1
|
Siniscalco ER, Williams A, Eisenbarth SC. All roads lead to IgA: Mapping the many pathways of IgA induction in the gut. Immunol Rev 2024; 326:66-82. [PMID: 39046160 DOI: 10.1111/imr.13369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
The increasing prevalence of food allergy and related pathologies in recent years has underscored the need to understand the factors affecting adverse reactions to food. Food allergy is caused when food-specific IgE triggers the release of histamine from mast cells. However, other food-specific antibody isotypes exist as well, including IgG and IgA. IgA is the main antibody isotype in the gut and mediates noninflammatory reactions to toxins, commensal bacteria, and food antigens. It has also been thought to induce tolerance to food, thus antagonizing the role of food-specific IgE. However, this has remained unclear as food-specific IgA generation is poorly understood. Particularly, the location of IgA induction, the role of T cell help, and the fates of food-specific B cells remain elusive. In this review, we outline what is known about food-specific IgA induction and highlight areas requiring further study. We also explore how knowledge of food-specific IgA induction can be informed by and subsequently contribute to our overall knowledge of gut immunity.
Collapse
Affiliation(s)
- Emily R Siniscalco
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
- Center for Human Immunobiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Adam Williams
- Center for Human Immunobiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Division of Allergy and Immunology, The Department Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Stephanie C Eisenbarth
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
- Center for Human Immunobiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Division of Allergy and Immunology, The Department Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
2
|
Liu J, Stoler-Barak L, Hezroni-Bravyi H, Biram A, Lebon S, Davidzohn N, Kedmi M, Chemla M, Pilzer D, Cohen M, Brenner O, Biton M, Shulman Z. Turbinate-homing IgA-secreting cells originate in the nasal lymphoid tissues. Nature 2024; 632:637-646. [PMID: 39085603 DOI: 10.1038/s41586-024-07729-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 06/18/2024] [Indexed: 08/02/2024]
Abstract
Nasal vaccination elicits a humoral immune response that provides protection from airborne pathogens1, yet the origins and specific immune niches of antigen-specific IgA-secreting cells in the upper airways are unclear2. Here we define nasal glandular acinar structures and the turbinates as immunological niches that recruit IgA-secreting plasma cells from the nasal-associated lymphoid tissues (NALTs)3. Using intact organ imaging, we demonstrate that nasal vaccination induces B cell expansion in the subepithelial dome of the NALT, followed by invasion into commensal-bacteria-driven chronic germinal centres in a T cell-dependent manner. Initiation of the germinal centre response in the NALT requires pre-expansion of antigen-specific T cells, which interact with cognate B cells in interfollicular regions. NALT ablation and blockade of PSGL-1, which mediates interactions with endothelial cell selectins, demonstrated that NALT-derived IgA-expressing B cells home to the turbinate region through the circulation, where they are positioned primarily around glandular acinar structures. CCL28 expression was increased in the turbinates in response to vaccination and promoted homing of IgA+ B cells to this site. Thus, in response to nasal vaccination, the glandular acini and turbinates provide immunological niches that host NALT-derived IgA-secreting cells. These cellular events could be manipulated in vaccine design or in the treatment of upper airway allergic responses.
