1
|
Pantel K, Alix-Panabières C. Minimal residual disease as a target for liquid biopsy in patients with solid tumours. Nat Rev Clin Oncol 2025; 22:65-77. [PMID: 39609625 DOI: 10.1038/s41571-024-00967-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2024] [Indexed: 11/30/2024]
Abstract
Metastasis is the leading cause of cancer-related death in patients with solid tumours. Current imaging technologies are not sufficiently sensitive to detect minimal residual disease (MRD; also known as measurable or molecular residual disease) after initial surgery or chemotherapy, pointing to the need for more sensitive tests to detect remaining traces of cancer in the body. Liquid biopsy, or the analysis of tumour-derived or tumour-induced cells or cellular products in the blood or other body fluids, has opened a new diagnostic avenue to detect and monitor MRD. Liquid biopsy is already used in clinical decision making for patients with haematological malignancies. Here, we review current knowledge on the use of circulating tumour DNA (ctDNA) to detect and monitor MRD in patients with solid tumours. We also discuss how ctDNA-guided MRD detection and characterization could herald a new era of novel 'post-adjuvant therapies' with the potential to eliminate MRD and cure patients before terminal metastatic disease is evident on imaging.
Collapse
Affiliation(s)
- Klaus Pantel
- Department of Tumour Biology, University Medical, Center Hamburg-Eppendorf, Hamburg, Germany.
- European Liquid Biopsy Society (ELBS), Hamburg, Germany.
| | - Catherine Alix-Panabières
- European Liquid Biopsy Society (ELBS), Hamburg, Germany.
- Laboratory of Rare Human Circulating Cells (LCCRH) and Liquid Biopsy, University Medical Centre of Montpellier, Montpellier, France.
- CREEC (CREES), Unité Mixte de Recherches, IRD 224-CNRS 5290-Université de Montpellier, Montpellier, France.
| |
Collapse
|
2
|
de la Iglesia-San Sebastián I, López-Esteban M, Bastos-Oreiro M, Fernández de Córdoba-Oñate S, Gutierrez M, Carbonell D, Bailén R, Gómez-Centurión I, Fernández-Caldas P, Castilla L, Anguita J, Kwon M, García-Sanz R, Buño I, Martínez-Laperche C. Chimeric antigen receptor copies in cell-free DNA predict relapse in aggressive B-cell lymphoma patients treated with CAR T-cell therapy. Br J Haematol 2024. [PMID: 39668521 DOI: 10.1111/bjh.19916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 11/11/2024] [Indexed: 12/14/2024]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy has emerged as a transformative treatment for aggressive B-cell lymphomas (ABCL), However, about half of patients relapse, most of them early. This study investigates the detection of CAR copies in circulating cell-free DNA (cfDNA) as a potential predictive biomarker of early relapse (<6 months) to improve patient management. In this research, we have consecutively selected 73 ABCL patients treated with anti-CD19 CAR T-cells, analysing CAR levels in peripheral blood and other clinical variables. Our results indicate that no correlation is present between genomic DNA and cfDNA; moreover, higher levels of CAR-cfDNA on day +14 after infusion (0.44 vs. 0.07; p = 0.019) are associated with improved 6-month progression-free survival rates (74.2% vs. 26%. p < 0.01), suggesting that CAR-cfDNA could be a strong predictor of CAR T-cell therapy short-term outcomes. These findings underscore the potential of integrating CAR-cfDNA analysis into routine clinical practice to enhance the prognostic accuracy and therapeutic strategies for ABCL patients undergoing CAR T-cell therapy.
Collapse
Affiliation(s)
- Ismael de la Iglesia-San Sebastián
- Department of Hematology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Health Research Institute Gregorio Marañón, Madrid, Spain
- Doctorate School, Autonomous University of Madrid, Madrid, Spain
| | - Miguel López-Esteban
- Department of Hematology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Health Research Institute Gregorio Marañón, Madrid, Spain
| | - Mariana Bastos-Oreiro
- Department of Hematology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Health Research Institute Gregorio Marañón, Madrid, Spain
| | - Sara Fernández de Córdoba-Oñate
- Department of Hematology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Health Research Institute Gregorio Marañón, Madrid, Spain
| | - Maravillas Gutierrez
- Department of Hematology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Health Research Institute Gregorio Marañón, Madrid, Spain
| | - Diego Carbonell
- Department of Hematology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Health Research Institute Gregorio Marañón, Madrid, Spain
| | - Rebeca Bailén
- Department of Hematology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Health Research Institute Gregorio Marañón, Madrid, Spain
| | - Ignacio Gómez-Centurión
- Department of Hematology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Health Research Institute Gregorio Marañón, Madrid, Spain
| | - Paula Fernández-Caldas
- Department of Hematology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Health Research Institute Gregorio Marañón, Madrid, Spain
| | - Lucía Castilla
- Department of Hematology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Health Research Institute Gregorio Marañón, Madrid, Spain
| | - Javier Anguita
- Department of Hematology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Health Research Institute Gregorio Marañón, Madrid, Spain
| | - Mi Kwon
- Department of Hematology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Health Research Institute Gregorio Marañón, Madrid, Spain
| | - Ramón García-Sanz
- Department of Hematology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Health Research Institute Gregorio Marañón, Madrid, Spain
| | - Ismael Buño
- Department of Hematology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Health Research Institute Gregorio Marañón, Madrid, Spain
- Department of Cell Biology, Complutense University of Madrid, Madrid, Spain
- Genomics Unit, Hospital General Universitario Gregorio Marañón, Health Research Institute Gregorio Marañón, Madrid, Spain
| | - Carolina Martínez-Laperche
- Department of Hematology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Health Research Institute Gregorio Marañón, Madrid, Spain
| |
Collapse
|
3
|
Ying C, Li Y, Zhang H, Pang S, Hao S, Hu S, Zhao L. Probing the diagnostic values of plasma cf-nDNA and cf-mtDNA for Parkinson's disease and multiple system atrophy. Front Neurosci 2024; 18:1488820. [PMID: 39687490 PMCID: PMC11647036 DOI: 10.3389/fnins.2024.1488820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
Background Cell loss and mitochondrial dysfunction are key pathological features of idiopathic Parkinson's disease (PD) and multiple system atrophy (MSA). It remains unclear whether disease-specific changes in plasma circulating cell-free nuclear DNA (cf-nDNA) and mitochondrial DNA (cf-mtDNA) occur in patients with PD and MSA. In this study, we investigated whether plasma cf-nDNA, cf-mtDNA levels, as well as cf-mtDNA integrity, are altered in patients with PD and MSA. Methods TaqMan probe-based quantitative PCR was employed to measure plasma cf-nDNA levels, cf-mtDNA copy numbers, and cf-mtDNA deletion levels in 171 participants, including 76 normal controls (NC), 62 PD patients, and 33 MSA patients. A generalized linear model was constructed to analyze differences in circulating cell-free DNA (cfDNA) biomarkers across clinical groups, while a logistic regression model was applied to assess the predictive values of these biomarkers for developing PD or MSA. Spearman correlations were used to explore associations between the three cfDNA biomarkers, demographic data, and clinical scales. Results No significant differences in plasma cf-nDNA levels, cf-mtDNA copy numbers, or cf-mtDNA deletion levels were observed among the PD, MSA, and NC groups (all P > 0.05). Additionally, these measures were not associated with the risk of developing PD or MSA. In PD patients, cf-nDNA levels were positively correlated with Hamilton Anxiety Rating Scale scores (Rho = 0.382, FDR adjusted P = 0.027). In MSA patients, cf-nDNA levels were positively correlated with International Cooperative Ataxia Rating Scale scores (Rho = 0.588, FDR adjusted P = 0.011) and negatively correlated with Montreal Cognitive Assessment scores (Rho = -0.484, FDR adjusted P = 0.044). Subgroup analysis showed that PD patients with constipation had significantly lower plasma cf-mtDNA copy numbers than those without constipation (P = 0.049). MSA patients with cognitive impairment had significantly higher cf-nDNA levels compared to those without (P = 0.008). Conclusion Plasma cf-nDNA level, cf-mtDNA copy number, and cf-mtDNA deletion level have limited roles as diagnostic biomarkers for PD and MSA. However, their correlations with clinical symptoms support the hypothesis that cell loss and mitochondrial dysfunction are involved in PD and MSA development.
Collapse
Affiliation(s)
- Chao Ying
- Department of Neurobiology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Municipal Geriatric Medical Research Center, Beijing, China
- Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Beijing Key Laboratory on Parkinson’s Disease, Parkinson’s Disease Center for Beijing Institute on Brain Disorders, Clinical and Research Center for Parkinson’s Disease, Capital Medical University, Beijing, China
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yuan Li
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Hui Zhang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Shimin Pang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Shuwen Hao
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Songnian Hu
- Department of Neurobiology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Municipal Geriatric Medical Research Center, Beijing, China
- Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Beijing Key Laboratory on Parkinson’s Disease, Parkinson’s Disease Center for Beijing Institute on Brain Disorders, Clinical and Research Center for Parkinson’s Disease, Capital Medical University, Beijing, China
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Lifang Zhao
- Department of Clinical Biobank and Central Laboratory, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Si HQ, Wang P, Long F, Zhong W, Meng YD, Rong Y, Meng XY, Wang FB. Cancer liquid biopsies by Oxford Nanopore Technologies sequencing of cell-free DNA: from basic research to clinical applications. Mol Cancer 2024; 23:265. [PMID: 39614371 PMCID: PMC11605934 DOI: 10.1186/s12943-024-02178-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 11/17/2024] [Indexed: 12/01/2024] Open
Abstract
Liquid biopsies, in particular, analysis of cell-free DNA, are expected to revolutionize the current landscape of cancer diagnostics and treatment. However, the existing methods for cfDNA-based liquid biopsies for cancer have certain limitations, such as fragment interruption and GC bias, which are likely to be resolved by the emerging Oxford Nanopore Technologies (ONT), characterized by long read-length, fast read-times, high throughput, and polymerase chain reaction-free. In this review, we summarized the current literatures regarding the feasibility and applications of cfDNA-based liquid biopsies using ONT for cancer management, a possible game-changer that we believe is promising in detecting multimodal biomarkers and can be applied in a wide range of oncology utilities including early screening, diagnosis, and treatment monitoring.
Collapse
Affiliation(s)
- Hua-Qi Si
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Peng Wang
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fei Long
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wei Zhong
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yuan-Dong Meng
- Hubei Provincial Clinical Medical Research Center for Nephropathy, Hubei Minzu University, Enshi, China
| | - Yuan Rong
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Xiang-Yu Meng
- Hubei Provincial Clinical Medical Research Center for Nephropathy, Hubei Minzu University, Enshi, China.
| | - Fu-Bing Wang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
5
|
Mansfield L, Ramponi V, Gupta K, Stevenson T, Mathew AB, Barinda AJ, Herbstein F, Morsli S. Emerging insights in senescence: pathways from preclinical models to therapeutic innovations. NPJ AGING 2024; 10:53. [PMID: 39578455 PMCID: PMC11584693 DOI: 10.1038/s41514-024-00181-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/25/2024] [Indexed: 11/24/2024]
Abstract
Senescence is a crucial hallmark of ageing and a significant contributor to the pathology of age-related disorders. As committee members of the young International Cell Senescence Association (yICSA), we aim to synthesise recent advancements in the identification, characterisation, and therapeutic targeting of senescence for clinical translation. We explore novel molecular techniques that have enhanced our understanding of senescent cell heterogeneity and their roles in tissue regeneration and pathology. Additionally, we delve into in vivo models of senescence, both non-mammalian and mammalian, to highlight tools available for advancing the contextual understanding of in vivo senescence. Furthermore, we discuss innovative diagnostic tools and senotherapeutic approaches, emphasising their potential for clinical application. Future directions of senescence research are explored, underscoring the need for precise, context-specific senescence classification and the integration of advanced technologies such as machine learning, long-read sequencing, and multifunctional senoprobes and senolytics. The dual role of senescence in promoting tissue homoeostasis and contributing to chronic diseases highlights the complexity of targeting these cells for improved clinical outcomes.
Collapse
Affiliation(s)
- Luke Mansfield
- The Bateson Centre, School of Medicine and Population Health, The University of Sheffield, Western Bank, Sheffield, UK
| | - Valentina Ramponi
- Cellular Plasticity and Disease Group, Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Kavya Gupta
- Department of Cellular and Molecular Biology and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | | | - Abraham Binoy Mathew
- Department of Developmental Biology and Genetics, Biological Sciences, Indian Institute of Science, Bangalore, India
| | - Agian Jeffilano Barinda
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Metabolic, Cardiovascular, and Aging Cluster, Indonesia Medical Education and Research Institute (IMERI), Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Florencia Herbstein
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET - Partner Institute of the Max Planck Society, Buenos Aires, Argentina.
| | - Samir Morsli
- Karolinska Institutet, Department of Cell and Molecular Biology, Biomedicum Q6A, Stockholm, Sweden.
| |
Collapse
|
6
|
Ali M, Kumar KG, Singh K, Rabyang S, Thinlas T, Mishra A. Evaluation of the cell death markers for aberrated cell free DNA release in high altitude pulmonary edema. Clin Sci (Lond) 2024; 138:1467-1480. [PMID: 39509268 DOI: 10.1042/cs20242052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/04/2024] [Accepted: 11/07/2024] [Indexed: 11/15/2024]
Abstract
The effect of high altitude (HA, altitude >2500 m) can trigger a maladaptive response in unacclimatized individuals, leading to various HA illnesses such as high altitude pulmonary edema (HAPE). The present study investigates circulating cell free (cf) DNA, a minimally invasive biomarker that can elicit a pro-inflammatory response. Our earlier study observed altered cfDNA fragment patterns in HAPE patients and the significant correlation of these patterns with peripheral oxygen saturation levels. However, the unclear release mechanisms of cfDNA in circulation limit its characterization and clinical utility. The present study not only observed a significant increase in cfDNA levels in HAPE patients (27.03 ± 1.37 ng/ml; n = 145) compared to healthy HA sojourners (controls, 14.57 ± 0.74 ng/ml; n = 65) and highlanders (HLs, 15.50 ± 0.8 ng/ml; n = 34) but also assayed the known cell death markers involved in cfDNA release at HA. The study found significantly elevated levels of the apoptotic marker, annexin A5, and secondary necrosis or late apoptotic marker, high mobility group box 1, in HAPE patients. In addition, we observed a higher oxidative DNA damage marker, 8-hydroxy-2'-deoxyguanosine, in HAPE compared with controls, suggestive of the role of oxidative DNA status in promoting the inflammatory potential of cfDNA fragments and their plausible role in manifesting HAPE pathophysiology. Extensive in vitro future assays can confirm the immunogenic role of cfDNA fragments that may act as a danger-associated molecular pattern and associate with markers of cellular stresses in HAPE.
Collapse
Affiliation(s)
- Manzoor Ali
- Genomics and Genome Biology Unit, CSIR-Institute of Genomics and Integrative Biology, Delhi 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Krishna G Kumar
- Genomics and Genome Biology Unit, CSIR-Institute of Genomics and Integrative Biology, Delhi 110007, India
| | - Kanika Singh
- Genomics and Genome Biology Unit, CSIR-Institute of Genomics and Integrative Biology, Delhi 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Stanzen Rabyang
- Department of Medicine, Sonam Norboo Memorial Hospital, Leh 194101, India
| | - Tashi Thinlas
- Department of Medicine, Sonam Norboo Memorial Hospital, Leh 194101, India
| | - Aastha Mishra
- Genomics and Genome Biology Unit, CSIR-Institute of Genomics and Integrative Biology, Delhi 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
7
|
Pan M, Shi H, Qi T, Cai L, Ge Q. The biological characteristics of long cell-free DNA in spent embryos culture medium as noninvasive biomarker in in-vitro embryo selection. Gene 2024; 927:148667. [PMID: 38857715 DOI: 10.1016/j.gene.2024.148667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/30/2024] [Accepted: 06/06/2024] [Indexed: 06/12/2024]
Abstract
An improved understanding of the cfDNA fragmentomics has proved it as a promising biomarker in clinical applications. However, biological characteristics of cfDNA in spent embryos culture medium (SECM) remain unsolved obstacles before the application in non-invasive in-vitro embryo selection. In this study, we developed a Tn5 transposase and ligase integrated dual-library construction sequencing strategy (TDual-Seq) and revealed the fragmentomic profile of cfDNA of all sizes in early embryonic development. The detected ratio of long cfDNA (>500 bp) was improved from 4.23 % by traditional NGS to 12.80 % by TDual-Seq. End motif analysis showed long cfDNA molecules have a more dominance of fragmentation intracellularly in apoptotic cells with higher predominance of G-end, while shorter cfDNA undergo fragmentation process both intracellularly and extracellularly. Moreover, the mutational pattern of cfDNA and the correlated GO biological process were well differentiated in cleavage and blastocyst embryos. Finally, we developed a multiparametric index (TQI) that employs the fragmentomic profiles of cfDNA, and achieved an area under the ROC curve of 0.927 in screening top quality embryos. TDual-Seq strategy has facilitated characterizing the fragmentomic profile of cfDNA of all sizes in SECM, which are served as a class of non-invasive biomarkers in the evaluation of embryo quality in in-vitro fertilization. And this improved strategy has opened up potential clinical utilities of long cfDNA analysis.
