1
|
Bian Z, Xu Z, Peer A, Choi Y, Priest SJ, Akritidou K, Dasgupta A, Dahlmann TA, Kück U, Nowrousian M, Sachs MS, Sun S, Heitman J. Essential genes encoded by the mating-type locus of the human fungal pathogen Cryptococcus neoformans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.02.626420. [PMID: 39677606 PMCID: PMC11642766 DOI: 10.1101/2024.12.02.626420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Fungal sexual reproduction is controlled by the mating-type (MAT) locus. In contrast to a majority of species in the phylum Basidiomycota that have tetrapolar mating-type systems, the opportunistic human pathogen Cryptococcus neoformans employs a bipolar mating-type system, with two mating types (a and α) determined by a single MAT locus that is unusually large (~120 kb) and contains more than 20 genes. While several MAT genes are associated with mating and sexual development, others control conserved cellular processes (e.g. cargo transport and protein synthesis), of which five (MYO2, PRT1, RPL22, RPL39, and RPO41) have been hypothesized to be essential. In this study, through genetic analysis involving sporulation of heterozygous diploid deletion mutants, as well as in some cases construction and analyses of conditional expression alleles of these genes, we confirmed that with the exception of MYO2, both alleles of the other four MAT genes are indeed essential for cell viability. We further showed that while MYO2 is not essential, its function is critical for infectious spore production, faithful cytokinesis, adaptation for growth at high temperature, and pathogenicity in vivo. Our results demonstrate the presence of essential genes in the MAT locus that are divergent between cells of opposite mating types. We discuss possible mechanisms to maintain functional alleles of these essential genes in a rapidly-evolving genomic region in the context of fungal sexual reproduction and mating-type evolution.
Collapse
Affiliation(s)
- Zhuyun Bian
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Ziyan Xu
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Anushka Peer
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Yeseul Choi
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Shelby J. Priest
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Konstantina Akritidou
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Ananya Dasgupta
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Tim A. Dahlmann
- Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Bochum, Germany
| | - Ulrich Kück
- Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Bochum, Germany
| | - Minou Nowrousian
- Lehrstuhl für Molekulare und Zelluläre Botanik, Ruhr-Universität Bochum, Germany
| | - Matthew S. Sachs
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
2
|
Billmyre RB. mSphere of Influence: When a sequencer is more than a sequencer. mSphere 2024; 9:e0043324. [PMID: 39254324 PMCID: PMC11520298 DOI: 10.1128/msphere.00433-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024] Open
Abstract
Blake Billmyre uses functional genomics to help understand the biology of fungal pathogens, with an emphasis on evolution of virulence relevant traits and drug resistance. In this mSphere of Influence article, he reflects on how two papers (Liachko et al., "High-resolution mapping, characterization, and optimization of autonomously replicating sequences in yeast," Genome Research, 2013, and Guo et al., "Integration profiling of gene function with dense maps of transposon integration," Genetics, 2013) impacted his research trajectory and goals. These articles show the power of creative use of sequencing as a tool to drive understanding of fundamental biology.
Collapse
Affiliation(s)
- R. Blake Billmyre
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia, USA
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
- Department of Microbiology, Franklin College of Arts and Sciences, University of Georgia, Athens, Georgia, USA
- Department of Genetics, Franklin College of Arts and Sciences, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
3
|
Charlton SJ, Flury V, Kanoh Y, Genzor AV, Kollenstart L, Ao W, Brøgger P, Weisser MB, Adamus M, Alcaraz N, Delvaux de Fenffe CM, Mattiroli F, Montoya G, Masai H, Groth A, Thon G. The fork protection complex promotes parental histone recycling and epigenetic memory. Cell 2024; 187:5029-5047.e21. [PMID: 39094569 PMCID: PMC11383432 DOI: 10.1016/j.cell.2024.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 03/16/2024] [Accepted: 07/09/2024] [Indexed: 08/04/2024]
Abstract
The inheritance of parental histones across the replication fork is thought to mediate epigenetic memory. Here, we reveal that fission yeast Mrc1 (CLASPIN in humans) binds H3-H4 tetramers and operates as a central coordinator of symmetric parental histone inheritance. Mrc1 mutants in a key connector domain disrupted segregation of parental histones to the lagging strand comparable to Mcm2 histone-binding mutants. Both mutants showed clonal and asymmetric loss of H3K9me-mediated gene silencing. AlphaFold predicted co-chaperoning of H3-H4 tetramers by Mrc1 and Mcm2, with the Mrc1 connector domain bridging histone and Mcm2 binding. Biochemical and functional analysis validated this model and revealed a duality in Mrc1 function: disabling histone binding in the connector domain disrupted lagging-strand recycling while another histone-binding mutation impaired leading strand recycling. We propose that Mrc1 toggles histones between the lagging and leading strand recycling pathways, in part by intra-replisome co-chaperoning, to ensure epigenetic transmission to both daughter cells.
