1
|
Qin PP, Chen PR, Tan L, Chu X, Ye BC, Yin BC. Programming ADAR-recruiting hairpin RNA sensor to detect endogenous molecules. Nucleic Acids Res 2024:gkae1146. [PMID: 39673485 DOI: 10.1093/nar/gkae1146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 10/25/2024] [Accepted: 12/02/2024] [Indexed: 12/16/2024] Open
Abstract
RNA editing leveraging ADARs (adenosine deaminases acting on RNA) shows promising potential for in vivo biosensing beyond gene therapy. However, current ADAR sensors sense only a single target of RNA transcripts, thus limiting their use in different biosensing scenarios. Here, we report a hairpin RNA sensor that exploits new mechanisms to generate intramolecular duplex substrates for efficient ADAR recruitment and editing and apply it to detection of various intracellular molecules, including messenger RNA, small molecules and proteins. We utilize the base pairing interactions between neighbouring bases for enhanced stability, as well as the reverse effects to sense RNA transcripts and single-nucleotide variants with high sensitivity and specificity, irrespective of sequence requirement for complementarity to an UAG stop codon. In addition, we integrate RNA aptamers into the hairpin RNA sensor to realize the detection of the primary energy-supplying molecule, ATP, and a transcription factor, nuclear factor-kappa B (NF-κB), in live cells via a simple conformational change for programming the activation of hairpin RNA. This sensor not only broadens the detection of applicable molecules, but also offers potential for diverse cell manipulation.
Collapse
Affiliation(s)
- Pei-Pei Qin
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, No.18 Chao Wang Road, Gongshu District, Hangzhou 310014, China
| | - Pin-Ru Chen
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, No.18 Chao Wang Road, Gongshu District, Hangzhou 310014, China
| | - Liu Tan
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, No.18 Chao Wang Road, Gongshu District, Hangzhou 310014, China
| | - Xiaohe Chu
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, No.18 Chao Wang Road, Gongshu District, Hangzhou 310014, China
| | - Bang-Ce Ye
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, No.18 Chao Wang Road, Gongshu District, Hangzhou 310014, China
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, No.130 Meilong Road, Xuhui District, Shanghai 200237, China
| | - Bin-Cheng Yin
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, No.18 Chao Wang Road, Gongshu District, Hangzhou 310014, China
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, No.130 Meilong Road, Xuhui District, Shanghai 200237, China
- School of Chemistry and Chemical Engineering, Shihezi University, No.221 North Fourth Road, Uighur autonomous region, Shihezi 832000, Xinjiang, China
| |
Collapse
|
2
|
Del Arco J, Acosta J, Fernández-Lucas J. Biotechnological applications of purine and pyrimidine deaminases. Biotechnol Adv 2024; 77:108473. [PMID: 39505057 DOI: 10.1016/j.biotechadv.2024.108473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/21/2024] [Accepted: 10/24/2024] [Indexed: 11/08/2024]
Abstract
Deaminases, ubiquitous enzymes found in all living organisms from bacteria to humans, serve diverse and crucial functions. Notably, purine and pyrimidine deaminases, while biologically essential for regulating nucleotide pools, exhibit exceptional versatility in biotechnology. This review systematically consolidates current knowledge on deaminases, showcasing their potential uses and relevance in the field of biotechnology. Thus, their transformative impact on pharmaceutical manufacturing is highlighted as catalysts for the synthesis of nucleic acid derivatives. Additionally, the role of deaminases in food bioprocessing and production is also explored, particularly in purine content reduction and caffeine production, showcasing their versatility in this field. The review also delves into most promising biomedical applications including deaminase-based GDEPT and genome and transcriptome editing by deaminase-based systems. All in all, illustrated with practical examples, we underscore the role of purine and pyrimidine deaminases in advancing sustainable and efficient biotechnological practices. Finally, the review highlights future challenges and prospects in deaminase-based biotechnological processes, encompassing both industrial and medical perspectives.
