1
|
Yan YC, Su L, Zhao WB, Fan Y, Koprich JB, Xiao BG, Song B, Wang J, Yu WB. Bidirectional interaction between IL and 17A/IL-17RA pathway dysregulation and α-synuclein in the pathogenesis of Parkinson's disease. Brain Behav Immun 2025; 123:1114-1126. [PMID: 39461385 DOI: 10.1016/j.bbi.2024.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 10/08/2024] [Accepted: 10/20/2024] [Indexed: 10/29/2024] Open
Abstract
Parkinson's disease (PD) pathogenesis is characterized by α-synuclein (α-syn) pathology, which is influenced by various factors such as neuroinflammation and senescence. Increasing evidence has suggested a pivotal role for Interleukin-17A(IL-17A) and Interleukin-17 Receptor A (IL-17RA) in PD, yet the trigger and impact of IL-17A/IL-17RA activation in PD remains elusive. This study observed an age-related increase in IL-17A and IL-17RA in the human central nervous system, accompanied by increased α-syn and senescence biomarkers. Interestingly, both levels of IL-17A and IL-17RA in PD patients were significantly elevated compared to age-matched controls, wherein the IL-17A was mainly present in neurons. This abnormal neuronal IL-17A activation in the PD brain was recapitulated in α-syn mouse models. Correspondingly, administration of recombinant IL-17A exacerbated pathological α-syn in both neuron and mouse models. Furthermore, IL-17A/IL-17RA pathway interventions via blocking antibody or shRNA-mediated knockdown can mitigate the effects of pathological α-syn. This study reveals an interplay between dysregulation of the IL-17A/IL-17RA pathway and α-syn, suggesting that regulating the IL-17A/IL-17RA pathway could modify PD progression by disrupting the detrimental cycle.
Collapse
Affiliation(s)
- Yu-Chen Yan
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Lu Su
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Wan-Bing Zhao
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yun Fan
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - James B Koprich
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Bao-Guo Xiao
- Institute of Neurology, Huashan Hospital, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200040, China
| | - Bin Song
- Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Shanghai 200032, China; Fudan University, Shanghai 200032, China; Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Jian Wang
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Wen-Bo Yu
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai 200040, China.
| |
Collapse
|
2
|
Li Y, Awasthi S, Bryan L, Ehrlich RS, Tonali N, Balog S, Yang J, Sewald N, Mayer M. Fluorescence-Based Monitoring of Early-Stage Aggregation of Amyloid-β, Amylin Peptide, Tau, and α-Synuclein Proteins. ACS Chem Neurosci 2024; 15:3113-3123. [PMID: 39150403 PMCID: PMC11378287 DOI: 10.1021/acschemneuro.4c00097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/02/2024] [Accepted: 07/25/2024] [Indexed: 08/17/2024] Open
Abstract
Early-stage aggregates of amyloid-forming proteins, specifically soluble oligomers, are implicated in neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and Huntington's disease. Protein aggregation is typically monitored by fluorescence using the amyloid-binding fluorophore thioflavin T (ThT). Thioflavin T interacts, however, preferentially with fibrillar amyloid structures rather than with soluble, early-stage aggregates. In contrast, the two fluorophores, aminonaphthalene 2-cyanoacrylate-spiropyran (AN-SP) and triazole-containing boron-dipyrromethene (taBODIPY), were reported to bind preferentially to early-stage aggregates of amyloidogenic proteins. The present study compares ThT with AN-SP and taBODIPY with regard to their ability to monitor early stages of aggregation of four different amyloid-forming proteins, including amyloid-β (Aβ), tau protein, amylin, and α-synuclein. The results show that the three fluorophores vary in their suitability to monitor the early aggregation of different amyloid-forming proteins. For instance, in the presence of Aβ and amylin, the fluorescence intensity of AN-SP increased at an earlier stage of aggregation than the fluorescence of ThT, albeit with only a small fluorescence increase in the case of AN-SP. In contrast, in the presence of tau and amylin, the fluorescence intensity of taBODIPY increased at an earlier stage of aggregation than the fluorescence of ThT. Finally, α-synuclein aggregation could only be monitored by ThT fluorescence; neither AN-SP nor taBODIPY showed a significant increase in fluorescence over the course of aggregation of α-synuclein. These results demonstrate the ability of AN-SP and taBODIPY to monitor the formation of early-stage aggregates from specific amyloid-forming proteins at an early stage of aggregation, although moderate increases in fluorescence intensity, relatively large uncertainties in fluorescence values, and limited solubility of both fluorophores limit their usefulness for some amyloid proteins. The capability to monitor early aggregation of some amyloid proteins, such as amylin, might accelerate the discovery of aggregation inhibitors to minimize the formation of toxic oligomeric species for potential therapeutic use.
Collapse
Affiliation(s)
- Yuanjie Li
- Adolphe
Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg CH-1700, Switzerland
| | - Saurabh Awasthi
- Adolphe
Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg CH-1700, Switzerland
- Department
of Biotechnology, National Institute of
Pharmaceutical Education and Research, Raebareli (NIPER-R), Lucknow, Uttar Pradesh 226002, India
| | - Louise Bryan
- Adolphe
Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg CH-1700, Switzerland
| | - Rachel S. Ehrlich
- Department
of Chemistry and Biochemistry, University
of California San Diego, La Jolla, California 92093-0358, United States
| | - Nicolo Tonali
- CNRS,
BioCIS, Bâtiment Henri Moissan, Université
Paris-Saclay, 17 Av. des Sciences, Orsay 91400, France
| | - Sandor Balog
- Adolphe
Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg CH-1700, Switzerland
| | - Jerry Yang
- Department
of Chemistry and Biochemistry, University
of California San Diego, La Jolla, California 92093-0358, United States
| | - Norbert Sewald
- Bielefeld
University, Department of Chemistry P.O. Box 100131, Bielefeld 33501, Germany
| | - Michael Mayer
- Adolphe
Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg CH-1700, Switzerland
| |
Collapse
|
3
|
Rinauro DJ, Chiti F, Vendruscolo M, Limbocker R. Misfolded protein oligomers: mechanisms of formation, cytotoxic effects, and pharmacological approaches against protein misfolding diseases. Mol Neurodegener 2024; 19:20. [PMID: 38378578 PMCID: PMC10877934 DOI: 10.1186/s13024-023-00651-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 08/17/2023] [Indexed: 02/22/2024] Open
Abstract
The conversion of native peptides and proteins into amyloid aggregates is a hallmark of over 50 human disorders, including Alzheimer's and Parkinson's diseases. Increasing evidence implicates misfolded protein oligomers produced during the amyloid formation process as the primary cytotoxic agents in many of these devastating conditions. In this review, we analyze the processes by which oligomers are formed, their structures, physicochemical properties, population dynamics, and the mechanisms of their cytotoxicity. We then focus on drug discovery strategies that target the formation of oligomers and their ability to disrupt cell physiology and trigger degenerative processes.
