcomplexes whose composition may change during aging.
Collapse
|
10
|
Grill S, Padmanaban S, Friedman A, Perkey E, Allen F, Tesmer VM, Chase J, Khoriaty R, Keegan CE, Maillard I, Nandakumar J. TPP1 mutagenesis screens unravel shelterin interfaces and functions in hematopoiesis. JCI Insight 2021; 6:138059. [PMID: 33822766 PMCID: PMC8262337 DOI: 10.1172/jci.insight.138059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 03/31/2021] [Indexed: 02/06/2023] Open
Abstract
Telomerase catalyzes chromosome end replication in stem cells and other long-lived cells. Mutations in telomerase or telomere-related genes result in diseases known as telomeropathies. Telomerase is recruited to chromosome ends by the ACD/TPP1 protein (TPP1 hereafter), a component of the shelterin complex that protects chromosome ends from unwanted end joining. TPP1 facilitates end protection by binding shelterin proteins POT1 and TIN2. TPP1 variants have been associated with telomeropathies but remain poorly characterized in vivo. Disease variants and mutagenesis scans provide efficient avenues to interrogate the distinct physiological roles of TPP1. Here, we conduct mutagenesis in the TIN2- and POT1-binding domains of TPP1 to discover mutations that dissect TPP1's functions. Our results extend current structural data to reveal that the TPP1-TIN2 interface is more extensive than previously thought and highlight the robustness of the POT1-TPP1 interface. Introduction of separation-of-function mutants alongside known TPP1 telomeropathy mutations in mouse hematopoietic stem cells (mHSCs) lacking endogenous TPP1 demonstrated a clear phenotypic demarcation. TIN2- and POT1-binding mutants were unable to rescue mHSC failure resulting from end deprotection. In contrast, TPP1 telomeropathy mutations sustained mHSC viability, consistent with their selectively impacting end replication. These results highlight the power of scanning mutagenesis in revealing structural interfaces and dissecting multifunctional genes.
Collapse
Affiliation(s)
- Sherilyn Grill
- Department of Molecular, Cellular, and Developmental Biology
| | | | - Ann Friedman
- Life Sciences Institute,,Department of Internal Medicine
| | - Eric Perkey
- Life Sciences Institute,,Graduate Program in Cellular and Molecular Biology, and,Medical Scientist Training Program, University of Michigan, Ann Arbor, Michigan, USA
| | - Frederick Allen
- Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | | | - Jennifer Chase
- Life Sciences Institute,,Graduate Program in Cellular and Molecular Biology, and
| | - Rami Khoriaty
- Department of Internal Medicine,,Department of Cell and Developmental Biology
| | - Catherine E. Keegan
- Department of Pediatrics, and,Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA
| | - Ivan Maillard
- Life Sciences Institute,,Department of Internal Medicine,,Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA.,Department of Cell and Developmental Biology,,Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
11
|
Lim CJ, Cech TR. Shaping human telomeres: from shelterin and CST complexes to telomeric chromatin organization. Nat Rev Mol Cell Biol 2021; 22:283-298. [PMID: 33564154 DOI: 10.1038/s41580-021-00328-y] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2021] [Indexed: 01/14/2023]
Abstract
The regulation of telomere length in mammals is crucial for chromosome end-capping and thus for maintaining genome stability and cellular lifespan. This process requires coordination between telomeric protein complexes and the ribonucleoprotein telomerase, which extends the telomeric DNA. Telomeric proteins modulate telomere architecture, recruit telomerase to accessible telomeres and orchestrate the conversion of the newly synthesized telomeric single-stranded DNA tail into double-stranded DNA. Dysfunctional telomere maintenance leads to telomere shortening, which causes human diseases including bone marrow failure, premature ageing and cancer. Recent studies provide new insights into telomerase-related interactions (the 'telomere replisome') and reveal new challenges for future telomere structural biology endeavours owing to the dynamic nature of telomere architecture and the great number of structures that telomeres form. In this Review, we discuss recently determined structures of the shelterin and CTC1-STN1-TEN1 (CST) complexes, how they may participate in the regulation of telomere replication and chromosome end-capping, and how disease-causing mutations in their encoding genes may affect specific functions. Major outstanding questions in the field include how all of the telomere components assemble relative to each other and how the switching between different telomere structures is achieved.