Collapse
Affiliation(s)
- Sebastian Jespersen Charlton
- Department of Biology, University of Copenhagen, Copenhagen 2200, Denmark; Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen 2200, Denmark
| | - Valentin Flury
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen 2200, Denmark
| | - Yutaka Kanoh
- Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | | | - Leonie Kollenstart
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen 2200, Denmark
| | - Wantong Ao
- Department of Biology, University of Copenhagen, Copenhagen 2200, Denmark
| | - Peter Brøgger
- Department of Biology, University of Copenhagen, Copenhagen 2200, Denmark
| | - Melanie Bianca Weisser
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen 2200, Denmark
| | - Marek Adamus
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen 2200, Denmark
| | - Nicolas Alcaraz
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen 2200, Denmark
| | | | - Francesca Mattiroli
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Utrecht, The Netherlands
| | - Guillermo Montoya
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen 2200, Denmark
| | - Hisao Masai
- Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Anja Groth
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen 2200, Denmark; Biotech Research & Innovation Centre, University of Copenhagen, Copenhagen 2200, Denmark; Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen 2200, Denmark.
| | - Geneviève Thon
- Department of Biology, University of Copenhagen, Copenhagen 2200, Denmark.
| |
Collapse
|
4
|
Billmyre RB, Craig CJ, Lyon J, Reichardt C, Eickbush MT, Zanders SE. Saturation transposon mutagenesis enables genome-wide identification of genes required for growth and fluconazole resistance in the human fungal pathogen Cryptococcus neoformans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.28.605507. [PMID: 39131341 PMCID: PMC11312461 DOI: 10.1101/2024.07.28.605507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Fungi can cause devastating invasive infections, typically in immunocompromised patients. Treatment is complicated both by the evolutionary similarity between humans and fungi and by the frequent emergence of drug resistance. Studies in fungal pathogens have long been slowed by a lack of high-throughput tools and community resources that are common in model organisms. Here we demonstrate a high-throughput transposon mutagenesis and sequencing (TN-seq) system in Cryptococcus neoformans that enables genome-wide determination of gene essentiality. We employed a random forest machine learning approach to classify the Cryptococcus neoformans genome as essential or nonessential, predicting 1,465 essential genes, including 302 that lack human orthologs. These genes are ideal targets for new antifungal drug development. TN-seq also enables genome-wide measurement of the fitness contribution of genes to phenotypes of interest. As proof of principle, we demonstrate the genome-wide contribution of genes to growth in fluconazole, a clinically used antifungal. We show a novel role for the well-studied RIM101 pathway in fluconazole susceptibility. We also show that 5' insertions of transposons can drive sensitization of essential genes, enabling screenlike assays of both essential and nonessential components of the genome. Using this approach, we demonstrate a role for mitochondrial function in fluconazole sensitivity, such that tuning down many essential mitochondrial genes via 5' insertions can drive resistance to fluconazole. Our assay system will be valuable in future studies of C. neoformans, particularly in examining the consequences of genotypic diversity.
Collapse
Affiliation(s)
- R. Blake Billmyre
- Department of Pharmaceutical and Biological Sciences, College of Pharmacy, University of Georgia, GA, United States
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, GA, United States
- Department of Microbiology, Franklin College of Arts and Sciences, University of Georgia, GA, United States
- Department of Genetics, Franklin College of Arts and Sciences, University of Georgia, GA, United States
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | | | - Joshua Lyon
- Department of Pharmaceutical and Biological Sciences, College of Pharmacy, University of Georgia, GA, United States
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, GA, United States
| | - Claire Reichardt
- Department of Pharmaceutical and Biological Sciences, College of Pharmacy, University of Georgia, GA, United States
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, GA, United States
- Department of Microbiology, Franklin College of Arts and Sciences, University of Georgia, GA, United States
| | | | - Sarah E. Zanders
- Stowers Institute for Medical Research, Kansas City, MO, USA
- Department of Cell Biology and Physiology, University of Kansas Medical Center, KS, United States
| |
Collapse
|
5
|
Manivannan V, Inamdar MM, Padinhateeri R. Role of diffusion and reaction of the constituents in spreading of histone modification marks. PLoS Comput Biol 2024; 20:e1012235. [PMID: 38991050 PMCID: PMC11265668 DOI: 10.1371/journal.pcbi.1012235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 07/23/2024] [Accepted: 06/06/2024] [Indexed: 07/13/2024] Open
Abstract
Cells switch genes ON or OFF by altering the state of chromatin via histone modifications at specific regulatory locations along the chromatin polymer. These gene regulation processes are carried out by a network of reactions in which the histone marks spread to neighboring regions with the help of enzymes. In the literature, this spreading has been studied as a purely kinetic, non-diffusive process considering the interactions between neighboring nucleosomes. In this work, we go beyond this framework and study the spreading of modifications using a reaction-diffusion (RD) model accounting for the diffusion of the constituents. We quantitatively segregate the modification profiles generated from kinetic and RD models. The diffusion and degradation of enzymes set a natural length scale for limiting the domain size of modification spreading, and the resulting enzyme limitation is inherent in our model. We also demonstrate the emergence of confined modification domains without the explicit requirement of a nucleation site. We explore polymer compaction effects on spreading and show that single-cell domains may differ from averaged profiles. We find that the modification profiles from our model are comparable with existing H3K9me3 data of S. pombe.