Collapse
Affiliation(s)
- Min Pan
- School of Medicine, Southeast University, Nanjing, China; State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Huajuan Shi
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Ting Qi
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Lingbo Cai
- Clinical Center of Reproductive Medicine, State Key Laboratory of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, China.
| | - Qinyu Ge
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China.
| |
Collapse
|
8
|
Wyatt AW, Litiere S, Bidard FC, Cabel L, Dyrskjøt L, Karlovich CA, Pantel K, Petrie J, Philip R, Andrews HS, Vellanki PJ, Tolmeijer SH, Villalobos Alberu X, Alfano C, Bogaerts J, Calvo E, Chen AP, Toledo RA, de Vries EGE, Seymour L, Laurie SA, Garralda E. Plasma ctDNA as a Treatment Response Biomarker in Metastatic Cancers: Evaluation by the RECIST Working Group. Clin Cancer Res 2024; 30:5034-5041. [PMID: 39269996 DOI: 10.1158/1078-0432.ccr-24-1883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/08/2024] [Accepted: 09/13/2024] [Indexed: 09/15/2024]
Abstract
Early indicators of metastatic cancer response to therapy are important for evaluating new drugs and stopping ineffective treatment. The RECIST guidelines based on repeat cancer imaging are widely adopted in clinical trials, are used to identify active regimens that may change practice, and contribute to regulatory approvals. However, these criteria do not provide insight before 6 to 12 weeks of treatment and typically require that patients have measurable disease. Recent data suggest that measuring on-treatment changes in the amount or proportion of ctDNA in peripheral blood plasma may accurately identify responding and nonresponding cancers at earlier time points. Over the past year, the RECIST working group has evaluated current evidence for plasma ctDNA kinetics as a treatment response biomarker in metastatic cancers and early endpoint in clinical trials to identify areas of focus for future research and validation. Here, we outline the requirement for large standardized trial datasets, greater scrutiny of optimal ctDNA collection time points and assay thresholds, and consideration of regulatory body guidelines and patient opinions. In particular, clinically meaningful changes in plasma ctDNA abundance are likely to differ by cancer type and therapy class and must be assessed before ctDNA can be considered a potential pan-cancer response evaluation biomarker. Despite the need for additional data, minimally invasive on-treatment ctDNA measurements hold promise to build upon existing response assessments such as RECIST and offer opportunities for developing novel early endpoints for modern clinical trials.
Collapse
Affiliation(s)
- Alexander W Wyatt
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Michael Smith Genome Sciences Centre and Clinical Cancer Genomics Program, BC Cancer, Vancouver, British Columbia, Canada
| | - Saskia Litiere
- European Organisation for Research and Treatment of Cancer Headquarters, Brussels, Belgium
| | - Francois-Clément Bidard
- Department of Medical Oncology, Institut Curie, Université Versailles Saint-Quentin, Université Paris-Saclay, Saint-Cloud, France
| | - Luc Cabel
- Department of Medical Oncology, Institut Curie, Université Versailles Saint-Quentin, Université Paris-Saclay, Saint-Cloud, France
| | - Lars Dyrskjøt
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Chris A Karlovich
- Molecular Characterization Laboratory, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Klaus Pantel
- Department of Tumor Biology, Center for Experimental Medicine, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Joan Petrie
- Canadian Cancer Trials Group, Kingston, Ontario, Canada
| | - Reena Philip
- Oncology Center of Excellence, US Food and Drug Administration, Silver Spring, Maryland
| | | | - Paz J Vellanki
- Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland
| | - Sofie H Tolmeijer
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Christian Alfano
- European Organisation for Research and Treatment of Cancer Headquarters, Brussels, Belgium
| | - Jan Bogaerts
- European Organisation for Research and Treatment of Cancer Headquarters, Brussels, Belgium
| | - Emiliano Calvo
- START Madrid-CIOCC, Centro Integral Oncológico Clara Campal, Madrid, Spain
| | - Alice P Chen
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, Maryland
| | | | - Elisabeth G E de Vries
- University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands
| | - Lesley Seymour
- Canadian Cancer Trials Group, Queen's University, Kingston, Ontario, Canada
| | - Scott A Laurie
- Division of Medical Oncology, The Ottawa Hospital Cancer Centre, Ottawa, Ontario, Canada
| | - Elena Garralda
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| |
Collapse
|
9
|
Gezer U, Özgür E, Yörüker EE, Polatoglou E, Holdenrieder S, Bronkhorst A. LINE-1 cfDNA Methylation as an Emerging Biomarker in Solid Cancers. Cancers (Basel) 2024; 16:3725. [PMID: 39594682 PMCID: PMC11592170 DOI: 10.3390/cancers16223725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/01/2024] [Accepted: 11/03/2024] [Indexed: 11/28/2024] Open
Abstract
Epigenetic dysregulation is a hallmark of many human malignancies, with DNA methylation being a primary mechanism influencing gene expression and maintaining genomic stability. Genome-wide hypomethylation, characteristic of many cancers, is partly attributed to the demethylation of repetitive elements, including LINE-1, a prevalent non-LTR retrotransposon. The methylation status of LINE-1 is closely associated with overall genomic methylation levels in tumors. cfDNA comprises extracellular DNA fragments found in bodily fluids such as plasma, serum, and urine, offering a dynamic snapshot of the genetic and epigenetic landscape of tumors. This real-time sampling provides a minimally invasive avenue for cancer diagnostics, prognostics, and monitoring. The methylation status of LINE-1 in cfDNA has emerged as a promising biomarker, with several studies highlighting its potential in diagnosing and predicting outcomes in cancer patients. Recent research also suggests that cfDNA-based LINE-1 methylation analysis could serve as a valuable tool in evaluating the efficacy of cancer therapies, including immunotherapy. The growing clinical significance of cfDNA calls for a closer examination of its components, particularly repetitive elements like LINE-1. Despite their importance, the role of LINE-1 elements in cfDNA has not been thoroughly gauged. We aim to address this gap by reviewing the current literature on LINE-1 cfDNA assays, focusing on their potential applications in diagnostics and disease monitoring.
Collapse
Affiliation(s)
- Ugur Gezer
- Department of Basic Oncology, Oncology Institute, Istanbul University, 34093 Istanbul, Türkiye; (U.G.); (E.Ö.); (E.E.Y.)
| | - Emre Özgür
- Department of Basic Oncology, Oncology Institute, Istanbul University, 34093 Istanbul, Türkiye; (U.G.); (E.Ö.); (E.E.Y.)
| | - Ebru E. Yörüker
- Department of Basic Oncology, Oncology Institute, Istanbul University, 34093 Istanbul, Türkiye; (U.G.); (E.Ö.); (E.E.Y.)
| | - Eleni Polatoglou
- Munich Biomarker Research Center, Institute of Laboratory Medicine, German Heart Center, Technical University Munich, 80636 Munich, Germany (S.H.)
| | - Stefan Holdenrieder
- Munich Biomarker Research Center, Institute of Laboratory Medicine, German Heart Center, Technical University Munich, 80636 Munich, Germany (S.H.)
| | - Abel Bronkhorst
- Munich Biomarker Research Center, Institute of Laboratory Medicine, German Heart Center, Technical University Munich, 80636 Munich, Germany (S.H.)
| |
Collapse
|
10
|
Li JY, Zuo LP, Xu J, Sun CY. Clinical applications of circulating tumor DNA in hematological malignancies: From past to the future. Blood Rev 2024; 68:101237. [PMID: 39261219 DOI: 10.1016/j.blre.2024.101237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/13/2024]
Abstract
Liquid biopsy, particularly circulating tumor DNA (ctDNA), has drawn a lot of attention as a non- or minimal-invasive detection approach for clinical applications in patients with cancer. Many hematological malignancies are well suited for serial and repeated ctDNA surveillance due to relatively high ctDNA concentrations and high loads of tumor-specific genetic and epigenetic abnormalities. Progress of detecting technology in recent years has improved sensitivity and specificity significantly, thus broadening and strengthening the potential utilities of ctDNA including early diagnosis, prognosis estimation, treatment response evaluation, minimal residual disease monitoring, targeted therapy selection, and immunotherapy surveillance. This manuscript reviews the detection methodologies, clinical application and future challenges of ctDNA in hematological malignancies, especially for lymphomas, myeloma and leukemias.
Collapse
Affiliation(s)
- Jun-Ying Li
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of science and Technology, Wuhan, Hubei, China
| | - Li-Ping Zuo
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of science and Technology, Wuhan, Hubei, China
| | - Jian Xu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of science and Technology, Wuhan, Hubei, China
| | - Chun-Yan Sun
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
11
|
Yasuda T, Alan Wang Y. Immune therapeutic strategies for the senescent tumor microenvironment. Br J Cancer 2024:10.1038/s41416-024-02865-7. [PMID: 39468331 DOI: 10.1038/s41416-024-02865-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/30/2024] Open
Abstract
Senescent cells can either to promote immunosuppressive tumor microenvironment or facilitate immune surveillance. Despite the revolutionary impact of cancer immunotherapy, durable responses in solid tumors, particularly in advanced stages, remain limited. Recent studies have shed light on the influence of senescent status within the tumor microenvironment (TME) on therapy resistance and major efforts are needed to overcome these challenges. This review summarizes recent advancements in targeting cellular senescence, with a particular focus on immunomodulatory approaches on the hallmarks of cellular senescence.
Collapse
Affiliation(s)
- Tadahito Yasuda
- Brown Center for Immunotherapy, Department of Medicine, Indiana University School of Medicine, Indianapolis, USA.
| | - Y Alan Wang
- Brown Center for Immunotherapy, Department of Medicine, Indiana University School of Medicine, Indianapolis, USA
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center Indianapolis, Indianapolis, USA
| |
Collapse
|
12
|
Wang B, Wang M, Lin Y, Zhao J, Gu H, Li X. Circulating tumor DNA methylation: a promising clinical tool for cancer diagnosis and management. Clin Chem Lab Med 2024; 62:2111-2127. [PMID: 38443752 DOI: 10.1515/cclm-2023-1327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/19/2024] [Indexed: 03/07/2024]
Abstract
Cancer continues to pose significant challenges to the medical community. Early detection, accurate molecular profiling, and adequate assessment of treatment response are critical factors in improving the quality of life and survival of cancer patients. Accumulating evidence shows that circulating tumor DNA (ctDNA) shed by tumors into the peripheral blood preserves the genetic and epigenetic information of primary tumors. Notably, DNA methylation, an essential and stable epigenetic modification, exhibits both cancer- and tissue-specific patterns. As a result, ctDNA methylation has emerged as a promising molecular marker for noninvasive testing in cancer clinics. In this review, we summarize the existing techniques for ctDNA methylation detection, describe the current research status of ctDNA methylation, and present the potential applications of ctDNA-based assays in the clinic. The insights presented in this article could serve as a roadmap for future research and clinical applications of ctDNA methylation.
Collapse
Affiliation(s)
- Binliang Wang
- Department of Respiratory Medicine, Huangyan Hospital Affiliated to Wenzhou Medical University, Taizhou, P.R. China
| | - Meng Wang
- Institute of Health Education, Hangzhou Center for Disease Control and Prevention, Hangzhou, P.R. China
| | - Ya Lin
- Zhejiang University of Chinese Medicine, Hangzhou, P.R. China
| | - Jinlan Zhao
- Scientific Research Department, Zhejiang Shengting Medical Company, Hangzhou, P.R. China
| | - Hongcang Gu
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, P.R. China
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Science, Hefei, P.R. China
| | - Xiangjuan Li
- Department of Gynaecology, Hangzhou Obstetrics and Gynecology Hospital, Hangzhou, P.R. China
| |
Collapse
|
13
|
Bai J, Jiang P, Ji L, Lam WKJ, Zhou Q, Ma MJL, Ding SC, Ramakrishnan S, Wan CW, Yang TC, Yukawa M, Chan RWY, Qiao R, Yu SCY, Choy LYL, Shi Y, Wang Z, Tam THC, Law MF, Wong RSM, Wong J, Chan SL, Wong GLH, Wong VWS, Chan KCA, Lo YMD. Histone modifications of circulating nucleosomes are associated with changes in cell-free DNA fragmentation patterns. Proc Natl Acad Sci U S A 2024; 121:e2404058121. [PMID: 39382996 PMCID: PMC11494292 DOI: 10.1073/pnas.2404058121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 09/10/2024] [Indexed: 10/11/2024] Open
Abstract
The analysis of tissues of origin of cell-free DNA (cfDNA) is of research and diagnostic interest. Many studies focused on bisulfite treatment or immunoprecipitation protocols to assess the tissues of origin of cfDNA. DNA loss often occurs during such processes. Fragmentomics of cfDNA molecules has uncovered a wealth of information related to tissues of origin of cfDNA. There is still much room for the development of tools for assessing contributions from various tissues into plasma using fragmentomic features. Hence, we developed an approach to analyze the relative contributions of DNA from different tissues into plasma, by identifying characteristic fragmentation patterns associated with selected histone modifications. We named this technique as FRAGmentomics-based Histone modification Analysis (FRAGHA). Deduced placenta-specific histone H3 lysine 27 acetylation (H3K27ac)-associated signal correlated well with the fetal DNA fraction in maternal plasma (Pearson's r = 0.96). The deduced liver-specific H3K27ac-associated signal correlated with the donor-derived DNA fraction in liver transplantation recipients (Pearson's r = 0.92) and was significantly increased in patients with hepatocellular carcinoma (HCC) (P < 0.01, Wilcoxon rank-sum test). Significant elevations of erythroblasts-specific and colon-specific H3K27ac-associated signals were observed in patients with β-thalassemia major and colorectal cancer, respectively. Furthermore, using the fragmentation patterns from tissue-specific H3K27ac regions, a machine learning algorithm was developed to enhance HCC detection, with an area under the curve (AUC) of up to 0.97. Finally, genomic regions with H3K27ac or histone H3 lysine 4 trimethylation (H3K4me3) were found to exhibit different fragmentomic patterns of cfDNA. This study has shed light on the relationship between cfDNA fragmentomics and histone modifications, thus expanding the armamentarium of liquid biopsy.
Collapse
Affiliation(s)
- Jinyue Bai
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong Special Administrative Region, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
| | - Peiyong Jiang
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong Special Administrative Region, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
- State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
| | - Lu Ji
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong Special Administrative Region, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
| | - W. K. Jacky Lam
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong Special Administrative Region, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
- State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
| | - Qing Zhou
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong Special Administrative Region, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
| | - Mary-Jane L. Ma
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong Special Administrative Region, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
| | - Spencer C. Ding
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong Special Administrative Region, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
| | - Saravanan Ramakrishnan
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong Special Administrative Region, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
| | - Chun Wai Wan
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong Special Administrative Region, China
| | - Tongxin Claire Yang
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong Special Administrative Region, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
| | - Masashi Yukawa
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong Special Administrative Region, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
| | - Rebecca W. Y. Chan
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong Special Administrative Region, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
| | - Rong Qiao
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong Special Administrative Region, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
| | - Stephanie C. Y. Yu
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong Special Administrative Region, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
| | - L. Y. Lois Choy
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong Special Administrative Region, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
- State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
| | - Yuwei Shi
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong Special Administrative Region, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
| | - Zilong Wang
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong Special Administrative Region, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
| | - Tommy H. C. Tam
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Man Fai Law
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Raymond S. M. Wong
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - John Wong
- Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
| | - Stephen Lam Chan
- State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
- Department of Clinical Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
| | - Grace L. H. Wong
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Vincent W. S. Wong
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - K. C. Allen Chan
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong Special Administrative Region, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
- State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
| | - Y. M. Dennis Lo
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong Special Administrative Region, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
- State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
| |
Collapse
|
14
|
Pessei V, Macagno M, Mariella E, Congiusta N, Battaglieri V, Battuello P, Viviani M, Gionfriddo G, Lamba S, Lorenzato A, Oddo D, Idrees F, Cavaliere A, Bartolini A, Guarrera S, Linnebacher M, Monteonofrio L, Cardone L, Milella M, Bertotti A, Soddu S, Grassi E, Crisafulli G, Bardelli A, Barault L, Di Nicolantonio F. DNA demethylation triggers cell free DNA release in colorectal cancer cells. Genome Med 2024; 16:118. [PMID: 39385243 PMCID: PMC11462661 DOI: 10.1186/s13073-024-01386-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/18/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Liquid biopsy based on cell-free DNA (cfDNA) analysis holds significant promise as a minimally invasive approach for the diagnosis, genotyping, and monitoring of solid malignancies. Human tumors release cfDNA in the bloodstream through a combination of events, including cell death, active and passive release. However, the precise mechanisms leading to cfDNA shedding remain to be characterized. Addressing this question in patients is confounded by several factors, such as tumor burden extent, anatomical and vasculature barriers, and release of nucleic acids from normal cells. In this work, we exploited cancer models to dissect basic mechanisms of DNA release. METHODS We measured cell loss ratio, doubling time, and cfDNA release in the supernatant of a colorectal cancer (CRC) cell line collection (N = 76) representative of the molecular subtypes previously identified in cancer patients. Association analyses between quantitative parameters of cfDNA release, cell proliferation, and molecular features were evaluated. Functional experiments were performed to test the impact of modulating DNA methylation on cfDNA release. RESULTS Higher levels of supernatant cfDNA were significantly associated with slower cell cycling and increased cell death. In addition, a higher cfDNA shedding was found in non-CpG Island Methylator Phenotype (CIMP) models. These results indicate a positive correlation between lower methylation and increased cfDNA levels. To explore this further, we exploited methylation microarrays to identify a subset of probes significantly associated with cfDNA shedding and derive a methylation signature capable of discriminating high from low cfDNA releasers. We applied this signature to an independent set of 176 CRC cell lines and patient derived organoids to select 14 models predicted to be low or high releasers. The methylation profile successfully predicted the amount of cfDNA released in the supernatant. At the functional level, genetic ablation of DNA methyl-transferases increased chromatin accessibility and DNA fragmentation, leading to increased cfDNA release in isogenic CRC cell lines. Furthermore, in vitro treatment of five low releaser CRC cells with a demethylating agent was able to induce a significant increase in cfDNA shedding. CONCLUSIONS Methylation status of cancer cell lines contributes to the variability of cfDNA shedding in vitro. Changes in methylation pattern are associated with cfDNA release levels and might be exploited to increase sensitivity of liquid biopsy assays.
