1
|
Yin Z, Kang J, Cheng X, Gao H, Huo S, Xu H. Investigating Müller glia reprogramming in mice: a retrospective of the last decade, and a look to the future. Neural Regen Res 2025; 20:946-959. [PMID: 38989930 PMCID: PMC11438324 DOI: 10.4103/nrr.nrr-d-23-01612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/05/2024] [Indexed: 07/12/2024] Open
Abstract
Müller glia, as prominent glial cells within the retina, plays a significant role in maintaining retinal homeostasis in both healthy and diseased states. In lower vertebrates like zebrafish, these cells assume responsibility for spontaneous retinal regeneration, wherein endogenous Müller glia undergo proliferation, transform into Müller glia-derived progenitor cells, and subsequently regenerate the entire retina with restored functionality. Conversely, Müller glia in the mouse and human retina exhibit limited neural reprogramming. Müller glia reprogramming is thus a promising strategy for treating neurodegenerative ocular disorders. Müller glia reprogramming in mice has been accomplished with remarkable success, through various technologies. Advancements in molecular, genetic, epigenetic, morphological, and physiological evaluations have made it easier to document and investigate the Müller glia programming process in mice. Nevertheless, there remain issues that hinder improving reprogramming efficiency and maturity. Thus, understanding the reprogramming mechanism is crucial toward exploring factors that will improve Müller glia reprogramming efficiency, and for developing novel Müller glia reprogramming strategies. This review describes recent progress in relatively successful Müller glia reprogramming strategies. It also provides a basis for developing new Müller glia reprogramming strategies in mice, including epigenetic remodeling, metabolic modulation, immune regulation, chemical small-molecules regulation, extracellular matrix remodeling, and cell-cell fusion, to achieve Müller glia reprogramming in mice.
Collapse
Affiliation(s)
- Zhiyuan Yin
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | | | | | | | | | | |
Collapse
|
2
|
Yin Z, Kang J, Xu H, Huo S, Xu H. Recent progress of principal techniques used in the study of Müller glia reprogramming in mice. CELL REGENERATION (LONDON, ENGLAND) 2024; 13:30. [PMID: 39663301 PMCID: PMC11635068 DOI: 10.1186/s13619-024-00211-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/21/2024] [Accepted: 11/26/2024] [Indexed: 12/13/2024]
Abstract
In zebrafish, Müller glia (MG) cells retain the ability to proliferate and de-differentiate into retinal progenitor-like cells, subsequently differentiating into retinal neurons that can replace those damaged or lost due to retinal injury. In contrast, the reprogramming potential of MG in mammals has been lost, with these cells typically responding to retinal damage through gliosis. Considerable efforts have been dedicated to achieving the reprogramming of MG cells in mammals. Notably, significant advancements have been achieved in reprogramming MG cells in mice employing various methodologies. At the same time, some inevitable challenges have hindered identifying accurate MG cell reprogramming rather than the illusion, let alone improving the reprogramming efficiency and maturity of daughter cells. Recently, several strategies, including lineage tracking, multi-omics techniques, and functional analysis, have been developed to investigate the MG reprogramming process in mice. This review summarizes both the advantages and limitations of these novel strategies for analyzing MG reprogramming in mice, offering insights into enhancing the reliability and efficiency of MG reprogramming.
Collapse
Affiliation(s)
- Zhiyuan Yin
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P.R. China
| | - Jiahui Kang
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P.R. China
| | - Haoan Xu
- School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Shujia Huo
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P.R. China.
| | - Haiwei Xu
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P.R. China.
| |
Collapse
|
3
|
Liu S, Xu X, Omari-Siaw E, Yu J, Deng W. Progress of reprogramming astrocytes into neuron. Mol Cell Neurosci 2024; 130:103947. [PMID: 38862082 DOI: 10.1016/j.mcn.2024.103947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 06/13/2024] Open
Abstract
As the main players in the central nervous system (CNS), neurons dominate most life activities. However, after accidental trauma or neurodegenerative diseases, neurons are unable to regenerate themselves. The loss of this important role can seriously affect the quality of life of patients, ranging from movement disorders to disability and even death. There is no suitable treatment to prevent or reverse this process. Therefore, the regeneration of neurons after loss has been a major clinical problem and the key to treatment. Replacing the lost neurons by transdifferentiation of other cells is the only viable approach. Although much progress has been made in stem cell therapy, ethical issues, immune rejection, and limited cell sources still hinder its clinical application. In recent years, somatic cell reprogramming technology has brought a new dawn. Among them, astrocytes, as endogenously abundant cells homologous to neurons, have good potential and application value for reprogramming into neurons, having been reprogrammed into neurons in vitro and in vivo in a variety of ways.
Collapse
Affiliation(s)
- Sitong Liu
- School of Pharmacy, Jiangsu University, Zhenjiang, China; The International Institute on Natural Products and Stem Cells (iNPS), Zhenjiang, China; Key Lab for Drug Delivery & Tissue Regeneration, Zhenjiang, China; Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, China
| | - Ximing Xu
- School of Pharmacy, Jiangsu University, Zhenjiang, China; The International Institute on Natural Products and Stem Cells (iNPS), Zhenjiang, China; Key Lab for Drug Delivery & Tissue Regeneration, Zhenjiang, China; Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, China
| | - Emmanuel Omari-Siaw
- Department of Pharmaceutical Science, Kumasi Technical University, PO Box 854, Kumasi, Ashanti, Ghana
| | - Jiangnan Yu
- School of Pharmacy, Jiangsu University, Zhenjiang, China; The International Institute on Natural Products and Stem Cells (iNPS), Zhenjiang, China; Key Lab for Drug Delivery & Tissue Regeneration, Zhenjiang, China; Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, China.
| | - Wenwen Deng
- School of Pharmacy, Jiangsu University, Zhenjiang, China; The International Institute on Natural Products and Stem Cells (iNPS), Zhenjiang, China; Key Lab for Drug Delivery & Tissue Regeneration, Zhenjiang, China; Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, China.
| |
Collapse
|
4
|
Marzoog BA. Transcription Factors in Brain Regeneration: A Potential Novel Therapeutic Target. Curr Drug Targets 2024; 25:46-61. [PMID: 38444255 DOI: 10.2174/0113894501279977231210170231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 03/07/2024]
Abstract
Transcription factors play a crucial role in providing identity to each cell population. To maintain cell identity, it is essential to balance the expression of activator and inhibitor transcription factors. Cell plasticity and reprogramming offer great potential for future therapeutic applications, as they can regenerate damaged tissue. Specific niche factors can modify gene expression and differentiate or transdifferentiate the target cell to the required fate. Ongoing research is being carried out on the possibilities of transcription factors in regenerating neurons, with neural stem cells (NSCs) being considered the preferred cells for generating new neurons due to their epigenomic and transcriptome memory. NEUROD1/ASCL1, BRN2, MYTL1, and other transcription factors can induce direct reprogramming of somatic cells, such as fibroblasts, into neurons. However, the molecular biology of transcription factors in reprogramming and differentiation still needs to be fully understood.