Collapse
Affiliation(s)
- Jon Del Arco
- Applied Biotechnology Group, Universidad Europea de Madrid, Urbanización El Bosque, E-28670 Villaviciosa de Odón, Madrid, Spain
| | - Javier Acosta
- Applied Biotechnology Group, Universidad Europea de Madrid, Urbanización El Bosque, E-28670 Villaviciosa de Odón, Madrid, Spain
| | - Jesús Fernández-Lucas
- Applied Biotechnology Group, Universidad Europea de Madrid, Urbanización El Bosque, E-28670 Villaviciosa de Odón, Madrid, Spain; Grupo de Investigación en Ciencias Naturales y Exactas, GICNEX, Universidad de la Costa, CUC, Calle 58 # 55-66, 080002 Barranquilla, Colombia; Department of Biochemistry and Molecular Biology, Faculty of Biology, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
| |
Collapse
|
3
|
Manjunath A, Cheng J, Campbell KB, Jacobsen CS, Mendoza HG, Bierbaum L, Jauregui-Matos V, Doherty EE, Fisher AJ, Beal PA. Nucleoside Analogs in ADAR Guide Strands Enable Editing at 5'-G A Sites. Biomolecules 2024; 14:1229. [PMID: 39456162 PMCID: PMC11506087 DOI: 10.3390/biom14101229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/13/2024] [Accepted: 09/20/2024] [Indexed: 10/28/2024] Open
Abstract
Adenosine Deaminases Acting on RNA (ADARs) are members of a family of RNA editing enzymes that catalyze the conversion of adenosine into inosine in double-stranded RNA (dsRNA). ADARs' selective activity on dsRNA presents the ability to correct mutations at the transcriptome level using guiding oligonucleotides. However, this approach is limited by ADARs' preference for specific sequence contexts to achieve efficient editing. Substrates with a guanosine adjacent to the target adenosine in the 5' direction (5'-GA) are edited less efficiently compared to substrates with any other canonical nucleotides at this position. Previous studies showed that a G/purine mismatch at this position results in more efficient editing than a canonical G/C pair. Herein, we investigate a series of modified oligonucleotides containing purine or size-expanded nucleoside analogs on guide strands opposite the 5'-G (-1 position). The results demonstrate that modified adenosine and inosine analogs enhance editing at 5'-GA sites. Additionally, the inclusion of a size-expanded cytidine analog at this position improves editing over a control guide bearing cytidine. High-resolution crystal structures of ADAR:/RNA substrate complexes reveal the manner by which both inosine and size-expanded cytidine are capable of activating editing at 5'-GA sites. Further modification of these altered guide sequences for metabolic stability in human cells demonstrates that the incorporation of specific purine analogs at the -1 position significantly improves editing at 5'-GA sites.
Collapse
Affiliation(s)
- Aashrita Manjunath
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA; (A.M.); (J.C.); (K.B.C.); (C.S.J.); (H.G.M.); (L.B.); (V.J.-M.); (E.E.D.); (A.J.F.)
| | - Jeff Cheng
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA; (A.M.); (J.C.); (K.B.C.); (C.S.J.); (H.G.M.); (L.B.); (V.J.-M.); (E.E.D.); (A.J.F.)
| | - Kristen B Campbell
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA; (A.M.); (J.C.); (K.B.C.); (C.S.J.); (H.G.M.); (L.B.); (V.J.-M.); (E.E.D.); (A.J.F.)
| | - Casey S. Jacobsen
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA; (A.M.); (J.C.); (K.B.C.); (C.S.J.); (H.G.M.); (L.B.); (V.J.-M.); (E.E.D.); (A.J.F.)
| | - Herra G. Mendoza
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA; (A.M.); (J.C.); (K.B.C.); (C.S.J.); (H.G.M.); (L.B.); (V.J.-M.); (E.E.D.); (A.J.F.)
| | - Leila Bierbaum
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA; (A.M.); (J.C.); (K.B.C.); (C.S.J.); (H.G.M.); (L.B.); (V.J.-M.); (E.E.D.); (A.J.F.)
| | - Victorio Jauregui-Matos
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA; (A.M.); (J.C.); (K.B.C.); (C.S.J.); (H.G.M.); (L.B.); (V.J.-M.); (E.E.D.); (A.J.F.)
| | - Erin E. Doherty
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA; (A.M.); (J.C.); (K.B.C.); (C.S.J.); (H.G.M.); (L.B.); (V.J.-M.); (E.E.D.); (A.J.F.)
| | - Andrew J. Fisher
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA; (A.M.); (J.C.); (K.B.C.); (C.S.J.); (H.G.M.); (L.B.); (V.J.-M.); (E.E.D.); (A.J.F.)