Collapse
Affiliation(s)
- Valeria Pessei
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
| | - Marco Macagno
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
| | - Elisa Mariella
- Department of Oncology, University of Torino, Turin, Italy
- IFOM, the AIRC Institute of Molecular Oncology, Milan, Italy
| | - Noemi Congiusta
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
- Department of Oncology, University of Torino, Turin, Italy
| | - Vittorio Battaglieri
- Department of Oncology, University of Torino, Turin, Italy
- IFOM, the AIRC Institute of Molecular Oncology, Milan, Italy
| | - Paolo Battuello
- Department of Oncology, University of Torino, Turin, Italy
- IFOM, the AIRC Institute of Molecular Oncology, Milan, Italy
| | - Marco Viviani
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
- Department of Oncology, University of Torino, Turin, Italy
| | - Giulia Gionfriddo
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
- Department of Oncology, University of Torino, Turin, Italy
| | - Simona Lamba
- Department of Oncology, University of Torino, Turin, Italy
| | | | - Daniele Oddo
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
- Department of Oncology, University of Torino, Turin, Italy
| | - Fariha Idrees
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
- Department of Oncology, University of Torino, Turin, Italy
| | - Alessandro Cavaliere
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
- Department of Oncology, University of Torino, Turin, Italy
| | - Alice Bartolini
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
| | - Simonetta Guarrera
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
- IIGM-Italian Institute for Genomic Medicine, c/o IRCCS, Candiolo, Turin, Italy
| | - Michael Linnebacher
- Clinic of General Surgery, Molecular Oncology and Immunotherapy, UMR, Rostock, Germany
| | - Laura Monteonofrio
- Department of Research and Advanced Technologies, Regina Elena National Cancer Institute IRCCS, Rome, Italy
| | - Luca Cardone
- Department of Research and Advanced Technologies, Regina Elena National Cancer Institute IRCCS, Rome, Italy
| | - Michele Milella
- Section of Innovation Biomedicine - Oncology Area, Department of Engineering for Innovation Medicine, University of Verona and Verona University and Hospital Trust, Verona, Italy
| | - Andrea Bertotti
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
- Department of Oncology, University of Torino, Turin, Italy
| | - Silvia Soddu
- Department of Research and Advanced Technologies, Regina Elena National Cancer Institute IRCCS, Rome, Italy
| | - Elena Grassi
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
- Department of Oncology, University of Torino, Turin, Italy
| | | | - Alberto Bardelli
- Department of Oncology, University of Torino, Turin, Italy
- IFOM, the AIRC Institute of Molecular Oncology, Milan, Italy
| | - Ludovic Barault
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy.
- Department of Oncology, University of Torino, Turin, Italy.
| | - Federica Di Nicolantonio
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy.
- Department of Oncology, University of Torino, Turin, Italy.
| |
Collapse
|
15
|
Chan YT, Zhang C, Wu J, Lu P, Xu L, Yuan H, Feng Y, Chen ZS, Wang N. Biomarkers for diagnosis and therapeutic options in hepatocellular carcinoma. Mol Cancer 2024; 23:189. [PMID: 39242496 PMCID: PMC11378508 DOI: 10.1186/s12943-024-02101-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 08/23/2024] [Indexed: 09/09/2024] Open
Abstract
Liver cancer is a global health challenge, causing a significant social-economic burden. Hepatocellular carcinoma (HCC) is the predominant type of primary liver cancer, which is highly heterogeneous in terms of molecular and cellular signatures. Early-stage or small tumors are typically treated with surgery or ablation. Currently, chemotherapies and immunotherapies are the best treatments for unresectable tumors or advanced HCC. However, drug response and acquired resistance are not predictable with the existing systematic guidelines regarding mutation patterns and molecular biomarkers, resulting in sub-optimal treatment outcomes for many patients with atypical molecular profiles. With advanced technological platforms, valuable information such as tumor genetic alterations, epigenetic data, and tumor microenvironments can be obtained from liquid biopsy. The inter- and intra-tumoral heterogeneity of HCC are illustrated, and these collective data provide solid evidence in the decision-making process of treatment regimens. This article reviews the current understanding of HCC detection methods and aims to update the development of HCC surveillance using liquid biopsy. Recent critical findings on the molecular basis, epigenetic profiles, circulating tumor cells, circulating DNAs, and omics studies are elaborated for HCC diagnosis. Besides, biomarkers related to the choice of therapeutic options are discussed. Some notable recent clinical trials working on targeted therapies are also highlighted. Insights are provided to translate the knowledge into potential biomarkers for detection and diagnosis, prognosis, treatment response, and drug resistance indicators in clinical practice.
Collapse
Affiliation(s)
- Yau-Tuen Chan
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Cheng Zhang
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Junyu Wu
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Pengde Lu
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Lin Xu
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Hongchao Yuan
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Yibin Feng
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Zhe-Sheng Chen
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong.
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY, 11439, USA.
| | - Ning Wang
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong.
| |
Collapse
|
16
|
Varela M, Villatoro S, Lorenzo D, Piulats JM, Caminal JM. Optimizing ctDNA: An Updated Review of a Promising Clinical Tool for the Management of Uveal Melanoma. Cancers (Basel) 2024; 16:3053. [PMID: 39272911 PMCID: PMC11394595 DOI: 10.3390/cancers16173053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Uveal melanoma (UM) is the most common primary malignant intraocular tumor in adults. Distant metastasis is common, affecting around 50% of patients. Prognostic accuracy relies on molecular characterization of tumor tissue. In these patients, however, conventional biopsy can be challenging due to the difficulty of obtaining sufficient tissue for the analysis due to the small tumor size and/or post-brachytherapy shrinkage. An alternative approach is liquid biopsy, a non-invasive technique that allows for real-time monitoring of tumor dynamics. Liquid biopsy plays an increasingly prominent role in precision medicine, providing valuable information on the molecular profile of the tumor and treatment response. Liquid biopsy can facilitate early detection and can be used to monitor progression and recurrence. ctDNA-based tests are particularly promising due to their ease of integration into clinical practice. In this review, we discuss the application of ctDNA in liquid biopsies for UM. More specifically, we explore the emerging technologies in this field and the advantages and disadvantages of using different bodily fluids for liquid biopsy. Finally, we discuss the current barriers to routine clinical use of this technique.
Collapse
Affiliation(s)
- Mar Varela
- Department of Pathology, Hospital Universitari de Bellvitge, 08907 L'Hospitalet de Llobregat, Barcelona, Spain
- Laboratori Core d'Anàlisi Molecular, Hospital Universitari de Bellvitge-Institut Català d'Oncologia, 08907 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Sergi Villatoro
- Department of Pathology, Hospital Universitari de Bellvitge, 08907 L'Hospitalet de Llobregat, Barcelona, Spain
- Laboratori Core d'Anàlisi Molecular, Hospital Universitari de Bellvitge-Institut Català d'Oncologia, 08907 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Daniel Lorenzo
- Ophthalmology Department, Hospital Universitari de Bellvitge, 08907 L'Hospitalet de Llobregat, Barcelona, Spain
- Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Josep Maria Piulats
- Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Spain
- Medical Oncology Department, Institut Català d'Oncologia, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Josep Maria Caminal
- Ophthalmology Department, Hospital Universitari de Bellvitge, 08907 L'Hospitalet de Llobregat, Barcelona, Spain
- Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
17
|
Lam WKJ, Gai W, Bai J, Tam THC, Cheung WF, Ji L, Tse IOL, Tsang AFC, Li MZJ, Jiang P, Law MF, Wong RSM, Chan KCA, Lo YMD. Differential detection of megakaryocytic and erythroid DNA in plasma in hematological disorders. NPJ Genom Med 2024; 9:39. [PMID: 39103426 DOI: 10.1038/s41525-024-00423-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 07/11/2024] [Indexed: 08/07/2024] Open
Abstract
The tissues of origin of plasma DNA can be revealed by methylation patterns. However, the relative DNA contributions from megakaryocytes and erythroblasts into plasma appeared inconsistent among studies. To shed light into this phenomenon, we developed droplet digital PCR (ddPCR) assays for the differential detection of contributions from these cell types in plasma based on megakaryocyte-specific and erythroblast-specific methylation markers. Megakaryocytic DNA and erythroid DNA contributed a median of 44.2% and 6.2% in healthy individuals, respectively. Patients with idiopathic thrombocytopenic purpura had a significantly higher proportion of megakaryocytic DNA in plasma compared to healthy controls (median: 59.9% versus 44.2%; P = 0.03). Similarly, patients with β-thalassemia were shown to have higher proportions of plasma erythroid DNA compared to healthy controls (median: 50.9% versus 6.2%) (P < 0.0001). Hence, the concurrent analysis of megakaryocytic and erythroid lineage-specific markers could facilitate the dissection of their relative contributions and provide information on patients with hematological disorders.
Collapse
Affiliation(s)
- W K Jacky Lam
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Wanxia Gai
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Jinyue Bai
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Tommy H C Tam
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wai Fung Cheung
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Lu Ji
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Irene O L Tse
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Amy F C Tsang
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Maggie Z J Li
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Peiyong Jiang
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Man Fai Law
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Raymond S M Wong
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - K C Allen Chan
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Y M Dennis Lo
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong SAR, China.
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
- State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
| |
Collapse
|
18
|
Penny L, Main SC, De Michino SD, Bratman SV. Chromatin- and nucleosome-associated features in liquid biopsy: implications for cancer biomarker discovery. Biochem Cell Biol 2024; 102:291-298. [PMID: 38478957 DOI: 10.1139/bcb-2024-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024] Open
Abstract
Cell-free DNA (cfDNA) from the bloodstream has been studied for cancer biomarker discovery, and chromatin-derived epigenetic features have come into the spotlight for their potential to expand clinical applications. Methylation, fragmentation, and nucleosome positioning patterns of cfDNA have previously been shown to reveal epigenomic and inferred transcriptomic information. More recently, histone modifications have emerged as a tool to further identify tumor-specific chromatin variants in plasma. A number of sequencing methods have been developed to analyze these epigenetic markers, offering new insights into tumor biology. Features within cfDNA allow for cancer detection, subtype and tissue of origin classification, and inference of gene expression. These methods provide a window into the complexity of cancer and the dynamic nature of its progression. In this review, we highlight the array of epigenetic features in cfDNA that can be extracted from chromatin- and nucleosome-associated organization and outline potential use cases in cancer management.
Collapse
Affiliation(s)
- Lucas Penny
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Sasha C Main
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Steven D De Michino
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Scott V Bratman
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON M5T 1P5, Canada
| |
Collapse
|
19
|
Liu J, Hu D, Lin Y, Chen X, Yang R, Li L, Zhan Y, Bao H, Zang L, Zhu M, Zhu F, Yan J, Zhu D, Zhang H, Xu B, Xu Q. Early detection of uterine corpus endometrial carcinoma utilizing plasma cfDNA fragmentomics. BMC Med 2024; 22:310. [PMID: 39075419 PMCID: PMC11288124 DOI: 10.1186/s12916-024-03531-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 07/15/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND Uterine corpus endometrial carcinoma (UCEC) is a prevalent gynecologic malignancy with a favorable prognosis if detected early. However, there is a lack of accurate and reliable early detection tests for UCEC. This study aims to develop a precise and non-invasive diagnostic method for UCEC using circulating cell-free DNA (cfDNA) fragmentomics. METHODS Peripheral blood samples were collected from all participants, and cfDNA was extracted for analysis. Low-coverage whole-genome sequencing was performed to obtain cfDNA fragmentomics data. A robust machine learning model was developed using these features to differentiate between UCEC and healthy conditions. RESULTS The cfDNA fragmentomics-based model showed high predictive power for UCEC detection in training (n = 133; AUC 0.991) and validation cohorts (n = 89; AUC 0.994). The model manifested a specificity of 95.5% and a sensitivity of 98.5% in the training cohort, and a specificity of 95.5% and a sensitivity of 97.8% in the validation cohort. Physiological variables and preanalytical procedures had no significant impact on the classifier's outcomes. In terms of clinical benefit, our model would identify 99% of Chinese UCEC patients at stage I, compared to 21% under standard care, potentially raising the 5-year survival rate from 84 to 95%. CONCLUSION This study presents a novel approach for the early detection of UCEC using cfDNA fragmentomics and machine learning showing promising sensitivity and specificity. Using this model in clinical practice could significantly improve UCEC management and control, enabling early intervention and better patient outcomes. Further optimization and validation of this approach are warranted to establish its clinical utility.
Collapse
Affiliation(s)
- Jing Liu
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou, China
| | - Dan Hu
- Department of Pathology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou, China
| | - Yibin Lin
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou, China
| | - Xiaoxi Chen
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, China
| | - Ruowei Yang
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, China
| | - Li Li
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou, China
| | - Yanyan Zhan
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, China
| | - Hua Bao
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, China
| | - LeLe Zang
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou, China
| | - Mingxuan Zhu
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou, China
| | - Fei Zhu
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou, China
| | - Junrong Yan
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, China
| | - Dongqin Zhu
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, China
| | - Huiqi Zhang
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou, China
| | - Benhua Xu
- Department of Radiation, Fujian Medical University Union Hospital, Fuzhou, China.
| | - Qin Xu
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou, China.
| |
Collapse
|
20
|
Luo HY, Jiang C, Dou SX, Wang PY, Li H. Quantum Dot-Based Three-Dimensional Single-Particle Tracking Characterizes the Evolution of Spatiotemporal Heterogeneity in Necrotic Cells. Anal Chem 2024; 96:11682-11689. [PMID: 38979688 DOI: 10.1021/acs.analchem.4c00097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Cell death is a fundamental biological process with different modes including apoptosis and necrosis. In contrast to programmed apoptosis, necrosis was previously considered disordered and passive, but it is now being realized to be under regulation by certain biological pathways. However, the intracellular dynamics that coordinates with cellular structure changes during necrosis remains unknown, limiting our understanding of the principles of necrosis. Here, we characterized the spatiotemporal intracellular diffusion dynamics in cells undergoing necrosis, using three-dimensional single-particle tracking of quantum dots. We found temporally increased diffusion rates in necrotic cells and spatially enhanced diffusion heterogeneity in the cell periphery, which could be attributed to the reduced molecular crowding resulting from cell swelling and peripheral blebbing, respectively. Moreover, the three-dimensional intracellular diffusion transits from strong anisotropy to nearly isotropy, suggesting a remodeling of the cytoarchitecture that relieves the axial constraint on intracellular diffusion during necrosis. Our results reveal the remarkable alterations of intracellular diffusion dynamics and biophysical properties in necrosis, providing insight into the well-organized nonequilibrium necrotic cell death from a biophysical perspective.
Collapse
Affiliation(s)
- Hong-Yu Luo
- Beijing National Laboratory for Condensed Matter Physics and Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Jiang
- Beijing National Laboratory for Condensed Matter Physics and Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuo-Xing Dou
- Beijing National Laboratory for Condensed Matter Physics and Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng-Ye Wang
- Beijing National Laboratory for Condensed Matter Physics and Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Hui Li
- School of Systems Science and Institute of Nonequilibrium Systems, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
21
|
Ferchiou S, Caza F, Villemur R, Betoulle S, St-Pierre Y. From shells to sequences: A proof-of-concept study for on-site analysis of hemolymphatic circulating cell-free DNA from sentinel mussels using Nanopore technology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:172969. [PMID: 38754506 DOI: 10.1016/j.scitotenv.2024.172969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/18/2024]
Abstract
Blue mussels are often abundant and widely distributed in polar marine coastal ecosystems. Because of their wide distribution, ecological importance, and relatively stationary lifestyle, bivalves have long been considered suitable indicators of ecosystem health and changes. Monitoring the population dynamics of blue mussels can provide information on the overall biodiversity, species interactions, and ecosystem functioning. In the present work, we combined the concept of liquid biopsy (LB), an emerging concept in medicine based on the sequencing of free circulating DNA, with the Oxford Nanopore Technologies (ONT) platform using a portable laboratory in a remote area. Our results demonstrate that this platform is ideally suited for sequencing hemolymphatic circulating cell-free DNA (ccfDNA) fragments found in blue mussels. The percentage of non-self ccfDNA accounted for >50 % of ccfDNA at certain sampling Sites, allowing the quick, on-site acquisition of a global view of the biodiversity of a coastal marine ecosystem. These ccfDNA fragments originated from viruses, bacteria, plants, arthropods, algae, and multiple Chordata. Aside from non-self ccfDNA, we found DNA fragments from all 14 blue mussel chromosomes, as well as those originating from the mitochondrial genomes. However, the distribution of nuclear and mitochondrial DNA was significantly different between Sites. Similarly, analyses between various sampling Sites showed that the biodiversity varied significantly within microhabitats. Our work shows that the ONT platform is well-suited for LB in sentinel blue mussels in remote and challenging conditions, enabling faster fieldwork for conservation strategies and resource management in diverse settings.
Collapse
Affiliation(s)
- Sophia Ferchiou
- INRS-Centre Armand-Frappier Santé Technologie, 531 Boul. des Prairies, Laval, QC H7V 1B7, Canada
| | - France Caza
- INRS-Centre Armand-Frappier Santé Technologie, 531 Boul. des Prairies, Laval, QC H7V 1B7, Canada
| | - Richard Villemur
- INRS-Centre Armand-Frappier Santé Technologie, 531 Boul. des Prairies, Laval, QC H7V 1B7, Canada
| | - Stéphane Betoulle
- Université Reims Champagne-Ardenne, UMR-I 02 SEBIO Stress environnementaux et Biosurveillance des milieux aquatiques, Campus Moulin de la Housse, 51687 Reims, France
| | - Yves St-Pierre
- INRS-Centre Armand-Frappier Santé Technologie, 531 Boul. des Prairies, Laval, QC H7V 1B7, Canada.
| |
Collapse
|
22
|
Till JE, McDaniel L, Chang C, Long Q, Pfeiffer SM, Lyman JP, Padrón LJ, Maurer DM, Yu JX, Spencer CN, Gherardini PF, Da Silva DM, LaVallee TM, Abbott C, Chen RO, Boyle SM, Bhagwat N, Cannas S, Sagreiya H, Li W, Yee SS, Abdalla A, Wang Z, Yin M, Ballinger D, Wissel P, Eads J, Karasic T, Schneider C, O'Dwyer P, Teitelbaum U, Reiss KA, Rahma OE, Fisher GA, Ko AH, Wainberg ZA, Wolff RA, O'Reilly EM, O'Hara MH, Cabanski CR, Vonderheide RH, Carpenter EL. Circulating KRAS G12D but not G12V is associated with survival in metastatic pancreatic ductal adenocarcinoma. Nat Commun 2024; 15:5763. [PMID: 38982051 PMCID: PMC11233636 DOI: 10.1038/s41467-024-49915-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 06/18/2024] [Indexed: 07/11/2024] Open
Abstract
While high circulating tumor DNA (ctDNA) levels are associated with poor survival for multiple cancers, variant-specific differences in the association of ctDNA levels and survival have not been examined. Here we investigate KRAS ctDNA (ctKRAS) variant-specific associations with overall and progression-free survival (OS/PFS) in first-line metastatic pancreatic ductal adenocarcinoma (mPDAC) for patients receiving chemoimmunotherapy ("PRINCE", NCT03214250), and an independent cohort receiving standard of care (SOC) chemotherapy. For PRINCE, higher baseline plasma levels are associated with worse OS for ctKRAS G12D (log-rank p = 0.0010) but not G12V (p = 0.7101), even with adjustment for clinical covariates. Early, on-therapy clearance of G12D (p = 0.0002), but not G12V (p = 0.4058), strongly associates with OS for PRINCE. Similar results are obtained for the SOC cohort, and for PFS in both cohorts. These results suggest ctKRAS G12D but not G12V as a promising prognostic biomarker for mPDAC and that G12D clearance could also serve as an early biomarker of response.