Collapse
Affiliation(s)
- Jingjing Liu
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Liat Stoler-Barak
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Hadas Hezroni-Bravyi
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Adi Biram
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Sacha Lebon
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Natalia Davidzohn
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Merav Kedmi
- Department of Life Science Core Facilities, Weizmann Institute of Science, Rehovot, Israel
- The Nancy & Stephen Grand Israel National Center for Personalized Medicine (G-INCPM), Weizmann Institute of Science, Rehovot, Israel
| | - Muriel Chemla
- Department of Life Science Core Facilities, Weizmann Institute of Science, Rehovot, Israel
- The Nancy & Stephen Grand Israel National Center for Personalized Medicine (G-INCPM), Weizmann Institute of Science, Rehovot, Israel
| | - David Pilzer
- Department of Life Science Core Facilities, Weizmann Institute of Science, Rehovot, Israel
- The Nancy & Stephen Grand Israel National Center for Personalized Medicine (G-INCPM), Weizmann Institute of Science, Rehovot, Israel
| | - Marina Cohen
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Ori Brenner
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Moshe Biton
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ziv Shulman
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
3
|
Kagan Ben Tikva S, Gurwitz N, Sivan E, Hirsch D, Hezroni-Barvyi H, Biram A, Moss L, Wigoda N, Egozi A, Monziani A, Golani O, Gross M, Tenenbaum A, Shulman Z. T cell help induces Myc transcriptional bursts in germinal center B cells during positive selection. Sci Immunol 2024; 9:eadj7124. [PMID: 38552029 DOI: 10.1126/sciimmunol.adj7124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 02/09/2024] [Indexed: 04/02/2024]
Abstract
Antibody affinity maturation occurs in secondary lymphoid organs within germinal centers (GCs). At these sites, B cells mutate their antibody-encoding genes in the dark zone, followed by preferential selection of the high-affinity variants in the light zone by T cells. The strength of the T cell-derived selection signals is proportional to the B cell receptor affinity and to the magnitude of subsequent Myc expression. However, because the lifetime of Myc mRNA and its corresponding protein is very short, it remains unclear how T cells induce sustained Myc levels in positively selected B cells. Here, by direct visualization of mRNA and active transcription sites in situ, we found that an increase in transcriptional bursts promotes Myc expression during B cell positive selection in GCs. Elevated T cell help signals predominantly enhance the percentage of cells expressing Myc in GCs as opposed to augmenting the quantity of Myc transcripts per individual cell. Visualization of transcription start sites in situ revealed that T cell help promotes an increase in the frequency of transcriptional bursts at the Myc locus in GC B cells located primarily in the LZ apical rim. Thus, the rise in Myc, which governs positive selection of B cells in GCs, reflects an integration of transcriptional activity over time rather than an accumulation of transcripts at a specific time point.
Collapse
Affiliation(s)
- Sharon Kagan Ben Tikva
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Neta Gurwitz
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ehud Sivan
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Dana Hirsch
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Hadas Hezroni-Barvyi
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Adi Biram
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Lihee Moss
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Noa Wigoda
- Bioinformatics unit, Life Science Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Adi Egozi
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Alan Monziani
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ofra Golani
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Menachem Gross
- Department of Otolaryngology-Head and Neck Surgery, Hadassah Medical Center, Jerusalem 9112102, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Ariel Tenenbaum
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
- Department of Pediatrics, Hadassah Medical Organization and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Ziv Shulman
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
4
|
Akama-Garren EH, Yin X, Prestwood TR, Ma M, Utz PJ, Carroll MC. T cell help shapes B cell tolerance. Sci Immunol 2024; 9:eadj7029. [PMID: 38363829 DOI: 10.1126/sciimmunol.adj7029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 12/29/2023] [Indexed: 02/18/2024]
Abstract
T cell help is a crucial component of the normal humoral immune response, yet whether it promotes or restrains autoreactive B cell responses remains unclear. Here, we observe that autoreactive germinal centers require T cell help for their formation and persistence. Using retrogenic chimeras transduced with candidate TCRs, we demonstrate that a follicular T cell repertoire restricted to a single autoreactive TCR, but not a foreign antigen-specific TCR, is sufficient to initiate autoreactive germinal centers. Follicular T cell specificity influences the breadth of epitope spreading by regulating wild-type B cell entry into autoreactive germinal centers. These results demonstrate that TCR-dependent T cell help can promote loss of B cell tolerance and that epitope spreading is determined by TCR specificity.
Collapse
Affiliation(s)
- Elliot H Akama-Garren
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Harvard-MIT Health Sciences and Technology, Harvard Medical School, Boston, MA 02115, USA
| | - Xihui Yin
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Tyler R Prestwood
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Minghe Ma
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Paul J Utz
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael C Carroll
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
5
|
Raso F, Liu S, Simpson MJ, Barton GM, Mayer CT, Acharya M, Muppidi JR, Marshak-Rothstein A, Reboldi A. Antigen receptor signaling and cell death resistance controls intestinal humoral response zonation. Immunity 2023; 56:2373-2387.e8. [PMID: 37714151 PMCID: PMC10591993 DOI: 10.1016/j.immuni.2023.08.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/24/2023] [Accepted: 08/21/2023] [Indexed: 09/17/2023]
Abstract
Immunoglobulin A (IgA) maintains commensal communities in the intestine while preventing dysbiosis. IgA generated against intestinal microbes assures the simultaneous binding to multiple, diverse commensal-derived antigens. However, the exact mechanisms by which B cells mount broadly reactive IgA to the gut microbiome remains elusive. Here, we have shown that IgA B cell receptor (BCR) is required for B cell fitness during the germinal center (GC) reaction in Peyer's patches (PPs) and for generation of gut-homing plasma cells (PCs). We demonstrate that IgA BCR drove heightened intracellular signaling in mouse and human B cells, and as a consequence, IgA+ B cells received stronger positive selection cues. Mechanistically, IgA BCR signaling offset Fas-mediated death, possibly rescuing low-affinity B cells to promote a broad humoral response to commensals. Our findings reveal an additional mechanism linking BCR signaling, B cell fate, and antibody production location, which have implications for how intestinal antigen recognition shapes humoral immunity.