Collapse
Affiliation(s)
- Vinoth Manivannan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Mandar M. Inamdar
- Department of Civil Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Ranjith Padinhateeri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
- Sunita Sanghi Centre of Aging and Neurodegenerative Diseases, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
6
|
Liu JJ, Hou YK, Wang X, Zhou XT, Yin JY, Nie SP. Recent advances in the biosynthesis of fungal glucan structural diversity. Carbohydr Polym 2024; 329:121782. [PMID: 38286552 DOI: 10.1016/j.carbpol.2024.121782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/31/2023] [Accepted: 01/02/2024] [Indexed: 01/31/2024]
Abstract
Glucans are the most abundant class of macromolecule polymers in fungi, which are commonly found in Ascomycota and Basidiomycota. Fungal glucans are not only essential for cell integrity and function but also crucial for the immense industrial interest in high value applications. They present a variety of structural characteristics at the nanoscale due to the high regulation of genes and the involvement of stochastic processes in synthesis. However, although recent findings have demonstrated the genes of glucans synthesis are relatively conserved across diverse fungi, the formation and organization of diverse glucan structures is still unclear in fungi. Here, we summarize the structural features of fungal glucans and the recent developments in the mechanisms of glucans biosynthesis. Furthermore, we propose the engineering strategies of targeted glucan synthesis and point out the remaining challenges in the synthetic process. Understanding the synthesis process of diverse glucans is necessary for tailoring high value glucan towards specific applications. This engineering strategy contributes to enable the sustainable and efficient production of glucan diversity.
Collapse
Affiliation(s)
- Jin-Jin Liu
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province 330047, China
| | - Yu-Ke Hou
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province 330047, China
| | - Xin Wang
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province 330047, China
| | - Xing-Tao Zhou
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province 330047, China
| | - Jun-Yi Yin
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province 330047, China.
| | - Shao-Ping Nie
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province 330047, China; Food Laboratory of Zhongyuan, Luo he 462300, Henan, China.
| |
Collapse
|
7
|
MacKinnon S, Pagé V, Chen JJ, Shariat-Panahi A, Martin RD, Hébert TE, Tanny JC. Spt5 C-terminal repeat domain phosphorylation and length negatively regulate heterochromatin through distinct mechanisms. PLoS Genet 2023; 19:e1010492. [PMID: 37939109 PMCID: PMC10659198 DOI: 10.1371/journal.pgen.1010492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/20/2023] [Accepted: 10/24/2023] [Indexed: 11/10/2023] Open
Abstract
Heterochromatin is a condensed chromatin structure that represses transcription of repetitive DNA elements and developmental genes, and is required for genome stability. Paradoxically, transcription of heterochromatic sequences is required for establishment of heterochromatin in diverse eukaryotic species. As such, components of the transcriptional machinery can play important roles in establishing heterochromatin. How these factors coordinate with heterochromatin proteins at nascent heterochromatic transcripts remains poorly understood. In the model eukaryote Schizosaccharomyces pombe (S. pombe), heterochromatin nucleation can be coupled to processing of nascent transcripts by the RNA interference (RNAi) pathway, or to other post-transcriptional mechanisms that are RNAi-independent. Here we show that the RNA polymerase II processivity factor Spt5 negatively regulates heterochromatin in S. pombe through its C-terminal domain (CTD). The Spt5 CTD is analogous to the CTD of the RNA polymerase II large subunit, and is comprised of multiple repeats of an amino acid motif that is phosphorylated by Cdk9. We provide evidence that genetic ablation of Spt5 CTD phosphorylation results in aberrant RNAi-dependent nucleation of heterochromatin at an ectopic location, as well as inappropriate spread of heterochromatin proximal to centromeres. In contrast, truncation of Spt5 CTD repeat number enhanced RNAi-independent heterochromatin formation and bypassed the requirement for RNAi. We relate these phenotypes to the known Spt5 CTD-binding factor Prf1/Rtf1. This separation of function argues that Spt5 CTD phosphorylation and CTD length restrict heterochromatin through unique mechanisms. More broadly, our findings argue that length and phosphorylation of the Spt5 CTD repeat array have distinct regulatory effects on transcription.