Collapse
Affiliation(s)
- Dillon J Rinauro
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Fabrizio Chiti
- Section of Biochemistry, Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134, Florence, Italy
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.
| | - Ryan Limbocker
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY, 10996, USA.
| |
Collapse
|
4
|
Perez-Villalba A, Sirerol-Piquer MS, Soriano-Cantón R, Folgado V, Pérez-Cañamás A, Kirstein M, Fariñas I, Pérez-Sánchez F. Dopaminergic neuron loss in mice due to increased levels of wild-type human α-Synuclein only takes place under conditions of accelerated aging. Sci Rep 2024; 14:2490. [PMID: 38291230 PMCID: PMC10828501 DOI: 10.1038/s41598-024-53093-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/27/2024] [Indexed: 02/01/2024] Open
Abstract
Understanding the intricate pathogenic mechanisms behind Parkinson's disease (PD) and its multifactorial nature presents a significant challenge in disease modeling. To address this, we explore genetic models that better capture the disease's complexity. Given that aging is the primary risk factor for PD, this study investigates the impact of aging in conjunction with overexpression of wild-type human α-synuclein (α-Syn) in the dopaminergic system. This is achieved by introducing a novel transgenic mouse strain overexpressing α-Syn under the TH-promoter within the senescence-accelerated SAMP8 (P8) genetic background. Behavioral assessments, conducted at both 10 and 16 months of age, unveil motor impairments exclusive to P8 α-SynTg mice, a phenomenon conspicuously absent in α-SynTg mice. These findings suggest a synergistic interplay between heightened α-Syn levels and the aging process, resulting in motor deficits. These motor disturbances correlate with reduced dopamine (DA) levels, increased DA turnover, synaptic terminal loss, and notably, the depletion of dopaminergic neurons in the substantia nigra and noradrenergic neurons in the locus coeruleus. Furthermore, P8 α-SynTg mice exhibit alterations in gut transit time, mirroring early PD symptoms. In summary, P8 α-SynTg mice effectively replicate parkinsonian phenotypes by combining α-Syn transgene expression with accelerated aging. This model offers valuable insights into the understanding of PD and serves as a valuable platform for further research.
Collapse
Affiliation(s)
- Ana Perez-Villalba
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Valencia, Spain
- Instituto de Biotecnología y Biomedicina (BioTecMed), Universitat de València, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Laboratory of Animal Behavior Phenotype (L.A.B.P.), Department of Neuropsychology, Faculty of Psychology, Catholic University of Valencia, Valencia, Spain
| | - María Salomé Sirerol-Piquer
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Valencia, Spain
- Instituto de Biotecnología y Biomedicina (BioTecMed), Universitat de València, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Raúl Soriano-Cantón
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Valencia, Spain
- Instituto de Biotecnología y Biomedicina (BioTecMed), Universitat de València, Valencia, Spain
| | - Virginia Folgado
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Valencia, Spain
- Instituto de Biotecnología y Biomedicina (BioTecMed), Universitat de València, Valencia, Spain
| | - Azucena Pérez-Cañamás
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Valencia, Spain
- Instituto de Biotecnología y Biomedicina (BioTecMed), Universitat de València, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Martina Kirstein
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Valencia, Spain
- Instituto de Biotecnología y Biomedicina (BioTecMed), Universitat de València, Valencia, Spain
| | - Isabel Fariñas
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Valencia, Spain.
- Instituto de Biotecnología y Biomedicina (BioTecMed), Universitat de València, Valencia, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| | - Francisco Pérez-Sánchez
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Valencia, Spain.
- Instituto de Biotecnología y Biomedicina (BioTecMed), Universitat de València, Valencia, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| |
Collapse
|
5
|
Giusti V, Kaur G, Giusto E, Civiero L. Brain clearance of protein aggregates: a close-up on astrocytes. Mol Neurodegener 2024; 19:5. [PMID: 38229094 PMCID: PMC10790381 DOI: 10.1186/s13024-024-00703-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 01/05/2024] [Indexed: 01/18/2024] Open
Abstract
Protein misfolding and accumulation defines a prevailing feature of many neurodegenerative disorders, finally resulting in the formation of toxic intra- and extracellular aggregates. Intracellular aggregates can enter the extracellular space and be subsequently transferred among different cell types, thus spreading between connected brain districts.Although microglia perform a predominant role in the removal of extracellular aggregated proteins, mounting evidence suggests that astrocytes actively contribute to the clearing process. However, the molecular mechanisms used by astrocytes to remove misfolded proteins are still largely unknown.Here we first provide a brief overview of the progressive transition from soluble monomers to insoluble fibrils that characterizes amyloid proteins, referring to α-Synuclein and Tau as archetypical examples. We then highlight the mechanisms at the basis of astrocyte-mediated clearance with a focus on their potential ability to recognize, collect, internalize and digest extracellular protein aggregates. Finally, we explore the potential of targeting astrocyte-mediated clearance as a future therapeutic approach for the treatment of neurodegenerative disorders characterized by protein misfolding and accumulation.
Collapse
Affiliation(s)
| | - Gurkirat Kaur
- Department of Biology, University of Padova, Padua, Italy
| | | | - Laura Civiero
- IRCCS San Camillo Hospital, Venice, Italy.
- Department of Biology, University of Padova, Padua, Italy.
| |
Collapse
|
6
|
Whitcomb K, Warncke K. Oligomeric and Fibrillar α-Synuclein Display Persistent Dynamics and Compressibility under Controlled Confinement. ACS Chem Neurosci 2023; 14:3905-3912. [PMID: 37861459 PMCID: PMC10623556 DOI: 10.1021/acschemneuro.3c00470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/26/2023] [Indexed: 10/21/2023] Open
Abstract
The roles of α-synuclein in neurotransmitter release in brain neurons and in the Parkinson's disease condition have challenged comprehensive description. To gain insight into molecular mechanistic properties that actuate α-synuclein function and dysfunction, the coupled protein and solvent dynamics of oligomer and fibril forms of human α-synuclein are examined in a low-temperature system that allows control of confinement and localization of a motionally sensitive electron paramagnetic resonance spin probe in the coupled solvent-protein regions. The rotational mobility of the spin probe resolves two distinct α-synuclein-associated solvent components for oligomers and fibrils, as for globular proteins, but with dramatically higher fluidities at each temperature, that are comparable to low-confinement, aqueous-cryosolvent mesophases. In contrast to the temperature-independent volumes of the solvent phases that surround globular and condensate-forming proteins, the higher-fluidity mesophase volume of α-synuclein oligomers and fibrils decreases with decreasing temperature, signaling a compression of this phase. This unique property and thermal hysteresis in the mobilities and component weights, together with previous high-resolution structural characterizations, suggest a model in which the dynamically disordered C-terminal domain of α-synuclein creates a compressible phase that maintains high fluidity under confinement. Robust dynamics and compressibility are fundamental molecular mechanical properties of α-synuclein oligomers and fibrils, which may contribute to dysfunction and inform about function.