Collapse
Affiliation(s)
- Basheer Abdullah Marzoog
- World-Class Research Center, Digital Biodesign and Personalized Healthcare», I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| |
Collapse
|
5
|
Ehrenberg AJ, Kelberman MA, Liu KY, Dahl MJ, Weinshenker D, Falgàs N, Dutt S, Mather M, Ludwig M, Betts MJ, Winer JR, Teipel S, Weigand AJ, Eschenko O, Hämmerer D, Leiman M, Counts SE, Shine JM, Robertson IH, Levey AI, Lancini E, Son G, Schneider C, Egroo MV, Liguori C, Wang Q, Vazey EM, Rodriguez-Porcel F, Haag L, Bondi MW, Vanneste S, Freeze WM, Yi YJ, Maldinov M, Gatchel J, Satpati A, Babiloni C, Kremen WS, Howard R, Jacobs HIL, Grinberg LT. Priorities for research on neuromodulatory subcortical systems in Alzheimer's disease: Position paper from the NSS PIA of ISTAART. Alzheimers Dement 2023; 19:2182-2196. [PMID: 36642985 PMCID: PMC10182252 DOI: 10.1002/alz.12937] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/08/2022] [Accepted: 12/19/2022] [Indexed: 01/17/2023]
Abstract
The neuromodulatory subcortical system (NSS) nuclei are critical hubs for survival, hedonic tone, and homeostasis. Tau-associated NSS degeneration occurs early in Alzheimer's disease (AD) pathogenesis, long before the emergence of pathognomonic memory dysfunction and cortical lesions. Accumulating evidence supports the role of NSS dysfunction and degeneration in the behavioral and neuropsychiatric manifestations featured early in AD. Experimental studies even suggest that AD-associated NSS degeneration drives brain neuroinflammatory status and contributes to disease progression, including the exacerbation of cortical lesions. Given the important pathophysiologic and etiologic roles that involve the NSS in early AD stages, there is an urgent need to expand our understanding of the mechanisms underlying NSS vulnerability and more precisely detail the clinical progression of NSS changes in AD. Here, the NSS Professional Interest Area of the International Society to Advance Alzheimer's Research and Treatment highlights knowledge gaps about NSS within AD and provides recommendations for priorities specific to clinical research, biomarker development, modeling, and intervention. HIGHLIGHTS: Neuromodulatory nuclei degenerate in early Alzheimer's disease pathological stages. Alzheimer's pathophysiology is exacerbated by neuromodulatory nuclei degeneration. Neuromodulatory nuclei degeneration drives neuropsychiatric symptoms in dementia. Biomarkers of neuromodulatory integrity would be value-creating for dementia care. Neuromodulatory nuclei present strategic prospects for disease-modifying therapies.
Collapse
Affiliation(s)
- Alexander J Ehrenberg
- Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, California, USA
| | - Michael A Kelberman
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Kathy Y Liu
- Division of Psychiatry, University College London, London, UK
| | - Martin J Dahl
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, USA
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - David Weinshenker
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Neus Falgàs
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
- Global Brain Health Institute, University of California, San Francisco, San Francisco, California, USA
| | - Shubir Dutt
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, USA
- Department of Psychology, University of Southern California, Los Angeles, California, USA
| | - Mara Mather
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, USA
- Department of Psychology, University of Southern California, Los Angeles, California, USA
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, USA
| | - Mareike Ludwig
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University, Magdeburg, Germany
- Center for Behavioral Brain Sciences, University of Magdeburg, Magdeburg, Germany
| | - Matthew J Betts
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University, Magdeburg, Germany
- Center for Behavioral Brain Sciences, University of Magdeburg, Magdeburg, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Magdeburg, Germany
| | - Joseph R Winer
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA
| | - Stefan Teipel
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Rostock/Greifswald, Rostock, Germany
- Department of Psychosomatic Medicine, University Medicine Rostock, Rostock, Germany
| | - Alexandra J Weigand
- San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, California, USA
| | - Oxana Eschenko
- Department of Computational Neuroscience, Max Planck Institute for Biological Cybernetics, Tuebingen, Germany
| | - Dorothea Hämmerer
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University, Magdeburg, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Magdeburg, Germany
- Department of Psychology, University of Innsbruck, Innsbruck, Austria
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Marina Leiman
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University, Magdeburg, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Magdeburg, Germany
| | - Scott E Counts
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, Michigan, USA
- Department of Family Medicine, Michigan State University, Grand Rapids, Michigan, USA
- Michigan Alzheimer's Disease Research Center, Ann Arbor, Michigan, USA
| | - James M Shine
- Brain and Mind Center, The University of Sydney, Sydney, Australia
| | - Ian H Robertson
- Global Brain Health Institute, Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Allan I Levey
- Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, Georgia, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, Georgia, USA
- Goizueta Institute, Emory University, Atlanta, Georgia, USA
| | - Elisa Lancini
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University, Magdeburg, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Magdeburg, Germany
| | - Gowoon Son
- Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, USA
| | - Christoph Schneider
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Maxime Van Egroo
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Faculty of Health, Medicine, and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht, the Netherlands
| | - Claudio Liguori
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Neurology Unit, University Hospital of Rome Tor Vergata, Rome, Italy
| | - Qin Wang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Agusta University, Agusta, Georgia, USA
| | - Elena M Vazey
- Department of Biology, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | | | - Lena Haag
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University, Magdeburg, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Magdeburg, Germany
| | - Mark W Bondi
- Department of Psychiatry, University of California, San Diego, La Jolla, California, USA
- Psychology Service, VA San Diego Healthcare System, San Diego, California, USA
| | - Sven Vanneste
- Global Brain Health Institute, Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
- School of Psychology, Trinity College Dublin, Dublin, Ireland
- Trinity College Institute for Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Whitney M Freeze
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Neuropsychology and Psychiatry, Maastricht University, Maastricht, the Netherlands
| | - Yeo-Jin Yi