Collapse
Affiliation(s)
- Sarah MacKinnon
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - Viviane Pagé
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - Jennifer J. Chen
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - Ali Shariat-Panahi
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - Ryan D. Martin
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - Terence E. Hébert
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - Jason C. Tanny
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| |
Collapse
|
8
|
Grewal SIS. The molecular basis of heterochromatin assembly and epigenetic inheritance. Mol Cell 2023; 83:1767-1785. [PMID: 37207657 PMCID: PMC10309086 DOI: 10.1016/j.molcel.2023.04.020] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 04/10/2023] [Accepted: 04/20/2023] [Indexed: 05/21/2023]
Abstract
Heterochromatin plays a fundamental role in gene regulation, genome integrity, and silencing of repetitive DNA elements. Histone modifications are essential for the establishment of heterochromatin domains, which is initiated by the recruitment of histone-modifying enzymes to nucleation sites. This leads to the deposition of histone H3 lysine-9 methylation (H3K9me), which provides the foundation for building high-concentration territories of heterochromatin proteins and the spread of heterochromatin across extended domains. Moreover, heterochromatin can be epigenetically inherited during cell division in a self-templating manner. This involves a "read-write" mechanism where pre-existing modified histones, such as tri-methylated H3K9 (H3K9me3), support chromatin association of the histone methyltransferase to promote further deposition of H3K9me. Recent studies suggest that a critical density of H3K9me3 and its associated factors is necessary for the propagation of heterochromatin domains across multiple generations. In this review, I discuss the key experiments that have highlighted the importance of modified histones for epigenetic inheritance.
Collapse
Affiliation(s)
- Shiv I S Grewal
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
9
|
Soni K, Sivadas A, Horvath A, Dobrev N, Hayashi R, Kiss L, Simon B, Wild K, Sinning I, Fischer T. Mechanistic insights into RNA surveillance by the canonical poly(A) polymerase Pla1 of the MTREC complex. Nat Commun 2023; 14:772. [PMID: 36774373 PMCID: PMC9922296 DOI: 10.1038/s41467-023-36402-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 01/31/2023] [Indexed: 02/13/2023] Open
Abstract
The S. pombe orthologue of the human PAXT connection, Mtl1-Red1 Core (MTREC), is an eleven-subunit complex that targets cryptic unstable transcripts (CUTs) to the nuclear RNA exosome for degradation. It encompasses the canonical poly(A) polymerase Pla1, responsible for polyadenylation of nascent RNA transcripts as part of the cleavage and polyadenylation factor (CPF/CPSF). In this study we identify and characterise the interaction between Pla1 and the MTREC complex core component Red1 and analyse the functional relevance of this interaction in vivo. Our crystal structure of the Pla1-Red1 complex shows that a 58-residue fragment in Red1 binds to the RNA recognition motif domain of Pla1 and tethers it to the MTREC complex. Structure-based Pla1-Red1 interaction mutations show that Pla1, as part of MTREC complex, hyper-adenylates CUTs for their efficient degradation. Interestingly, the Red1-Pla1 interaction is also required for the efficient assembly of the fission yeast facultative heterochromatic islands. Together, our data suggest a complex interplay between the RNA surveillance and 3'-end processing machineries.
Collapse
Affiliation(s)
- Komal Soni
- Heidelberg University Biochemistry Center (BZH), INF 328, D-69120, Heidelberg, Germany
| | - Anusree Sivadas
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| | - Attila Horvath
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| | - Nikolay Dobrev
- Heidelberg University Biochemistry Center (BZH), INF 328, D-69120, Heidelberg, Germany
| | - Rippei Hayashi
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| | - Leo Kiss
- Heidelberg University Biochemistry Center (BZH), INF 328, D-69120, Heidelberg, Germany
| | - Bernd Simon
- European Molecular Biology Laboratory (EMBL), Meyerhofstr, 1, D-69117, Heidelberg, Germany
| | - Klemens Wild
- Heidelberg University Biochemistry Center (BZH), INF 328, D-69120, Heidelberg, Germany
| | - Irmgard Sinning
- Heidelberg University Biochemistry Center (BZH), INF 328, D-69120, Heidelberg, Germany.
| | - Tamás Fischer
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia.
| |
Collapse
|
10
|
RNA-Mediated Regulation of Meiosis in Budding Yeast. Noncoding RNA 2022; 8:ncrna8060077. [PMID: 36412912 PMCID: PMC9680404 DOI: 10.3390/ncrna8060077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
Cells change their physiological state in response to environmental cues. In the absence of nutrients, unicellular fungi such as budding yeast exit mitotic proliferation and enter the meiotic cycle, leading to the production of haploid cells that are encased within spore walls. These cell state transitions are orchestrated in a developmentally coordinated manner. Execution of the meiotic cell cycle program in budding yeast, Saccharomyces cerevisiae, is regulated by the key transcription factor, Ime1. Recent developments have uncovered the role of non-coding RNA in the regulation of Ime1 and meiosis. In this review, we summarize the role of ncRNA-mediated and RNA homeostasis-based processes in the regulation of meiosis in Saccharomyces cerevisiae.