Collapse
Affiliation(s)
- Katie
Lynn Whitcomb
- Department of Physics, Emory University, Atlanta, Georgia 30322, United States
| | - Kurt Warncke
- Department of Physics, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
7
|
Awasthi S, Ying C, Li J, Mayer M. Simultaneous Determination of the Size and Shape of Single α-Synuclein Oligomers in Solution. ACS NANO 2023; 17:12325-12335. [PMID: 37327131 PMCID: PMC10339783 DOI: 10.1021/acsnano.3c01393] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/06/2023] [Indexed: 06/18/2023]
Abstract
Soluble oligomers of amyloid-forming proteins are implicated as toxic species in the context of several neurodegenerative diseases. Since the size and shape of these oligomers influence their toxicity, their biophysical characterization is essential for a better understanding of the structure-toxicity relationship. Amyloid oligomers are difficult to characterize by conventional approaches due to their heterogeneity in size and shape, their dynamic aggregation process, and their low abundance. This work demonstrates that resistive pulse measurements using polymer-coated solid-state nanopores enable single-particle-level characterization of the size and shape of individual αSyn oligomers in solution within minutes. A comparison of the resulting size distribution with single-particle analysis by transmission electron microscopy and mass photometry reveals good agreement with superior resolution by nanopore-based characterization. Moreover, nanopore-based analysis has the capability to combine rapid size analysis with an approximation of the oligomer shape. Applying this shape approximation to putatively toxic oligomeric species that range in size from 18 ± 7 aggregated monomers (10S) to 29 ± 10 aggregated monomers (15S) and in concentration from picomolar to nanomolar revealed oligomer shapes that agree well with previous estimates by cryo-EM with the added advantage that nanopore-based analysis occurs rapidly, in solution, and has the potential to become a widely accessible technique.
Collapse
Affiliation(s)
- Saurabh Awasthi
- Adolphe
Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700 Fribourg, Switzerland
| | - Cuifeng Ying
- Adolphe
Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700 Fribourg, Switzerland
| | - Jiali Li
- University
of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Michael Mayer
- Adolphe
Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700 Fribourg, Switzerland
| |
Collapse
|
8
|
Nim S, O'Hara DM, Corbi-Verge C, Perez-Riba A, Fujisawa K, Kapadia M, Chau H, Albanese F, Pawar G, De Snoo ML, Ngana SG, Kim J, El-Agnaf OMA, Rennella E, Kay LE, Kalia SK, Kalia LV, Kim PM. Disrupting the α-synuclein-ESCRT interaction with a peptide inhibitor mitigates neurodegeneration in preclinical models of Parkinson's disease. Nat Commun 2023; 14:2150. [PMID: 37076542 PMCID: PMC10115881 DOI: 10.1038/s41467-023-37464-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 03/14/2023] [Indexed: 04/21/2023] Open
Abstract
Accumulation of α-synuclein into toxic oligomers or fibrils is implicated in dopaminergic neurodegeneration in Parkinson's disease. Here we performed a high-throughput, proteome-wide peptide screen to identify protein-protein interaction inhibitors that reduce α-synuclein oligomer levels and their associated cytotoxicity. We find that the most potent peptide inhibitor disrupts the direct interaction between the C-terminal region of α-synuclein and CHarged Multivesicular body Protein 2B (CHMP2B), a component of the Endosomal Sorting Complex Required for Transport-III (ESCRT-III). We show that α-synuclein impedes endolysosomal activity via this interaction, thereby inhibiting its own degradation. Conversely, the peptide inhibitor restores endolysosomal function and thereby decreases α-synuclein levels in multiple models, including female and male human cells harboring disease-causing α-synuclein mutations. Furthermore, the peptide inhibitor protects dopaminergic neurons from α-synuclein-mediated degeneration in hermaphroditic C. elegans and preclinical Parkinson's disease models using female rats. Thus, the α-synuclein-CHMP2B interaction is a potential therapeutic target for neurodegenerative disorders.
Collapse
Affiliation(s)
- Satra Nim
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Darren M O'Hara
- Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Carles Corbi-Verge
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Albert Perez-Riba
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Kazuko Fujisawa
- Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Minesh Kapadia
- Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Hien Chau
- Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Federica Albanese
- Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Grishma Pawar
- Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Mitchell L De Snoo
- Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Sophie G Ngana
- Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Jisun Kim
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Omar M A El-Agnaf
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Enrico Rennella
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Lewis E Kay
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Suneil K Kalia
- Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada.
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada.
| | - Lorraine V Kalia
- Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada.
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON, Canada.
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada.
| | - Philip M Kim
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
- Department of Computer Science, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
9
|
Ruf WP, Meirelles J, Danzer KM. Spreading of alpha-synuclein between different cell types. Behav Brain Res 2022; 436:114059. [PMID: 35995264 DOI: 10.1016/j.bbr.2022.114059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/07/2022] [Accepted: 08/10/2022] [Indexed: 10/15/2022]
Abstract
Aggregation of alpha-synuclein (α-syn) is central in Parkinson's disease as well as in other synucleinopathies. Recent evidence suggests that not only intracellular aggregation of α-syn plays an important role for disease pathogenesis but also cell-to-cell propagation of α-syn seems to significantly contribute to pathological changes in synucleinopathies. In this mini-review we summarize current aspects of spreading of α-syn between brain cell types and its role in pathology.
Collapse
Affiliation(s)
- Wolfgang P Ruf
- Department of Neurology, University Clinic, University of Ulm, Ulm, Germany
| | - Joao Meirelles
- German Center for Neurodegenerative Diseases (DZNE), Ulm, Germany
| | - Karin M Danzer
- Department of Neurology, University Clinic, University of Ulm, Ulm, Germany; German Center for Neurodegenerative Diseases (DZNE), Ulm, Germany.
| |
Collapse
|
10
|
Torres-Garcia L, P Domingues JM, Brandi E, Haikal C, Mudannayake JM, Brás IC, Gerhardt E, Li W, Svanbergsson A, Outeiro TF, Gouras GK, Li JY. Monitoring the interactions between alpha-synuclein and Tau in vitro and in vivo using bimolecular fluorescence complementation. Sci Rep 2022; 12:2987. [PMID: 35194057 PMCID: PMC8863885 DOI: 10.1038/s41598-022-06846-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/31/2022] [Indexed: 12/12/2022] Open
Abstract
Parkinson's disease (PD) and Alzheimer's disease (AD) are characterized by pathological accumulation and aggregation of different amyloidogenic proteins, α-synuclein (aSyn) in PD, and amyloid-β (Aβ) and Tau in AD. Strikingly, few PD and AD patients' brains exhibit pure pathology with most cases presenting mixed types of protein deposits in the brain. Bimolecular fluorescence complementation (BiFC) is a technique based on the complementation of two halves of a fluorescent protein, which allows direct visualization of protein-protein interactions. In the present study, we assessed the ability of aSyn and Tau to interact with each other. For in vitro evaluation, HEK293 and human neuroblastoma cells were used, while in vivo studies were performed by AAV6 injection in the substantia nigra pars compacta (SNpc) of mice and rats. We observed that the co-expression of aSyn and Tau led to the emergence of fluorescence, reflecting the interaction of the proteins in cell lines, as well as in mouse and rat SNpc. Thus, our data indicates that aSyn and Tau are able to interact with each other in a biologically relevant context, and that the BiFC assay is an effective tool for studying aSyn-Tau interactions in vitro and in different rodent models in vivo.
Collapse
Affiliation(s)
- Laura Torres-Garcia
- Experimental Dementia Research Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
- Neural Plasticity and Repair Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Joana M P Domingues
- Neural Plasticity and Repair Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
- Department of Clinical Neurosciences, University of Cambridge, The Clifford Albbutt Building, Cambridge, UK
| | - Edoardo Brandi
- Neural Plasticity and Repair Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Caroline Haikal
- Neural Plasticity and Repair Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Janitha M Mudannayake
- Developmental and Regenerative Neurobiology, Department of Experimental Medical Science, and Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Inês C Brás
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, Göttingen, Germany
| | - Ellen Gerhardt
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, Göttingen, Germany
| | - Wen Li
- Neural Plasticity and Repair Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
- Institute of Health Sciences, China Medical University, Shenyang, China
| | - Alexander Svanbergsson
- Neural Plasticity and Repair Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, Göttingen, Germany
- Max Planck Institute for Experimental Medicine, Göttingen, Germany
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- Scientific Employee With an Honorary Contract at German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Gunnar K Gouras
- Experimental Dementia Research Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden.
| | - Jia-Yi Li
- Neural Plasticity and Repair Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden.