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Peter A. Beal
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA; (A.M.); (J.C.); (K.B.C.); (C.S.J.); (H.G.M.); (L.B.); (V.J.-M.); (E.E.D.); (A.J.F.)
| |
Collapse
|
4
|
Reautschnig P, Fruhner C, Wahn N, Wiegand CP, Kragness S, Yung JF, Hofacker DT, Fisk J, Eidelman M, Waffenschmidt N, Feige M, Pfeiffer LS, Schulz AE, Füll Y, Levanon EY, Mandel G, Stafforst T. Precise in vivo RNA base editing with a wobble-enhanced circular CLUSTER guide RNA. Nat Biotechnol 2024:10.1038/s41587-024-02313-0. [PMID: 38997581 DOI: 10.1038/s41587-024-02313-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 05/17/2024] [Indexed: 07/14/2024]
Abstract
Recruiting the endogenous editing enzyme adenosine deaminase acting on RNA (ADAR) with tailored guide RNAs for adenosine-to-inosine (A-to-I) RNA base editing is promising for safely manipulating genetic information at the RNA level. However, the precision and efficiency of editing are often compromised by bystander off-target editing. Here, we find that in 5'-UAN triplets, which dominate bystander editing, G•U wobble base pairs effectively mitigate off-target events while maintaining high on-target efficiency. This strategy is universally applicable to existing A-to-I RNA base-editing systems and complements other suppression methods such as G•A mismatches and uridine (U) depletion. Combining wobble base pairing with a circularized format of the CLUSTER approach achieves highly precise and efficient editing (up to 87%) of a disease-relevant mutation in the Mecp2 transcript in cell culture. Virus-mediated delivery of the guide RNA alone realizes functional MeCP2 protein restoration in the central nervous system of a murine Rett syndrome model with editing yields of up to 19% and excellent bystander control in vivo.
Collapse
Affiliation(s)
- Philipp Reautschnig
- Interfaculty Institute of Biochemistry, Faculty of Science, University of Tübingen, Tübingen, Germany
| | - Carolin Fruhner
- Interfaculty Institute of Biochemistry, Faculty of Science, University of Tübingen, Tübingen, Germany
| | - Nicolai Wahn
- Interfaculty Institute of Biochemistry, Faculty of Science, University of Tübingen, Tübingen, Germany
| | - Charlotte P Wiegand
- Interfaculty Institute of Biochemistry, Faculty of Science, University of Tübingen, Tübingen, Germany
| | - Sabrina Kragness
- Vollum Institute, Oregon Health and Science University, Portland, OR, USA
| | - John F Yung
- Vollum Institute, Oregon Health and Science University, Portland, OR, USA
| | - Daniel T Hofacker
- Interfaculty Institute of Biochemistry, Faculty of Science, University of Tübingen, Tübingen, Germany
| | - Jenna Fisk
- Vollum Institute, Oregon Health and Science University, Portland, OR, USA
| | - Michelle Eidelman
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
- The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Nils Waffenschmidt
- Interfaculty Institute of Biochemistry, Faculty of Science, University of Tübingen, Tübingen, Germany
| | - Maximilian Feige
- Interfaculty Institute of Biochemistry, Faculty of Science, University of Tübingen, Tübingen, Germany
| | - Laura S Pfeiffer
- Interfaculty Institute of Biochemistry, Faculty of Science, University of Tübingen, Tübingen, Germany
| | - Annika E Schulz
- Interfaculty Institute of Biochemistry, Faculty of Science, University of Tübingen, Tübingen, Germany
| | - Yvonne Füll
- Interfaculty Institute of Biochemistry, Faculty of Science, University of Tübingen, Tübingen, Germany
| | - Erez Y Levanon
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
- The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Gail Mandel
- Vollum Institute, Oregon Health and Science University, Portland, OR, USA
| | - Thorsten Stafforst
- Interfaculty Institute of Biochemistry, Faculty of Science, University of Tübingen, Tübingen, Germany.
- Gene and RNA Therapy Center (GRTC), Faculty of Medicine, University of Tübingen, Tübingen, Germany.