Collapse
Affiliation(s)
- Jacob E Till
- Abramson Cancer Center of the University of Pennsylvania, Philadelphia, PA, USA
| | | | - Changgee Chang
- Indiana University School of Medicine, Indianapolis, IN, USA
| | - Qi Long
- Abramson Cancer Center of the University of Pennsylvania, Philadelphia, PA, USA
| | | | - Jaclyn P Lyman
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Lacey J Padrón
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Deena M Maurer
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Jia Xin Yu
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | | | | | - Diane M Da Silva
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | | | | | | | | | - Neha Bhagwat
- Abramson Cancer Center of the University of Pennsylvania, Philadelphia, PA, USA
| | - Samuele Cannas
- Abramson Cancer Center of the University of Pennsylvania, Philadelphia, PA, USA
| | - Hersh Sagreiya
- Abramson Cancer Center of the University of Pennsylvania, Philadelphia, PA, USA
| | - Wenrui Li
- Abramson Cancer Center of the University of Pennsylvania, Philadelphia, PA, USA
| | - Stephanie S Yee
- Abramson Cancer Center of the University of Pennsylvania, Philadelphia, PA, USA
| | - Aseel Abdalla
- Abramson Cancer Center of the University of Pennsylvania, Philadelphia, PA, USA
| | - Zhuoyang Wang
- Abramson Cancer Center of the University of Pennsylvania, Philadelphia, PA, USA
| | - Melinda Yin
- Abramson Cancer Center of the University of Pennsylvania, Philadelphia, PA, USA
| | - Dominique Ballinger
- Abramson Cancer Center of the University of Pennsylvania, Philadelphia, PA, USA
| | - Paul Wissel
- Abramson Cancer Center of the University of Pennsylvania, Philadelphia, PA, USA
| | - Jennifer Eads
- Abramson Cancer Center of the University of Pennsylvania, Philadelphia, PA, USA
| | - Thomas Karasic
- Abramson Cancer Center of the University of Pennsylvania, Philadelphia, PA, USA
| | - Charles Schneider
- Abramson Cancer Center of the University of Pennsylvania, Philadelphia, PA, USA
| | - Peter O'Dwyer
- Abramson Cancer Center of the University of Pennsylvania, Philadelphia, PA, USA
| | - Ursina Teitelbaum
- Abramson Cancer Center of the University of Pennsylvania, Philadelphia, PA, USA
| | - Kim A Reiss
- Abramson Cancer Center of the University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - Andrew H Ko
- University of California, San Francisco, San Francisco, CA, USA
| | - Zev A Wainberg
- University of California, Los Angeles, Los Angeles, CA, USA
| | - Robert A Wolff
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Mark H O'Hara
- Abramson Cancer Center of the University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - Erica L Carpenter
- Abramson Cancer Center of the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
23
|
Li A, Lou E, Leder K, Foo J. Early ctDNA kinetics as a dynamic biomarker of cancer treatment response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.01.601508. [PMID: 39005329 PMCID: PMC11244961 DOI: 10.1101/2024.07.01.601508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Circulating tumor DNA assays are promising tools for the prediction of cancer treatment response. Here, we build a framework for the design of ctDNA biomarkers of therapy response that incorporate variations in ctDNA dynamics driven by specific treatment mechanisms. We develop mathematical models of ctDNA kinetics driven by tumor response to several therapy classes, and utilize them to simulate randomized virtual patient cohorts to test candidate biomarkers. Using this approach, we propose specific biomarkers, based on ctDNA longitudinal features, for targeted therapy, chemotherapy and radiation therapy. We evaluate and demonstrate the efficacy of these biomarkers in predicting treatment response within a randomized virtual patient cohort dataset. These biomarkers are based on novel proposals for ctDNA sampling protocols, consisting of frequent sampling within a compact time window surrounding therapy initiation - which we hypothesize to hold valuable prognostic information on longer-term treatment response. This study highlights a need for tailoring ctDNA sampling protocols and interpretation methodology to specific biological mechanisms of therapy response, and it provides a novel modeling and simulation framework for doing so. In addition, it highlights the potential of ctDNA assays for making early, rapid predictions of treatment response within the first days or weeks of treatment, and generates hypotheses for further clinical testing.
Collapse
Affiliation(s)
- Aaron Li
- School of Mathematics, University of Minnesota, Twin Cities, MN, USA
| | - Emil Lou
- Masonic Cancer Center, University of Minnesota, Twin Cities, MN, USA
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, MN, USA
| | - Kevin Leder
- Department of Industrial and Systems Engineering, University of Minnesota, Twin Cities, MN, USA
| | - Jasmine Foo
- School of Mathematics, University of Minnesota, Twin Cities, MN, USA
- Masonic Cancer Center, University of Minnesota, Twin Cities, MN, USA
| |
Collapse
|
24
|
Turabi K, Klute K, Radhakrishnan P. Decoding the Dynamics of Circulating Tumor DNA in Liquid Biopsies. Cancers (Basel) 2024; 16:2432. [PMID: 39001494 PMCID: PMC11240538 DOI: 10.3390/cancers16132432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
Circulating tumor DNA (ctDNA), a fragment of tumor DNA found in the bloodstream, has emerged as a revolutionary tool in cancer management. This review delves into the biology of ctDNA, examining release mechanisms, including necrosis, apoptosis, and active secretion, all of which offer information about the state and nature of the tumor. Comprehensive DNA profiling has been enabled by methods such as whole genome sequencing and methylation analysis. The low abundance of the ctDNA fraction makes alternative techniques, such as digital PCR and targeted next-generation exome sequencing, more valuable and accurate for mutation profiling and detection. There are numerous clinical applications for ctDNA analysis, including non-invasive liquid biopsies for minimal residual disease monitoring to detect cancer recurrence, personalized medicine by mutation profiling for targeted therapy identification, early cancer detection, and real-time evaluation of therapeutic response. Integrating ctDNA analysis into routine clinical practice creates promising avenues for successful and personalized cancer care, from diagnosis to treatment and follow-up.
Collapse
Affiliation(s)
- Khadija Turabi
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Kelsey Klute
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Division of Oncology and Hematology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Prakash Radhakrishnan
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
25
|
Shao S, Zou Y, Kennedy KG, Dimick MK, Andreazza AC, Young LT, Goncalves VF, MacIntosh BJ, Goldstein BI. Pilot study of circulating cell-free mitochondrial DNA in relation to brain structure in youth bipolar disorder. Int J Bipolar Disord 2024; 12:21. [PMID: 38874862 PMCID: PMC11178693 DOI: 10.1186/s40345-024-00334-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/08/2024] [Indexed: 06/15/2024] Open
Abstract
BACKGROUND Mitochondrial dysfunction is implicated in the neuropathology of bipolar disorder (BD). Higher circulating cell-free mitochondrial DNA (ccf-mtDNA), generally reflecting poorer mitochondrial health, has been associated with greater symptoms severity in BD. The current study examines the association of serum ccf-mtDNA and brain structure in relation to youth BD. We hypothesized that higher ccf-mtDNA will be associated with measures of lower brain structure, particularly in the BD group. METHODS Participants included 40 youth (BD, n = 19; Control group [CG], n = 21; aged 13-20 years). Serum ccf-mtDNA levels were assayed. T1-weighted brain images were acquired using 3T-MRI. Region of interest (ROI) analyses examined prefrontal cortex (PFC) and whole brain gray matter, alongside exploratory vertex-wise analyses. Analyses examined ccf-mtDNA main-effects and ccf-mtDNA-by-diagnosis interaction effects controlling for age, sex, and intracranial volume. RESULTS There was no significant difference in ccf-mtDNA levels between BD and CG. In ROI analyses, higher ccf-mtDNA was associated with higher PFC surface area (SA) (β = 0.32 p < 0.001) and PFC volume (β = 0.32 p = 0.002) in the overall sample. In stratified analyses, higher ccf-mtDNA was associated with higher PFC SA within both subgroups (BD: β = 0.39 p = 0.02; CG: β = 0.24 p = 0.045). Higher ccf-mtDNA was associated with higher PFC volume within the BD group (β = 0.39 p = 0.046). In vertex-wise analyses, higher ccf-mtDNA was associated with higher SA and volume in frontal clusters within the overall sample and within the BD group. There were significant ccf-mtDNA-by-diagnosis interactions in three frontal and parietal clusters, whereby higher ccf-mtDNA was associated with higher neurostructural metrics in the BD group but lower neurostructural metrics in CG. CONCLUSIONS Contrasting our hypothesis, higher ccf-mtDNA was consistently associated with higher, rather than lower, regional neuralstructural metrics among youth with BD. While this finding may reflect a compensatory mechanism, future repeated-measures prospective studies evaluating the inter-relationship among ccf-mtDNA, mood, and brain structure across developmental epochs and illness stages are warranted.
Collapse
Affiliation(s)
- Suyi Shao
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada.
- Department of Pharmacology & Toxicology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| | - Yi Zou
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Kody G Kennedy
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Mikaela K Dimick
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Ana C Andreazza
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Pharmacology & Toxicology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - L Trevor Young
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Vanessa F Goncalves
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Bradley J MacIntosh
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Hurvitz Brain Sciences Program, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Benjamin I Goldstein
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada.
- Department of Pharmacology & Toxicology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
26
|
Klocker EV, Hasenleithner S, Bartsch R, Gampenrieder SP, Egle D, Singer CF, Rinnerthaler G, Hubalek M, Schmitz K, Bago-Horvath Z, Petzer A, Heibl S, Heitzer E, Balic M, Gnant M. Clinical applications of next-generation sequencing-based ctDNA analyses in breast cancer: defining treatment targets and dynamic changes during disease progression. Mol Oncol 2024. [PMID: 38867388 DOI: 10.1002/1878-0261.13671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/03/2024] [Accepted: 05/17/2024] [Indexed: 06/14/2024] Open
Abstract
The advancements in the detection and characterization of circulating tumor DNA (ctDNA) have revolutionized precision medicine and are likely to transform standard clinical practice. The non-invasive nature of this approach allows for molecular profiling of the entire tumor entity, while also enabling real-time monitoring of the effectiveness of cancer therapies as well as the identification of resistance mechanisms to guide targeted therapy. Although the field of ctDNA studies offers a wide range of applications, including in early disease, in this review we mainly focus on the role of ctDNA in the dynamic molecular characterization of unresectable locally advanced and metastatic BC (mBC). Here, we provide clinical practice guidance for the rapidly evolving field of molecular profiling of mBC, outlining the current landscape of liquid biopsy applications and how to choose the right ctDNA assay. Additionally, we underline the importance of exploring the clinical relevance of novel molecular alterations that potentially represent therapeutic targets in mBC, along with mutations where targeted therapy is already approved. Finally, we present a potential roadmap for integrating ctDNA analysis into clinical practice.
Collapse
Affiliation(s)
- Eva Valentina Klocker
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Austria
| | - Samantha Hasenleithner
- Institute of Human Genetics, Diagnostic and Research Center for Molecular BioMedicine, Medical University of Graz, Austria
| | - Rupert Bartsch
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Austria
| | - Simon P Gampenrieder
- Third Medical Department with Hematology and Medical Oncology, Hemostaseology, Rheumatology and Infectious Diseases, Oncologic Center, Paracelsus Medical University Salzburg, Austria
| | - Daniel Egle
- Department of Gynecology, Breast Cancer Center Tirol, Medical University of Innsbruck, Austria
| | - Christian F Singer
- Department of Gynecology, Breast Cancer Center Vienna, Medical University of Vienna, Austria
| | - Gabriel Rinnerthaler
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Austria
| | - Michael Hubalek
- Department of Gynecology, Breast Health Center Schwaz, Austria
| | - Katja Schmitz
- Institute of Pathology, University Medical Center Göttingen, Germany
- Tyrolpath Obrist Brunhuber GmbH and Krankenhaus St. Vinzenz, Zams, Austria
| | | | - Andreas Petzer
- Department of Internal Medicine I for Hematology with Stem Cell Transplantation, Hemostaseology and Medical Oncology, Barmherzige Schwestern, Elisabethinen, Ordensklinikum Linz GmbH, Austria
| | - Sonja Heibl
- Department of Internal Medicine IV, Klinikum Wels-Grieskirchen GmbH, Austria
| | - Ellen Heitzer
- Institute of Human Genetics, Diagnostic and Research Center for Molecular BioMedicine, Christian Doppler Laboratory for Liquid Biopsies for early Detection of Cancer, Medical University of Graz, Austria
| | - Marija Balic
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Austria
- Division of Hematology and Medical Oncology, University of Pittsburgh School of Medicine, PA, USA
| | - Michael Gnant
- Comprehensive Cancer Center, Medical University of Vienna, Austria
| |
Collapse
|
27
|
Kogure Y, Handa H, Ito Y, Ri M, Horigome Y, Iino M, Harazaki Y, Kobayashi T, Abe M, Ishida T, Ito S, Iwasaki H, Kuroda J, Shibayama H, Sunami K, Takamatsu H, Tamura H, Hayashi T, Akagi K, Shinozaki T, Yoshida T, Mori I, Iida S, Maeda T, Kataoka K. ctDNA improves prognostic prediction for patients with relapsed/refractory MM receiving ixazomib, lenalidomide, and dexamethasone. Blood 2024; 143:2401-2413. [PMID: 38427753 DOI: 10.1182/blood.2023022540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/03/2024] Open
Abstract
ABSTRACT It remains elusive how driver mutations, including those detected in circulating tumor DNA (ctDNA), affect prognosis in relapsed/refractory multiple myeloma (RRMM). Here, we performed targeted-capture sequencing using bone marrow plasma cells (BMPCs) and ctDNA of 261 RRMM cases uniformly treated with ixazomib, lenalidomide, and dexamethasone in a multicenter, prospective, observational study. We detected 24 and 47 recurrently mutated genes in BMPC and ctDNA, respectively. In addition to clonal hematopoiesis-associated mutations, varying proportion of driver mutations, particularly TP53 mutations (59.2% of mutated cases), were present in only ctDNA, suggesting their subclonal origin. In univariable analyses, ctDNA mutations of KRAS, TP53, DIS3, BRAF, NRAS, and ATM were associated with worse progression-free survival (PFS). BMPC mutations of TP53 and KRAS were associated with inferior PFS, whereas KRAS mutations were prognostically relevant only when detected in both BMPC and ctDNA. A total number of ctDNA mutations in the 6 relevant genes was a strong prognostic predictor (2-year PFS rates: 57.3%, 22.7%, and 0% for 0, 1, and ≥2 mutations, respectively) and independent of clinical factors and plasma DNA concentration. Using the number of ctDNA mutations, plasma DNA concentration, and clinical factors, we developed a prognostic index, classifying patients into 3 categories with 2-year PFS rates of 57.9%, 28.6%, and 0%. Serial analysis of ctDNA mutations in 94 cases revealed that TP53 and KRAS mutations frequently emerge after therapy. Thus, we clarify the genetic characteristics and clonal architecture of ctDNA mutations and demonstrate their superiority over BMPC mutations for prognostic prediction in RRMM. This study is a part of the C16042 study, which is registered at www.clinicaltrials.gov as #NCT03433001.
Collapse
Affiliation(s)
- Yasunori Kogure
- Division of Molecular Oncology, National Cancer Center Research Institute, Tokyo, Japan
| | - Hiroshi Handa
- Department of Hematology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yuta Ito
- Division of Molecular Oncology, National Cancer Center Research Institute, Tokyo, Japan
- Division of Clinical Oncology and Hematology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Masaki Ri
- Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yuichi Horigome
- Department of Hematology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Masaki Iino
- Department of Hematology, Yamanashi Prefectural Central Hospital, Kofu, Japan
| | - Yoriko Harazaki
- Department of Hematology, Miyagi Cancer Center, Natori, Japan
| | - Takahiro Kobayashi
- Department of Hematology, Nephrology and Rheumatology, Akita University Graduate School of Medicine, Akita, Japan
| | - Masahiro Abe
- Department of Hematology, Kawashima Hospital, Tokushima, Japan
| | - Tadao Ishida
- Department of Hematology, Japanese Red Cross Medical Center, Tokyo, Japan
| | - Shigeki Ito
- Department of Hematology and Oncology, Iwate Medical University Hospital, Iwate, Japan
| | - Hiromi Iwasaki
- Department of Hematology, National Hospital Organization Kyushu Medical Center, Fukuoka, Japan
| | - Junya Kuroda
- Division of Hematology and Oncology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hirohiko Shibayama
- Department of Hematology, National Hospital Organization Osaka National Hospital, Osaka, Japan
| | - Kazutaka Sunami
- Department of Hematology, National Hospital Organization Okayama Medical Center, Okayama, Japan
| | | | - Hideto Tamura
- Department of Hematology, Nippon Medical School, Tokyo, Japan
| | - Toshiaki Hayashi
- Department of Hematology, Teine Keijinkai Hospital, Sapporo, Japan
| | - Kiwamu Akagi
- Division of Molecular Diagnosis and Cancer Prevention, Saitama Cancer Center, Saitama, Japan
| | - Tomohiro Shinozaki
- Department of Information and Computer Technology, Faculty of Engineering, Tokyo University of Science, Tokyo, Japan
| | | | - Ikuo Mori
- Takeda Pharmaceutical Company Limited, Tokyo, Japan
| | - Shinsuke Iida
- Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Takahiro Maeda
- Division of Precision Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Keisuke Kataoka
- Division of Molecular Oncology, National Cancer Center Research Institute, Tokyo, Japan
- Division of Hematology, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
28
|
Magbanua MJM, Ahmed Z, Sayaman RW, Swigart LB, Hirst GL, Yau C, Wolf DM, Li W, Delson AL, Perlmutter J, Pohlmann P, Symmans WF, Yee D, Hylton NM, Esserman LJ, DeMichele AM, Rugo HS, van ‘t Veer LJ. Cell-free DNA Concentration as a Biomarker of Response and Recurrence in HER2-Negative Breast Cancer Receiving Neoadjuvant Chemotherapy. Clin Cancer Res 2024; 30:2444-2451. [PMID: 38470545 PMCID: PMC11147708 DOI: 10.1158/1078-0432.ccr-23-2928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/08/2023] [Accepted: 03/08/2024] [Indexed: 03/14/2024]
Abstract
PURPOSE We previously demonstrated the clinical significance of circulating tumor DNA (ctDNA) in patients with HER2-negative breast cancer receiving neoadjuvant chemotherapy (NAC). Here, we compared its predictive and prognostic value with cell-free DNA (cfDNA) concentration measured in the same samples from the same patients. EXPERIMENTAL DESIGN 145 patients with hormone receptor (HR)-positive/HER2-negative and 138 triple-negative breast cancer (TNBC) with ctDNA data from a previous study were included in the analysis. Associations of serial cfDNA concentration with residual cancer burden (RCB) and distant recurrence-free survival (DRFS) were examined. RESULTS In TNBC, we observed a modest negative correlation between cfDNA concentration 3 weeks after treatment initiation and RCB, but none of the other timepoints showed significant correlation. In contrast, ctDNA was significantly positively correlated with RCB at all timepoints (all R > 0.3 and P < 0.05). In the HR-positive/HER2-negative group, cfDNA concentration did not associate with response to NAC, but survival analysis showed that high cfDNA shedders at pretreatment had a significantly worse DRFS than low shedders (hazard ratio, 2.12; P = 0.037). In TNBC, the difference in survival between high versus low cfDNA shedders at all timepoints was not statistically significant. In contrast, as previously reported, ctDNA at all timepoints was significantly correlated with DRFS in both subtypes. CONCLUSIONS In TNBC, cfDNA concentrations during therapy were not strongly correlated with response or prognosis. In the HR-positive/HER2-negative group, pretreatment cfDNA concentration was prognostic for DRFS. Overall, the predictive and prognostic value of cfDNA concentration was more limited than that of ctDNA.