Collapse
|
11
|
Genome-wide quantification of contributions to sexual fitness identifies genes required for spore viability and health in fission yeast. PLoS Genet 2022; 18:e1010462. [DOI: 10.1371/journal.pgen.1010462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/16/2022] [Accepted: 10/03/2022] [Indexed: 11/07/2022] Open
Abstract
Numerous genes required for sexual reproduction remain to be identified even in simple model species like Schizosaccharomyces pombe. To address this, we developed an assay in S. pombe that couples transposon mutagenesis with high-throughput sequencing (TN-seq) to quantitatively measure the fitness contribution of nonessential genes across the genome to sexual reproduction. This approach identified 532 genes that contribute to sex, including more than 200 that were not previously annotated to be involved in the process, of which more than 150 have orthologs in vertebrates. Among our verified hits was an uncharacterized gene, ifs1 (important for sex), that is required for spore viability. In two other hits, plb1 and alg9, we observed a novel mutant phenotype of poor spore health wherein viable spores are produced, but the spores exhibit low fitness and are rapidly outcompeted by wild type. Finally, we fortuitously discovered that a gene previously thought to be essential, sdg1 (social distancing gene), is instead required for growth at low cell densities and can be rescued by conditioned medium. Our assay will be valuable in further studies of sexual reproduction in S. pombe and identifies multiple candidate genes that could contribute to sexual reproduction in other eukaryotes, including humans.
Collapse
|
12
|
Li Y, Molyneaux N, Zhang H, Zhou G, Kerr C, Adams MD, Berkner KL, Runge KW. A multiplexed, three-dimensional pooling and next-generation sequencing strategy for creating barcoded mutant arrays: construction of a Schizosaccharomyces pombe transposon insertion library. Nucleic Acids Res 2022; 50:e102. [PMID: 35766443 PMCID: PMC9508820 DOI: 10.1093/nar/gkac546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/02/2022] [Accepted: 06/12/2022] [Indexed: 11/14/2022] Open
Abstract
Arrayed libraries of defined mutants have been used to elucidate gene function in the post-genomic era. Yeast haploid gene deletion libraries have pioneered this effort, but are costly to construct, do not reveal phenotypes that may occur with partial gene function and lack essential genes required for growth. We therefore devised an efficient method to construct a library of barcoded insertion mutants with a wider range of phenotypes that can be generalized to other organisms or collections of DNA samples. We developed a novel but simple three-dimensional pooling and multiplexed sequencing approach that leveraged sequence information to reduce the number of required sequencing reactions by orders of magnitude, and were able to identify the barcode sequences and DNA insertion sites of 4391 Schizosaccharomyces pombe insertion mutations with only 40 sequencing preparations. The insertion mutations are in the genes and untranslated regions of nonessential, essential and noncoding RNA genes, and produced a wider range of phenotypes compared to the cognate deletion mutants, including novel phenotypes. This mutant library represents both a proof of principle for an efficient method to produce novel mutant libraries and a valuable resource for the S. pombe research community.
Collapse
Affiliation(s)
- Yanhui Li
- Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, OH 44195, USA
- Department of Genetics and Genomic Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Neil Molyneaux
- Department of Genetics and Genomic Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Haitao Zhang
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, OH 44195, USA
| | - Gang Zhou
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, OH 44195, USA
| | - Carly Kerr
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, OH 44195, USA
| | - Mark D Adams
- Department of Genetics and Genomic Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Kathleen L Berkner
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, OH 44195, USA
| | - Kurt W Runge
- Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, OH 44195, USA
- Department of Genetics and Genomic Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, OH 44195, USA
| |
Collapse
|
13
|
Faber MW, Vo TV. Long RNA-Mediated Chromatin Regulation in Fission Yeast and Mammals. Int J Mol Sci 2022; 23:968. [PMID: 35055152 PMCID: PMC8778201 DOI: 10.3390/ijms23020968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/07/2022] [Accepted: 01/13/2022] [Indexed: 12/12/2022] Open
Abstract
As part of a complex network of genome control, long regulatory RNAs exert significant influences on chromatin dynamics. Understanding how this occurs could illuminate new avenues for disease treatment and lead to new hypotheses that would advance gene regulatory research. Recent studies using the model fission yeast Schizosaccharomyces pombe (S. pombe) and powerful parallel sequencing technologies have provided many insights in this area. This review will give an overview of key findings in S. pombe that relate long RNAs to multiple levels of chromatin regulation: histone modifications, gene neighborhood regulation in cis and higher-order chromosomal ordering. Moreover, we discuss parallels recently found in mammals to help bridge the knowledge gap between the study systems.
Collapse
Affiliation(s)
| | - Tommy V. Vo
- Department of Biochemistry and Molecular Biology, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA;
| |
Collapse
|
14
|
Shimada Y, Carl SH, Skribbe M, Flury V, Kuzdere T, Kempf G, Bühler M. An enhancer screen identifies new suppressors of small-RNA-mediated epigenetic gene silencing. PLoS Genet 2021; 17:e1009645. [PMID: 34157021 PMCID: PMC8253403 DOI: 10.1371/journal.pgen.1009645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 07/02/2021] [Accepted: 06/04/2021] [Indexed: 11/19/2022] Open
Abstract
Small non-protein coding RNAs are involved in pathways that control the genome at the level of chromatin. In Schizosaccharomyces pombe, small interfering RNAs (siRNAs) are required for the faithful propagation of heterochromatin that is found at peri-centromeric repeats. In contrast to repetitive DNA, protein-coding genes are refractory to siRNA-mediated heterochromatin formation, unless siRNAs are expressed in mutant cells. Here we report the identification of 20 novel mutant alleles that enable de novo formation of heterochromatin at a euchromatic protein-coding gene by using trans-acting siRNAs as triggers. For example, a single amino acid substitution in the pre-mRNA cleavage factor Yth1 enables siRNAs to trigger silent chromatin formation with unparalleled efficiency. Our results are consistent with a kinetic nascent transcript processing model for the inhibition of small-RNA-directed de novo formation of heterochromatin and lay a foundation for further mechanistic dissection of cellular activities that counteract epigenetic gene silencing.