- iFIT Cluster of Excellence (EXC2180) Image-Guided and Functionally Instructed Tumor Therapies, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
5
|
Song J, Luo N, Dong L, Peng J, Yi C. RNA base editors: The emerging approach of RNA therapeutics. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1844. [PMID: 38576085 DOI: 10.1002/wrna.1844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 03/12/2024] [Accepted: 03/18/2024] [Indexed: 04/06/2024]
Abstract
RNA-based therapeutics offer a flexible and reversible approach for treating genetic disorders, such as antisense oligonucleotides, RNA interference, aptamers, mRNA vaccines, and RNA editing. In recent years, significant advancements have been made in RNA base editing to correct disease-relevant point mutations. These achievements have significantly influenced the fields of biotechnology, biomedical research and therapeutics development. In this article, we provide a comprehensive overview of the design and performance of contemporary RNA base editors, including A-to-I, C-to-U, A-to-m6A, and U-to-Ψ. We compare recent innovative developments and highlight their applications in disease-relevant contexts. Lastly, we discuss the limitations and future prospects of utilizing RNA base editing for therapeutic purposes. This article is categorized under: RNA Processing > RNA Editing and Modification RNA in Disease and Development > RNA in Development.
Collapse
Affiliation(s)
- Jinghui Song
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Nan Luo
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Liting Dong
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Jinying Peng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Chengqi Yi
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
- Department of Chemical Biology and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Beijing Advanced Center of RNA Biology (BEACON), Peking University, Beijing, China
| |
Collapse
|
6
|
Song J, Zhuang Y, Yi C. Programmable RNA base editing via targeted modifications. Nat Chem Biol 2024; 20:277-290. [PMID: 38418907 DOI: 10.1038/s41589-023-01531-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 12/18/2023] [Indexed: 03/02/2024]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-based genome editors are powerful tools in biology and hold great promise for the treatment of human diseases. Advanced DNA base editing tools, such as cytosine base editor and adenine base editor, have been developed to correct permanent mistakes in genetic material. However, undesired off-target edits would also be permanent, which poses a considerable risk for therapeutics. Alternatively, base editing at the RNA level is capable of correcting disease-causing mutations but does not lead to lasting genotoxic effects. RNA base editors offer temporary and reversible therapies and have been catching on in recent years. Here, we summarize some emerging RNA editors based on A-to-inosine, C-to-U and U-to-pseudouridine changes. We review the programmable RNA-targeting systems as well as modification enzyme-based effector proteins and highlight recent technological breakthroughs. Finally, we compare editing tools, discuss limitations and opportunities, and provide insights for the future directions of RNA base editing.
Collapse
Affiliation(s)
- Jinghui Song
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, People's Republic of China
| | - Yuan Zhuang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, People's Republic of China
| | - Chengqi Yi
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, People's Republic of China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, People's Republic of China.
- Department of Chemical Biology and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, People's Republic of China.
| |
Collapse
|
7
|
Pfeiffer LS, Stafforst T. Precision RNA base editing with engineered and endogenous effectors. Nat Biotechnol 2023; 41:1526-1542. [PMID: 37735261 DOI: 10.1038/s41587-023-01927-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 07/26/2023] [Indexed: 09/23/2023]
Abstract
RNA base editing refers to the rewriting of genetic information within an intact RNA molecule and serves various functions, such as evasion of the endogenous immune system and regulation of protein function. To achieve this, certain enzymes have been discovered in human cells that catalyze the conversion of one nucleobase into another. This natural process could be exploited to manipulate and recode any base in a target transcript. In contrast to DNA base editing, analogous changes introduced in RNA are not permanent or inheritable but rather allow reversible and doseable effects that appeal to various therapeutic applications. The current practice of RNA base editing involves the deamination of adenosines and cytidines, which are converted to inosines and uridines, respectively. In this Review, we summarize current site-directed RNA base-editing strategies and highlight recent achievements to improve editing efficiency, precision, codon-targeting scope and in vivo delivery into disease-relevant tissues. Besides engineered editing effectors, we focus on strategies to harness endogenous adenosine deaminases acting on RNA (ADAR) enzymes and discuss limitations and future perspectives to apply the tools in basic research and as a therapeutic modality. We expect the field to realize the first RNA base-editing drug soon, likely on a well-defined genetic disease. However, the long-term challenge will be to carve out the sweet spot of the technology where its unique ability is exploited to modulate signaling cues, metabolism or other clinically relevant processes in a safe and doseable manner.
Collapse
Affiliation(s)
- Laura S Pfeiffer
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Thorsten Stafforst
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany.