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University, Magdeburg, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Magdeburg, Germany
| | - Mihovil Maldinov
- Department of Psychiatry and Psychotherapy, University of Rostock, Rostock, Germany
| | - Jennifer Gatchel
- Division of Geriatric Psychiatry, McLean Hospital, Harvard Medical School, Belmont, Massachusetts, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Abhijit Satpati
- Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, USA
| | - Claudio Babiloni
- Department of Physiology and Pharmacology "V. Erspamer,", Sapienza University of Rome, Rome, Italy
- Hospital San Raffaele Cassino, Cassino, Italy
| | - William S Kremen
- Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, California, USA
| | - Robert Howard
- Division of Psychiatry, University College London, London, UK
| | - Heidi I L Jacobs
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Faculty of Health, Medicine, and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht, the Netherlands
| | - Lea T Grinberg
- Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, USA
- Global Brain Health Institute, University of California, San Francisco, San Francisco, California, USA
- Department of Pathology, University of California, San Francisco, San Francisco, California, USA
- Department of Pathology, University of São Paulo Medical School, São Paulo, Brazil
| |
Collapse
|
6
|
Chen J, Huang L, Yang Y, Xu W, Qin Q, Qin R, Liang X, Lai X, Huang X, Xie M, Chen L. Somatic Cell Reprogramming for Nervous System Diseases: Techniques, Mechanisms, Potential Applications, and Challenges. Brain Sci 2023; 13:brainsci13030524. [PMID: 36979334 PMCID: PMC10046178 DOI: 10.3390/brainsci13030524] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/14/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Nervous system diseases present significant challenges to the neuroscience community due to ethical and practical constraints that limit access to appropriate research materials. Somatic cell reprogramming has been proposed as a novel way to obtain neurons. Various emerging techniques have been used to reprogram mature and differentiated cells into neurons. This review provides an overview of somatic cell reprogramming for neurological research and therapy, focusing on neural reprogramming and generating different neural cell types. We examine the mechanisms involved in reprogramming and the challenges that arise. We herein summarize cell reprogramming strategies to generate neurons, including transcription factors, small molecules, and microRNAs, with a focus on different types of cells.. While reprogramming somatic cells into neurons holds the potential for understanding neurological diseases and developing therapeutic applications, its limitations and risks must be carefully considered. Here, we highlight the potential benefits of somatic cell reprogramming for neurological disease research and therapy. This review contributes to the field by providing a comprehensive overview of the various techniques used to generate neurons by cellular reprogramming and discussing their potential applications.
Collapse
Affiliation(s)
- Jiafeng Chen
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Lijuan Huang
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Yue Yang
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Wei Xu
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Qingchun Qin
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Rongxing Qin
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Xiaojun Liang
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Xinyu Lai
- Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Nanning 530021, China
| | - Xiaoying Huang
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Minshan Xie
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Li Chen
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Nanning 530021, China
| |
Collapse
|
7
|
Liu S, Xiang K, Yuan F, Xiang M. Generation of self-organized autonomic ganglion organoids from fibroblasts. iScience 2023; 26:106241. [PMID: 36922996 PMCID: PMC10009094 DOI: 10.1016/j.isci.2023.106241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 01/16/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Neural organoids have been shown to serve as powerful tools for studying the mechanism of neural development and diseases as well as for screening drugs and developing cell-based therapeutics. Somatic cells have previously been reprogrammed into scattered autonomic ganglion (AG) neurons but not AG organoids. Here we have identified a combination of triple transcription factors (TFs) Ascl1, Phox2a/b, and Hand2 (APH) capable of efficiently reprogramming mouse fibroblasts into self-organized and networked induced AG (iAG) organoids, and characterized them by immunostaining, qRT-PCR, patch-clamping, and scRNA-seq approaches. The iAG neurons exhibit molecular properties, subtype diversity, and electrophysiological characteristics of autonomic neurons. Moreover, they can integrate into the superior cervical ganglia following transplantation and innervate and control the beating rate of co-cultured ventricular myocytes. Thus, iAG organoids may provide a valuable tool to study the pathogenesis of autonomic nervous system diseases and screen for drugs, as well as a source for cell-based therapies.
Collapse
Affiliation(s)
- Shuting Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Kangjian Xiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Fa Yuan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Mengqing Xiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China.,Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
8
|
Yang R, Pan J, Wang Y, Xia P, Tai M, Jiang Z, Chen G. Application and prospects of somatic cell reprogramming technology for spinal cord injury treatment. Front Cell Neurosci 2022; 16:1005399. [PMID: 36467604 PMCID: PMC9712200 DOI: 10.3389/fncel.2022.1005399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/02/2022] [Indexed: 08/10/2023] Open
Abstract
Spinal cord injury (SCI) is a serious neurological trauma that is challenging to treat. After SCI, many neurons in the injured area die due to necrosis or apoptosis, and astrocytes, oligodendrocytes, microglia and other non-neuronal cells become dysfunctional, hindering the repair of the injured spinal cord. Corrective surgery and biological, physical and pharmacological therapies are commonly used treatment modalities for SCI; however, no current therapeutic strategies can achieve complete recovery. Somatic cell reprogramming is a promising technology that has gradually become a feasible therapeutic approach for repairing the injured spinal cord. This revolutionary technology can reprogram fibroblasts, astrocytes, NG2 cells and neural progenitor cells into neurons or oligodendrocytes for spinal cord repair. In this review, we provide an overview of the transcription factors, genes, microRNAs (miRNAs), small molecules and combinations of these factors that can mediate somatic cell reprogramming to repair the injured spinal cord. Although many challenges and questions related to this technique remain, we believe that the beneficial effect of somatic cell reprogramming provides new ideas for achieving functional recovery after SCI and a direction for the development of treatments for SCI.