- Institute of Health Sciences, China Medical University, Shenyang, China.
| |
Collapse
|
11
|
Sun F, Salinas AG, Filser S, Blumenstock S, Medina-Luque J, Herms J, Sgobio C. Impact of α-synuclein spreading on the nigrostriatal dopaminergic pathway depends on the onset of the pathology. Brain Pathol 2021; 32:e13036. [PMID: 34806235 PMCID: PMC8877754 DOI: 10.1111/bpa.13036] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/12/2021] [Accepted: 10/25/2021] [Indexed: 12/11/2022] Open
Abstract
Misfolded α‐synuclein spreads along anatomically connected areas through the brain, prompting progressive neurodegeneration of the nigrostriatal pathway in Parkinson's disease. To investigate the impact of early stage seeding and spreading of misfolded α‐synuclein along with the nigrostriatal pathway, we studied the pathophysiologic effect induced by a single acute α‐synuclein preformed fibrils (PFFs) inoculation into the midbrain. Further, to model the progressive vulnerability that characterizes the dopamine (DA) neuron life span, we used two cohorts of mice with different ages: 2‐month‐old (young) and 5‐month‐old (adult) mice. Two months after α‐synuclein PFFs injection, we found that striatal DA release decreased exclusively in adult mice. Adult DA neurons showed an increased level of pathology spreading along with the nigrostriatal pathway accompanied with a lower volume of α‐synuclein deposition in the midbrain, impaired neurotransmission, rigid DA terminal composition, and less microglial reactivity compared with young neurons. Notably, preserved DA release and increased microglial coverage in the PFFs‐seeded hemisphere coexist with decreased large‐sized terminal density in young DA neurons. This suggests the presence of a targeted pruning mechanism that limits the detrimental effect of α‐synuclein early spreading. This study suggests that the impact of the pathophysiology caused by misfolded α‐synuclein spreading along the nigrostriatal pathway depends on the age of the DA network, reducing striatal DA release specifically in adult mice.
Collapse
Affiliation(s)
- Fanfan Sun
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Center for Neuropathology and Prion Research, Ludwig-Maximilians University Munich, Munich, Germany
| | - Armando G Salinas
- Department of Pharmacology, Toxicology, and Neuroscience, Louisiana State University Health Sciences Center - Shreveport, Shreveport, Louisina, USA
| | - Severin Filser
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Institute for Stroke and Dementia Research, Munich University Hospital, Munich, Germany
| | - Sonja Blumenstock
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Center for Neuropathology and Prion Research, Ludwig-Maximilians University Munich, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Molecular Neurodegeneration Research Group, Max Planck Institute of Neurobiology, Martinsried, Germany
| | - Jose Medina-Luque
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Center for Neuropathology and Prion Research, Ludwig-Maximilians University Munich, Munich, Germany
| | - Jochen Herms
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Center for Neuropathology and Prion Research, Ludwig-Maximilians University Munich, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Carmelo Sgobio
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Center for Neuropathology and Prion Research, Ludwig-Maximilians University Munich, Munich, Germany
| |
Collapse
|
12
|
Chen KS, Menezes K, Rodgers JB, O’Hara DM, Tran N, Fujisawa K, Ishikura S, Khodaei S, Chau H, Cranston A, Kapadia M, Pawar G, Ping S, Krizus A, Lacoste A, Spangler S, Visanji NP, Marras C, Majbour NK, El-Agnaf OMA, Lozano AM, Culotti J, Suo S, Ryu WS, Kalia SK, Kalia LV. Small molecule inhibitors of α-synuclein oligomers identified by targeting early dopamine-mediated motor impairment in C. elegans. Mol Neurodegener 2021; 16:77. [PMID: 34772429 PMCID: PMC8588601 DOI: 10.1186/s13024-021-00497-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 10/21/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Parkinson's disease is a disabling neurodegenerative movement disorder characterized by dopaminergic neuron loss induced by α-synuclein oligomers. There is an urgent need for disease-modifying therapies for Parkinson's disease, but drug discovery is challenged by lack of in vivo models that recapitulate early stages of neurodegeneration. Invertebrate organisms, such as the nematode worm Caenorhabditis elegans, provide in vivo models of human disease processes that can be instrumental for initial pharmacological studies. METHODS To identify early motor impairment of animals expressing α-synuclein in dopaminergic neurons, we first used a custom-built tracking microscope that captures locomotion of single C. elegans with high spatial and temporal resolution. Next, we devised a method for semi-automated and blinded quantification of motor impairment for a population of simultaneously recorded animals with multi-worm tracking and custom image processing. We then used genetic and pharmacological methods to define the features of early motor dysfunction of α-synuclein-expressing C. elegans. Finally, we applied the C. elegans model to a drug repurposing screen by combining it with an artificial intelligence platform and cell culture system to identify small molecules that inhibit α-synuclein oligomers. Screen hits were validated using in vitro and in vivo mammalian models. RESULTS We found a previously undescribed motor phenotype in transgenic α-synuclein C. elegans that correlates with mutant or wild-type α-synuclein protein levels and results from dopaminergic neuron dysfunction, but precedes neuronal loss. Together with artificial intelligence-driven in silico and in vitro screening, this C. elegans model identified five compounds that reduced motor dysfunction induced by α-synuclein. Three of these compounds also decreased α-synuclein oligomers in mammalian neurons, including rifabutin which has not been previously investigated for Parkinson's disease. We found that treatment with rifabutin reduced nigrostriatal dopaminergic neurodegeneration due to α-synuclein in a rat model. CONCLUSIONS We identified a C. elegans locomotor abnormality due to dopaminergic neuron dysfunction that models early α-synuclein-mediated neurodegeneration. Our innovative approach applying this in vivo model to a multi-step drug repurposing screen, with artificial intelligence-driven in silico and in vitro methods, resulted in the discovery of at least one drug that may be repurposed as a disease-modifying therapy for Parkinson's disease.