Collapse
Affiliation(s)
- Ci Ji Lim
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA. .,Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA. .,BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA.
| | - Thomas R Cech
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA. .,BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA. .,Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO, USA.
| |
Collapse
|
12
|
Kosebent EG, Ozturk S. The spatiotemporal expression of TERT and telomere repeat binding proteins in the postnatal mouse testes. Andrologia 2021; 53:e13976. [PMID: 33544428 DOI: 10.1111/and.13976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 12/06/2020] [Accepted: 01/01/2021] [Indexed: 12/31/2022] Open
Abstract
Telomeres consist of repetitive DNA sequences and telomere-associated proteins. Telomeres located at the ends of eukaryotic chromosomes undergo shortening due to DNA replication, genotoxic factors and reactive oxygen species. The short telomeres are elongated by the enzyme telomerase expressed in the germ line, embryonic and stem cells. Telomerase is in the structure of ribonucleoprotein composed of telomerase reverse transcriptase (TERT), telomerase RNA component (Terc) and other components. Among telomere-associated proteins, telomeric repeat binding factor 1 (TRF1) and 2 (TRF2) exclusively bind to the double-stranded telomeric DNA to regulate its length. However, protection of telomeres 1 (POT1) interacts with the single-stranded telomeric DNA to protect from DNA damage response. Herein, we characterised the spatial and temporal expression of the TERT, TRF1, TRF2 and POT1 proteins in the postnatal mouse testes at the ages of 6, 8, 16, 20, 29, 32 and 88 days by using immunohistochemistry. Significant differences in the spatiotemporal expression patterns and levels of these proteins were determined in the postnatal testes (p < .05). These findings indicate that TERT and telomere repeat binding proteins seem to be required for maintaining the length and structural integrity of telomeres in the spermatogenic cells from newborn to adult terms.
Collapse
Affiliation(s)
- Esra G Kosebent
- Department of Histology and Embryology, Akdeniz University School of Medicine, Antalya, Turkey
| | - Saffet Ozturk
- Department of Histology and Embryology, Akdeniz University School of Medicine, Antalya, Turkey
| |
Collapse
|
13
|
Henslee G, Williams CL, Liu P, Bertuch AA. Identification and characterization of novel ACD variants: modulation of TPP1 protein level offsets the impact of germline loss-of-function variants on telomere length. Cold Spring Harb Mol Case Stud 2021; 7:a005454. [PMID: 33446513 PMCID: PMC7903889 DOI: 10.1101/mcs.a005454] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 02/04/2021] [Indexed: 12/13/2022] Open
Abstract
Telomere biology disorders, largely characterized by telomere lengths below the first centile for age, are caused by variants in genes associated with telomere replication, structure, or function. One of these genes, ACD, which encodes the shelterin protein TPP1, is associated with both autosomal dominantly and autosomal recessively inherited telomere biology disorders. TPP1 recruits telomerase to telomeres and stimulates telomerase processivity. Several studies probing the effect of various synthetic or patient-derived variants have mapped specific residues and regions of TPP1 that are important for interaction with TERT, the catalytic component of telomerase. However, these studies have come to differing conclusions regarding ACD haploinsufficiency. Here, we report a proband with compound heterozygous novel variants in ACD (NM_001082486.1)-c.505_507delGAG, p.(Glu169del); and c.619delG, p.(Asp207Thrfs*22)-and a second proband with a heterozygous chromosomal deletion encompassing ACD: arr[hg19] 16q22.1(67,628,846-67,813,408)x1. Clinical data, including symptoms and telomere length within the pedigrees, suggested that loss of one ACD allele was insufficient to induce telomere shortening or confer clinical features. Further analyses of lymphoblastoid cell lines showed decreased nascent ACD RNA and steady-state mRNA, but normal TPP1 protein levels, in cells containing heterozygous ACD c.619delG, p.(Asp207Thrfs*22), or the ACD-encompassing chromosomal deletion compared to controls. Based on our results, we conclude that cells are able to compensate for loss of one ACD allele by activating a mechanism to maintain TPP1 protein levels, thus maintaining normal telomere length.