Collapse
Affiliation(s)
- Fiona Raso
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Shuozhi Liu
- Seattle Children's Research Institute, Seattle, WA, USA
| | - Mikala J Simpson
- Experimental Immunology Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Gregory M Barton
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Christian T Mayer
- Experimental Immunology Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Mridu Acharya
- Seattle Children's Research Institute, Seattle, WA, USA; Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Jagan R Muppidi
- Lymphoid Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Ann Marshak-Rothstein
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Andrea Reboldi
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
6
|
Pabst O, Nowosad CR. B cells and the intestinal microbiome in time, space and place. Semin Immunol 2023; 69:101806. [PMID: 37473559 DOI: 10.1016/j.smim.2023.101806] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 07/08/2023] [Indexed: 07/22/2023]
Abstract
The gut immune system is shaped by the continuous interaction with the microbiota. Here we dissect temporal, spatial and contextual layers of gut B cell responses. The microbiota impacts on the selection of the developing pool of pre-immune B cells that serves as substrate for B cell activation, expansion and differentiation. However, various aspects of the gut B cell response display unique features. In particular, occurrence of somatically mutated B cells, chronic gut germinal centers in T cell-deficient settings and polyreactive binding of gut IgA to the microbiota questioned the nature and microbiota-specificity of gut germinal centers. We propose a model to reconcile these observations incorporating recent work demonstrating microbiota-specificity of gut germinal centers. We speculate that adjuvant effects of the microbiota might modify permissiveness for B cell to enter and exit gut germinal centers. We propose that separating aspects of time, space and place facilitate the occasionally puzzling discussion of gut B cell responses to the microbiota.
Collapse
Affiliation(s)
- Oliver Pabst
- Institute of Molecular Medicine, RWTH Aachen University, Aachen, Germany.
| | - Carla R Nowosad
- Department of Pathology, NYU Grossman School of Medicine, New York University, New York, USA; Translational Immunology Center, NYU Grossman School of Medicine, New York University, New York, USA.
| |
Collapse
|
7
|
Mark M, Reich-Zeliger S, Greenstein E, Biram A, Chain B, Friedman N, Madi A. Viral infection reveals hidden sharing of TCR CDR3 sequences between individuals. Front Immunol 2023; 14:1199064. [PMID: 37325645 PMCID: PMC10266217 DOI: 10.3389/fimmu.2023.1199064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 05/16/2023] [Indexed: 06/17/2023] Open
Abstract
The T cell receptor is generated by a process of random and imprecise somatic recombination. The number of possible T cell receptors which this process can produce is enormous, greatly exceeding the number of T cells in an individual. Thus, the likelihood of identical TCRs being observed in multiple individuals (public TCRs) might be expected to be very low. Nevertheless such public TCRs have often been reported. In this study we explore the extent of TCR publicity in the context of acute resolving Lymphocytic choriomeningitis virus (LCMV) infection in mice. We show that the repertoire of effector T cells following LCMV infection contains a population of highly shared TCR sequences. This subset of TCRs has a distribution of naive precursor frequencies, generation probabilities, and physico-chemical CDR3 properties which lie between those of classic public TCRs, which are observed in uninfected repertoires, and the dominant private TCR repertoire. We have named this set of sequences "hidden public" TCRs, since they are only revealed following infection. A similar repertoire of hidden public TCRs can be observed in humans after a first exposure to SARS-COV-2. The presence of hidden public TCRs which rapidly expand following viral infection may therefore be a general feature of adaptive immunity, identifying an additional level of inter-individual sharing in the TCR repertoire which may form an important component of the effector and memory response.