Collapse
Affiliation(s)
- Kevin S. Chen
- Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, ON Canada
| | - Krystal Menezes
- Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, ON Canada
| | | | - Darren M. O’Hara
- Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, ON Canada
| | - Nhat Tran
- Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, ON Canada
| | - Kazuko Fujisawa
- Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, ON Canada
| | - Seiya Ishikura
- Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, ON Canada
| | - Shahin Khodaei
- Donnelly Centre, University of Toronto, Toronto, ON Canada
| | - Hien Chau
- Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, ON Canada
| | - Anna Cranston
- Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, ON Canada
| | - Minesh Kapadia
- Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, ON Canada
| | - Grishma Pawar
- Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, ON Canada
| | - Susan Ping
- Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, ON Canada
| | - Aldis Krizus
- Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, ON Canada
| | | | | | - Naomi P. Visanji
- Edmond J. Safra Program in Parkinson’s Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Division of Neurology, Department of Medicine, Toronto Western Hospital, University Health Network, Toronto, ON Canada
| | - Connie Marras
- Edmond J. Safra Program in Parkinson’s Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Division of Neurology, Department of Medicine, Toronto Western Hospital, University Health Network, Toronto, ON Canada
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON Canada
| | - Nour K. Majbour
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Omar M. A. El-Agnaf
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Andres M. Lozano
- Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, ON Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON Canada
| | - Joseph Culotti
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON Canada
| | - Satoshi Suo
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON Canada
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - William S. Ryu
- Donnelly Centre, University of Toronto, Toronto, ON Canada
- Department of Physics, University of Toronto, Toronto, ON Canada
| | - Suneil K. Kalia
- Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, ON Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON Canada
- KITE and CRANIA, University Health Network, Toronto, ON Canada
| | - Lorraine V. Kalia
- Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, ON Canada
- Edmond J. Safra Program in Parkinson’s Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Division of Neurology, Department of Medicine, Toronto Western Hospital, University Health Network, Toronto, ON Canada
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON Canada
| |
Collapse
|
13
|
CK1BP Reduces α-Synuclein Oligomerization and Aggregation Independent of Serine 129 Phosphorylation. Cells 2021; 10:cells10112830. [PMID: 34831053 PMCID: PMC8616157 DOI: 10.3390/cells10112830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/09/2021] [Accepted: 10/15/2021] [Indexed: 11/16/2022] Open
Abstract
The pathological accumulation of α-Synuclein (α-Syn) is the hallmark of neurodegenerative α-synucleinopathies, including Parkinsons's disease (PD). In contrast to the mostly non-phosphorylated soluble α-Syn, aggregated α-Syn is usually phosphorylated at serine 129 (S129). Therefore, S129-phosphorylation is suspected to interfere with α-Syn aggregation. Among other kinases, protein kinase CK1 (CK1) is known to phosphorylate α-Syn at S129. We overexpressed CK1 binding protein (CK1BP) to inhibit CK1 kinase activity. Using Bimolecular Fluorescence Complementation (BiFC) in combination with biochemical methods, we monitored the S129 phosphorylation and oligomerization of α-Syn in HEK293T cells. We found that CK1BP reduced the overall protein levels of α-Syn. Moreover, CK1BP concomitantly reduced S129 phosphorylation, oligomerization and the amount of insoluble α-Syn. Analyzing different α-Syn variants including S129 mutations, we show that the effects of CK1BP on α-Syn accumulation were independent of S129 phosphorylation. Further analysis of an aggregating polyglutamine (polyQ) protein confirmed a phosphorylation-independent decrease in aggregation. Our results imply that the inhibition of CK1 activity by CK1BP might exert beneficial effects on NDDs in general. Accordingly, CK1BP represents a promising target for the rational design of therapeutic approaches to cease or at least delay the progression of α-synucleinopathies.
Collapse
|
14
|
Burbidge K, Rademacher DJ, Mattick J, Zack S, Grillini A, Bousset L, Kwon O, Kubicki K, Simon A, Melki R, Campbell EM. LGALS3 (galectin 3) mediates an unconventional secretion of SNCA/α-synuclein in response to lysosomal membrane damage by the autophagic-lysosomal pathway in human midbrain dopamine neurons. Autophagy 2021; 18:1020-1048. [PMID: 34612142 PMCID: PMC9196737 DOI: 10.1080/15548627.2021.1967615] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Numerous lines of evidence support the premise that the misfolding and subsequent accumulation of SNCA/α-synuclein (synuclein alpha) is responsible for the underlying neuronal pathology observed in Parkinson disease (PD) and other synucleinopathies. Moreover, the cell-to-cell transfer of these misfolded SNCA species is thought to be responsible for disease progression and the spread of cellular pathology throughout the brain. Previous work has shown that when exogenous, misfolded SNCA fibrils enter cells through endocytosis, they can damage and rupture the membranes of their endocytotic vesicles in which they are trafficked. Rupture of these vesicular membranes exposes intralumenal glycans leading to galectin protein binding, subsequent autophagic protein recruitment, and, ultimately, their introduction into the autophagic-lysosomal pathway. Increasing evidence indicates that both pathological and non-pathological SNCA species undergo autophagy-dependent unconventional secretion. While other proteins have also been shown to be secreted from cells by autophagy, what triggers this release process and how these specific proteins are recruited to a secretory autophagic pathway is largely unknown. Here, we use a human midbrain dopamine (mDA) neuronal culture model to provide evidence in support of a cellular mechanism that explains the cell-to-cell transfer of pathological forms of SNCA that are observed in PD. We demonstrate that LGALS3 (galectin 3) mediates the release of SNCA following vesicular damage. SNCA release is also dependent on TRIM16 (tripartite motif containing 16) and ATG16L1 (autophagy related 16 like 1), providing evidence that secretion of SNCA is mediated by an autophagic secretory pathway.
Collapse
Affiliation(s)
- Kevin Burbidge
- Graduate Program in Neuroscience, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA
| | - David J Rademacher
- Core Imaging Facility and Department of Microbiology and Immunology, Loyola University of Chicago, Maywood, Illinois, USA
| | - Jessica Mattick
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University, Chicago, Maywood, Illinois, USA
| | - Stephanie Zack
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University, Chicago, Maywood, Illinois, USA
| | - Andrea Grillini
- Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA
| | - Luc Bousset
- Institut Francois Jacob (Mircen), Cea and Laboratory of Neurodegenerative Diseases, Cnrs, Fontenay-Aux-Roses Cedex, France
| | - Ochan Kwon
- Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA
| | - Konrad Kubicki
- Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA
| | - Alexander Simon
- Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA
| | - Ronald Melki
- Institut Francois Jacob (Mircen), Cea and Laboratory of Neurodegenerative Diseases, Cnrs, Fontenay-Aux-Roses Cedex, France
| | - Edward M Campbell
- Graduate Program in Neuroscience, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA.,Core Imaging Facility and Department of Microbiology and Immunology, Loyola University of Chicago, Maywood, Illinois, USA
| |
Collapse
|
15
|
Kayed R, Dettmer U, Lesné SE. Soluble endogenous oligomeric α-synuclein species in neurodegenerative diseases: Expression, spreading, and cross-talk. JOURNAL OF PARKINSON'S DISEASE 2021; 10:791-818. [PMID: 32508330 PMCID: PMC7458533 DOI: 10.3233/jpd-201965] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
There is growing recognition in the field of neurodegenerative diseases that mixed proteinopathies are occurring at greater frequency than originally thought. This is particularly true for three amyloid proteins defining most of these neurological disorders, amyloid-beta (Aβ), tau, and alpha-synuclein (αSyn). The co-existence and often co-localization of aggregated forms of these proteins has led to the emergence of concepts positing molecular interactions and cross-seeding between Aβ, tau, and αSyn aggregates. Amongst this trio, αSyn has received particular attention in this context during recent years due to its ability to modulate Aβ and tau aggregation in vivo, to interact at a molecular level with Aβ and tau in vivo and to cross-seed tau in mice. Here we provide a comprehensive, critical, and accessible review about the expression, role and nature of endogenous soluble αSyn oligomers because of recent developments in the understanding of αSyn multimerization, misfolding, aggregation, cross-talk, spreading and cross-seeding in neurodegenerative disorders, including Parkinson's disease, dementia with Lewy bodies, multiple system atrophy, Alzheimer's disease, and Huntington's disease. We will also discuss our current understanding about the relative toxicity of endogenous αSyn oligomers in vivo and in vitro, and introduce potential opportunities to counter their deleterious effects.