Collapse
Affiliation(s)
- Mark Jesus M. Magbanua
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, USA
| | - Ziad Ahmed
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, USA
| | - Rosalyn W. Sayaman
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, USA
| | - Lamorna Brown Swigart
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, USA
| | - Gill L. Hirst
- Department of Surgery, University of California San Francisco, San Francisco, USA
| | - Christina Yau
- Department of Surgery, University of California San Francisco, San Francisco, USA
| | - Denise M. Wolf
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, USA
| | - Wen Li
- Department of Radiology, University of California San Francisco, San Francisco, USA
| | - Amy L. Delson
- Breast Science Advocacy Core, University of California San Francisco, San Francisco, USA
| | - Jane Perlmutter
- Breast Science Advocacy Core, University of California San Francisco, San Francisco, USA
| | - Paula Pohlmann
- Department of Breast Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, USA
| | - W. Fraser Symmans
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, USA
| | - Douglas Yee
- Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, USA
| | - Nola M. Hylton
- Department of Radiology, University of California San Francisco, San Francisco, USA
| | - Laura J. Esserman
- Department of Surgery, University of California San Francisco, San Francisco, USA
| | - Angela M. DeMichele
- Division of Hematology/Oncology, University of Pennsylvania, Philadelphia, USA
| | - Hope S. Rugo
- Division of Hematology/Oncology, University of California San Francisco, San Francisco, USA
| | - Laura J. van ‘t Veer
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, USA
| |
Collapse
|
29
|
Li Y, Wu J, Feng Y, Wang D, Tao H, Wen J, Jiang F, Qian P, Liu Y. Kinetics of plasma cell-free DNA as a prospective biomarker to predict the prognosis and radiotherapy effect of esophageal cancer. Cancer Radiother 2024; 28:242-250. [PMID: 38876937 DOI: 10.1016/j.canrad.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 11/03/2023] [Accepted: 11/09/2023] [Indexed: 06/16/2024]
Abstract
PURPOSE The lack of reliable biomarkers for the prognosis and radiotherapy efficacy in esophageal cancer (EC) necessitates further research. The aim of our study was to investigate the predictive utility of plasma cell-free DNA (cfDNA) kinetics in patients with EC. MATERIALS AND METHODS We retrospectively analyzed the clinical data and cfDNA levels (pre-radiotherapy [pre-RT] and post-radiotherapy [post-RT]) and the cfDNA kinetics (cfDNA ratio: post-RT cfDNA/pre-RT cfDNA) of 88 patients. We employed Kaplan-Meier curves to examine the relationship between cfDNA and overall survival (OS) as well as progression-free survival (PFS). Univariate and multivariate Cox regression analyses were executed to ascertain the independent risk factors in EC. RESULTS The pre-RT cfDNA levels were positively correlated with clinical stage (P=0.001). The pre-RT cfDNA levels (cutoff value=16.915ng/mL), but not the post-RT cfDNA levels, were linked to a diminished OS (P<0.001) and PFS (P=0.0137). CfDNA kinetics (cutoff value=0.883) were positively associated with OS (P=0.0326) and PFS (P=0.0020). Notably, we identified independent risk factors for OS in EC treated with RT, including cfDNA ratio (high/low) (HR=0.447 [0.221-0.914] P=0.025), ECOG (0/1/2) (HR=0.501 [0.285-0.880] p=0.016), and histological type (esophagal squamous cell carcinoma [ESCC]/non-ESCC) (HR=3.973 [1.074-14.692] P=0.039). CONCLUSION Plasma cfDNA kinetics is associated with prognosis and radiotherapy effect in EC undergoing RT, suggesting potential clinical application of a cheap and simple blood-based test.
Collapse
Affiliation(s)
- Y Li
- Department of Radiation Oncology, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, 21009 Nanjing, China
| | - J Wu
- Department of Radiation Oncology, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, 21009 Nanjing, China
| | - Y Feng
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, 21009 Nanjing, China
| | - D Wang
- Department of Radiation Oncology, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, 21009 Nanjing, China
| | - H Tao
- Department of Radiation Oncology, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, 21009 Nanjing, China
| | - J Wen
- Department of Radiation Oncology, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, 21009 Nanjing, China
| | - F Jiang
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, 21009 Nanjing, China
| | - P Qian
- Department of Radiation Oncology, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, 21009 Nanjing, China.
| | - Y Liu
- Department of Radiation Oncology, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, 21009 Nanjing, China.
| |
Collapse
|
30
|
Davidson BA, Miranda AX, Reed SC, Bergman RE, Kemp JDJ, Reddy AP, Pantone MV, Fox EK, Dorand RD, Hurley PJ, Croessmann S, Park BH. An in vitro CRISPR screen of cell-free DNA identifies apoptosis as the primary mediator of cell-free DNA release. Commun Biol 2024; 7:441. [PMID: 38600351 PMCID: PMC11006667 DOI: 10.1038/s42003-024-06129-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 03/29/2024] [Indexed: 04/12/2024] Open
Abstract
ABTRACT Clinical circulating cell-free DNA (cfDNA) testing is now routine, however test accuracy remains limited. By understanding the life-cycle of cfDNA, we might identify opportunities to increase test performance. Here, we profile cfDNA release across a 24-cell line panel and utilize a cell-free CRISPR screen (cfCRISPR) to identify mediators of cfDNA release. Our panel outlines two distinct groups of cell lines: one which releases cfDNA fragmented similarly to clinical samples and purported as characteristic of apoptosis, and another which releases larger fragments associated with vesicular or necrotic DNA. Our cfCRISPR screens reveal that genes mediating cfDNA release are primarily involved with apoptosis, but also identify other subsets of genes such as RNA binding proteins as potential regulators of cfDNA release. We observe that both groups of cells lines identified primarily produce cfDNA through apoptosis. These results establish the utility of cfCRISPR, genetically validate apoptosis as a major mediator of DNA release in vitro, and implicate ways to improve cfDNA assays.
Collapse
Affiliation(s)
- Brad A Davidson
- Division of Hematology, Oncology, Department of Medicine, Vanderbilt University Medical Center and the Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| | - Adam X Miranda
- Division of Hematology, Oncology, Department of Medicine, Vanderbilt University Medical Center and the Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| | - Sarah C Reed
- Division of Hematology, Oncology, Department of Medicine, Vanderbilt University Medical Center and the Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
- Medical Scientist Training Program, Vanderbilt University, Nashville, TN, USA
| | - Riley E Bergman
- Division of Hematology, Oncology, Department of Medicine, Vanderbilt University Medical Center and the Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
- Medical Scientist Training Program, Vanderbilt University, Nashville, TN, USA
| | - Justin D J Kemp
- Division of Hematology, Oncology, Department of Medicine, Vanderbilt University Medical Center and the Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| | - Anvith P Reddy
- Division of Hematology, Oncology, Department of Medicine, Vanderbilt University Medical Center and the Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
- Medical Scientist Training Program, Vanderbilt University, Nashville, TN, USA
| | - Morgan V Pantone
- Division of Hematology, Oncology, Department of Medicine, Vanderbilt University Medical Center and the Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| | - Ethan K Fox
- Division of Hematology, Oncology, Department of Medicine, Vanderbilt University Medical Center and the Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| | - R Dixon Dorand
- Division of Hematology, Oncology, Department of Medicine, Vanderbilt University Medical Center and the Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| | - Paula J Hurley
- Division of Hematology, Oncology, Department of Medicine, Vanderbilt University Medical Center and the Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| | - Sarah Croessmann
- Division of Hematology, Oncology, Department of Medicine, Vanderbilt University Medical Center and the Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| | - Ben Ho Park
- Division of Hematology, Oncology, Department of Medicine, Vanderbilt University Medical Center and the Vanderbilt-Ingram Cancer Center, Nashville, TN, USA.
| |
Collapse
|
31
|
McNamara ME, Jain SS, Oza K, Muralidaran V, Kiliti AJ, McDeed AP, Patil D, Cui Y, Schmidt MO, Riegel AT, Kroemer AH, Wellstein A. Circulating, cell-free methylated DNA indicates cellular sources of allograft injury after liver transplant. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.04.588176. [PMID: 38617373 PMCID: PMC11014558 DOI: 10.1101/2024.04.04.588176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Post-transplant complications reduce allograft and recipient survival. Current approaches for detecting allograft injury non-invasively are limited and do not differentiate between cellular mechanisms. Here, we monitor cellular damages after liver transplants from cell-free DNA (cfDNA) fragments released from dying cells into the circulation. We analyzed 130 blood samples collected from 44 patients at different time points after transplant. Sequence-based methylation of cfDNA fragments were mapped to patterns established to identify cell types in different organs. For liver cell types DNA methylation patterns and multi-omic data integration show distinct enrichment in open chromatin and regulatory regions functionally important for the respective cell types. We find that multi-tissue cellular damages post-transplant recover in patients without allograft injury during the first post-operative week. However, sustained elevation of hepatocyte and biliary epithelial cfDNA beyond the first week indicates early-onset allograft injury. Further, cfDNA composition differentiates amongst causes of allograft injury indicating the potential for non-invasive monitoring and timely intervention.
Collapse
Affiliation(s)
- Megan E. McNamara
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Sidharth S. Jain
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Kesha Oza
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, USA
- Department of General Surgery, MedStar Georgetown University Hospital, Washington, DC, USA
| | - Vinona Muralidaran
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, USA
| | - Amber J. Kiliti
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - A. Patrick McDeed
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Digvijay Patil
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, USA
| | - Yuki Cui
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, USA
| | - Marcel O. Schmidt
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Anna T. Riegel
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Alexander H.K. Kroemer
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, USA
| | - Anton Wellstein
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| |
Collapse
|
32
|
Das D, Avssn R, Chittela RK. A phenol-chloroform free method for cfDNA isolation from cell conditioned media: development, optimization and comparative analysis. Anal Biochem 2024; 687:115454. [PMID: 38158107 DOI: 10.1016/j.ab.2023.115454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/13/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
The non-invasive invasive nature of cell-free DNA (cfDNA) as diagnostic, prognostic, and theragnostic biomarkers has gained immense popularity in recent years. The clinical utility of cfDNA biomarkers may depend on understanding their origin and biological significance. Apoptosis, necrosis, and/or active release are possible mechanisms of cellular DNA release into the cell-free milieu. In-vitro cell culture models can provide useful insights into cfDNA biology. The yields and quality of cfDNA in the cell conditioned media (CCM) are largely dependent on the extraction method used. Here, we developed a phenol-chloroform-free cfDNA extraction method from CCM and compared it with three others published cfDNA extraction methods and four commercially available kits. Real-Time PCR (qPCR) targeting two different loci and a fluorescence-based Qubit assay were performed to quantify the extracted cfDNA. The absolute concentration of the extracted cfDNA varies with the target used for the qPCR assay; however, the relative trend remains similar for both qPCR assays. The cfDNA yield from CCM provided by the developed method was found to be either higher or comparable to the other methods used. In conclusion, we developed a safe, rapid and cost-effective cfDNA extraction protocol with minimal hands-on time; with no compromise in cfDNA yields.
Collapse
Affiliation(s)
- Dhruv Das
- Applied Genomics Section, Bioscience Group, Bhabha Atomic Research Centre, Mumbai, 400085, India; Homi Bhabha National Institute (HBNI), Anushaktinagar, Trombay, Mumbai, 400094, India
| | - Rao Avssn
- Applied Genomics Section, Bioscience Group, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Rajani Kant Chittela
- Applied Genomics Section, Bioscience Group, Bhabha Atomic Research Centre, Mumbai, 400085, India; Homi Bhabha National Institute (HBNI), Anushaktinagar, Trombay, Mumbai, 400094, India.
| |
Collapse
|
33
|
Wever BMM, Steenbergen RDM. Unlocking the potential of tumor-derived DNA in urine for cancer detection: methodological challenges and opportunities. Mol Oncol 2024. [PMID: 38462745 DOI: 10.1002/1878-0261.13628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/20/2023] [Accepted: 01/27/2024] [Indexed: 03/12/2024] Open
Abstract
High cancer mortality rates and the rising cancer burden worldwide drive the development of innovative methods in order to advance cancer diagnostics. Urine contains a viable source of tumor material and allows for self-collection from home. Biomarker testing in this liquid biopsy represents a novel approach that is convenient for patients and can be effective in detecting cancer at a curable stage. Here, we set out to provide a detailed overview of the rationale behind urine-based cancer detection, with a focus on non-urological cancers, and its potential for cancer diagnostics. Moreover, evolving methodological challenges and untapped opportunities for urine biomarker testing are discussed, particularly emphasizing DNA methylation of tumor-derived cell-free DNA. We also provide future recommendations for technical advancements in urine-based cancer detection and elaborate on potential mechanisms involved in the transrenal transport of cell-free DNA.
Collapse
Affiliation(s)
- Birgit M M Wever
- Department of Pathology, Amsterdam UMC, location Vrije Universiteit Amsterdam, The Netherlands
- Imaging and Biomarkers, Cancer Center Amsterdam, The Netherlands
| | - Renske D M Steenbergen
- Department of Pathology, Amsterdam UMC, location Vrije Universiteit Amsterdam, The Netherlands
- Imaging and Biomarkers, Cancer Center Amsterdam, The Netherlands
| |
Collapse
|
34
|
Cheng JC, Swarup N, Wong DTW, Chia D. A review on the impact of single-stranded library preparation on plasma cell-free diversity for cancer detection. Front Oncol 2024; 14:1332004. [PMID: 38511142 PMCID: PMC10951391 DOI: 10.3389/fonc.2024.1332004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/07/2024] [Indexed: 03/22/2024] Open
Abstract
In clinical oncology, cell-free DNA (cfDNA) has shown immense potential in its ability to noninvasively detect cancer at various stages and monitor the progression of therapy. Despite the rapid improvements in cfDNA liquid biopsy approaches, achieving the required sensitivity to detect rare tumor-derived cfDNA still remains a challenge. For next-generation sequencing, the perceived presentation of cfDNA is strongly linked to the extraction and library preparation protocols. Conventional double-stranded DNA library preparation (dsDNA-LP) focuses on assessing ~167bp double-stranded mononucleosomal (mncfDNA) and its other oligonucleosomal cell-free DNA counterparts in plasma. However, dsDNA-LP methods fail to include short, single-stranded, or nicked DNA in the final library preparation, biasing the representation of the actual cfDNA populations in plasma. The emergence of single-stranded library preparation (ssDNA-LP) strategies over the past decade has now allowed these other populations of cfDNA to be studied from plasma. With the use of ssDNA-LP, single-stranded, nicked, and ultrashort cfDNA can be comprehensively assessed for its molecular characteristics and clinical potential. In this review, we overview the current literature on applications of ssDNA-LP on plasma cfDNA from a potential cancer liquid biopsy perspective. To this end, we discuss the molecular principles of single-stranded DNA adapter ligation, how library preparation contributes to the understanding of native cfDNA characteristics, and the potential for ssDNA-LP to improve the sensitivity of circulating tumor DNA detection. Additionally, we review the current literature on the newly reported species of plasma ultrashort single-stranded cell-free DNA plasma, which appear biologically distinct from mncfDNA. We conclude with a discussion of future perspectives of ssDNA-LP for liquid biopsy endeavors.