Collapse
Affiliation(s)
- Michal Mark
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Erez Greenstein
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Adi Biram
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Benny Chain
- Division of Infection and Immunity, Department of Computer Science, University College London, London, United Kingdom
| | - Nir Friedman
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Asaf Madi
- Department of Pathology, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
8
|
Gurwicz N, Stoler-Barak L, Schwan N, Bandyopadhyay A, Meyer-Hermann M, Shulman Z. Tingible body macrophages arise from lymph node-resident precursors and uptake B cells by dendrites. J Exp Med 2023; 220:213834. [PMID: 36705667 PMCID: PMC9900388 DOI: 10.1084/jem.20222173] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/28/2023] Open
Abstract
Antibody affinity maturation depends on the formation of germinal centers (GCs) in lymph nodes. This process generates a massive number of apoptotic B cells, which are removed by a specialized subset of phagocytes, known as tingible body macrophages (TBMs). Although defects in these cells are associated with pathological conditions, the identity of their precursors and the dynamics of dying GC B cell disposal remained unknown. Here, we demonstrate that TBMs originate from pre-existing lymph node-resident precursors that enter the lymph node follicles in a GC-dependent manner. Intravital imaging shows that TBMs are stationary cells that selectively phagocytose GC B cells via highly dynamic protrusions and accommodate the final stages of B cell apoptosis. Cell-specific depletion and chimeric mouse models revealed that GC B cells drive TBM formation from bone marrow-derived precursors stationed within lymphoid organs prior to the immune challenge. Understanding TBM dynamics and function may explain the emergence of various antibody-mediated autoimmune conditions.
Collapse
Affiliation(s)
- Neta Gurwicz
- Department of Systems Immunology, Weizmann Institute of Science , Rehovot, Israel
| | - Liat Stoler-Barak
- Department of Systems Immunology, Weizmann Institute of Science , Rehovot, Israel
| | - Niklas Schwan
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research , Braunschweig, Germany
| | - Arnab Bandyopadhyay
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research , Braunschweig, Germany
| | - Michael Meyer-Hermann
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research , Braunschweig, Germany.,Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig , Braunschweig, Germany
| | - Ziv Shulman
- Department of Systems Immunology, Weizmann Institute of Science , Rehovot, Israel
| |
Collapse
|
9
|
Sollid LM, Iversen R. Tango of B cells with T cells in the making of secretory antibodies to gut bacteria. Nat Rev Gastroenterol Hepatol 2023; 20:120-128. [PMID: 36056203 DOI: 10.1038/s41575-022-00674-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/27/2022] [Indexed: 02/03/2023]
Abstract
Polymeric IgA and IgM are transported across the epithelial barrier from plasma cells in the lamina propria to exert a function in the gut lumen as secretory antibodies. Many secretory antibodies are reactive with the gut bacteria, and mounting evidence suggests that these antibodies are important for the host to control gut bacterial communities. However, we have incomplete knowledge of how bacteria-reactive secretory antibodies are formed. Antibodies from gut plasma cells often show bacterial cross-species reactivity, putting the degree of specificity behind anti-bacterial antibody responses into question. Such cross-species reactive antibodies frequently recognize non-genome-encoded membrane glycan structures. On the other hand, the T cell epitopes are peptides encoded in the bacterial genomes, thereby allowing a higher degree of predictable specificity on the T cell side of anti-bacterial immune responses. In this Perspective, we argue that the production of bacteria-reactive secretory antibodies is mainly controlled by the antigen specificity of T cells, which provide help to B cells. To be able to harness this system (for instance, for manipulation with vaccines), we need to obtain insight into the bacterial epitopes recognized by T cells in addition to characterizing the reactivity of the antibodies.