Collapse
Affiliation(s)
- Rakez Kayed
- Departments of Neurology & Neuroscience & Cell Biology & Anatomy, University of Texas Medical Branch Galveston, Galveston, TX, USA,George and Cynthia Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch Galveston, Galveston, TX, USA
| | - Ulf Dettmer
- Department of Neurology, Harvard Medical School, Boston, MA, USA,Ann Romney Center for Neurologic Diseases, Harvard Medical School, Boston, MA, USA
| | - Sylvain E. Lesné
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA,Institute of Translational Neuroscience, University of Minnesota, Minneapolis, MN, USA,Correspondence to: Sylvain E. Lesné, PhD, University of Minnesota, Wallin Medical Biosciences Building (Room 4-114), 2101 Sixth Street SE, CDC 2641, Minneapolis, MN 55414, USA. Tel.: +1 612 626 8341; E-mail: ; Website: https://lesnelab.org
| |
Collapse
|
16
|
Ray B, Mahalakshmi AM, Tuladhar S, Bhat A, Srinivasan A, Pellegrino C, Kannan A, Bolla SR, Chidambaram SB, Sakharkar MK. "Janus-Faced" α-Synuclein: Role in Parkinson's Disease. Front Cell Dev Biol 2021; 9:673395. [PMID: 34124057 PMCID: PMC8194081 DOI: 10.3389/fcell.2021.673395] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/15/2021] [Indexed: 01/03/2023] Open
Abstract
Parkinson's disease (PD) is a pathological condition characterized by the aggregation and the resultant presence of intraneuronal inclusions termed Lewy bodies (LBs) and Lewy neurites which are mainly composed of fibrillar α-synuclein (α-syn) protein. Pathogenic aggregation of α-syn is identified as the major cause of LBs deposition. Several mutations in α-syn showing varied aggregation kinetics in comparison to the wild type (WT) α-syn are reported in PD (A30P, E46K, H 50Q, G51D, A53E, and A53T). Also, the cell-to-cell spread of pathological α-syn plays a significant role in PD development. Interestingly, it has also been suggested that the pathology of PD may begin in the gastrointestinal tract and spread via the vagus nerve (VN) to brain proposing the gut-brain axis of α-syn pathology in PD. Despite multiple efforts, the behavior and functions of this protein in normal and pathological states (specifically in PD) is far from understood. Furthermore, the etiological factors responsible for triggering aggregation of this protein remain elusive. This review is an attempt to collate and present latest information on α-syn in relation to its structure, biochemistry and biophysics of aggregation in PD. Current advances in therapeutic efforts toward clearing the pathogenic α-syn via autophagy/lysosomal flux are also reviewed and reported.
Collapse
Affiliation(s)
- Bipul Ray
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India
| | - Arehally M. Mahalakshmi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
| | - Sunanda Tuladhar
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India
| | - Abid Bhat
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India
| | - Asha Srinivasan
- Division of Nanoscience & Technology, Faculty of Life Sciences, JSS Academy of Higher Education & Research, Mysuru, India
| | - Christophe Pellegrino
- Institut National de la Santé et de la Recherche Médicale, Institute of Mediterranean Neurobiology, Aix-Marseille University, Marseille, France
| | - Anbarasu Kannan
- Department of Protein Chemistry and Technology, CSIR-Central Food Technological Research Institute, Mysuru, India
| | - Srinivasa Rao Bolla
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Nur-Sultan City, Kazakhstan
| | - Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India
- Special Interest Group – Brain, Behaviour, and Cognitive Neurosciences Research, JSS Academy of Higher Education & Research, Mysuru, India
| | | |
Collapse
|
17
|
Don EK, Maschirow A, Radford RAW, Scherer NM, Vidal-Itriago A, Hogan A, Maurel C, Formella I, Stoddart JJ, Hall TE, Lee A, Shi B, Cole NJ, Laird AS, Badrock AP, Chung RS, Morsch M. In vivo Validation of Bimolecular Fluorescence Complementation (BiFC) to Investigate Aggregate Formation in Amyotrophic Lateral Sclerosis (ALS). Mol Neurobiol 2021; 58:2061-2074. [PMID: 33415684 PMCID: PMC8018926 DOI: 10.1007/s12035-020-02238-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/25/2020] [Indexed: 10/28/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a form of motor neuron disease (MND) that is characterized by the progressive loss of motor neurons within the spinal cord, brainstem, and motor cortex. Although ALS clinically manifests as a heterogeneous disease, with varying disease onset and survival, a unifying feature is the presence of ubiquitinated cytoplasmic protein inclusion aggregates containing TDP-43. However, the precise mechanisms linking protein inclusions and aggregation to neuronal loss are currently poorly understood. Bimolecular fluorescence complementation (BiFC) takes advantage of the association of fluorophore fragments (non-fluorescent on their own) that are attached to an aggregation-prone protein of interest. Interaction of the proteins of interest allows for the fluorescent reporter protein to fold into its native state and emit a fluorescent signal. Here, we combined the power of BiFC with the advantages of the zebrafish system to validate, optimize, and visualize the formation of ALS-linked aggregates in real time in a vertebrate model. We further provide in vivo validation of the selectivity of this technique and demonstrate reduced spontaneous self-assembly of the non-fluorescent fragments in vivo by introducing a fluorophore mutation. Additionally, we report preliminary findings on the dynamic aggregation of the ALS-linked hallmark proteins Fus and TDP-43 in their corresponding nuclear and cytoplasmic compartments using BiFC. Overall, our data demonstrates the suitability of this BiFC approach to study and characterize ALS-linked aggregate formation in vivo. Importantly, the same principle can be applied in the context of other neurodegenerative diseases and has therefore critical implications to advance our understanding of pathologies that underlie aberrant protein aggregation.
Collapse
Affiliation(s)
- Emily K Don
- Centre for Motor Neuron Disease Research, Faculty of Medicine, Health and Human Sciences, Department of Biomedical Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Alina Maschirow
- Centre for Motor Neuron Disease Research, Faculty of Medicine, Health and Human Sciences, Department of Biomedical Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Rowan A W Radford
- Centre for Motor Neuron Disease Research, Faculty of Medicine, Health and Human Sciences, Department of Biomedical Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Natalie M Scherer
- Centre for Motor Neuron Disease Research, Faculty of Medicine, Health and Human Sciences, Department of Biomedical Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Andrés Vidal-Itriago
- Centre for Motor Neuron Disease Research, Faculty of Medicine, Health and Human Sciences, Department of Biomedical Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Alison Hogan
- Centre for Motor Neuron Disease Research, Faculty of Medicine, Health and Human Sciences, Department of Biomedical Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Cindy Maurel
- Centre for Motor Neuron Disease Research, Faculty of Medicine, Health and Human Sciences, Department of Biomedical Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Isabel Formella
- Centre for Motor Neuron Disease Research, Faculty of Medicine, Health and Human Sciences, Department of Biomedical Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Jack J Stoddart
- Centre for Motor Neuron Disease Research, Faculty of Medicine, Health and Human Sciences, Department of Biomedical Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Thomas E Hall
- Institute for Molecular Bioscience, The University of Queensland, QLD, St Lucia, 4072, Australia
| | - Albert Lee
- Centre for Motor Neuron Disease Research, Faculty of Medicine, Health and Human Sciences, Department of Biomedical Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Bingyang Shi
- Centre for Motor Neuron Disease Research, Faculty of Medicine, Health and Human Sciences, Department of Biomedical Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Nicholas J Cole
- Centre for Motor Neuron Disease Research, Faculty of Medicine, Health and Human Sciences, Department of Biomedical Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Angela S Laird
- Centre for Motor Neuron Disease Research, Faculty of Medicine, Health and Human Sciences, Department of Biomedical Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Andrew P Badrock
- Centre for Motor Neuron Disease Research, Faculty of Medicine, Health and Human Sciences, Department of Biomedical Sciences, Macquarie University, Sydney, NSW, 2109, Australia.