- Gene and RNA Therapy Center, Faculty of Medicine, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
8
|
Booth BJ, Nourreddine S, Katrekar D, Savva Y, Bose D, Long TJ, Huss DJ, Mali P. RNA editing: Expanding the potential of RNA therapeutics. Mol Ther 2023; 31:1533-1549. [PMID: 36620962 PMCID: PMC9824937 DOI: 10.1016/j.ymthe.2023.01.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/06/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
RNA therapeutics have had a tremendous impact on medicine, recently exemplified by the rapid development and deployment of mRNA vaccines to combat the COVID-19 pandemic. In addition, RNA-targeting drugs have been developed for diseases with significant unmet medical needs through selective mRNA knockdown or modulation of pre-mRNA splicing. Recently, RNA editing, particularly antisense RNA-guided adenosine deaminase acting on RNA (ADAR)-based programmable A-to-I editing, has emerged as a powerful tool to manipulate RNA to enable correction of disease-causing mutations and modulate gene expression and protein function. Beyond correcting pathogenic mutations, the technology is particularly well suited for therapeutic applications that require a transient pharmacodynamic effect, such as the treatment of acute pain, obesity, viral infection, and inflammation, where it would be undesirable to introduce permanent alterations to the genome. Furthermore, transient modulation of protein function, such as altering the active sites of enzymes or the interface of protein-protein interactions, opens the door to therapeutic avenues ranging from regenerative medicine to oncology. These emerging RNA-editing-based toolsets are poised to broadly impact biotechnology and therapeutic applications. Here, we review the emerging field of therapeutic RNA editing, highlight recent laboratory advancements, and discuss the key challenges on the path to clinical development.
Collapse
Affiliation(s)
| | - Sami Nourreddine
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | | | | | | | | | | | - Prashant Mali
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
9
|
Palmieri M, Pozzer D, Landsberger N. Advanced genetic therapies for the treatment of Rett syndrome: state of the art and future perspectives. Front Neurosci 2023; 17:1172805. [PMID: 37304036 PMCID: PMC10248472 DOI: 10.3389/fnins.2023.1172805] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/02/2023] [Indexed: 06/13/2023] Open
Abstract
Loss and gain of functions mutations in the X-linked MECP2 (methyl-CpG-binding protein 2) gene are responsible for a set of generally severe neurological disorders that can affect both genders. In particular, Mecp2 deficiency is mainly associated with Rett syndrome (RTT) in girls, while duplication of the MECP2 gene leads, mainly in boys, to the MECP2 duplication syndrome (MDS). No cure is currently available for MECP2 related disorders. However, several studies have reported that by re-expressing the wild-type gene is possible to restore defective phenotypes of Mecp2 null animals. This proof of principle endorsed many laboratories to search for novel therapeutic strategies to cure RTT. Besides pharmacological approaches aimed at modulating MeCP2-downstream pathways, genetic targeting of MECP2 or its transcript have been largely proposed. Remarkably, two studies focused on augmentative gene therapy were recently approved for clinical trials. Both use molecular strategies to well-control gene dosage. Notably, the recent development of genome editing technologies has opened an alternative way to specifically target MECP2 without altering its physiological levels. Other attractive approaches exclusively applicable for nonsense mutations are the translational read-through (TR) and t-RNA suppressor therapy. Reactivation of the MECP2 locus on the silent X chromosome represents another valid choice for the disease. In this article, we intend to review the most recent genetic interventions for the treatment of RTT, describing the current state of the art, and the related advantages and concerns. We will also discuss the possible application of other advanced therapies, based on molecular delivery through nanoparticles, already proposed for other neurological disorders but still not tested in RTT.
Collapse
Affiliation(s)
- Michela Palmieri
- Rett Research Unit, Division of Neuroscience, San Raffaele Hospital (IRCCS), Milan, Italy
| | - Diego Pozzer
- Rett Research Unit, Division of Neuroscience, San Raffaele Hospital (IRCCS), Milan, Italy
| | - Nicoletta Landsberger
- Rett Research Unit, Division of Neuroscience, San Raffaele Hospital (IRCCS), Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, Faculty of Medicine and Surgery, University of Milan, Milan, Italy
| |
Collapse
|
10
|
Diaz Quiroz JF, Siskel LD, Rosenthal JJC. Site-directed A → I RNA editing as a therapeutic tool: moving beyond genetic mutations. RNA (NEW YORK, N.Y.) 2023; 29:498-505. [PMID: 36669890 PMCID: PMC10019371 DOI: 10.1261/rna.079518.122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Adenosine deamination by the ADAR family of enzymes is a natural process that edits genetic information as it passes through messenger RNA. Adenosine is converted to inosine in mRNAs, and this base is interpreted as guanosine during translation. Realizing the potential of this activity for therapeutics, a number of researchers have developed systems that redirect ADAR activity to new targets, ones that are not normally edited. These site-directed RNA editing (SDRE) systems can be broadly classified into two categories: ones that deliver an antisense RNA oligonucleotide to bind opposite a target adenosine, creating an editable structure that endogenously expressed ADARs recognize, and ones that tether the catalytic domain of recombinant ADAR to an antisense RNA oligonucleotide that serves as a targeting mechanism, much like with CRISPR-Cas or RNAi. To date, SDRE has been used mostly to try and correct genetic mutations. Here we argue that these applications are not ideal SDRE, mostly because RNA edits are transient and genetic mutations are not. Instead, we suggest that SDRE could be used to tune cell physiology to achieve temporary outcomes that are therapeutically advantageous, particularly in the nervous system. These include manipulating excitability in nociceptive neural circuits, abolishing specific phosphorylation events to reduce protein aggregation related to neurodegeneration or reduce the glial scarring that inhibits nerve regeneration, or enhancing G protein-coupled receptor signaling to increase nerve proliferation for the treatment of sensory disorders like blindness and deafness.