Collapse
Affiliation(s)
- Ludvig M Sollid
- K.G. Jebsen Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway. .,Department of Immunology, Oslo University Hospital - Rikshospitalet, Oslo, Norway.
| | - Rasmus Iversen
- K.G. Jebsen Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway. .,Department of Immunology, Oslo University Hospital - Rikshospitalet, Oslo, Norway.
| |
Collapse
|
10
|
GABA signaling enforces intestinal germinal center B cell differentiation. Proc Natl Acad Sci U S A 2022; 119:e2215921119. [PMID: 36279432 PMCID: PMC9636909 DOI: 10.1073/pnas.2215921119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recent compelling results indicate possible links between neurotransmitters, intestinal mucosal IgA
+
B cell responses, and immunoglobulin A nephropathy (IgAN) pathogenesis. Here, we demonstrated that γ-amino butyric acid (GABA) transporter-2 (GAT-2) deficiency induces intestinal germinal center (GC) B cell differentiation and worsens the symptoms of IgAN in a mouse model. Mechanistically, GAT-2 deficiency enhances GC B cell differentiation through activation of GABA–mammalian target of rapamycin complex 1 (mTORC1) signaling. In addition, IgAN patients have lower GAT-2 expression but higher activation of mTORC1 in blood B cells, and both are correlated with kidney function in IgAN patients. Collectively, this study describes GABA signaling–mediated intestinal mucosal immunity as a previously unstudied pathogenesis mechanism of IgAN and challenges the current paradigms of IgAN.
Collapse
|
11
|
Ng KW, Hobbs A, Wichmann C, Victora GD, Donaldson GP. B cell responses to the gut microbiota. Adv Immunol 2022; 155:95-131. [PMID: 36357013 DOI: 10.1016/bs.ai.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Most antibody produced by humans originates from mucosal B cell responses. The rules, mechanisms, and outcomes of this process are distinct from B cell responses to infection. Within the context of the intestine, we discuss the induction of follicular B cell responses by microbiota, the development and maintenance of mucosal antibody-secreting cells, and the unusual impacts of mucosal antibody on commensal bacteria. Much remains to be learned about the interplay between B cells and the microbiota, but past and present work hints at a complex, nuanced relationship that may be critical to the way the mammalian gut fosters a beneficial microbial ecosystem.
Collapse
Affiliation(s)
- Kevin W Ng
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, United States
| | - Alvaro Hobbs
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, United States
| | - Christopher Wichmann
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, United States; Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, United States; Immune Regulation Group, Department of Pediatrics, University Medical Center Rostock, Rostock, Germany
| | - Gabriel D Victora
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, United States.
| | - Gregory P Donaldson
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, United States.
| |
Collapse
|
12
|
Liu J, Shulman Z. Affinity-based clonal selection in Peyer's patches. Curr Opin Immunol 2021; 74:100-105. [PMID: 34847473 DOI: 10.1016/j.coi.2021.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/07/2021] [Accepted: 11/08/2021] [Indexed: 11/19/2022]
Abstract
Effective long-lasting immunity depends on the generation of protective antibodies that restrict the invasion of harmful pathogens. The germinal center (GC) is a microanatomical site at which B cells acquire random somatic mutations in their immunoglobulin genes followed by affinity-based selection. Whereas this process was extensively studied in lymph nodes and spleen, less is known about GCs located in mucosal tissues lymphoid organs, such as the Peyer's patches (PPs). These lymphoid organs have a special structure and host a unique niche known as the subepithelial dome (SED), where B cell activation and class switch recombination to IgA take place before GC seeding. As opposed to typical lymph-nodes, the PPs host chronic GC reactions that are driven by gut-bacteria. Direct evidence for antibody affinity maturation in PPs, and competition between B cells for T cell help was recently obtained. Here, we discuss these findings and how they complement each other.
Collapse
Affiliation(s)
- Jingjing Liu
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Ziv Shulman
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
13
|
Schmiedel D, Hezroni H, Hamburg A, Shulman Z. Brg1 Supports B Cell Proliferation and Germinal Center Formation Through Enhancer Activation. Front Immunol 2021; 12:705848. [PMID: 34539636 PMCID: PMC8440861 DOI: 10.3389/fimmu.2021.705848] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/11/2021] [Indexed: 12/31/2022] Open
Abstract
Activation and differentiation of B cells depend on extensive rewiring of gene expression networks through changes in chromatin structure and accessibility. The chromatin remodeling complex BAF with its catalytic subunit Brg1 was previously identified as an essential regulator of early B cell development, however, how Brg1 orchestrates gene expression during mature B cell activation is less clear. Here, we find that Brg1 is required for B cell proliferation and germinal center formation through selective interactions with enhancers. Brg1 recruitment to enhancers following B cell activation was associated with increased chromatin accessibility and transcriptional activation of their coupled promoters, thereby regulating the expression of cell cycle-associated genes. Accordingly, Brg1-deficient B cells were unable to mount germinal center reactions and support the formation of class-switched plasma cells. Our findings show that changes in B cell transcriptomes that support B cell proliferation and GC formation depend on enhancer activation by Brg1. Thus, the BAF complex plays a critical role during the onset of the humoral immune response.