Collapse
Affiliation(s)
- Riyun Yang
- Department of Histology and Embryology, Medical School of Nantong University, Nantong, China
| | - Jingying Pan
- Department of Histology and Embryology, Medical School of Nantong University, Nantong, China
| | - Yankai Wang
- Center for Basic Medical Research, Medical School of Nantong University, Nantong, China
| | - Panhui Xia
- Center for Basic Medical Research, Medical School of Nantong University, Nantong, China
| | - Mingliang Tai
- Center for Basic Medical Research, Medical School of Nantong University, Nantong, China
| | - Zhihao Jiang
- Center for Basic Medical Research, Medical School of Nantong University, Nantong, China
| | - Gang Chen
- Center for Basic Medical Research, Medical School of Nantong University, Nantong, China
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
9
|
Legault EM, Bouquety J, Drouin-Ouellet J. Disease Modeling of Neurodegenerative Disorders Using Direct Neural Reprogramming. Cell Reprogram 2022; 24:228-251. [PMID: 35749150 DOI: 10.1089/cell.2021.0172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Understanding the pathophysiology of CNS-associated neurological diseases has been hampered by the inaccessibility of patient brain tissue to perform live analyses at the molecular level. To this end, neural cells obtained by differentiation of patient-derived induced pluripotent stem cells (iPSCs) are considerably helpful, especially in the context of monogenic-based disorders. More recently, the use of direct reprogramming to convert somatic cells to neural cells has emerged as an alternative to iPSCs to generate neurons, astrocytes, and oligodendrocytes. This review focuses on the different studies that used direct neural reprogramming to study disease-associated phenotypes in the context of neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
| | - Julie Bouquety
- Faculty of Pharmacy, Université de Montréal, Montreal, Canada
| | | |
Collapse
|
10
|
Pascale E, Caiazza C, Paladino M, Parisi S, Passaro F, Caiazzo M. MicroRNA Roles in Cell Reprogramming Mechanisms. Cells 2022; 11:940. [PMID: 35326391 PMCID: PMC8946776 DOI: 10.3390/cells11060940] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/28/2022] [Accepted: 03/08/2022] [Indexed: 02/01/2023] Open
Abstract
Cell reprogramming is a groundbreaking technology that, in few decades, generated a new paradigm in biomedical science. To date we can use cell reprogramming to potentially generate every cell type by converting somatic cells and suitably modulating the expression of key transcription factors. This approach can be used to convert skin fibroblasts into pluripotent stem cells as well as into a variety of differentiated and medically relevant cell types, including cardiomyocytes and neural cells. The molecular mechanisms underlying such striking cell phenotypes are still largely unknown, but in the last decade it has been proven that cell reprogramming approaches are significantly influenced by non-coding RNAs. Specifically, this review will focus on the role of microRNAs in the reprogramming processes that lead to the generation of pluripotent stem cells, neurons, and cardiomyocytes. As highlighted here, non-coding RNA-forced expression can be sufficient to support some cell reprogramming processes, and, therefore, we will also discuss how these molecular determinants could be used in the future for biomedical purposes.
Collapse
Affiliation(s)
- Emilia Pascale
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy; (E.P.); (C.C.); (M.P.); (S.P.)
| | - Carmen Caiazza
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy; (E.P.); (C.C.); (M.P.); (S.P.)
| | - Martina Paladino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy; (E.P.); (C.C.); (M.P.); (S.P.)
| | - Silvia Parisi
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy; (E.P.); (C.C.); (M.P.); (S.P.)
| | - Fabiana Passaro
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy; (E.P.); (C.C.); (M.P.); (S.P.)
| | - Massimiliano Caiazzo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy; (E.P.); (C.C.); (M.P.); (S.P.)
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
11
|
Ma L, Wei X, Ma W, Liu Y, Wang Y, He Y, Jia S, Wang Y, Luo W, Liu D, Huang T, Yan J, Gu H, Bai Y, Yuan Z. OUP accepted manuscript. Stem Cells Transl Med 2022; 11:539-551. [PMID: 35325230 PMCID: PMC9154334 DOI: 10.1093/stcltm/szac009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 01/24/2022] [Indexed: 11/12/2022] Open
Abstract
Spinal bifida aperta (SBA) is a congenital malformation with a high incidence. Bone marrow mesenchymal stem cell (BMSC) transplantation has the potential to repair the structure of damaged tissues and restore their functions. This is an optional treatment that can be used as a supplement to surgery in the treatment of SBA. However, the application of BMSCs is limited, as the neuronal differentiation rate of BMSCs is not satisfactory when used in treating severe SBA. Thus, we aimed to assess the effect of neural stem cell (NSC)-derived exosomes on BMSC neuronal differentiation and observe the therapeutic effect in an ex vivo rat SBA embryo model. We found that NSC-derived exosomes increased the neuronal differentiation rate of BMSCs in vitro and in the SBA embryo model ex vivo. Proteomic analysis showed that NSC-derived exosomes were enriched in Netrin1, which positively regulated neuronal differentiation. Netrin1 increased the neuronal differentiation rate of BMSCs and NSCs and upregulated the expression of the neuronal markers, microtubule-associated protein (Map2), neurofilament, and β3-tubulin. Bioinformatic analysis revealed that Netrin1 treatment increased the expression of the transcription factors Hand2 and Phox2b, related to neuronal differentiation. Furthermore, the Netrin1-induced NSC neuronal differentiation was significantly blocked by Phox2b knockdown. We suggest that NSC-derived exosomal Netrin1 induces neuronal differentiation via the Hand2/Phox2b axis by upregulating the expression of Hand2 and Phox2b. Therefore, NSC-derived exosomes are a critical inducer of BMSC neuronal differentiation and represent a potential treatment agent that can benefit BMSC treatment in SBA.
Collapse
Affiliation(s)
- Ling Ma
- Key laboratory of Health Ministry for Congenital Malformation, Department of Pediatric Surgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning, People’s Republic of China
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, Liaoning, People’s Republic of China
| | - Xiaowei Wei
- Key laboratory of Health Ministry for Congenital Malformation, Department of Pediatric Surgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning, People’s Republic of China
| | - Wei Ma
- Key laboratory of Health Ministry for Congenital Malformation, Department of Pediatric Surgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning, People’s Republic of China
| | - Yusi Liu
- Key laboratory of Health Ministry for Congenital Malformation, Department of Pediatric Surgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning, People’s Republic of China
| | - Yanfu Wang
- Key laboratory of Health Ministry for Congenital Malformation, Department of Pediatric Surgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning, People’s Republic of China
| | - Yiwen He
- Key laboratory of Health Ministry for Congenital Malformation, Department of Pediatric Surgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning, People’s Republic of China
| | - Shanshan Jia
- Key laboratory of Health Ministry for Congenital Malformation, Department of Pediatric Surgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning, People’s Republic of China
| | - Yu Wang
- Key laboratory of Health Ministry for Congenital Malformation, Department of Pediatric Surgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning, People’s Republic of China
- Department of Ultrasound, Shengjing Hospital, China Medical University, Shenyang, Liaoning, People’s Republic of China
| | - Wenting Luo
- Key laboratory of Health Ministry for Congenital Malformation, Department of Pediatric Surgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning, People’s Republic of China
| | - Dan Liu