Collapse
Affiliation(s)
- Juan F Diaz Quiroz
- Eugene Bell Center, The Marine Biological Laboratory, Woods Hole, Massachusetts 02543, USA
| | - Louise D Siskel
- Eugene Bell Center, The Marine Biological Laboratory, Woods Hole, Massachusetts 02543, USA
| | - Joshua J C Rosenthal
- Eugene Bell Center, The Marine Biological Laboratory, Woods Hole, Massachusetts 02543, USA
| |
Collapse
|
11
|
Lei Z, Meng H, Zhuang Y, Zhu Q, Yi C. Chemical and Biological Approaches to Interrogate off-Target Effects of Genome Editing Tools. ACS Chem Biol 2023; 18:205-217. [PMID: 36731114 DOI: 10.1021/acschembio.2c00836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Various genome editing tools have been developed for programmable genome manipulation at specified genomic loci. However, it is crucial to comprehensively interrogate the off-target effect induced by these genome editing tools, especially when apply them onto the therapeutic applications. Here, we outlined the off-target effect that has been observed for various genome editing tools. We also reviewed detection methods to determine or evaluate the off-target editing, and we have discussed their advantages and limitations. Additionally, we have summarized current RNA editing tools for RNA therapy and medicine that may serve as alternative approaches for genome editing tools in both research and clinical applications.
Collapse
Affiliation(s)
- Zhixin Lei
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing100871, China.,Academy for Advanced Interdisciplinary Studies, Peking University, Beijing100871, China
| | - Haowei Meng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing100871, China
| | - Yuan Zhuang
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, School of Life Sciences, Peking University, Beijing100871, China
| | - Qingguo Zhu
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing100871, China.,Academy for Advanced Interdisciplinary Studies, Peking University, Beijing100871, China
| | - Chengqi Yi
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing100871, China.,State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing100871, China.,Department of Chemical Biology and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing100871, China.,Peking University Genome Editing Research Center, Peking University, Beijing100871, China
| |
Collapse
|
12
|
Panayotis N, Ehinger Y, Felix MS, Roux JC. State-of-the-art therapies for Rett syndrome. Dev Med Child Neurol 2023; 65:162-170. [PMID: 36056801 PMCID: PMC10087176 DOI: 10.1111/dmcn.15383] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 01/04/2023]
Abstract
Rett syndrome (RTT) is an X-linked neurogenetic disorder caused by mutations of the MECP2 (methyl-CpG-binding protein 2) gene. Over two decades of work established MeCP2 as a protein with pivotal roles in the regulation of the epigenome, neuronal physiology, synaptic maintenance, and behaviour. Given the genetic aetiology of RTT and the proof of concept of its reversal in a mouse model, considerable efforts have been made to design therapeutic approaches to re-express MeCP2. By being at the forefront of the development of innovative gene therapies, research on RTT is of paramount importance for the treatment of monogenic neurological diseases. Here we discuss the recent advances and challenges of promising genetic strategies for the treatment of RTT including gene replacement therapies, gene/RNA editing strategies, and reactivation of the silenced X chromosome. WHAT THIS PAPER ADDS: Recent advances shed light on the promises of gene replacement therapy with new vectors designed to control the levels of MeCP2 expression. New developments in DNA/RNA editing approaches or reactivation of the silenced X chromosome open the possibility to re-express the native MeCP2 locus at endogenous levels. Current strategies still face limitations in transduction efficiency and future work is needed to improve brain delivery.