Collapse
Affiliation(s)
- Yukiko Shimada
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Sarah H. Carl
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Merle Skribbe
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Valentin Flury
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Tahsin Kuzdere
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Georg Kempf
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Marc Bühler
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- University of Basel, Basel, Switzerland
- * E-mail:
| |
Collapse
|
15
|
Andric V, Rougemaille M. Long Non-Coding RNAs in the Control of Gametogenesis: Lessons from Fission Yeast. Noncoding RNA 2021; 7:ncrna7020034. [PMID: 34208016 PMCID: PMC8293462 DOI: 10.3390/ncrna7020034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/03/2021] [Accepted: 06/09/2021] [Indexed: 12/21/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) contribute to cell fate decisions by modulating genome expression and stability. In the fission yeast Schizosaccharomyces pombe, the transition from mitosis to meiosis results in a marked remodeling of gene expression profiles, which ultimately ensures gamete production and inheritance of genetic information to the offspring. This key developmental process involves a set of dedicated lncRNAs that shape cell cycle-dependent transcriptomes through a variety of mechanisms, including epigenetic modifications and the modulation of transcription, post-transcriptional and post-translational regulations, and that contribute to meiosis-specific chromosomal events. In this review, we summarize the biology of these lncRNAs, from their identification to mechanism of action, and discuss their regulatory role in the control of gametogenesis.
Collapse
Affiliation(s)
- Vedrana Andric
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France
- Institute Curie, PSL Research University, CNRS UMR3215, INSERM U934, 75005 Paris, France;
| | - Mathieu Rougemaille
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France
- Correspondence:
| |
Collapse
|
16
|
Spreading and epigenetic inheritance of heterochromatin require a critical density of histone H3 lysine 9 tri-methylation. Proc Natl Acad Sci U S A 2021; 118:2100699118. [PMID: 34035174 PMCID: PMC8179192 DOI: 10.1073/pnas.2100699118] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In multicellular organisms, a single genome gives rise to a multitude of cell types by enforcing appropriate gene expression patterns. Epigenetic mechanisms involving modification of histones, including tri-methylation of histone H3 lysine 9 (H3K9me3), assemble and propagate repressive heterochromatin to prevent untimely gene expression. Dysregulation of epigenetic gene-silencing mechanisms is a hallmark of a variety of diseases including cancer. However, the requirements for epigenetic transmission of heterochromatin are not well understood. This study reveals the mechanism by which methylated histones provide an epigenetic template for heterochromatin propagation. We discover that a critical threshold of H3K9me3 is required for effective chromatin-association of the histone methyltransferase, which binds to and catalyzes additional H3K9me to propagate heterochromatin and enforce stable gene silencing. Heterochromatin assembly requires methylation of histone H3 lysine 9 (H3K9me) and serves as a paradigm for understanding the importance of histone modifications in epigenetic genome control. Heterochromatin is nucleated at specific genomic sites and spreads across extended chromosomal domains to promote gene silencing. Moreover, heterochromatic structures can be epigenetically inherited in a self-templating manner, which is critical for stable gene repression. The spreading and inheritance of heterochromatin are believed to be dependent on preexisting H3K9 tri-methylation (H3K9me3), which is recognized by the histone methyltransferase Clr4/Suv39h via its chromodomain, to promote further deposition of H3K9me. However, the process involving the coupling of the “read” and “write” capabilities of histone methyltransferases is poorly understood. From an unbiased genetic screen, we characterize a dominant-negative mutation in histone H3 (H3G13D) that impairs the propagation of endogenous and ectopic heterochromatin domains in the fission yeast genome. H3G13D blocks methylation of H3K9 by the Clr4/Suv39h methyltransferase and acts in a dosage-dependent manner to interfere with the spreading and maintenance of heterochromatin. Our analyses show that the incorporation of unmethylatable histone H3G13D into chromatin decreases H3K9me3 density and thereby compromises the read-write capability of Clr4/Suv39h. Consistently, enhancing the affinity of Clr4/Suv39h for methylated H3K9 is sufficient to overcome the defects in heterochromatin assembly caused by H3G13D. Our work directly implicates methylated histones in the transmission of epigenetic memory and shows that a critical density threshold of H3K9me3 is required to promote epigenetic inheritance of heterochromatin through the read-write mechanism.