Collapse
Affiliation(s)
- Jordan C. Cheng
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, United States
- Stanford Cancer Institute, Stanford University, Stanford, CA, United States
| | - Neeti Swarup
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - David T. W. Wong
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - David Chia
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
35
|
Lassnig S, Hennig-Pauka I, Bonilla MC, Mörgelin M, Imker R, von Köckritz-Blickwede M, de Buhr N. Impact of bronchoalveolar lavage from influenza A virus diseased pigs on neutrophil functions and growth of co-infecting pathogenic bacteria. Front Immunol 2024; 15:1325269. [PMID: 38449874 PMCID: PMC10914936 DOI: 10.3389/fimmu.2024.1325269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/26/2024] [Indexed: 03/08/2024] Open
Abstract
Introduction Influenza A viruses (IAVs) infect the respiratory tract of mainly humans, poultry, and pigs. Co-infections with pathogenic lung bacteria are a common event and contribute to the severity of disease progression. Neutrophils are a major cell type of the innate immune system and are rapidly recruited to the site of infection. They have several effector functions to fight invading pathogens such as the secretion of reactive oxygen species (ROS) or the release of neutrophil extracellular traps (NETs). NETs are known to promote the growth of Pasteurellaceae bacteria, especially if degraded by nucleases. Methods In this study, bronchoalveolar lavage fluid (BALF) from 45 field-infected pigs was analyzed for 1) NET markers, 2) influence on growth of lung bacteria, and 3) impact on neutrophil functions. BALF samples from 21 IAV-positive pigs and 24 lung diseased but IAV-negative pigs were compared. Results Here, we show that neutrophils in the lungs of IAV-positive pigs release vesicular NETs. Several NET markers were increased in the BALF of IAV-positive pigs compared with the BALF from IAV-negative pigs. The amount of NET markers positively correlated with the viral load of the IAV infection. Interestingly, the BALF of IAV-positive pigs enhanced the growth of bacteria belonging to the family of Pasteurellaceae as potential coinfecting bacteria. These effects were weaker with the BALF derived from IAV-negative pigs with other lung infections. The intensity of oxidative burst in neutrophils was significantly decreased by BALF from IAVpositive pigs, indicating impaired antimicrobial activity of neutrophils. Finally, the lung milieu reflected by IAV-positive BALF does not enable neutrophils to kill Actinobacillus pleuropneumoniae but rather enhances its growth. Discussion In summary, our data show that an IAV infection is affecting neutrophil functions, in particular the release of NETs and ROS. Furthermore, IAV infection seems to provide growth-enhancing factors for especially coinfecting Pasteurellaceae and reduces the killing efficiency of neutrophils.
Collapse
Affiliation(s)
- Simon Lassnig
- Institute of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Isabel Hennig-Pauka
- Clinic for Swine, Small Ruminants, Forensic Medicine and Ambulatory Service, University of Veterinary Medicine Hannover, Hannover, Germany
- Field Station for Epidemiology, University of Veterinary Medicine Hannover, Bakum, Germany
| | - Marta C. Bonilla
- Institute of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| | | | - Rabea Imker
- Institute of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Maren von Köckritz-Blickwede
- Institute of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Nicole de Buhr
- Institute of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
36
|
Rachman T, Bartlett D, LaFramboise W, Wagner P, Schwartz R, Carja O. Modeling the Effect of Spatial Structure on Solid Tumor Evolution and Circulating Tumor DNA Composition. Cancers (Basel) 2024; 16:844. [PMID: 38473206 PMCID: PMC10930890 DOI: 10.3390/cancers16050844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 03/14/2024] Open
Abstract
Circulating tumor DNA (ctDNA) monitoring, while sufficiently advanced to reflect tumor evolution in real time and inform cancer diagnosis, treatment, and prognosis, mainly relies on DNA that originates from cell death via apoptosis or necrosis. In solid tumors, chemotherapy and immune infiltration can induce spatially variable rates of cell death, with the potential to bias and distort the clonal composition of ctDNA. Using a stochastic evolutionary model of boundary-driven growth, we study how elevated cell death on the edge of a tumor can simultaneously impact driver mutation accumulation and the representation of tumor clones and mutation detectability in ctDNA. We describe conditions in which invasive clones are over-represented in ctDNA, clonal diversity can appear elevated in the blood, and spatial bias in shedding can inflate subclonal variant allele frequencies (VAFs). Additionally, we find that tumors that are mostly quiescent can display similar biases but are far less detectable, and the extent of perceptible spatial bias strongly depends on sequence detection limits. Overall, we show that spatially structured shedding might cause liquid biopsies to provide highly biased profiles of tumor state. While this may enable more sensitive detection of expanding clones, it could also increase the risk of targeting a subclonal variant for treatment. Our results indicate that the effects and clinical consequences of spatially variable cell death on ctDNA composition present an important area for future work.
Collapse
Affiliation(s)
- Thomas Rachman
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Joint Carnegie Mellon University-University of Pittsburgh Ph.D. Program in Computational Biology, Pittsburgh, PA 15213, USA
| | - David Bartlett
- Allegheny Cancer Institute, Allegheny Health Network, Pittsburgh, PA 15224, USA
| | - William LaFramboise
- Allegheny Cancer Institute, Allegheny Health Network, Pittsburgh, PA 15224, USA
| | - Patrick Wagner
- Allegheny Cancer Institute, Allegheny Health Network, Pittsburgh, PA 15224, USA
| | - Russell Schwartz
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Oana Carja
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| |
Collapse
|
37
|
Kasi PM, Lee JK, Pasquina LW, Decker B, Vanden Borre P, Pavlick DC, Allen JM, Parachoniak C, Quintanilha JCF, Graf RP, Schrock AB, Oxnard GR, Lovly CM, Tukachinsky H, Subbiah V. Circulating Tumor DNA Enables Sensitive Detection of Actionable Gene Fusions and Rearrangements Across Cancer Types. Clin Cancer Res 2024; 30:836-848. [PMID: 38060240 PMCID: PMC10870120 DOI: 10.1158/1078-0432.ccr-23-2693] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/03/2023] [Accepted: 12/05/2023] [Indexed: 12/08/2023]
Abstract
PURPOSE Genomic rearrangements can generate potent oncogenic drivers or disrupt tumor suppressor genes. This study examines the landscape of fusions and rearrangements detected by liquid biopsy (LBx) of circulating tumor DNA (ctDNA) across different cancer types. EXPERIMENTAL DESIGN LBx from 53,842 patients with 66 solid tumor types were profiled using FoundationOneLiquid CDx, a hybrid-capture sequencing platform that queries 324 cancer-related genes. Tissue biopsies (TBx) profiled using FoundationOneCDx were used as a comparator. RESULTS Among all LBx, 7,377 (14%) had ≥1 pathogenic rearrangement detected. A total of 3,648 (6.8%) LBx had ≥1 gain-of-function (GOF) oncogene rearrangement, and 4,428 (8.2%) LBx had ≥1 loss-of-function rearrangement detected. Cancer types with higher prevalence of GOF rearrangements included those with canonical fusion drivers: prostate cancer (19%), cholangiocarcinoma (6.4%), bladder (5.5%), and non-small cell lung cancer (4.4%). Although the prevalence of driver rearrangements was lower in LBx than TBx overall, the frequency of detection was comparable in LBx with a tumor fraction (TF) ≥1%. Rearrangements in FGFR2, BRAF, RET, and ALK, were detected across cancer types, but tended to be clonal variants in some cancer types and potential acquired resistance variants in others. CONCLUSIONS In contrast to some prior literature, this study reports detection of a wide variety of rearrangements in ctDNA. The prevalence of driver rearrangements in tissue and LBx was comparable when TF ≥1%. LBx presents a viable alternative when TBx is not available, and there may be less value in confirmatory testing when TF is sufficient.
Collapse
Affiliation(s)
- Pashtoon M. Kasi
- Weill Cornell Medicine, Englander Institute of Precision Medicine, New York Presbyterian Hospital, New York, New York
| | | | | | | | | | | | | | | | | | - Ryon P. Graf
- Foundation Medicine, Inc., Cambridge, Massachusetts
| | | | | | | | | | - Vivek Subbiah
- The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
38
|
Du S, Cao K, Yan Y, Wang Y, Wang Z, Lin D. Developments and current status of cell-free DNA in the early detection and management of hepatocellular carcinoma. J Gastroenterol Hepatol 2024; 39:231-244. [PMID: 37990622 DOI: 10.1111/jgh.16416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/23/2023] [Accepted: 10/30/2023] [Indexed: 11/23/2023]
Abstract
Nowadays, hepatocellular carcinoma (HCC) is still a major threat to human health globally, with a disappointing prognosis. Regular monitoring of patients at high risk, utilizing abdominal ultrasonography combined with alpha-fetoprotein (AFP) serum analysis, enables the early detection of potentially treatable tumors. However, the approach has limitations due to its lack of sensitivity. Meanwhile, the current standard procedure for obtaining a tumor biopsy in cases of HCC is invasive and lacks the ability to assess the dynamic progression of cancer or account for tumor heterogeneity. Hence, there is a pressing need to develop non-invasive, highly sensitive biomarkers for HCC which can improve the accuracy of early diagnosis, assess treatment response and accurately predict the prognosis. In contrast to the conventional method of tissue biopsy, liquid biopsy offers a non-invasive approach that can be readily repeated. As a liquid biopsy approach, the analysis of cell-free DNA (cfDNA) offers real-time insights that can accurately portray the tumor burden and provide a comprehensive depiction of the genetic profile associated with HCC. In this review, we present a comprehensive summary of the recent research findings pertaining to the significance and potential practicality of cfDNA analysis in the early detection and effective management of HCC.
Collapse
Affiliation(s)
- Sihao Du
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Ke Cao
- Department of General Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Yadong Yan
- Department of General Surgery, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yupeng Wang
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhenshun Wang
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Dongdong Lin
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
39
|
de Bruyn DP, van Poppelen NM, Brands T, van den Boom SC, Eikenboom E, Wagner A, van Veghel-Plandsoen MM, Geeven G, Beverloo B, van Rij CM, Verdijk RM, Naus NC, Bagger MM, Kiilgaard JF, de Klein A, Brosens E, Kiliç E. Evaluation of Circulating Tumor DNA as a Liquid Biomarker in Uveal Melanoma. Invest Ophthalmol Vis Sci 2024; 65:11. [PMID: 38319670 PMCID: PMC10854420 DOI: 10.1167/iovs.65.2.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/14/2023] [Indexed: 02/07/2024] Open
Abstract
Purpose Uveal melanoma (UM) has a high propensity to metastasize. Prognosis is associated with specific driver mutations and copy number variations (CNVs), but limited primary tumor tissue is available for molecular characterization due to eye-sparing irradiation treatment. This study aimed to assess the rise in circulating tumor DNA (ctDNA) levels in UM and evaluate its efficacy for CNV-profiling of patients with UM. Methods In a pilot study, we assessed ctDNA levels in the blood of patients with UM (n = 18) at various time points, including the time of diagnosis (n = 13), during fractionated stereotactic radiotherapy (fSRT) treatment (n = 6), and upon detection of metastatic disease (n = 13). Shallow whole-genome sequencing (sWGS) combined with in silico size-selection was used to identify prognostically relevant CNVs in patients with UM (n = 26) from peripheral blood retrieved at the time of diagnosis (n = 9), during fSRT (n = 5), during post-treatment follow-up (n = 4), metastasis detection (n = 6), and metastasis follow-up (n = 4). Results A total of 34 patients had blood analyzed for ctDNA detection (n = 18) and/or CNV analysis (n = 26) at various time points. At the time of diagnosis, 5 of 13 patients (38%) had detectable ctDNA (median = 0 copies/mL). Upon detection of metastatic disease, ctDNA was detected in 10 of 13 patients (77%) and showed increased ctDNA levels (median = 24 copies/mL, P < 0.01). Among the six patients analyzed during fSRT, three (50%) patients had detectable ctDNA at baseline and three of six (50%) patients had undetectable levels of ctDNA. During the fSRT regimen, ctDNA levels remained unchanged (P > 0.05). The ctDNA fractions were undetectable to low in localized disease, and sWGS did not elucidate chromosome 3 status from blood samples. However, in 7 of 10 (70%) patients with metastases, the detection of chromosome 3 loss corresponded to the high metastatic-risk class. Conclusions The rise in ctDNA levels observed in patients with UM harboring metastases suggests its potential utility for CNV profiling. These findings highlight the potential of using ctDNA for metastasis detection and patient inclusion in therapeutic studies targeting metastatic UM.
Collapse
Affiliation(s)
- Daniel P. de Bruyn
- Department of Ophthalmology, Erasmus MC, Rotterdam, The Netherlands
- Department of Clinical Genetics, Erasmus MC, Rotterdam, The Netherlands
- Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, The Netherlands
| | - Natasha M. van Poppelen
- Department of Ophthalmology, Erasmus MC, Rotterdam, The Netherlands
- Department of Clinical Genetics, Erasmus MC, Rotterdam, The Netherlands
- Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, The Netherlands
| | - Tom Brands
- Department of Clinical Genetics, Erasmus MC, Rotterdam, The Netherlands
| | | | - Ellis Eikenboom
- Department of Clinical Genetics, Erasmus MC, Rotterdam, The Netherlands
| | - Anja Wagner
- Department of Clinical Genetics, Erasmus MC, Rotterdam, The Netherlands
| | | | - Geert Geeven
- Department of Clinical Genetics, Erasmus MC, Rotterdam, The Netherlands
| | - Berna Beverloo
- Department of Clinical Genetics, Erasmus MC, Rotterdam, The Netherlands
| | - Caroline M. van Rij
- Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, The Netherlands
- Department of Radiation Oncology, Erasmus MC, Rotterdam, The Netherlands
| | - Robert M. Verdijk
- Department of Pathology, Section Ophthalmic Pathology, Erasmus MC, Rotterdam, The Netherlands
- Department of Pathology, LUMC, Leiden, The Netherlands
| | - Nicole C. Naus
- Department of Ophthalmology, Erasmus MC, Rotterdam, The Netherlands
- Department of Clinical Genetics, Erasmus MC, Rotterdam, The Netherlands
| | - Mette M. Bagger
- Department of Ophthalmology, Rigshospitalet, Copenhagen University, Copenhagen, Denmark
- Department of Clinical Genetics, Rigshospitalet, Copenhagen University, Copenhagen, Denmark
| | - Jens F. Kiilgaard
- Department of Ophthalmology, Rigshospitalet, Copenhagen University, Copenhagen, Denmark
| | - Annelies de Klein
- Department of Clinical Genetics, Erasmus MC, Rotterdam, The Netherlands
- Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, The Netherlands
| | - Erwin Brosens
- Department of Clinical Genetics, Erasmus MC, Rotterdam, The Netherlands
- Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, The Netherlands
| | - Emine Kiliç
- Department of Ophthalmology, Erasmus MC, Rotterdam, The Netherlands
- Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
40
|
Moldovan N, van der Pol Y, van den Ende T, Boers D, Verkuijlen S, Creemers A, Ramaker J, Vu T, Bootsma S, Lenos KJ, Vermeulen L, Fransen MF, Pegtel M, Bahce I, van Laarhoven H, Mouliere F. Multi-modal cell-free DNA genomic and fragmentomic patterns enhance cancer survival and recurrence analysis. Cell Rep Med 2024; 5:101349. [PMID: 38128532 PMCID: PMC10829758 DOI: 10.1016/j.xcrm.2023.101349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 09/22/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023]
Abstract
The structure of cell-free DNA (cfDNA) is altered in the blood of patients with cancer. From whole-genome sequencing, we retrieve the cfDNA fragment-end composition using a new software (FrEIA [fragment end integrated analysis]), as well as the cfDNA size and tumor fraction in three independent cohorts (n = 925 cancer from >10 types and 321 control samples). At 95% specificity, we detect 72% cancer samples using at least one cfDNA measure, including 64% early-stage cancer (n = 220). cfDNA detection correlates with a shorter overall (p = 0.0086) and recurrence-free (p = 0.017) survival in patients with resectable esophageal adenocarcinoma. Integrating cfDNA measures with machine learning in an independent test set (n = 396 cancer, 90 controls) achieve a detection accuracy of 82% and area under the receiver operating characteristic curve of 0.96. In conclusion, harnessing the biological features of cfDNA can improve, at no extra cost, the diagnostic performance of liquid biopsies.
Collapse
Affiliation(s)
- Norbert Moldovan
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Pathology, Cancer Centre Amsterdam, Amsterdam, the Netherlands; Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands
| | - Ymke van der Pol
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Pathology, Cancer Centre Amsterdam, Amsterdam, the Netherlands; Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands
| | - Tom van den Ende
- Amsterdam UMC, University of Amsterdam, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Dries Boers
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Pathology, Cancer Centre Amsterdam, Amsterdam, the Netherlands; Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands
| | - Sandra Verkuijlen
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Pathology, Cancer Centre Amsterdam, Amsterdam, the Netherlands; Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands
| | - Aafke Creemers
- Amsterdam UMC, University of Amsterdam, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Jip Ramaker
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Trang Vu
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Pathology, Cancer Centre Amsterdam, Amsterdam, the Netherlands; Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands
| | - Sanne Bootsma
- Amsterdam UMC, University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory for Experimental Oncology and Radiobiology, Amsterdam, the Netherlands; Cancer Center Amsterdam, Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands; Oncode Institute, Amsterdam, the Netherlands
| | - Kristiaan J Lenos
- Amsterdam UMC, University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory for Experimental Oncology and Radiobiology, Amsterdam, the Netherlands; Cancer Center Amsterdam, Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands; Oncode Institute, Amsterdam, the Netherlands
| | - Louis Vermeulen
- Amsterdam UMC, University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory for Experimental Oncology and Radiobiology, Amsterdam, the Netherlands; Cancer Center Amsterdam, Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands; Oncode Institute, Amsterdam, the Netherlands
| | - Marieke F Fransen
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Pulmonology, Cancer Centre Amsterdam, Amsterdam, the Netherlands
| | - Michiel Pegtel
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Pathology, Cancer Centre Amsterdam, Amsterdam, the Netherlands; Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands
| | - Idris Bahce
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Pulmonology, Cancer Centre Amsterdam, Amsterdam, the Netherlands
| | - Hanneke van Laarhoven
- Amsterdam UMC, University of Amsterdam, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Florent Mouliere
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Pathology, Cancer Centre Amsterdam, Amsterdam, the Netherlands; Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands.
| |
Collapse
|
41
|
Poulet G, Hulot JS, Blanchard A, Bergerot D, Xiao W, Ginot F, Boutonnet-Rodat A, Justine A, Beinse G, Geromel V, Pellegrina L, Azizi M, Laurent-Puig P, Benhaim L, Taly V. Circadian rhythm and circulating cell-free DNA release on healthy subjects. Sci Rep 2023; 13:21675. [PMID: 38065990 PMCID: PMC10709451 DOI: 10.1038/s41598-023-47851-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/19/2023] [Indexed: 12/18/2023] Open
Abstract
In the last decade, clinical studies have investigated the clinical relevance of circulating cell-free-DNA (ccfDNA) as a diagnostic and prognosis tool in various diseases including cancers. However, limited knowledge on ccfDNA biology restrains its full development in the clinical practice. To improve our understanding, we evaluated the impact of the circadian rhythm on ccfDNA release in healthy subjects over a 24-h period. 10 healthy female subjects underwent blood sampling at 8am and 20 healthy male subjects underwent serial blood sampling (8:00 AM, 9:00 AM, 12:00 PM, 4:00 PM, 8:00 PM, 12:00 AM, 4 AM (+ 1 Day) and 8 AM (+ 1 Day)). We performed digital droplet-based PCR (ddPCR) assays to target 2 DNA fragments (69 & 243 bp) located in the KRAS gene to determine the ccfDNA concentration and fragmentation profile. As control, half of the samples were re-analyzed by capillary miniaturized electrophoresis (BIAbooster system). Overall, we did not detect any influence of the circadian rhythm on ccfDNA release. Instead, we observed a decrease in the ccfDNA concentration after meal ingestion, suggesting either a post-prandial effect or a technical detection bias due to a higher plasma load in lipids and triglycerides. We also noticed a potential effect of gender, weight and creatinine levels on ccfDNA concentration.