- Key laboratory of Health Ministry for Congenital Malformation, Department of Pediatric Surgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning, People’s Republic of China
| | - Tianchu Huang
- Key laboratory of Health Ministry for Congenital Malformation, Department of Pediatric Surgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning, People’s Republic of China
| | - Jiayu Yan
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, Liaoning, People’s Republic of China
| | - Hui Gu
- Key laboratory of Health Ministry for Congenital Malformation, Department of Pediatric Surgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning, People’s Republic of China
| | - Yuzuo Bai
- Key laboratory of Health Ministry for Congenital Malformation, Department of Pediatric Surgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning, People’s Republic of China
| | - Zhengwei Yuan
- Key laboratory of Health Ministry for Congenital Malformation, Department of Pediatric Surgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning, People’s Republic of China
- Corresponding author: Zhengwei Yuan, Key laboratory of Health Ministry for Congenital Malformation, Department of Pediatric Surgery, Shengjing Hospital, China Medical University, No. 36, Sanhao Street, Heping District, Shenyang 110004, China. Tel: +86 24 23929903;
| |
Collapse
|
12
|
Han F, Liu Y, Huang J, Zhang X, Wei C. Current Approaches and Molecular Mechanisms for Directly Reprogramming Fibroblasts Into Neurons and Dopamine Neurons. Front Aging Neurosci 2021; 13:738529. [PMID: 34658841 PMCID: PMC8515543 DOI: 10.3389/fnagi.2021.738529] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/27/2021] [Indexed: 12/30/2022] Open
Abstract
Parkinson's disease is mainly caused by specific degeneration of dopaminergic neurons (DA neurons) in the substantia nigra of the middle brain. Over the past two decades, transplantation of neural stem cells (NSCs) from fetal brain-derived neural stem cells (fNSCs), human embryonic stem cells (hESCs), and induced pluripotent stem cells (iPSCs) has been shown to improve the symptoms of motor dysfunction in Parkinson's disease (PD) animal models and PD patients significantly. However, there are ethical concerns with fNSCs and hESCs and there is an issue of rejection by the immune system, and the iPSCs may involve tumorigenicity caused by the integration of the transgenes. Recent studies have shown that somatic fibroblasts can be directly reprogrammed to NSCs, neurons, and specific dopamine neurons. Directly induced neurons (iN) or induced DA neurons (iDANs) from somatic fibroblasts have several advantages over iPSC cells. The neurons produced by direct transdifferentiation do not pass through a pluripotent state. Therefore, direct reprogramming can generate patient-specific cells, and it can overcome the safety problems of rejection by the immune system and teratoma formation related to hESCs and iPSCs. However, there are some critical issues such as the low efficiency of direct reprogramming, biological functions, and risks from the directly converted neurons, which hinder their clinical applications. Here, the recent progress in methods, mechanisms, and future challenges of directly reprogramming somatic fibroblasts into neurons or dopamine neurons were summarized to speed up the clinical translation of these directly converted neural cells to treat PD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Fabin Han
- Innovation Institute for Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.,Shenzhen Research Institute of Shandong University, Jinan, China.,The Institute for Tissue Engineering and Regenerative Medicine, Liaocheng University/Liaocheng People's Hospital, Liaocheng, China
| | - Yanming Liu
- Shenzhen Research Institute of Shandong University, Jinan, China.,The Institute for Tissue Engineering and Regenerative Medicine, Liaocheng University/Liaocheng People's Hospital, Liaocheng, China
| | - Jin Huang
- Laboratory of Basic Medical Research, Medical Centre of PLA Strategic Support Force, Beijing, China
| | - Xiaoping Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chuanfei Wei
- The Institute for Tissue Engineering and Regenerative Medicine, Liaocheng University/Liaocheng People's Hospital, Liaocheng, China
| |
Collapse
|
13
|
Wang F, Cheng L, Zhang X. Reprogramming Glial Cells into Functional Neurons for Neuro-regeneration: Challenges and Promise. Neurosci Bull 2021; 37:1625-1636. [PMID: 34283396 DOI: 10.1007/s12264-021-00751-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/24/2021] [Indexed: 01/02/2023] Open
Abstract
The capacity for neurogenesis in the adult mammalian brain is extremely limited and highly restricted to a few regions, which greatly hampers neuronal regeneration and functional restoration after neuronal loss caused by injury or disease. Meanwhile, transplantation of exogenous neuronal stem cells into the brain encounters several serious issues including immune rejection and the risk of tumorigenesis. Recent discoveries of direct reprogramming of endogenous glial cells into functional neurons have provided new opportunities for adult neuro-regeneration. Here, we extensively review the experimental findings of the direct conversion of glial cells to neurons in vitro and in vivo and discuss the remaining issues and challenges related to the glial subtypes and the specificity and efficiency of direct cell-reprograming, as well as the influence of the microenvironment. Although in situ glial cell reprogramming offers great potential for neuronal repair in the injured or diseased brain, it still needs a large amount of research to pave the way to therapeutic application.
Collapse
Affiliation(s)
- Fengchao Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Leping Cheng
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, and Guangxi Key Laboratory of Regenerative Medicine, Center for Translational Medicine, Guangxi Medical University, Nanning, 530021, China. .,Department of Cell Biology and Genetics, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, China. .,Guangxi Health Commission Key Laboratory of Basic Research on Brain Function and Disease, Guangxi Medical University, Nanning, 530021, China.
| | - Xiaohui Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
14
|
Hart CG, Karimi-Abdolrezaee S. Recent insights on astrocyte mechanisms in CNS homeostasis, pathology, and repair. J Neurosci Res 2021; 99:2427-2462. [PMID: 34259342 DOI: 10.1002/jnr.24922] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/06/2021] [Accepted: 06/24/2021] [Indexed: 12/20/2022]
Abstract
Astrocytes play essential roles in development, homeostasis, injury, and repair of the central nervous system (CNS). Their development is tightly regulated by distinct spatial and temporal cues during embryogenesis and into adulthood throughout the CNS. Astrocytes have several important responsibilities such as regulating blood flow and permeability of the blood-CNS barrier, glucose metabolism and storage, synapse formation and function, and axon myelination. In CNS pathologies, astrocytes also play critical parts in both injury and repair mechanisms. Upon injury, they undergo a robust phenotypic shift known as "reactive astrogliosis," which results in both constructive and deleterious outcomes. Astrocyte activation and migration at the site of injury provides an early defense mechanism to minimize the extent of injury by enveloping the lesion area. However, astrogliosis also contributes to the inhibitory microenvironment of CNS injury and potentiate secondary injury mechanisms, such as inflammation, oxidative stress, and glutamate excitotoxicity, which facilitate neurodegeneration in CNS pathologies. Intriguingly, reactive astrocytes are increasingly a focus in current therapeutic strategies as their activation can be modulated toward a neuroprotective and reparative phenotype. This review will discuss recent advancements in knowledge regarding the development and role of astrocytes in the healthy and pathological CNS. We will also review how astrocytes have been genetically modified to optimize their reparative potential after injury, and how they may be transdifferentiated into neurons and oligodendrocytes to promote repair after CNS injury and neurodegeneration.