Collapse
Affiliation(s)
- Nicolas Panayotis
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel.,Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel.,Université Paris Cité, CNRS, Saints-Pères Paris Institute for the Neurosciences, Paris, France
| | - Yann Ehinger
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | | | | |
Collapse
|
13
|
RNA-targeting strategies as a platform for ocular gene therapy. Prog Retin Eye Res 2023; 92:101110. [PMID: 35840489 DOI: 10.1016/j.preteyeres.2022.101110] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/28/2022] [Accepted: 07/06/2022] [Indexed: 02/01/2023]
Abstract
Genetic medicine is offering hope as new therapies are emerging for many previously untreatable diseases. The eye is at the forefront of these advances, as exemplified by the approval of Luxturna® by the United States Food and Drug Administration (US FDA) in 2017 for the treatment of one form of Leber Congenital Amaurosis (LCA), an inherited blindness. Luxturna® was also the first in vivo human gene therapy to gain US FDA approval. Numerous gene therapy clinical trials are ongoing for other eye diseases, and novel delivery systems, discovery of new drug targets and emerging technologies are currently driving the field forward. Targeting RNA, in particular, is an attractive therapeutic strategy for genetic disease that may have safety advantages over alternative approaches by avoiding permanent changes in the genome. In this regard, antisense oligonucleotides (ASO) and RNA interference (RNAi) are the currently popular strategies for developing RNA-targeted therapeutics. Enthusiasm has been further fuelled by the emergence of clustered regularly interspersed short palindromic repeats (CRISPR)-CRISPR associated (Cas) systems that allow targeted manipulation of nucleic acids. RNA-targeting CRISPR-Cas systems now provide a novel way to develop RNA-targeted therapeutics and may provide superior efficiency and specificity to existing technologies. In addition, RNA base editing technologies using CRISPR-Cas and other modalities also enable precise alteration of single nucleotides. In this review, we showcase advances made by RNA-targeting systems for ocular disease, discuss applications of ASO and RNAi technologies, highlight emerging CRISPR-Cas systems and consider the implications of RNA-targeting therapeutics in the development of future drugs to treat eye disease.
Collapse
|
14
|
Megagiannis P, Suresh R, Rouleau GA, Zhou Y. Reversibility and therapeutic development for neurodevelopmental disorders, insights from genetic animal models. Adv Drug Deliv Rev 2022; 191:114562. [PMID: 36183904 DOI: 10.1016/j.addr.2022.114562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/30/2022] [Accepted: 09/24/2022] [Indexed: 01/24/2023]
Abstract
Neurodevelopmental Disorders (NDDs) encompass a broad spectrum of conditions resulting from atypical brain development. Over the past decades, we have had the fortune to witness enormous progress in diagnosis, etiology discovery, modeling, and mechanistic understanding of NDDs from both fundamental and clinical research. Here, we review recent neurobiological advances from experimental models of NDDs. We introduce several examples and highlight breakthroughs in reversal studies of phenotypes using genetically engineered models of NDDs. The in-depth understanding of brain pathophysiology underlying NDDs and evaluations of reversibility in animal models paves the foundation for discovering novel treatment options. We discuss how the expanding property of cutting-edge technologies, such as gene editing and AAV-mediated gene delivery, are leveraged in animal models for the therapeutic development of NDDs. We envision opportunities and challenges toward faithful modeling and fruitful clinical translation.
Collapse
Affiliation(s)
- Platon Megagiannis
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital; Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Rahul Suresh
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital; Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Guy A Rouleau
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital; Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Yang Zhou
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital; Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec H3A 2B4, Canada.