Collapse
Affiliation(s)
- Gabrielle Henslee
- Baylor College of Medicine, Integrated Molecular and Biomedical Sciences Graduate Program, Houston, Texas 77030, USA
- Baylor College of Medicine, Department of Pediatrics, Hematology/Oncology, Houston, Texas 77030, USA
- Texas Children's Hospital, Cancer and Hematology Centers, Houston, Texas 77030, USA
| | - Christopher L Williams
- Baylor College of Medicine, Department of Pediatrics, Hematology/Oncology, Houston, Texas 77030, USA
- Texas Children's Hospital, Cancer and Hematology Centers, Houston, Texas 77030, USA
| | - Pengfei Liu
- Baylor College of Medicine, Department of Molecular and Human Genetics, Houston, Texas 77030, USA
- Baylor Genetics, Houston, Texas 77021, USA
| | - Alison A Bertuch
- Baylor College of Medicine, Integrated Molecular and Biomedical Sciences Graduate Program, Houston, Texas 77030, USA
- Baylor College of Medicine, Department of Pediatrics, Hematology/Oncology, Houston, Texas 77030, USA
- Texas Children's Hospital, Cancer and Hematology Centers, Houston, Texas 77030, USA
- Baylor College of Medicine, Department of Molecular and Human Genetics, Houston, Texas 77030, USA
| |
Collapse
|
14
|
Grill S, Nandakumar J. Molecular mechanisms of telomere biology disorders. J Biol Chem 2021; 296:100064. [PMID: 33482595 PMCID: PMC7948428 DOI: 10.1074/jbc.rev120.014017] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 12/20/2022] Open
Abstract
Genetic mutations that affect telomerase function or telomere maintenance result in a variety of diseases collectively called telomeropathies. This wide spectrum of disorders, which include dyskeratosis congenita, pulmonary fibrosis, and aplastic anemia, is characterized by severely short telomeres, often resulting in hematopoietic stem cell failure in the most severe cases. Recent work has focused on understanding the molecular basis of these diseases. Mutations in the catalytic TERT and TR subunits of telomerase compromise activity, while others, such as those found in the telomeric protein TPP1, reduce the recruitment of telomerase to the telomere. Mutant telomerase-associated proteins TCAB1 and dyskerin and the telomerase RNA maturation component poly(A)-specific ribonuclease affect the maturation and stability of telomerase. In contrast, disease-associated mutations in either CTC1 or RTEL1 are more broadly associated with telomere replication defects. Yet even with the recent surge in studies decoding the mechanisms underlying these diseases, a significant proportion of dyskeratosis congenita mutations remain uncharacterized or poorly understood. Here we review the current understanding of the molecular basis of telomeropathies and highlight experimental data that illustrate how genetic mutations drive telomere shortening and dysfunction in these patients. This review connects insights from both clinical and molecular studies to create a comprehensive view of the underlying mechanisms that drive these diseases. Through this, we emphasize recent advances in therapeutics and pinpoint disease-associated variants that remain poorly defined in their mechanism of action. Finally, we suggest future avenues of research that will deepen our understanding of telomere biology and telomere-related disease.
Collapse
Affiliation(s)
- Sherilyn Grill
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jayakrishnan Nandakumar
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
15
|
Engin AB, Engin A. The Connection Between Cell Fate and Telomere. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1275:71-100. [PMID: 33539012 DOI: 10.1007/978-3-030-49844-3_3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Abolition of telomerase activity results in telomere shortening, a process that eventually destabilizes the ends of chromosomes, leading to genomic instability and cell growth arrest or death. Telomere shortening leads to the attainment of the "Hayflick limit", and the transition of cells to state of senescence. If senescence is bypassed, cells undergo crisis through loss of checkpoints. This process causes massive cell death concomitant with further telomere shortening and spontaneous telomere fusions. In functional telomere of mammalian cells, DNA contains double-stranded tandem repeats of TTAGGG. The Shelterin complex, which is composed of six different proteins, is required for the regulation of telomere length and stability in cells. Telomere protection by telomeric repeat binding protein 2 (TRF2) is dependent on DNA damage response (DDR) inhibition via formation of T-loop structures. Many protein kinases contribute to the DDR activated cell cycle checkpoint pathways, and prevent DNA replication until damaged DNA is repaired. Thereby, the connection between cell fate and telomere length-associated telomerase activity is regulated by multiple protein kinase activities. Contrarily, inactivation of DNA damage checkpoint protein kinases in senescent cells can restore cell-cycle progression into S phase. Therefore, telomere-initiated senescence is a DNA damage checkpoint response that is activated with a direct contribution from dysfunctional telomeres. In this review, in addition to the above mentioned, the choice of main repair pathways, which comprise non-homologous end joining and homologous recombination in telomere uncapping telomere dysfunctions, are discussed.