Collapse
Affiliation(s)
- Christopher G Hart
- Department of Physiology and Pathophysiology, Spinal Cord Research Centre, Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada
| | - Soheila Karimi-Abdolrezaee
- Department of Physiology and Pathophysiology, Spinal Cord Research Centre, Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
15
|
Zhou M, Tao X, Sui M, Cui M, Liu D, Wang B, Wang T, Zheng Y, Luo J, Mu Y, Wan F, Zhu LQ, Zhang B. Reprogramming astrocytes to motor neurons by activation of endogenous Ngn2 and Isl1. Stem Cell Reports 2021; 16:1777-1791. [PMID: 34171285 PMCID: PMC8282467 DOI: 10.1016/j.stemcr.2021.05.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 12/13/2022] Open
Abstract
Central nervous system injury and neurodegenerative diseases cause irreversible loss of neurons. Overexpression of exogenous specific transcription factors can reprogram somatic cells into functional neurons for regeneration and functional reconstruction. However, these practices are potentially problematic due to the integration of vectors into the host genome. Here, we showed that the activation of endogenous genes Ngn2 and Isl1 by CRISPRa enabled reprogramming of mouse spinal astrocytes and embryonic fibroblasts to motor neurons. These induced neurons showed motor neuronal morphology and exhibited electrophysiological activities. Furthermore, astrocytes in the spinal cord of the adult mouse can be converted into motor neurons by this approach with high efficiency. These results demonstrate that the activation of endogenous genes is sufficient to induce astrocytes into functional motor neurons in vitro and in vivo. This direct neuronal reprogramming approach may provide a novel potential therapeutic strategy for treating neurodegenerative diseases and spinal cord injury.
Collapse
Affiliation(s)
- Meiling Zhou
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaoqing Tao
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Ming Sui
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Mengge Cui
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Dan Liu
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Beibei Wang
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ting Wang
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yunjie Zheng
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Juan Luo
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yangling Mu
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Feng Wan
- Department of Neurosurgery, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ling-Qiang Zhu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Bin Zhang
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
16
|
Vasan L, Park E, David LA, Fleming T, Schuurmans C. Direct Neuronal Reprogramming: Bridging the Gap Between Basic Science and Clinical Application. Front Cell Dev Biol 2021; 9:681087. [PMID: 34291049 PMCID: PMC8287587 DOI: 10.3389/fcell.2021.681087] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/02/2021] [Indexed: 12/15/2022] Open
Abstract
Direct neuronal reprogramming is an innovative new technology that involves the conversion of somatic cells to induced neurons (iNs) without passing through a pluripotent state. The capacity to make new neurons in the brain, which previously was not achievable, has created great excitement in the field as it has opened the door for the potential treatment of incurable neurodegenerative diseases and brain injuries such as stroke. These neurological disorders are associated with frank neuronal loss, and as new neurons are not made in most of the adult brain, treatment options are limited. Developmental biologists have paved the way for the field of direct neuronal reprogramming by identifying both intrinsic cues, primarily transcription factors (TFs) and miRNAs, and extrinsic cues, including growth factors and other signaling molecules, that induce neurogenesis and specify neuronal subtype identities in the embryonic brain. The striking observation that postmitotic, terminally differentiated somatic cells can be converted to iNs by mis-expression of TFs or miRNAs involved in neural lineage development, and/or by exposure to growth factors or small molecule cocktails that recapitulate the signaling environment of the developing brain, has opened the door to the rapid expansion of new neuronal reprogramming methodologies. Furthermore, the more recent applications of neuronal lineage conversion strategies that target resident glial cells in situ has expanded the clinical potential of direct neuronal reprogramming techniques. Herein, we present an overview of the history, accomplishments, and therapeutic potential of direct neuronal reprogramming as revealed over the last two decades.
Collapse
Affiliation(s)
- Lakshmy Vasan
- Sunnybrook Research Institute, Biological Sciences Platform, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Eunjee Park
- Sunnybrook Research Institute, Biological Sciences Platform, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Luke Ajay David
- Sunnybrook Research Institute, Biological Sciences Platform, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Taylor Fleming
- Sunnybrook Research Institute, Biological Sciences Platform, Toronto, ON, Canada
| | - Carol Schuurmans
- Sunnybrook Research Institute, Biological Sciences Platform, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
17
|
Unterholzner J, Millischer V, Wotawa C, Sawa A, Lanzenberger R. Making Sense of Patient-Derived iPSCs, Transdifferentiated Neurons, Olfactory Neuronal Cells, and Cerebral Organoids as Models for Psychiatric Disorders. Int J Neuropsychopharmacol 2021; 24:759-775. [PMID: 34216465 PMCID: PMC8538891 DOI: 10.1093/ijnp/pyab037] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 05/30/2021] [Accepted: 07/02/2021] [Indexed: 11/17/2022] Open
Abstract
The improvement of experimental models for disorders requires a constant approximation towards the dysregulated tissue. In psychiatry, where an impairment of neuronal structure and function is assumed to play a major role in disease mechanisms and symptom development, this approximation is an ongoing process implicating various fields. These include genetic, animal, and post-mortem studies. To test hypotheses generated through these studies, in vitro models using non-neuronal cells such as fibroblasts and lymphocytes have been developed. For brain network disorders, cells with neuronal signatures would, however, represent a more adequate tissue. Considering the limited accessibility of brain tissue, research has thus turned towards neurons generated from induced pluripotent stem cells as well as directly induced neurons, cerebral organoids, and olfactory neuroepithelium. Regarding the increasing importance and amount of research using these neuronal cells, this review aims to provide an overview of all these models to make sense of the current literature. The development of each model system and its use as a model for the various psychiatric disorder categories will be laid out. Also, advantages and limitations of each model will be discussed, including a reflection on implications and future perspectives.
Collapse
Affiliation(s)
- Jakob Unterholzner
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Vincent Millischer
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria,Neurogenetics Unit, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden,Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Christoph Wotawa
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Akira Sawa
- Department of Mental Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA,Departments of Psychiatry, Neuroscience, Biomedical Engineering and Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria,Correspondence: Prof. Rupert Lanzenberger, MD, PD, NEUROIMAGING LABS (NIL) - PET, MRI, EEG, TMS & Chemical Lab, Department of Psychiatry and Psychotherapy, Medical University of Vienna, Waehringer Guertel 18–20, 1090 Vienna, Austria ()
| |
Collapse
|
18
|
Kim KM, Thaqi M, Peterson DA, Marr RA. Induced Neurons for Disease Modeling and Repair: A Focus on Non-fibroblastic Cell Sources in Direct Reprogramming. Front Bioeng Biotechnol 2021; 9:658498. [PMID: 33777923 PMCID: PMC7995206 DOI: 10.3389/fbioe.2021.658498] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 02/12/2021] [Indexed: 11/13/2022] Open
Abstract
Direct cellular reprogramming exhibits distinct advantages over reprogramming from an induced pluripotent stem cell intermediate. These include a reduced risk of tumorigenesis and the likely preservation of epigenetic data. In vitro direct reprogramming approaches primarily aim to model the pathophysiological development of neurological disease and identify therapeutic targets, while in vivo direct reprogramming aims to develop treatments for various neurological disorders, including cerebral injury and cancer. In both approaches, there is progress toward developing increased control of subtype-specific production of induced neurons. A majority of research primarily utilizes fibroblasts as the donor cells. However, there are a variety of other somatic cell types that have demonstrated the potential for reprogramming into induced neurons. This review highlights studies that utilize non-fibroblastic cell sources for reprogramming, such as astrocytes, olfactory ensheathing cells, peripheral blood cells, Müller glia, and more. We will examine benefits and obstructions for translation into therapeutics or disease modeling, as well as efficiency of the conversion. A summary of donor cells, induced neuron types, and methods of induction is also provided.