Collapse
|
17
|
Li F, Hung S, Esnault C, Levin HL. A protocol for transposon insertion sequencing in Schizosaccharomyces pombe to identify factors that maintain heterochromatin. STAR Protoc 2021; 2:100392. [PMID: 33855304 PMCID: PMC8024771 DOI: 10.1016/j.xpro.2021.100392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Transposon insertion sequencing (TIS) is a highly effective method used with bacteria to identify genes important for growth in any condition of interest. Previously, we adapted this method to identify essential genes of the yeast Schizosaccharomyces pombe. Here, we describe modifications used to identify genes necessary for the formation of centromeric heterochromatin. For complete details on the use and execution of this protocol, please refer to Lee et al. (2020). Procedure to prepare strains with plasmids that produce Hermes transposition Method to measure the accumulation of transposition events in liquid cultures Selection strategy to identify genes important for heterochromatin formation Library preparation and computational pipeline to analyze insertion site profiles
Collapse
Affiliation(s)
- Feng Li
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Stevephen Hung
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Caroline Esnault
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Henry L Levin
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
18
|
Stuparević I, Novačić A, Rahmouni AR, Fernandez A, Lamb N, Primig M. Regulation of the conserved 3'-5' exoribonuclease EXOSC10/Rrp6 during cell division, development and cancer. Biol Rev Camb Philos Soc 2021; 96:1092-1113. [PMID: 33599082 DOI: 10.1111/brv.12693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 01/31/2023]
Abstract
The conserved 3'-5' exoribonuclease EXOSC10/Rrp6 processes and degrades RNA, regulates gene expression and participates in DNA double-strand break repair and control of telomere maintenance via degradation of the telomerase RNA component. EXOSC10/Rrp6 is part of the multimeric nuclear RNA exosome and interacts with numerous proteins. Previous clinical, genetic, biochemical and genomic studies revealed the protein's essential functions in cell division and differentiation, its RNA substrates and its relevance to autoimmune disorders and oncology. However, little is known about the regulatory mechanisms that control the transcription, translation and stability of EXOSC10/Rrp6 during cell growth, development and disease and how these mechanisms evolved from yeast to human. Herein, we provide an overview of the RNA- and protein expression profiles of EXOSC10/Rrp6 during cell division, development and nutritional stress, and we summarize interaction networks and post-translational modifications across species. Additionally, we discuss how known and predicted protein interactions and post-translational modifications influence the stability of EXOSC10/Rrp6. Finally, we explore the idea that different EXOSC10/Rrp6 alleles, which potentially alter cellular protein levels or affect protein function, might influence human development and disease progression. In this review we interpret information from the literature together with genomic data from knowledgebases to inspire future work on the regulation of this essential protein's stability in normal and malignant cells.
Collapse
Affiliation(s)
- Igor Stuparević
- Laboratory of Biochemistry, Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, 10000, Croatia
| | - Ana Novačić
- Laboratory of Biochemistry, Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, 10000, Croatia
| | - A Rachid Rahmouni
- Centre de Biophysique Moléculaire, UPR4301 du CNRS, Orléans, 45071, France
| | - Anne Fernandez
- Institut de Génétique Humaine, UMR 9002 CNRS, Montpellier, France
| | - Ned Lamb
- Institut de Génétique Humaine, UMR 9002 CNRS, Montpellier, France
| | - Michael Primig
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, 35000, France
| |
Collapse
|
19
|
Andric V, Nevers A, Hazra D, Auxilien S, Menant A, Graille M, Palancade B, Rougemaille M. A scaffold lncRNA shapes the mitosis to meiosis switch. Nat Commun 2021; 12:770. [PMID: 33536434 PMCID: PMC7859202 DOI: 10.1038/s41467-021-21032-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 01/05/2021] [Indexed: 11/09/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) contribute to the regulation of gene expression in response to intra- or extracellular signals but the underlying molecular mechanisms remain largely unexplored. Here, we identify an uncharacterized lncRNA as a central player in shaping the meiotic gene expression program in fission yeast. We report that this regulatory RNA, termed mamRNA, scaffolds the antagonistic RNA-binding proteins Mmi1 and Mei2 to ensure their reciprocal inhibition and fine tune meiotic mRNA degradation during mitotic growth. Mechanistically, mamRNA allows Mmi1 to target Mei2 for ubiquitin-mediated downregulation, and conversely enables accumulating Mei2 to impede Mmi1 activity, thereby reinforcing the mitosis to meiosis switch. These regulations also occur within a unique Mmi1-containing nuclear body, positioning mamRNA as a spatially-confined sensor of Mei2 levels. Our results thus provide a mechanistic basis for the mutual control of gametogenesis effectors and further expand our vision of the regulatory potential of lncRNAs.