Collapse
Affiliation(s)
- Geoffroy Poulet
- Université de Paris, UMR-S1138, CNRS SNC5096, Équipe Labélisée Ligue Nationale Contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Eurofins-Biomnis, Gerland, Lyon, France
| | - Jean-Sébastien Hulot
- CIC1418 and DMU CARTE, AP-HP, Hôpital Européen Georges-Pompidou, 75015, Paris, France
| | - Anne Blanchard
- CIC1418 and DMU CARTE, AP-HP, Hôpital Européen Georges-Pompidou, 75015, Paris, France
| | - Damien Bergerot
- CIC1418 and DMU CARTE, AP-HP, Hôpital Européen Georges-Pompidou, 75015, Paris, France
| | - Wenjin Xiao
- Université de Paris, UMR-S1138, CNRS SNC5096, Équipe Labélisée Ligue Nationale Contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
| | | | | | - Abdelli Justine
- Université de Paris, UMR-S1138, CNRS SNC5096, Équipe Labélisée Ligue Nationale Contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
| | - Guillaume Beinse
- Université de Paris, UMR-S1138, CNRS SNC5096, Équipe Labélisée Ligue Nationale Contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
| | | | | | - Michel Azizi
- CIC1418 and DMU CARTE, AP-HP, Hôpital Européen Georges-Pompidou, 75015, Paris, France
| | - Pierre Laurent-Puig
- Université de Paris, UMR-S1138, CNRS SNC5096, Équipe Labélisée Ligue Nationale Contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Biochemistry Department - Unit of Pharmacogenetic and Molecular Oncology, Hôpital Européen Georges Pompidou (HEGP), Assistance Publique Hôpitaux de Paris (AP-HP), Paris, France
| | - Leonor Benhaim
- Université de Paris, UMR-S1138, CNRS SNC5096, Équipe Labélisée Ligue Nationale Contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.
- Department of Visceral and Surgical Oncology, Gustave Roussy, Villejuif, France.
| | - Valerie Taly
- Université de Paris, UMR-S1138, CNRS SNC5096, Équipe Labélisée Ligue Nationale Contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.
| |
Collapse
|
42
|
Kentnowski M, Cortez AJ, Mazurek AM, Mrochem-Kwarciak J, Hebda A, Kacorzyk U, Drosik-Rutowicz K, Chmielik E, Paul P, Gajda K, Łasińska I, Bobek-Billewicz B, d'Amico A, Składowski K, Śnietura M, Faden DL, Rutkowski TW. Determinants of the level of circulating-tumor HPV16 DNA in patients with HPV-associated oropharyngeal cancer at the time of diagnosis. Sci Rep 2023; 13:21226. [PMID: 38040848 PMCID: PMC10692143 DOI: 10.1038/s41598-023-48506-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/27/2023] [Indexed: 12/03/2023] Open
Abstract
Circulating tumor HPV DNA (ctHPV16) assessed in liquid biopsy may be used as a marker of cancer in patients with HPV-associated oropharyngeal cancer (HPV + OPC). Factors influencing the initial ctHPV16 quantity are not well recognized. In this study we aimed to establish what factors are related to the level of ctHPV16 at the time of diagnosis. 51 patients (37 men and 14 women, median age of 57 years old) with HPV + OPC prior to definitive treatment were included. ctHPV16 was measured by qPCR. Tumor and nodal staging were assessed according to AJCC8. Blood derived factors included squamous cell carcinoma antigen (SCC-Ag), serum soluble fragment of cytokeratin 19 (CYFRA 21-1), C-reactive protein (CRP), albumin level (Alb), neutrophils (Neut), thrombocytes (Plt) and lymphocyte (Lym) count, Neut/Lym ratio were assessed. The volumes of the primary tumor (TV) and involved lymph nodes (NV) were calculated using MRI, CT or PET-CT scans. Data were analysed using parametric and nonparametric methods. Variables for multivariable linear regression analysis were chosen based on the results from univariable analysis (correlation, univariable regression and difference). There were 9 (18%), 10 (19%) and 32 (63%) patients who had TV and NV assessed in MRI, CT or PET respectively. Primary tumor neither as T-stage nor TV was related to ctHPV16 level. Significant differences in the ctHPV16 between patients with high vs low pain (P = 0.038), NV (P = 0.023), TV + NV (P = 0.018), CYFRA 21-1 (P = 0.002), CRP (P = 0.019), and N1 vs N3 (P = 0.044) were observed. ctHPV16 was significantly associated with CYFRA 21-1 (P = 0.017), N stage (P = 0.005), NV (P = 0.009), TV + NV (P = 0.002), CRP (P = 0.019), and pain (P = 0.038). In univariable linear regression analysis the same variables predicted ctHPV16 level. In multivariable analyses, CYFRA 21-1 and CRP (both as categorical variables) were predictors of ctHPV16 level even above NV. ctHPV16 at presentation is driven by tumor volume measured mostly by N. CYFRA 21-1 and CRP are additional factors related to ctHPV16 prior to the treatment.
Collapse
Affiliation(s)
- Marek Kentnowski
- Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-101, Gliwice, Poland
| | - Alexander J Cortez
- Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-101, Gliwice, Poland
| | - Agnieszka M Mazurek
- Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-101, Gliwice, Poland
| | - Jolanta Mrochem-Kwarciak
- Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-101, Gliwice, Poland
| | - Anna Hebda
- Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-101, Gliwice, Poland
| | - Urszula Kacorzyk
- Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-101, Gliwice, Poland
| | - Katarzyna Drosik-Rutowicz
- Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-101, Gliwice, Poland
| | - Ewa Chmielik
- Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-101, Gliwice, Poland
| | - Piotr Paul
- Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-101, Gliwice, Poland
| | - Karolina Gajda
- Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-101, Gliwice, Poland
| | - Izabela Łasińska
- Department of Medical and Experimental Oncology, Cancer Institute, Poznań University of Medical Sciences, 16/18 Grunwaldzka Street, 60-786, Poznan, Poland
- Department of Nursing, Institute of Health Sciences, University of Zielona Góra, 2 Energetyków Street, 65-417, Zielona Góra, Poland
| | - Barbara Bobek-Billewicz
- Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-101, Gliwice, Poland
| | - Andrea d'Amico
- Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-101, Gliwice, Poland
| | - Krzysztof Składowski
- Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-101, Gliwice, Poland
| | - Mirosław Śnietura
- Department of Pathomorphology and Molecular Diagnostics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Daniel L Faden
- Department of Otolaryngology-Head and Neck Surgery Harvard Medical School, Mass Eye and Ear, Mass General Hospital, Broad Institute of MIT and Harvard, Cambridge, USA
| | - Tomasz W Rutkowski
- Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-101, Gliwice, Poland.
| |
Collapse
|
43
|
Rachman T, Bartlett D, Laframboise W, Wagner P, Schwartz R, Carja O. Modeling the effect of spatial structure on solid tumor evolution and ctDNA composition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.10.566658. [PMID: 37986965 PMCID: PMC10659436 DOI: 10.1101/2023.11.10.566658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Circulating tumor DNA (ctDNA) monitoring, while sufficiently advanced to reflect tumor evolution in real time and inform on cancer diagnosis, treatment, and prognosis, mainly relies on DNA that originates from cell death via apoptosis or necrosis. In solid tumors, chemotherapy and immune infiltration can induce spatially variable rates of cell death, with the potential to bias and distort the clonal composition of ctDNA. Using a stochastic evolutionary model of boundary-driven growth, we study how elevated cell death on the edge of a tumor can simultaneously impact driver mutation accumulation and the representation of tumor clones and mutation detectability in ctDNA. We describe conditions in which invasive clones end up over-represented in ctDNA, clonal diversity can appear elevated in the blood, and spatial bias in shedding can inflate subclonal variant allele frequencies (VAFs). Additionally, we find that tumors that are mostly quiescent can display similar biases, but are far less detectable, and the extent of perceptible spatial bias strongly depends on sequence detection limits. Overall, we show that spatially structured shedding might cause liquid biopsies to provide highly biased profiles of tumor state. While this may enable more sensitive detection of expanding clones, it could also increase the risk of targeting a subclonal variant for treatment. Our results indicate that the effects and clinical consequences of spatially variable cell death on ctDNA composition present an important area for future work.
Collapse
Affiliation(s)
- Thomas Rachman
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
- Joint Carnegie Mellon University-University of Pittsburgh Ph.D. Program in Computational Biology
| | - David Bartlett
- Allegheny Cancer Institute, Allegheny Health Network, Pittsburgh PA
| | | | - Patrick Wagner
- Allegheny Cancer Institute, Allegheny Health Network, Pittsburgh PA
| | - Russell Schwartz
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Oana Carja
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| |
Collapse
|
44
|
Zhao J, Reuther J, Scozzaro K, Hawley M, Metzger E, Emery M, Chen I, Barbosa M, Johnson L, O'Connor A, Washburn M, Hartje L, Reckase E, Johnson V, Zhang Y, Westheimer E, O'Callaghan W, Malani N, Chesh A, Moreau M, Daber R. Personalized Cancer Monitoring Assay for the Detection of ctDNA in Patients with Solid Tumors. Mol Diagn Ther 2023; 27:753-768. [PMID: 37632661 PMCID: PMC10590345 DOI: 10.1007/s40291-023-00670-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2023] [Indexed: 08/28/2023]
Abstract
BACKGROUND Highly sensitive molecular assays have been developed to detect plasma-based circulating tumor DNA (ctDNA), and emerging evidence suggests their clinical utility for monitoring minimal residual disease and recurrent disease, providing prognostic information, and monitoring therapy responses in patients with solid tumors. The Invitae Personalized Cancer Monitoring™ assay uses a patient-specific, tumor-informed variant signature identified through whole exome sequencing to detect ctDNA in peripheral blood of patients with solid tumors. METHODS The assay's tumor whole exome sequencing and ctDNA detection components were analytically validated using 250 unique human specimens and nine commercial reference samples that generated 1349 whole exome sequencing and cell-free DNA (cfDNA)-derived libraries. A comparison of tumor and germline whole exome sequencing was used to identify patient-specific tumor variant signatures and generate patient-specific panels, followed by targeted next-generation sequencing of plasma-derived cfDNA using the patient-specific panels with anchored multiplex polymerase chain reaction chemistry leveraging unique molecular identifiers. RESULTS Whole exome sequencing resulted in overall sensitivity of 99.8% and specificity of > 99.9%. Patient-specific panels were successfully designed for all 63 samples (100%) with ≥ 20% tumor content and 24 (80%) of 30 samples with ≥ 10% tumor content. Limit of blank studies using 30 histologically normal, formalin-fixed paraffin-embedded specimens resulted in 100% expected panel design failure. The ctDNA detection component demonstrated specificity of > 99.9% and sensitivity of 96.3% for a combination of 10 ng of cfDNA input, 0.008% allele frequency, 50 variants on the patient-specific panels, and a baseline threshold. Limit of detection ranged from 0.008% allele frequency when utilizing 60 ng of cfDNA input with 18-50 variants in the patient-specific panels (> 99.9% sensitivity) with a baseline threshold, to 0.05% allele frequency when using 10 ng of cfDNA input with an 18-variant panel with a monitoring threshold (> 99.9% sensitivity). CONCLUSIONS The Invitae Personalized Cancer Monitoring assay, featuring a flexible patient-specific panel design with 18-50 variants, demonstrated high sensitivity and specificity for detecting ctDNA at variant allele frequencies as low as 0.008%. This assay may support patient prognostic stratification, provide real-time data on therapy responses, and enable early detection of residual/recurrent disease.
Collapse
Affiliation(s)
- Jianhua Zhao
- Invitae Corp., 1400 16th Street, San Francisco, CA, 94103, USA.
| | | | - Kaylee Scozzaro
- Invitae Corp., 1400 16th Street, San Francisco, CA, 94103, USA
| | - Megan Hawley
- Invitae Corp., 1400 16th Street, San Francisco, CA, 94103, USA
| | - Emily Metzger
- Invitae Corp., 1400 16th Street, San Francisco, CA, 94103, USA
| | - Matthew Emery
- Invitae Corp., 1400 16th Street, San Francisco, CA, 94103, USA
| | - Ingrid Chen
- Invitae Corp., 1400 16th Street, San Francisco, CA, 94103, USA
| | | | - Laura Johnson
- Invitae Corp., 1400 16th Street, San Francisco, CA, 94103, USA
- Affiliated with Invitae Corp. at the time of the study, currently employees at Integrated DNA Technologies, 1710 Commercial Park, Coralville, IA, 52241, USA
| | - Alijah O'Connor
- Invitae Corp., 1400 16th Street, San Francisco, CA, 94103, USA
| | - Mike Washburn
- Invitae Corp., 1400 16th Street, San Francisco, CA, 94103, USA
- Affiliated with Invitae Corp. at the time of the study, currently employees at Integrated DNA Technologies, 1710 Commercial Park, Coralville, IA, 52241, USA
| | - Luke Hartje
- Invitae Corp., 1400 16th Street, San Francisco, CA, 94103, USA
- Affiliated with Invitae Corp. at the time of the study, currently employees at Integrated DNA Technologies, 1710 Commercial Park, Coralville, IA, 52241, USA
| | - Erik Reckase
- Invitae Corp., 1400 16th Street, San Francisco, CA, 94103, USA
- Affiliated with Invitae Corp. at the time of the study, currently employees at Integrated DNA Technologies, 1710 Commercial Park, Coralville, IA, 52241, USA
| | - Verity Johnson
- Invitae Corp., 1400 16th Street, San Francisco, CA, 94103, USA
- Affiliated with Invitae Corp. at the time of the study, currently employees at Integrated DNA Technologies, 1710 Commercial Park, Coralville, IA, 52241, USA
| | - Yuhua Zhang
- Invitae Corp., 1400 16th Street, San Francisco, CA, 94103, USA
| | | | | | - Nirav Malani
- Invitae Corp., 1400 16th Street, San Francisco, CA, 94103, USA
| | - Adrian Chesh
- Invitae Corp., 1400 16th Street, San Francisco, CA, 94103, USA
| | - Michael Moreau
- Invitae Corp., 1400 16th Street, San Francisco, CA, 94103, USA
| | - Robert Daber
- Invitae Corp., 1400 16th Street, San Francisco, CA, 94103, USA
| |
Collapse
|
45
|
Beasley AB, de Bruyn DP, Calapre L, Al-Ogaili Z, Isaacs TW, Bentel J, Reid AL, Dwarkasing RS, Pereira MR, Khattak MA, Meniawy TM, Millward M, Brosens E, de Klein A, Chen FK, Kiliҫ E, Gray ES. Detection of metastases using circulating tumour DNA in uveal melanoma. J Cancer Res Clin Oncol 2023; 149:14953-14963. [PMID: 37608028 PMCID: PMC10602949 DOI: 10.1007/s00432-023-05271-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/09/2023] [Indexed: 08/24/2023]
Abstract
BACKGROUND Approximately 50% of uveal melanoma (UM) patients will develop metastatic disease depending on the genetic features of the primary tumour. Patients need 3-12 monthly scans, depending on their prognosis, which is costly and often non-specific. Circulating tumour DNA (ctDNA) quantification could serve as a test to detect and monitor patients for early signs of metastasis and therapeutic response. METHODS We assessed ctDNA as a biomarker in three distinct UM cohorts using droplet-digital PCR: (A) a retrospective analysis of primary UM patients to predict metastases; (B) a prospective analysis of UM patients after resolution of their primary tumour for early detection of metastases; and (C) monitoring treatment response in metastatic UM patients. RESULTS Cohort A: ctDNA levels were not associated with the development of metastases. Cohort B: ctDNA was detected in 17/25 (68%) with radiological diagnosis of metastases. ctDNA was the strongest predictor of overall survival in a multivariate analysis (HR = 15.8, 95% CI 1.7-151.2, p = 0.017). Cohort C: ctDNA monitoring of patients undergoing immunotherapy revealed a reduction in the levels of ctDNA in patients with combination immunotherapy. CONCLUSIONS Our proof-of-concept study shows the biomarker feasibility potential of ctDNA monitoring in for the clinical management of uveal melanoma patients.
Collapse
Affiliation(s)
- Aaron B Beasley
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.