Collapse
Affiliation(s)
- Kathryn M. Kim
- Center for Neurodegenerative Disease and Therapeutics, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Mentor Thaqi
- Center for Neurodegenerative Disease and Therapeutics, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
- Scholl College of Podiatric Medicine, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Daniel A. Peterson
- Center for Neurodegenerative Disease and Therapeutics, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Robert A. Marr
- Center for Neurodegenerative Disease and Therapeutics, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| |
Collapse
|
19
|
Molecular Mechanisms Underlying Ascl1-Mediated Astrocyte-to-Neuron Conversion. Stem Cell Reports 2021; 16:534-547. [PMID: 33577795 PMCID: PMC7940254 DOI: 10.1016/j.stemcr.2021.01.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 01/12/2021] [Accepted: 01/12/2021] [Indexed: 12/19/2022] Open
Abstract
Direct neuronal reprogramming potentially provides valuable sources for cell-based therapies. Proneural gene Ascl1 converts astrocytes into induced neuronal (iN) cells efficiently both in vitro and in vivo. However, the underlying mechanisms are largely unknown. By combining RNA sequencing and chromatin immunoprecipitation followed by high-throughput sequencing, we found that the expression of 1,501 genes was markedly changed during the early stages of Ascl1-induced astrocyte-to-neuron conversion and that the regulatory regions of 107 differentially expressed genes were directly bound by ASCL1. Among Ascl1's direct targets, Klf10 regulates the neuritogenesis of iN cells at the early stage, Myt1 and Myt1l are critical for the electrophysiological maturation of iN cells, and Neurod4 and Chd7 are required for the efficient conversion of astrocytes into neurons. Together, this study provides more insights into understanding the molecular mechanisms underlying Ascl1-mediated astrocyte-to-neuron conversion and will be of value for the application of direct neuronal reprogramming. RNA-seq and ChIP-seq were used to study Ascl1-induced astrocyte-to-neuron conversion Early Klf10 regulates neuritogenesis and electrophysiological properties of iN cells Myt1 and Myt1l are critical for the electrophysiological maturation of iN cells Neurod4 and Chd7 are required for efficient conversion of astrocytes to neurons
Collapse
|
20
|
Bcl-2-Assisted Reprogramming of Mouse Astrocytes and Human Fibroblasts into Induced Neurons. Methods Mol Biol 2021; 2352:57-71. [PMID: 34324180 DOI: 10.1007/978-1-0716-1601-7_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Direct neuronal reprogramming is a promising strategy to generate various types of neurons that are, otherwise, inaccessible for researchers. However, the efficiency of neuronal conversion is highly dependent on the transcription factor used, the identity of the initial cells to convert, their species' background, and the neuronal subtype to which cells will convert. Regardless of these conditioning factors, the apoptotic regulator Bcl-2 acts as a pan-neuronal reprogramming enhancer. Bcl-2 mediates its effect in reprogramming by preventing an overshot of oxidative stress during the acquisition of a neuronal oxidative metabolism, thus reducing cell death by ferroptosis and facilitating the phenotypic conversion. In this chapter, we outline two methods to obtain either mouse or human neurons derived from postnatal astrocytes and skin fibroblasts, respectively. The overall reprogramming strategy is based on the co-expression of Bcl-2 and the transcription factor Neurog2 that produces mostly excitatory neurons. However, the method can be easily adapted to achieve alternative neuronal subtypes by using additional transcription factors, such as Isl1 for motor neurons. Therefore, our approaches provide solid but flexible platforms to obtain human and mouse induced neurons in vitro that can be applied to basic or translational research.
Collapse
|
21
|
Xu Z, Su S, Zhou S, Yang W, Deng X, Sun Y, Li L, Li Y. How to reprogram human fibroblasts to neurons. Cell Biosci 2020; 10:116. [PMID: 33062254 PMCID: PMC7549215 DOI: 10.1186/s13578-020-00476-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 09/15/2020] [Indexed: 12/13/2022] Open
Abstract
Destruction and death of neurons can lead to neurodegenerative diseases. One possible way to treat neurodegenerative diseases and damage of the nervous system is replacing damaged and dead neurons by cell transplantation. If new neurons can replace the lost neurons, patients may be able to regain the lost functions of memory, motor, and so on. Therefore, acquiring neurons conveniently and efficiently is vital to treat neurological diseases. In recent years, studies on reprogramming human fibroblasts into neurons have emerged one after another, and this paper summarizes all these studies. Scientists find small molecules and transcription factors playing a crucial role in reprogramming and inducing neuron production. At the same time, both the physiological microenvironment in vivo and the physical and chemical factors in vitro play an essential role in the induction of neurons. Therefore, this paper summarized and analyzed these relevant factors. In addition, due to the unique advantages of physical factors in the process of reprogramming human fibroblasts into neurons, such as safe and minimally invasive, it has a more promising application prospect. Therefore, this paper also summarizes some successful physical mechanisms of utilizing fibroblasts to acquire neurons, which will provide new ideas for somatic cell reprogramming.