Collapse
Affiliation(s)
- Vedrana Andric
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Alicia Nevers
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
- University Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Ditipriya Hazra
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, Ecole polytechnique, Institut Polytechnique de Paris, 91128, Palaiseau, France
- Department of Biochemistry, Oxford University, Oxford, OX1 3QU, UK
| | - Sylvie Auxilien
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Alexandra Menant
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Marc Graille
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, Ecole polytechnique, Institut Polytechnique de Paris, 91128, Palaiseau, France
| | - Benoit Palancade
- Université de Paris, CNRS, Institut Jacques Monod, F-75006, Paris, France
| | - Mathieu Rougemaille
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France.
| |
Collapse
|
20
|
Identification of Essential Genes and Fluconazole Susceptibility Genes in Candida glabrata by Profiling Hermes Transposon Insertions. G3-GENES GENOMES GENETICS 2020; 10:3859-3870. [PMID: 32819971 PMCID: PMC7534453 DOI: 10.1534/g3.120.401595] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Within the budding yeasts, the opportunistic pathogen Candida glabrata and other members of the Nakaseomyces clade have developed virulence traits independently from C. albicans and C. auris. To begin exploring the genetic basis of C. glabrata virulence and its innate resistance to antifungals, we launched the Hermes transposon from a plasmid and sequenced more than 500,000 different semi-random insertions throughout the genome. With machine learning, we identified 1278 protein-encoding genes (25% of total) that could not tolerate transposon insertions and are likely essential for C. glabrata fitness in vitro. Interestingly, genes involved in mRNA splicing were less likely to be essential in C. glabrata than their orthologs in S. cerevisiae, whereas the opposite is true for genes involved in kinetochore function and chromosome segregation. When a pool of insertion mutants was challenged with the first-line antifungal fluconazole, insertions in several known resistance genes (e.g., PDR1, CDR1, PDR16, PDR17, UPC2A, DAP1, STV1) and 15 additional genes (including KGD1, KGD2, YHR045W) became hypersensitive to fluconazole. Insertions in 200 other genes conferred significant resistance to fluconazole, two-thirds of which function in mitochondria and likely down-regulate Pdr1 expression or function. Knockout mutants of KGD2 and IDH2, which consume and generate alpha-ketoglutarate in mitochondria, exhibited increased and decreased resistance to fluconazole through a process that depended on Pdr1. These findings establish the utility of transposon insertion profiling in forward genetic investigations of this important pathogen of humans.
Collapse
|
21
|
Abstract
The goal of genomics and systems biology is to understand how complex systems of factors assemble into pathways and structures that combine to form living organisms. Great advances in understanding biological processes result from determining the function of individual genes, a process that has classically relied on characterizing single mutations. Advances in DNA sequencing has made available the complete set of genetic instructions for an astonishing and growing number of species. To understand the function of this ever-increasing number of genes, a high-throughput method was developed that in a single experiment can measure the function of genes across the genome of an organism. This occurred approximately 10 years ago, when high-throughput DNA sequencing was combined with advances in transposon-mediated mutagenesis in a method termed transposon insertion sequencing (TIS). In the subsequent years, TIS succeeded in addressing fundamental questions regarding the genes of bacteria, many of which have been shown to play central roles in bacterial infections that result in major human diseases. The field of TIS has matured and resulted in studies of hundreds of species that include significant innovations with a number of transposons. Here, we summarize a number of TIS experiments to provide an understanding of the method and explanation of approaches that are instructive when designing a study. Importantly, we emphasize critical aspects of a TIS experiment and highlight the extension and applicability of TIS into nonbacterial species such as yeast.
Collapse
Affiliation(s)
- Tim van Opijnen
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467, USA;
| | - Henry L Levin
- Section on Eukaryotic Transposable Elements, Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA;
| |
Collapse
|
22
|
Cain AK, Barquist L, Goodman AL, Paulsen IT, Parkhill J, van Opijnen T. A decade of advances in transposon-insertion sequencing. Nat Rev Genet 2020; 21:526-540. [PMID: 32533119 PMCID: PMC7291929 DOI: 10.1038/s41576-020-0244-x] [Citation(s) in RCA: 221] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2020] [Indexed: 01/12/2023]
Abstract
It has been 10 years since the introduction of modern transposon-insertion sequencing (TIS) methods, which combine genome-wide transposon mutagenesis with high-throughput sequencing to estimate the fitness contribution or essentiality of each genetic component in a bacterial genome. Four TIS variations were published in 2009: transposon sequencing (Tn-Seq), transposon-directed insertion site sequencing (TraDIS), insertion sequencing (INSeq) and high-throughput insertion tracking by deep sequencing (HITS). TIS has since become an important tool for molecular microbiologists, being one of the few genome-wide techniques that directly links phenotype to genotype and ultimately can assign gene function. In this Review, we discuss the recent applications of TIS to answer overarching biological questions. We explore emerging and multidisciplinary methods that build on TIS, with an eye towards future applications. In this Review, several experts discuss progress in the decade since the development of transposon-based approaches for bacterial genetic screens. They describe how advances in both experimental technologies and analytical strategies are resulting in insights into diverse biological processes.
Collapse
Affiliation(s)
- Amy K Cain
- ARC Centre of Excellence in Synthetic Biology, Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia.
| | - Lars Barquist
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany.,Faculty of Medicine, University of Würzburg, Würzburg, Germany
| | - Andrew L Goodman
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA.,Microbial Sciences Institute, Yale University, New Haven, CT, USA
| | - Ian T Paulsen
- ARC Centre of Excellence in Synthetic Biology, Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Julian Parkhill
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | | |
Collapse
|