| | - Roger S Chung
- Centre for Motor Neuron Disease Research, Faculty of Medicine, Health and Human Sciences, Department of Biomedical Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Marco Morsch
- Centre for Motor Neuron Disease Research, Faculty of Medicine, Health and Human Sciences, Department of Biomedical Sciences, Macquarie University, Sydney, NSW, 2109, Australia.
| |
Collapse
|
18
|
Kulenkampff K, Wolf Perez AM, Sormanni P, Habchi J, Vendruscolo M. Quantifying misfolded protein oligomers as drug targets and biomarkers in Alzheimer and Parkinson diseases. Nat Rev Chem 2021; 5:277-294. [PMID: 37117282 DOI: 10.1038/s41570-021-00254-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2021] [Indexed: 02/06/2023]
Abstract
Protein misfolding and aggregation are characteristic of a wide range of neurodegenerative disorders, including Alzheimer and Parkinson diseases. A hallmark of these diseases is the aggregation of otherwise soluble and functional proteins into amyloid aggregates. Although for many decades such amyloid deposits have been thought to be responsible for disease progression, it is now increasingly recognized that the misfolded protein oligomers formed during aggregation are, instead, the main agents causing pathological processes. These oligomers are transient and heterogeneous, which makes it difficult to detect and quantify them, generating confusion about their exact role in disease. The lack of suitable methods to address these challenges has hampered efforts to investigate the molecular mechanisms of oligomer toxicity and to develop oligomer-based diagnostic and therapeutic tools to combat protein misfolding diseases. In this Review, we describe methods to quantify misfolded protein oligomers, with particular emphasis on diagnostic applications as disease biomarkers and on therapeutic applications as target biomarkers. The development of these methods is ongoing, and we discuss the challenges that remain to be addressed to establish measurement tools capable of overcoming existing limitations and to meet present needs.
Collapse
|
19
|
Carlson SW, Yan HQ, Li Y, Henchir J, Ma X, Young MS, Ikonomovic MD, Dixon CE. Differential Regional Responses in Soluble Monomeric Alpha Synuclein Abundance Following Traumatic Brain Injury. Mol Neurobiol 2021; 58:362-374. [PMID: 32948930 PMCID: PMC7704579 DOI: 10.1007/s12035-020-02123-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/05/2020] [Indexed: 12/14/2022]
Abstract
Alpha synuclein (α-synuclein) is a neuronal protein found predominately in presynaptic terminals. While the pathological effect of α-synuclein aggregates has been a topic of intense study in several neurodegenerative conditions, less attention has been placed on changes in monomeric α-synuclein and related physiological consequences on neuronal function. A growing body of evidence supports an important physiological role of α-synuclein in neurotransmission. In the context of traumatic brain injury (TBI), we hypothesized that the regional abundance of soluble monomeric α-synuclein is altered over a chronic time period post-injury. To this end, we evaluated α-synuclein in the cortex, hippocampus, and striatum of adult rats at 6 h, 1 day, 1, 2, 4, and 8 weeks after controlled cortical impact (CCI) injury. Western blot analysis demonstrated decreased levels of monomer α-synuclein protein in the ipsilateral hippocampus at 6 h, 1 day, 1, 2, and 8 weeks, as well as in the ipsilateral cortex at 1 and 2 weeks and in the ipsilateral striatum at 6 h after CCI compared with sham animals. Immunohistochemical analysis revealed lower α-synuclein and a modest reduction in synaptophysin staining in the ipsilateral hippocampus at 1 week after CCI compared with sham animals, with no evidence of intracellular or extracellular α-synuclein aggregates. Collectively, these findings demonstrate that monomeric α-synuclein protein abundance in the hippocampus is reduced over an extensive (acute-to-chronic) post-injury interval. This deficit may contribute to the chronically impaired neurotransmission known to occur after TBI.
Collapse
Affiliation(s)
- S W Carlson
- Neurological Surgery, University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
| | - H Q Yan
- Neurological Surgery, University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
| | - Y Li
- Neurological Surgery, University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
| | - J Henchir
- Neurological Surgery, University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
| | - X Ma
- Neurological Surgery, University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
| | - M S Young
- Neurological Surgery, University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
| | - M D Ikonomovic
- Neurology, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA, 15261, USA
- VA Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - C E Dixon
- Neurological Surgery, University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA.
- VA Pittsburgh Healthcare System, Pittsburgh, PA, USA.
| |
Collapse
|
20
|
Du XY, Xie XX, Liu RT. The Role of α-Synuclein Oligomers in Parkinson's Disease. Int J Mol Sci 2020; 21:ijms21228645. [PMID: 33212758 PMCID: PMC7697105 DOI: 10.3390/ijms21228645] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 12/11/2022] Open
Abstract
α-synuclein (α-syn) is a protein associated with the pathogenesis of Parkinson’s disease (PD), the second most common neurodegeneration disease with no effective treatment. However, how α-syn drives the pathology of PD remains elusive. Recent studies suggest that α-syn oligomers are the primary cause of neurotoxicity and play a critical role in PD. In this review, we discuss the process of α-syn oligomers formation and the current understanding of the structures of oligomers. We also describe seed and propagation effects of oligomeric forms of α-syn. Then, we summarize the mechanism by which α-syn oligomers exert neurotoxicity and promote neurodegeneration, including mitochondrial dysfunction, endoplasmic reticulum stress, proteostasis dysregulation, synaptic impairment, cell apoptosis and neuroinflammation. Finally, we investigate treatment regimens targeting α-syn oligomers at present. Further research is needed to understand the structure and toxicity mechanism of different types of oligomers, so as to provide theoretical basis for the treatment of PD.
Collapse
Affiliation(s)
- Xiao-yu Du
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Haidian District, Beijing 100190, China; (X.-y.D.); (X.-x.X.)
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xi-xiu Xie
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Haidian District, Beijing 100190, China; (X.-y.D.); (X.-x.X.)
| | - Rui-tian Liu
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Haidian District, Beijing 100190, China; (X.-y.D.); (X.-x.X.)