- Centre for Precision Health, Edith Cowan University, Joondalup, WA, Australia.
| | - Daniël P de Bruyn
- Department of Ophthalmology, Erasmus MC, 3000 CA, Rotterdam, The Netherlands
- Department of Clinical Genetics, Erasmus MC, 3000 CA, Rotterdam, The Netherlands
- Erasmus MC Cancer Institute, 3000 CA, Rotterdam, The Netherlands
| | - Leslie Calapre
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Centre for Precision Health, Edith Cowan University, Joondalup, WA, Australia
| | - Zeyad Al-Ogaili
- Department of Molecular Imaging and Therapy Service, Fiona Stanley Hospital, Murdoch, WA, 6150, Australia
| | - Timothy W Isaacs
- Perth Retina, Subiaco, WA, Australia
- Centre for Ophthalmology and Visual Science (Incorporating Lions Eye Institute), The University of Western Australia, Crawley, WA, Australia
- Department of Ophthalmology, Royal Perth Hospital, Perth, WA, Australia
| | - Jacqueline Bentel
- Anatomical Pathology, PathWest Laboratory Medicine, Fiona Stanley Hospital, Murdoch, WA, Australia
| | - Anna L Reid
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Centre for Precision Health, Edith Cowan University, Joondalup, WA, Australia
| | - Roy S Dwarkasing
- Department of Radiology, Erasmus MC, 3000 CA, Rotterdam, The Netherlands
| | - Michelle R Pereira
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Muhammad A Khattak
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Centre for Precision Health, Edith Cowan University, Joondalup, WA, Australia
- Department of Medical Oncology, Fiona Stanley Hospital, Murdoch, WA, Australia
- School of Medicine, The University of Western Australia, Crawley, WA, Australia
| | - Tarek M Meniawy
- School of Medicine, The University of Western Australia, Crawley, WA, Australia
- Department of Medical Oncology, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
| | - Michael Millward
- School of Medicine, The University of Western Australia, Crawley, WA, Australia
- Department of Medical Oncology, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
| | - Erwin Brosens
- Department of Clinical Genetics, Erasmus MC, 3000 CA, Rotterdam, The Netherlands
- Erasmus MC Cancer Institute, 3000 CA, Rotterdam, The Netherlands
| | - Annelies de Klein
- Department of Clinical Genetics, Erasmus MC, 3000 CA, Rotterdam, The Netherlands
- Erasmus MC Cancer Institute, 3000 CA, Rotterdam, The Netherlands
| | - Fred K Chen
- Centre for Ophthalmology and Visual Science (Incorporating Lions Eye Institute), The University of Western Australia, Crawley, WA, Australia
- Department of Ophthalmology, Royal Perth Hospital, Perth, WA, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, VIC, Australia
| | - Emine Kiliҫ
- Department of Ophthalmology, Erasmus MC, 3000 CA, Rotterdam, The Netherlands
- Department of Clinical Genetics, Erasmus MC, 3000 CA, Rotterdam, The Netherlands
- Erasmus MC Cancer Institute, 3000 CA, Rotterdam, The Netherlands
| | - Elin S Gray
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.
- Centre for Precision Health, Edith Cowan University, Joondalup, WA, Australia.
| |
Collapse
|
46
|
Pascual J, Gil-Gil M, Proszek P, Zielinski C, Reay A, Ruiz-Borrego M, Cutts R, Ciruelos Gil EM, Feber A, Muñoz-Mateu M, Swift C, Bermejo B, Herranz J, Margeli Vila M, Antón A, Kahan Z, Csöszi T, Liu Y, Fernandez-Garcia D, Garcia-Murillas I, Hubank M, Turner NC, Martín M. Baseline Mutations and ctDNA Dynamics as Prognostic and Predictive Factors in ER-Positive/HER2-Negative Metastatic Breast Cancer Patients. Clin Cancer Res 2023; 29:4166-4177. [PMID: 37490393 PMCID: PMC10570672 DOI: 10.1158/1078-0432.ccr-23-0956] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/06/2023] [Accepted: 07/21/2023] [Indexed: 07/27/2023]
Abstract
PURPOSE Prognostic and predictive biomarkers to cyclin-dependent kinases 4 and 6 inhibitors are lacking. Circulating tumor DNA (ctDNA) can be used to profile these patients and dynamic changes in ctDNA could be an early predictor of treatment efficacy. Here, we conducted plasma ctDNA profiling in patients from the PEARL trial comparing palbociclib+fulvestrant versus capecitabine to investigate associations between baseline genomic landscape and on-treatment ctDNA dynamics with treatment efficacy. EXPERIMENTAL DESIGN Correlative blood samples were collected at baseline [cycle 1-day 1 (C1D1)] and prior to treatment [cycle 1-day 15 (C1D15)]. Plasma ctDNA was sequenced with a custom error-corrected capture panel, with both univariate and multivariate Cox models used for treatment efficacy associations. A prespecified methodology measuring ctDNA changes in clonal mutations between C1D1 and C1D15 was used for the on-treatment ctDNA dynamic model. RESULTS 201 patients were profiled at baseline, with ctDNA detection associated with worse progression-free survival (PFS)/overall survival (OS). Detectable TP53 mutation showed worse PFS and OS in both treatment arms, even after restricting population to baseline ctDNA detection. ESR1 mutations were associated with worse OS overall, which was lost when restricting population to baseline ctDNA detection. PIK3CA mutations confer worse OS only to patients on the palbociclib+fulvestrant treatment arm. ctDNA dynamics analysis (n = 120) showed higher ctDNA suppression in the capecitabine arm. Patients without ctDNA suppression showed worse PFS in both treatment arms. CONCLUSIONS We show impaired survival irrespective of endocrine or chemotherapy-based treatments for patients with hormone receptor-positive/HER2-negative metastatic breast cancer harboring plasma TP53 mutations. Early ctDNA suppression may provide treatment efficacy predictions. Further validation to fully demonstrate clinical utility of ctDNA dynamics is warranted.
Collapse
Affiliation(s)
- Javier Pascual
- Breast Cancer Now Research Centre, The Institute of Cancer Research, London, United Kingdom
- Breast Unit, Royal Marsden Hospital, London, United Kingdom
- Medical Oncology Intercenter Unit, Regional and Virgen de la Victoria University Hospitals, IBIMA, Málaga, Spain
- GEICAM Spanish Breast Cancer Group, Madrid, Spain
- Oncology Biomedical Research National Network (CIBERONC-ISCIII), Madrid, Spain
| | - Miguel Gil-Gil
- GEICAM Spanish Breast Cancer Group, Madrid, Spain
- Institut Català d'Oncologia (ICO), Barcelona, Spain
- IDIBELL, L'Hospitalet, Barcelona, Spain
| | - Paula Proszek
- Breast Cancer Now Research Centre, The Institute of Cancer Research, London, United Kingdom
- Breast Unit, Royal Marsden Hospital, London, United Kingdom
| | - Christoph Zielinski
- Medical Oncology, Central European Cancer Center, Wiener Privatklinik Hospital, Vienna, Austria
- CECOG Central European Cooperative Oncology Group, Vienna, Austria
| | - Alistair Reay
- Breast Cancer Now Research Centre, The Institute of Cancer Research, London, United Kingdom
- Breast Unit, Royal Marsden Hospital, London, United Kingdom
| | - Manuel Ruiz-Borrego
- GEICAM Spanish Breast Cancer Group, Madrid, Spain
- Medical Oncology, Hospital Universitario Virgen del Rocio, Sevilla, Spain
| | - Rosalind Cutts
- Breast Cancer Now Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Eva M. Ciruelos Gil
- GEICAM Spanish Breast Cancer Group, Madrid, Spain
- Medical Oncology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Andrew Feber
- Breast Cancer Now Research Centre, The Institute of Cancer Research, London, United Kingdom
- Breast Unit, Royal Marsden Hospital, London, United Kingdom
| | - Montserrat Muñoz-Mateu
- GEICAM Spanish Breast Cancer Group, Madrid, Spain
- Department of Medical Oncology and Translational Genomics and Targeted Therapies in Solid Tumors, IDIBAPS, Barcelona, Spain
| | - Claire Swift
- Ralph Lauren Centre for Breast Cancer Research, London, United Kingdom
| | - Begoña Bermejo
- GEICAM Spanish Breast Cancer Group, Madrid, Spain
- Oncology Biomedical Research National Network (CIBERONC-ISCIII), Madrid, Spain
- Medical Oncology, Hospital Clínico Universitario de Valencia, Biomedical Research Institute INCLIVA, Valencia, Spain
- Medicine Department, Universidad de Valencia, Valencia, Spain
| | | | - Mireia Margeli Vila
- GEICAM Spanish Breast Cancer Group, Madrid, Spain
- B-ARGO Group, Catalan Institute of Oncology-Badalona, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Antonio Antón
- GEICAM Spanish Breast Cancer Group, Madrid, Spain
- Oncology Biomedical Research National Network (CIBERONC-ISCIII), Madrid, Spain
- Medical Oncology, Hospital Universitario Miguel Servet, Medicine Department, Universidad de Zaragoza, Instituto de Investigación Sanitaria Aragón, Zaragoza, Spain
| | - Zsuzsanna Kahan
- CECOG Central European Cooperative Oncology Group, Vienna, Austria
- Department of Oncotherapy, University of Szeged, Szeged, Hungary
| | - Tibor Csöszi
- CECOG Central European Cooperative Oncology Group, Vienna, Austria
- Jász-Nagykun-Szolnok Megyei Hetényi Géza Kórház-Rendelőintézet, Szolnok, Hungary
| | - Yuan Liu
- Pfizer, La Jolla, San Diego, California
| | | | - Isaac Garcia-Murillas
- Breast Cancer Now Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Michael Hubank
- Breast Cancer Now Research Centre, The Institute of Cancer Research, London, United Kingdom
- Breast Unit, Royal Marsden Hospital, London, United Kingdom
| | - Nicholas C. Turner
- Breast Cancer Now Research Centre, The Institute of Cancer Research, London, United Kingdom
- Breast Unit, Royal Marsden Hospital, London, United Kingdom
- Ralph Lauren Centre for Breast Cancer Research, London, United Kingdom
| | - Miguel Martín
- GEICAM Spanish Breast Cancer Group, Madrid, Spain
- Oncology Biomedical Research National Network (CIBERONC-ISCIII), Madrid, Spain
- Medical Oncology, Instituto de Investigación Sanitaria Gregorio Marañón, Medicine Department, Universidad Complutense, Madrid, Spain
| |
Collapse
|
47
|
McLaren DB, Aitman TJ. Redefining precision radiotherapy through liquid biopsy. Br J Cancer 2023; 129:900-903. [PMID: 37598284 PMCID: PMC10491827 DOI: 10.1038/s41416-023-02398-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 07/20/2023] [Accepted: 08/08/2023] [Indexed: 08/21/2023] Open
Abstract
Precision radiotherapy refers to the ability to deliver radiation doses with sub-millimetre accuracy. It does not however consider individual variation in tumour or normal tissue response, failing to maximise tumour control and minimise toxicity. Combining precise delivery with personalised dosing, through analysis of cell-free DNA, would redefine precision in radiotherapy.
Collapse
Affiliation(s)
- D B McLaren
- Edinburgh Cancer Centre, Western General Hospital, University of Edinburgh, Crewe Road South, Edinburgh, EH4 2XU, UK.
| | - T J Aitman
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh, EH4 2XU, UK.
| |
Collapse
|
48
|
Jaradi B, Das T, Koo KM. Design and Analytical Evaluation of a Rapid Plasma Screening Assay for Circulating Human Papillomavirus DNA via Thermostable Enzyme Chemistries. Anal Chem 2023; 95:11172-11180. [PMID: 37441723 DOI: 10.1021/acs.analchem.3c02528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
Infection with oncogenic strains of human papillomavirus (HPV), such as HPV-16 and HPV-18, can lead to malignant progression and tumorigenesis. As an adjunct to traditional invasive tissue sampling methods, the use of modern thermostable enzyme chemistries can aid in the development of innovative assay workflows to extract and detect circulating HPV DNA (cHPV-DNA) in liquid biopsies. In this work, we first successfully generated a model system to replicate fragmented cHPV-DNA in human plasma. Using this model system, we designed a novel thermostable enzyme chemistry-based cHPV-DNA assay for rapid clinical HPV screening and robustly evaluated its analytical assay performance. Our findings demonstrated that the use of thermostable enzymes provided faster cHPV-DNA extraction and amplification, leading to an overall three-fold improvement in overall assay time as compared to the current standard assay workflow and achieving clinically relevant levels of analytical specificity, sensitivity, and precision for accurate cHPV-DNA detection with excellent 100% sensitivity and specificity in contrived human plasma specimens. In summary, we have devised a rapid laboratory workflow to facilitate the emerging use of liquid biopsies for minimally invasive, rapid, and scalable HPV DNA testing. With facile assay modifications, our thermostable enzyme-based cHPV-DNA assay can be utilized for the detection of other clinically high-risk HPV genotypes.
Collapse
Affiliation(s)
- Binny Jaradi
- XING Applied Research & Assay Development (XARAD) Division, XING Technologies Pty Ltd, Brisbane, Queensland 4073, Australia
| | - Tulika Das
- XING Applied Research & Assay Development (XARAD) Division, XING Technologies Pty Ltd, Brisbane, Queensland 4073, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Kevin M Koo
- XING Applied Research & Assay Development (XARAD) Division, XING Technologies Pty Ltd, Brisbane, Queensland 4073, Australia
- The University of Queensland Centre for Clinical Research (UQCCR), Herston, Queensland 4029, Australia
| |
Collapse
|
49
|
McNamara ME, Loyfer N, Kiliti AJ, Schmidt MO, Shabi-Porat S, Jain SS, Martinez Roth S, McDeed AP, Shahrour N, Ballew E, Lin YT, Li HH, Deslattes Mays A, Rudra S, Riegel AT, Unger K, Kaplan T, Wellstein A. Circulating cell-free methylated DNA reveals tissue-specific, cellular damage from radiation treatment. JCI Insight 2023; 8:e156529. [PMID: 37318863 PMCID: PMC10443812 DOI: 10.1172/jci.insight.156529] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 05/31/2023] [Indexed: 06/17/2023] Open
Abstract
Radiation therapy is an effective cancer treatment, although damage to healthy tissues is common. Here we analyzed cell-free, methylated DNA released from dying cells into the circulation to evaluate radiation-induced cellular damage in different tissues. To map the circulating DNA fragments to human and mouse tissues, we established sequencing-based, cell-type-specific reference DNA methylation atlases. We found that cell-type-specific DNA blocks were mostly hypomethylated and located within signature genes of cellular identity. Cell-free DNA fragments were captured from serum samples by hybridization to CpG-rich DNA panels and mapped to the DNA methylation atlases. In a mouse model, thoracic radiation-induced tissue damage was reflected by dose-dependent increases in lung endothelial and cardiomyocyte methylated DNA in serum. The analysis of serum samples from patients with breast cancer undergoing radiation treatment revealed distinct dose-dependent and tissue-specific epithelial and endothelial responses to radiation across multiple organs. Strikingly, patients treated for right-sided breast cancers also showed increased hepatocyte and liver endothelial DNA in the circulation, indicating the impact on liver tissues. Thus, changes in cell-free methylated DNA can uncover cell-type-specific effects of radiation and provide a readout of the biologically effective radiation dose received by healthy tissues.
Collapse
Affiliation(s)
- Megan E. McNamara
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, USA
| | - Netanel Loyfer
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Amber J. Kiliti
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, USA
| | - Marcel O. Schmidt
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, USA
| | - Sapir Shabi-Porat
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Sidharth S. Jain
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, USA
| | - Sarah Martinez Roth
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, USA
| | - A. Patrick McDeed
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, USA
| | - Nesreen Shahrour
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, USA
| | | | - Yun-Tien Lin
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, USA
| | - Heng-Hong Li
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, USA
| | | | - Sonali Rudra
- Medstar Georgetown University Hospital, Washington DC, USA
| | - Anna T. Riegel
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, USA
| | - Keith Unger
- Medstar Georgetown University Hospital, Washington DC, USA
| | - Tommy Kaplan
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Anton Wellstein
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, USA
| |
Collapse
|
50
|
Chen L, Wang Z, Wu J, Yao Q, Peng J, Zhang C, Chen H, Li Y, Jiang Z, Liu Y, Shi C. Released dsDNA-triggered inflammasomes serve as intestinal radioprotective targets. Clin Transl Immunology 2023; 12:e1452. [PMID: 37333051 PMCID: PMC10276537 DOI: 10.1002/cti2.1452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 05/05/2023] [Accepted: 05/18/2023] [Indexed: 06/20/2023] Open
Abstract
Objectives Intestinal mucositis is the major side effect during abdominal or pelvic radiotherapy, but the underlying immunogen remains to be further characterised and few radioprotective agents are available. This study investigated the role of dsDNA-triggered inflammasomes in intestinal mucositis during radiotherapy. Methods Pro-inflammatory cytokines were detected by ELISA. Radiation-induced intestinal injury in mice was analyzed by means of survival curves, body weight, HE staining of intestines, and intestinal barrier integrity. Western blot, immunofluorescence staining, co-immunoprecipitation assay and flow cytometry were used to investigate the regulatory role of dsDNA on inflammasomes. Results Here, we show that a high level of IL-1β and IL-18 is associated with diarrhoea in colorectal cancer (CRC) patients during radiotherapy, which accounts for intestinal radiotoxicity. Subsequently, we found that the dose-dependently released dsDNA from the intestinal epithelial cells (IECs) serves as the potential immunogenic molecule for radiation-induced intestinal mucositis. Our results further indicate that the released dsDNA transfers into the macrophages in an HMGB1/RAGE-dependent manner and then triggers absent in melanoma 2 (AIM2) inflammasome activation and the IL-1β and IL-18 secretion. Finally, we show that the FDA-approved disulfiram (DSF), a newly identified inflammasome inhibitor, could mitigate intestinal radiotoxicity by controlling inflammasome. Conclusion These findings indicate that the extracellular self-dsDNA released from the irradiated IECs is a potential immunogen to stimulate immune cells and trigger the subsequent intestinal mucositis, while blunting the dsDNA-triggered inflammasome in macrophages may represent an exciting therapeutic strategy for side effects control during abdominal radiotherapy.
Collapse
Affiliation(s)
- Long Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Rocket Force MedicineArmy Medical UniversityChongqingChina
- Shigatse Branch, Xinqiao Hospital, Army 953 HospitalArmy Medical UniversityShigatseChina
| | - Ziwen Wang
- Department of CardiologyGeriatric Cardiovascular Disease Research and Treatment Center, 252 Hospital of PLABaodingChina
| | - Jie Wu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Rocket Force MedicineArmy Medical UniversityChongqingChina
| | - Quan Yao
- Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Center, School of Medicine, Sichuan Cancer Hospital & InstituteUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Jingjing Peng
- Department of OncologyWestern Theater General HospitalChengduChina
| | - Chi Zhang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Rocket Force MedicineArmy Medical UniversityChongqingChina
| | - Hongdan Chen
- Breast and Thyroid Surgical Department, Chongqing General HospitalUniversity of Chinese Academy of SciencesChongqingChina
| | - Yingjie Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Rocket Force MedicineArmy Medical UniversityChongqingChina
| | - Zhongyong Jiang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Rocket Force MedicineArmy Medical UniversityChongqingChina
| | - Yunsheng Liu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Rocket Force MedicineArmy Medical UniversityChongqingChina
| | - Chunmeng Shi
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Rocket Force MedicineArmy Medical UniversityChongqingChina
| |
Collapse
|