Collapse
Affiliation(s)
- Ayse Basak Engin
- Department of Toxicology, Faculty of Pharmacy, Gazi University, Ankara, Turkey.
| | - Atilla Engin
- Department of General Surgery, Faculty of Medicine, Gazi University, Ankara, Turkey
| |
Collapse
|
16
|
Boyle JM, Hennick KM, Regalado SG, Vogan JM, Zhang X, Collins K, Hockemeyer D. Telomere length set point regulation in human pluripotent stem cells critically depends on the shelterin protein TPP1. Mol Biol Cell 2020; 31:2583-2596. [PMID: 32903138 PMCID: PMC7851873 DOI: 10.1091/mbc.e19-08-0447] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Telomere maintenance is essential for the long-term proliferation of human pluripotent stem cells, while their telomere length set point determines the proliferative capacity of their differentiated progeny. The shelterin protein TPP1 is required for telomere stability and elongation, but its role in establishing a telomere length set point remains elusive. Here, we characterize the contribution of the shorter isoform of TPP1 (TPP1S) and the amino acid L104 outside the TEL patch, TPP1’s telomerase interaction domain, to telomere length control. We demonstrate that cells deficient for TPP1S (TPP1S knockout [KO]), as well as the complete TPP1 KO cell lines, undergo telomere shortening. However, TPP1S KO cells are able to stabilize short telomeres, while TPP1 KO cells die. We compare these phenotypes with those of TPP1L104A/L104A mutant cells, which have short and stable telomeres similar to the TPP1S KO. In contrast to TPP1S KO cells, TPP1L104A/L104A cells respond to increased telomerase levels and maintain protected telomeres. However, TPP1L104A/L104A shows altered sensitivity to expression changes of shelterin proteins suggesting the mutation causes a defect in telomere length feedback regulation. Together this highlights TPP1L104A/L104A as the first shelterin mutant engineered at the endogenous locus of human stem cells with an altered telomere length set point.
Collapse
Affiliation(s)
- John M Boyle
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Kelsey M Hennick
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Samuel G Regalado
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Jacob M Vogan
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Xiaozhu Zhang
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Kathleen Collins
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Dirk Hockemeyer
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720.,Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720.,Chan Zuckerberg Biohub, San Francisco, CA 94158
| |
Collapse
|
17
|
Awad A, Glousker G, Lamm N, Tawil S, Hourvitz N, Smoom R, Revy P, Tzfati Y. Full length RTEL1 is required for the elongation of the single-stranded telomeric overhang by telomerase. Nucleic Acids Res 2020; 48:7239-7251. [PMID: 32542379 PMCID: PMC7367169 DOI: 10.1093/nar/gkaa503] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 05/29/2020] [Accepted: 06/02/2020] [Indexed: 12/17/2022] Open
Abstract
Telomeres cap the ends of eukaryotic chromosomes and distinguish them from broken DNA ends to suppress DNA damage response, cell cycle arrest and genomic instability. Telomeres are elongated by telomerase to compensate for incomplete replication and nuclease degradation and to extend the proliferation potential of germ and stem cells and most cancers. However, telomeres in somatic cells gradually shorten with age, ultimately leading to cellular senescence. Hoyeraal-Hreidarsson syndrome (HHS) is characterized by accelerated telomere shortening and diverse symptoms including bone marrow failure, immunodeficiency, and neurodevelopmental defects. HHS is caused by germline mutations in telomerase subunits, factors essential for its biogenesis and recruitment to telomeres, and in the helicase RTEL1. While diverse phenotypes were associated with RTEL1 deficiency, the telomeric role of RTEL1 affected in HHS is yet unknown. Inducible ectopic expression of wild-type RTEL1 in patient fibroblasts rescued the cells, enabled telomerase-dependent telomere elongation and suppressed the abnormal cellular phenotypes, while silencing its expression resulted in gradual telomere shortening. Our observations reveal an essential role of the RTEL1 C-terminus in facilitating telomerase action at the telomeric 3' overhang. Thus, the common etiology for HHS is the compromised telomerase action, resulting in telomere shortening and reduced lifespan of telomerase positive cells.