- Correspondence: ; Tel.: +86-10-82545017
| |
Collapse
|
21
|
Frey B, AlOkda A, Jackson MP, Riguet N, Duce JA, Lashuel HA. Monitoring alpha-synuclein oligomerization and aggregation using bimolecular fluorescence complementation assays: What you see is not always what you get. J Neurochem 2020; 157:872-888. [PMID: 32772367 PMCID: PMC8246987 DOI: 10.1111/jnc.15147] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 12/22/2022]
Abstract
Bimolecular fluorescence complementation (BiFC) was introduced a decade ago as a method to monitor alpha‐synuclein (α‐syn) oligomerization in intact cells. Since then, several α‐syn BiFC cellular assays and animal models have been developed based on the assumption that an increase in the fluorescent signal correlates with increased α‐syn oligomerization or aggregation. Despite the increasing use of these assays and models in mechanistic studies, target validation and drug screening, there have been no reports that (1) validate the extent to which the BiFC fluorescent signal correlates with α‐syn oligomerization at the biochemical level; (2) provide a structural characterization of the oligomers and aggregates formed by the BiFC. To address this knowledge gap, we first analysed the expression level and oligomerization properties of the individual constituents of α‐syn‐Venus, one of the most commonly used BiFC systems, in HEK‐293 & SH‐SY5Y cells from three different laboratories using multiple biochemical approaches and techniques. Next, we investigated the biochemical and aggregation properties of α‐syn upon co‐expression of both BiFC fragments. Our results show that (1) the C‐terminal‐Venus fused to α‐syn (α‐syn‐Vc) is present in much lower abundance than its counterpart with N‐terminal‐Venus fused to α‐syn (Vn‐α‐syn); (2) Vn‐α‐syn exhibits a high propensity to form oligomers and higher‐order aggregates; and (3) the expression of either or both fragments does not result in the formation of α‐syn fibrils or cellular inclusions. Furthermore, our results suggest that only a small fraction of Vn‐α‐syn is involved in the formation of the fluorescent BiFC complex and that some of the fluorescent signal may arise from the association or entrapment of α‐syn‐Vc in Vn‐α‐syn aggregates. The fact that the N‐terminal fragment exists predominantly in an aggregated state also indicates that one must exercise caution when using this system to investigate α‐syn oligomerization in cells or in vivo. Altogether, our results suggest that cellular and animal models of oligomerization, aggregation and cell‐to‐cell transmission based on the α‐syn BiFC systems should be thoroughly characterized at the biochemical level to ensure that they reproduce the process of interest and measure what they are intended to measure. ![]()
Collapse
Affiliation(s)
- Bryan Frey
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Faculty of Life Sciences, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Abdelrahman AlOkda
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Faculty of Life Sciences, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Matthew P Jackson
- The ALBORADA Drug Discovery Institute, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Nathan Riguet
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Faculty of Life Sciences, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - James A Duce
- The ALBORADA Drug Discovery Institute, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Hilal A Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Faculty of Life Sciences, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
22
|
Grozdanov V, Danzer KM. Intracellular Alpha-Synuclein and Immune Cell Function. Front Cell Dev Biol 2020; 8:562692. [PMID: 33178682 PMCID: PMC7594520 DOI: 10.3389/fcell.2020.562692] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/24/2020] [Indexed: 11/13/2022] Open
Abstract
Intracellular alpha-synuclein has numerous effects on different functions of the cell. Although it is expressed in a wide spectrum of cell types from different lineages, most of our knowledge about it was generated by studying neuronal or glial cells. However, the role of immune cells in Parkinson's disease and related synucleinopathies has recently emerged. Altered immune cell phenotypes and functions have been reported not only in animal models, but also in human disease. While the response of immune cells to extracellular alpha-synuclein has been thoroughly studied, insights into the effects of endogenously expressed or taken-up alpha-synuclein on the function of immune cells remain scarce. Such insights may prove to be important for understanding the complex cellular and molecular events resulting in neurodegeneration and aid the development of novel therapies. We review the current state of knowledge about how alpha-synuclein and its pathologic manifestations affect the phenotype and function of peripheral and central nervous system (CNS) immune cells, and discuss the potential of this topic for advancing our understanding of synucleinopathies.
Collapse
|
23
|
Kiechle M, Grozdanov V, Danzer KM. The Role of Lipids in the Initiation of α-Synuclein Misfolding. Front Cell Dev Biol 2020; 8:562241. [PMID: 33042996 PMCID: PMC7523214 DOI: 10.3389/fcell.2020.562241] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/26/2020] [Indexed: 01/06/2023] Open
Abstract
The aggregation of α-synuclein (α-syn) is inseparably connected to Parkinson’s disease (PD). It is now well-established that certain forms of α-syn aggregates, oligomers and fibrils, can exert neurotoxicity in synucleinopathies. With the exception of rare familial forms, the vast majority of PD cases are idiopathic. Understanding the earliest molecular mechanisms that cause initial α-syn misfolding could help to explain why PD affects only some individuals and others not. Factors that chaperone the transition of α-syn’s physiological to pathological function are of particular interest, since they offer opportunities for intervention. The relationship between α-syn and lipids represents one of those factors. Membrane interaction is crucial for normal cellular function, but lipids also induce the aggregation of α-syn, causing cell toxicity. Also, disease-causing or risk-factor mutations in genes related to lipid metabolism like PLA2G6, SCARB2 or GBA1 highlight the close connection between PD and lipids. Despite the clear link, the ambivalent interaction has not been studied sufficiently so far. In this review, we address how α-syn interacts with lipids and how they can act as key factor for orchestrating toxic conversion of α-syn. Furthermore, we will discuss a scenario in which initial α-syn aggregation is determined by shifts in lipid/α-syn ratio as well as by dyshomeostasis of membrane bound/unbound state of α-syn.
Collapse
|
24
|
Anti-aggregation Effects of Phenolic Compounds on α-synuclein. Molecules 2020; 25:molecules25102444. [PMID: 32456274 PMCID: PMC7288075 DOI: 10.3390/molecules25102444] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 05/20/2020] [Accepted: 05/22/2020] [Indexed: 12/13/2022] Open
Abstract
The aggregation and deposition of α-synuclein (αS) are major pathologic features of Parkinson’s disease, dementia with Lewy bodies, and other α-synucleinopathies. The propagation of αS pathology in the brain plays a key role in the onset and progression of clinical phenotypes. Thus, there is increasing interest in developing strategies that attenuate αS aggregation and propagation. Based on cumulative evidence that αS oligomers are neurotoxic and critical species in the pathogenesis of α-synucleinopathies, we and other groups reported that phenolic compounds inhibit αS aggregation including oligomerization, thereby ameliorating αS oligomer-induced cellular and synaptic toxicities. Heterogeneity in gut microbiota may influence the efficacy of dietary polyphenol metabolism. Our recent studies on the brain-penetrating polyphenolic acids 3-hydroxybenzoic acid (3-HBA), 3,4-dihydroxybenzoic acid (3,4-diHBA), and 3-hydroxyphenylacetic acid (3-HPPA), which are derived from gut microbiota-based metabolism of dietary polyphenols, demonstrated an in vitro ability to inhibit αS oligomerization and mediate aggregated αS-induced neurotoxicity. Additionally, 3-HPPA, 3,4-diHBA, 3-HBA, and 4-hydroxybenzoic acid significantly attenuated intracellular αS seeding aggregation in a cell-based system. This review focuses on recent research developments regarding neuroprotective properties, especially anti-αS aggregation effects, of phenolic compounds and their metabolites by the gut microbiome, including our findings in the pathogenesis of α-synucleinopathies.
Collapse
|