Collapse
Affiliation(s)
- Dominik Schmiedel
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Hadas Hezroni
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Amit Hamburg
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Ziv Shulman
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
14
|
Seikrit C, Pabst O. The immune landscape of IgA induction in the gut. Semin Immunopathol 2021; 43:627-637. [PMID: 34379174 PMCID: PMC8551147 DOI: 10.1007/s00281-021-00879-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/09/2021] [Indexed: 12/14/2022]
Abstract
Antibodies are key elements of protective immunity. In the mucosal immune system in particular, secretory immunoglobulin A (SIgA), the most abundantly produced antibody isotype, protects against infections, shields the mucosal surface from toxins and environmental factors, and regulates immune homeostasis and a peaceful coexistence with our microbiota. However, the dark side of IgA biology promotes the formation of immune complexes and provokes pathologies, e.g., IgA nephropathy (IgAN). The precise mechanisms of how IgA responses become deregulated and pathogenic in IgAN remain unresolved. Yet, as the field of microbiota research moved into the limelight, our basic understanding of IgA biology has been taking a leap forward. Here, we discuss the structure of IgA, the anatomical and cellular foundation of mucosal antibody responses, and current concepts of how we envision the interaction of SIgA and the microbiota. We center on key concepts in the field while taking account of both historic findings and exciting new observations to provide a comprehensive groundwork for the understanding of IgA biology from the perspective of a mucosal immunologist.
Collapse
Affiliation(s)
- Claudia Seikrit
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen, Germany
| | - Oliver Pabst
- Institute of Molecular Medicine, RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany.
| |
Collapse
|
15
|
Bemark M, Angeletti D. Know your enemy or find your friend?-Induction of IgA at mucosal surfaces. Immunol Rev 2021; 303:83-102. [PMID: 34331314 PMCID: PMC7612940 DOI: 10.1111/imr.13014] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 12/15/2022]
Abstract
Most antibodies produced in the body are of the IgA class. The dominant cell population producing them are plasma cells within the lamina propria of the gastrointestinal tract, but many IgA-producing cells are also found in the airways, within mammary tissues, the urogenital tract and inside the bone marrow. Most IgA antibodies are transported into the lumen by epithelial cells as part of the mucosal secretions, but they are also present in serum and other body fluids. A large part of the commensal microbiota in the gut is covered with IgA antibodies, and it has been demonstrated that this plays a role in maintaining a healthy balance between the host and the bacteria. However, IgA antibodies also play important roles in neutralizing pathogens in the gastrointestinal tract and the upper airways. The distinction between the two roles of IgA - protective and balance-maintaining - not only has implications on function but also on how the production is regulated. Here, we discuss these issues with a special focus on gut and airways.
Collapse
Affiliation(s)
- Mats Bemark
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Immunology and Transfusion Medicine, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Davide Angeletti
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
16
|
Hart AP, Laufer TM. A review of signaling and transcriptional control in T follicular helper cell differentiation. J Leukoc Biol 2021; 111:173-195. [PMID: 33866600 DOI: 10.1002/jlb.1ri0121-066r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
T follicular helper (Tfh) cells are a critical component of adaptive immunity and assist in optimal Ab-mediated defense. Multiple effector functions of Tfh support germinal center B cell survival, Ab class switching, and plasma cell maturation. In the past 2 decades, the phenotype and functional characteristics of GC Tfh have been clarified allowing for robust studies of the Th subset including activation signals and environmental cues controlling Tfh differentiation and migration during an immune response. A unique, 2-step differentiation process of Tfh has been proposed but the mechanisms underlying transition between unstable Tfh precursors and functional mature Tfh remain elusive. Likewise, newly identified transcriptional regulators of Tfh development have not yet been incorporated into our understanding of how these cells might function in disease. Here, we review the signals and downstream transcription factors that shape Tfh differentiation including what is known about the epigenetic processes that maintain Tfh identity. It is proposed that further evaluation of the stepwise differentiation pattern of Tfh will yield greater insights into how these cells become dysregulated in autoimmunity.