Collapse
Affiliation(s)
- Aya Awad
- Department of Genetics, The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
| | - Galina Glousker
- Department of Genetics, The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
| | - Noa Lamm
- Department of Genetics, The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
| | - Shadi Tawil
- Department of Genetics, The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
| | - Noa Hourvitz
- Department of Genetics, The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
| | - Riham Smoom
- Department of Genetics, The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
| | - Patrick Revy
- INSERM UMR 1163, Laboratory of Genome Dynamics in the Immune System, Equipe Labellisée Ligue contre le Cancer and Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Yehuda Tzfati
- Department of Genetics, The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
| |
Collapse
|
18
|
Aramburu T, Plucinsky S, Skordalakes E. POT1-TPP1 telomere length regulation and disease. Comput Struct Biotechnol J 2020; 18:1939-1946. [PMID: 32774788 PMCID: PMC7385035 DOI: 10.1016/j.csbj.2020.06.040] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/24/2020] [Accepted: 06/27/2020] [Indexed: 12/27/2022] Open
Abstract
Telomeres are DNA repeats at the ends of linear chromosomes and are replicated by telomerase, a ribonucleoprotein reverse transcriptase. Telomere length regulation and chromosome end capping are essential for genome stability and are mediated primarily by the shelterin and CST complexes. POT1-TPP1, a subunit of shelterin, binds the telomeric overhang, suppresses ATR-dependent DNA damage response, and recruits telomerase to telomeres for DNA replication. POT1 localization to telomeres and chromosome end protection requires its interaction with TPP1. Therefore, the POT1-TPP1 complex is critical to telomere maintenance and full telomerase processivity. The aim of this mini-review is to summarize recent POT1-TPP1 structural studies and discuss how the complex contributes to telomere length regulation. In addition, we review how disruption of POT1-TPP1 function leads to human disease.
Collapse
Key Words
- ATM, Ataxia Telangiectasia Mutated protein
- ATR, Ataxia Telangiectasia and Rad3-related Protein
- CST, CTC1, Stn1 and Ten1
- CTC1, Conserved Telomere Capping Protein 1
- POT1
- POT1, Protection of telomere 1
- RAP1, Repressor/Activator Protein 1
- RPA, Replication Protein A
- SMCHD1, Structural Maintenance Of Chromosomes Flexible Hinge Domain Containing 1
- Shelterin
- Stn1, Suppressor of Cdc Thirteen
- TERC, Telomerase RNA
- TERT, Telomerase Reverse Transcriptase
- TIN2, TRF1- and TRF2-Interacting Nuclear Protein 2
- TPP1
- TPP1 also known as ACD, Adrenocortical Dysplasia Protein Homolog
- TRF1, Telomere Repeat binding Factor 1
- TRF2, Telomere Repeat binding Factor 2
- TSPYL5, Testis-specific Y-encoded-like protein 5
- Telomerase
- Telomeres
- Ten1, Telomere Length Regulation Protein
- USP7, ubiquitin-specific-processing protease 7
Collapse
|
19
|
Combining conservation and species-specific differences to determine how human telomerase binds telomeres. Proc Natl Acad Sci U S A 2019; 116:26505-26515. [PMID: 31822618 DOI: 10.1073/pnas.1911912116] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Telomerase catalyzes telomeric DNA synthesis at chromosome ends to allow for continued cell division. The telomeric protein TPP1 is essential for enhancing the processivity of telomerase and recruiting the enzyme to telomeres. The telomerase interaction surface on human TPP1 has been mapped to 2 regions of the N-terminal oligosaccharide/oligonucleotide-binding (OB) domain, namely the TPP1 glutamate (E) and leucine (L)-rich (TEL) patch and the N terminus of TPP1-oligosaccharide/oligonucleotide-binding (NOB) region. To map the telomerase side of the interface, we exploited the predicted structural similarities for human and Tetrahymena thermophila telomerase as well as the species specificity of human and mouse telomerase for their cognate TPP1 partners. We show that swapping in the telomerase essential N-terminal (TEN) and insertions in fingers domain (IFD)-TRAP regions of the human telomerase catalytic protein subunit TERT into the mouse TERT backbone is sufficient to bias the species specificity toward human TPP1. Employing a structural homology-based mutagenesis screen focused on surface residues of the TEN and IFD regions, we identified TERT residues that are critical for contacting TPP1 but dispensable for other aspects of telomerase structure or function. We present a functionally validated structural model for how human telomerase engages TPP1 at telomeres, setting the stage for a high-resolution structure of this interface.
Collapse
|