Collapse
Affiliation(s)
- Ziran Xu
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021 People's Republic of China
| | - Shengnan Su
- The Second Hospital of Jilin University, Jilin, Changchun, 130041 China
| | - Siyan Zhou
- Department of Stomatology, The First Hospital of Jilin University, Changchun, 130021 People's Republic of China
| | - Wentao Yang
- Norman Bethune College of Medicine, Jilin University, Changchun, 130021 People's Republic of China
| | - Xin Deng
- Norman Bethune College of Medicine, Jilin University, Changchun, 130021 People's Republic of China
| | - Yingying Sun
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021 People's Republic of China.,Department of Stomatology, The First Hospital of Jilin University, Changchun, 130021 People's Republic of China
| | - Lisha Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021 People's Republic of China
| | - Yulin Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021 People's Republic of China
| |
Collapse
|
22
|
Nolbrant S, Giacomoni J, Hoban DB, Bruzelius A, Birtele M, Chandler-Militello D, Pereira M, Ottosson DR, Goldman SA, Parmar M. Direct Reprogramming of Human Fetal- and Stem Cell-Derived Glial Progenitor Cells into Midbrain Dopaminergic Neurons. Stem Cell Reports 2020; 15:869-882. [PMID: 32976765 PMCID: PMC7562948 DOI: 10.1016/j.stemcr.2020.08.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 12/13/2022] Open
Abstract
Human glial progenitor cells (hGPCs) are promising cellular substrates to explore for the in situ production of new neurons for brain repair. Proof of concept for direct neuronal reprogramming of glial progenitors has been obtained in mouse models in vivo, but conversion using human cells has not yet been demonstrated. Such studies have been difficult to perform since hGPCs are born late during human fetal development, with limited accessibility for in vitro culture. In this study, we show proof of concept of hGPC conversion using fetal cells and also establish a renewable and reproducible stem cell-based hGPC system for direct neural conversion in vitro. Using this system, we have identified optimal combinations of fate determinants for the efficient dopaminergic (DA) conversion of hGPCs, thereby yielding a therapeutically relevant cell type that selectively degenerates in Parkinson's disease. The induced DA neurons show a progressive, subtype-specific phenotypic maturation and acquire functional electrophysiological properties indicative of DA phenotype. Human glial progenitors (hGPCs) can be directly converted into functional neurons Specific transcription factor combinations result in dopaminergic conversion Reprogrammed neurons show subtype-specific and functional maturation over time
Collapse
Affiliation(s)
- Sara Nolbrant
- Developmental and Regenerative Neurobiology, Wallenberg Neuroscience Center, and Lund Stem Cell Centre, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Jessica Giacomoni
- Developmental and Regenerative Neurobiology, Wallenberg Neuroscience Center, and Lund Stem Cell Centre, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Deirdre B Hoban
- Developmental and Regenerative Neurobiology, Wallenberg Neuroscience Center, and Lund Stem Cell Centre, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Andreas Bruzelius
- Regenerative Neurophysiology, Wallenberg Neuroscience Center, Lund Stem Cell Center, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Marcella Birtele
- Developmental and Regenerative Neurobiology, Wallenberg Neuroscience Center, and Lund Stem Cell Centre, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Devin Chandler-Militello
- Center for Translational Neuromedicine and Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
| | - Maria Pereira
- Developmental and Regenerative Neurobiology, Wallenberg Neuroscience Center, and Lund Stem Cell Centre, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Daniella Rylander Ottosson
- Regenerative Neurophysiology, Wallenberg Neuroscience Center, Lund Stem Cell Center, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Steven A Goldman
- Center for Translational Neuromedicine and Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA; Center for Neuroscience, University of Copenhagen Faculty of Health and Medical Sciences, Copenhagen, Denmark; Neuroscience Center, Rigshospitalet, Copenhagen, Denmark
| | - Malin Parmar
- Developmental and Regenerative Neurobiology, Wallenberg Neuroscience Center, and Lund Stem Cell Centre, Department of Experimental Medical Science, Lund University, Lund, Sweden.
| |
Collapse
|
23
|
|
24
|
HORISAWA K, SUZUKI A. Direct cell-fate conversion of somatic cells: Toward regenerative medicine and industries. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2020; 96:131-158. [PMID: 32281550 PMCID: PMC7247973 DOI: 10.2183/pjab.96.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Cells of multicellular organisms have diverse characteristics despite having the same genetic identity. The distinctive phenotype of each cell is determined by molecular mechanisms such as epigenetic changes that occur throughout the lifetime of an individual. Recently, technologies that enable modification of the fate of somatic cells have been developed, and the number of studies using these technologies has increased drastically in the last decade. Various cell types, including neuronal cells, cardiomyocytes, and hepatocytes, have been generated using these technologies. Although most direct reprogramming methods employ forced transduction of a defined sets of transcription factors to reprogram cells in a manner similar to induced pluripotent cell technology, many other strategies, such as methods utilizing chemical compounds and microRNAs to change the fate of somatic cells, have also been developed. In this review, we summarize transcription factor-based reprogramming and various other reprogramming methods. Additionally, we describe the various industrial applications of direct reprogramming technologies.
Collapse
Affiliation(s)
- Kenichi HORISAWA
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Atsushi SUZUKI
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
- Correspondence should be addressed: A. Suzuki, Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan (e-mail: )
| |
Collapse
|
25
|
Traxler L, Edenhofer F, Mertens J. Next-generation disease modeling with direct conversion: a new path to old neurons. FEBS Lett 2019; 593:3316-3337. [PMID: 31715002 PMCID: PMC6907729 DOI: 10.1002/1873-3468.13678] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/20/2019] [Accepted: 11/07/2019] [Indexed: 12/13/2022]
Abstract
Within just over a decade, human reprogramming-based disease modeling has developed from a rather outlandish idea into an essential part of disease research. While iPSCs are a valuable tool for modeling developmental and monogenetic disorders, their rejuvenated identity poses limitations for modeling age-associated diseases. Direct cell-type conversion of fibroblasts into induced neurons (iNs) circumvents rejuvenation and preserves hallmarks of cellular aging. iNs are thus advantageous for modeling diseases that possess strong age-related and epigenetic contributions and can complement iPSC-based strategies for disease modeling. In this review, we provide an overview of the state of the art of direct iN conversion and describe the key epigenetic, transcriptomic, and metabolic changes that occur in converting fibroblasts. Furthermore, we summarize new insights into this fascinating process, particularly focusing on the rapidly changing criteria used to define and characterize in vitro-born human neurons. Finally, we discuss the unique features that distinguish iNs from other reprogramming-based neuronal cell models and how iNs are relevant to disease modeling.
Collapse
Affiliation(s)
- Larissa Traxler
- Department of GenomicsStem Cell Biology & Regenerative MedicineInstitute of Molecular Biology & CMBILeopold‐Franzens‐University InnsbruckInnsbruckAustria
- Laboratory of GeneticsThe Salk Institute for Biological StudiesLa JollaCAUSA
| | - Frank Edenhofer
- Department of GenomicsStem Cell Biology & Regenerative MedicineInstitute of Molecular Biology & CMBILeopold‐Franzens‐University InnsbruckInnsbruckAustria
| | - Jerome Mertens
- Department of GenomicsStem Cell Biology & Regenerative MedicineInstitute of Molecular Biology & CMBILeopold‐Franzens‐University InnsbruckInnsbruckAustria
- Laboratory of GeneticsThe Salk Institute for Biological StudiesLa JollaCAUSA
| |
Collapse
|