Collapse
Affiliation(s)
- Andrew P Hart
- Division of Rheumatology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Terri M Laufer
- Division of Rheumatology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Division of Rheumatology, Department of Medicine, Corporal Michael C. Crescenz VA Medical Center, Philadelphia, PA, 19104, USA
| |
Collapse
|
17
|
Nowosad CR, Mesin L, Castro TBR, Wichmann C, Donaldson GP, Araki T, Schiepers A, Lockhart AAK, Bilate AM, Mucida D, Victora GD. Tunable dynamics of B cell selection in gut germinal centres. Nature 2020; 588:321-326. [PMID: 33116306 PMCID: PMC7726069 DOI: 10.1038/s41586-020-2865-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 07/29/2020] [Indexed: 02/06/2023]
Abstract
Germinal centers (GCs), structures normally associated with B cell immunoglobulin (Ig) hypermutation and development of high-affinity antibodies upon infection or immunization, are present in gut-associated lymphoid organs of humans and mice under steady state. Gut-associated (ga)GCs can support antibody responses to enteric infections and immunization1. However, whether B cell selection and antibody affinity maturation can take place in face of the chronic and diverse antigenic stimulation characteristic of steady-state gaGCs is less clear2–8. Combining multicolor “Brainbow” fate-mapping and single-cell Ig sequencing, we find that 5–10% of gaGCs from specific pathogen-free (SPF) mice contained highly-dominant “winner” clones at steady state, despite rapid turnover of GC B cells. Monoclonal antibodies (mAbs) derived from these clones showed increased binding to commensal bacteria compared to their unmutated ancestors, consistent with antigen-driven selection and affinity maturation. Frequency of highly-selected gaGCs was markedly higher in germ-free (GF) than in SPF mice, and winner B cells in GF gaGCs were enriched in public IgH clonotypes found across multiple individuals, indicating strong B cell receptor (BCR)-driven selection in the absence of microbiota. Vertical colonization of GF mice with a defined microbial consortium (Oligo-MM12) did not eliminate GF-associated clonotypes, yet induced a concomitant commensal-specific, affinity-matured B cell response. Thus, positive selection can take place in steady-state gaGCs, at a rate that is tunable over a wide range by the presence and composition of the microbiota.
Collapse
Affiliation(s)
- Carla R Nowosad
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, USA.,Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA
| | - Luka Mesin
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, USA
| | - Tiago B R Castro
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, USA.,Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA
| | - Christopher Wichmann
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA.,Mucosal Immunology Group, Department of Pediatrics, University Medical Center Rostock, Rostock, Germany
| | - Gregory P Donaldson
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA
| | - Tatsuya Araki
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, USA
| | - Ariën Schiepers
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, USA
| | | | - Angelina M Bilate
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA
| | - Daniel Mucida
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA.
| | - Gabriel D Victora
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
18
|
Biram A, Shulman Z. T cell help to B cells: Cognate and atypical interactions in peripheral and intestinal lymphoid tissues. Immunol Rev 2020; 296:36-47. [PMID: 32557712 DOI: 10.1111/imr.12890] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/18/2020] [Accepted: 05/21/2020] [Indexed: 12/12/2022]
Abstract
Enduring immunity against harmful pathogens depends on the generation of immunological memory. Serum immunoglobulins are constantly secreted by long-lived antibody-producing cells, which provide extended protection from recurrent exposures. These cells originate mainly from germinal center structures, wherein B cells introduce mutations to their immunoglobulin genes followed by affinity-based selection. Generation of high-affinity antibodies relies on physical contacts between T and B cells, a process that facilitates the delivery of fate decision signals. T-B cellular engagements are mediated through interactions between the T cell receptor and its cognate peptide presented on B cell major histocompatibility class II molecules. Here, we describe the cellular and molecular aspects of these cognate T-B interactions, and highlight exceptional cases, especially those arising at intestinal lymphoid organs, at which T cells provide help to B cells in an atypical manner, independent of T cell specificity.
Collapse
Affiliation(s)
- Adi Biram
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Ziv Shulman
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|