| |
Collapse
|
15
|
Li M, Yan C, Jiao Y, Xu Y, Bai C, Miao R, Jiang J, Liu J. Site-directed RNA editing by harnessing ADARs: advances and challenges. Funct Integr Genomics 2022; 22:1089-1103. [DOI: 10.1007/s10142-022-00910-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/12/2022] [Accepted: 10/17/2022] [Indexed: 11/04/2022]
|
16
|
Grimm NB, Lee JT. Selective Xi reactivation and alternative methods to restore MECP2 function in Rett syndrome. Trends Genet 2022; 38:920-943. [PMID: 35248405 PMCID: PMC9915138 DOI: 10.1016/j.tig.2022.01.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/15/2022] [Accepted: 01/19/2022] [Indexed: 10/19/2022]
Abstract
The human X-chromosome harbors only 4% of our genome but carries over 20% of genes associated with intellectual disability. Given that they inherit only one X-chromosome, males are more frequently affected by X-linked neurodevelopmental genetic disorders than females. However, despite inheriting two X-chromosomes, females can also be affected because X-chromosome inactivation enables only one of two X-chromosomes to be expressed per cell. For Rett syndrome and similar X-linked disorders affecting females, disease-specific treatments have remained elusive. However, a cure may be found within their own cells because every sick cell carries a healthy copy of the affected gene on the inactive X (Xi). Therefore, selective Xi reactivation may be a viable approach that would address the root cause of various X-linked disorders. Here, we discuss Rett syndrome and compare current approaches in the pharmaceutical pipeline to restore MECP2 function. We then focus on Xi reactivation and review available methods, lessons learned, and future directions.
Collapse
Affiliation(s)
- Niklas-Benedikt Grimm
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA; Department of Genetics, The Blavatnik Institute, Harvard Medical School, Boston, MA, USA; Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Jeannie T Lee
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA; Department of Genetics, The Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
17
|
Sinnamon JR, Jacobson ME, Yung JF, Fisk JR, Jeng S, McWeeney SK, Parmelee LK, Chan CN, Yee SP, Mandel G. Targeted RNA editing in brainstem alleviates respiratory dysfunction in a mouse model of Rett syndrome. Proc Natl Acad Sci U S A 2022; 119:e2206053119. [PMID: 35939700 PMCID: PMC9388114 DOI: 10.1073/pnas.2206053119] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/27/2022] [Indexed: 12/26/2022] Open
Abstract
Rett syndrome is a neurological disease due to loss-of-function mutations in the transcription factor, Methyl CpG binding protein 2 (MECP2). Because overexpression of endogenous MECP2 also causes disease, we have exploited a targeted RNA-editing approach to repair patient mutations where levels of MECP2 protein will never exceed endogenous levels. Here, we have constructed adeno-associated viruses coexpressing a bioengineered wild-type ADAR2 catalytic domain (Editasewt) and either Mecp2-targeting or nontargeting gfp RNA guides. The viruses are introduced systemically into male mice containing a guanosine to adenosine mutation that eliminates MeCP2 protein and causes classic Rett syndrome in humans. We find that in the mutant mice injected with the Mecp2-targeting virus, the brainstem exhibits the highest RNA-editing frequency compared to other brain regions. The efficiency is sufficient to rescue MeCP2 expression and function in the brainstem of mice expressing the Mecp2-targeting virus. Correspondingly, we find that abnormal Rett-like respiratory patterns are alleviated, and survival is prolonged, compared to mice injected with the control gfp guide virus. The levels of RNA editing among most brain regions corresponds to the distribution of guide RNA rather than Editasewt. Our results provide evidence that a targeted RNA-editing approach can alleviate a hallmark symptom in a mouse model of human disease.
Collapse
Affiliation(s)
- John R. Sinnamon
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239
| | | | - John F. Yung
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239
| | - Jenna R. Fisk
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239
| | - Sophia Jeng
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239
| | - Shannon K. McWeeney
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239
- Division of Bioinformatics and Computational Biology, Oregon Health and Science University, Portland, OR 97239
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health and Science University, Portland, OR 97239
- Oregon Clinical and Translational Research Institute, Oregon Health and Science University, Portland, OR 97239
| | - Lindsay K. Parmelee
- Integrated Pathology Core, Oregon National Primate Research Center, Beaverton, OR 97006
| | - Chi Ngai Chan
- Integrated Pathology Core, Oregon National Primate Research Center, Beaverton, OR 97006
| | - Siu-Pok Yee
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030
| | - Gail Mandel
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239
| |
Collapse
|
18
|
Liu X, Zhang Y, Zhou S, Dain L, Mei L, Zhu G. Circular RNA: An emerging frontier in RNA therapeutic targets, RNA therapeutics, and mRNA vaccines. J Control Release 2022; 348:84-94. [PMID: 35649485 PMCID: PMC9644292 DOI: 10.1016/j.jconrel.2022.05.043] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/17/2022] [Accepted: 05/25/2022] [Indexed: 12/13/2022]
Abstract
Circular RNAs (circRNA) is a class of natural (biogenic) or synthetic closed RNA without 5' or 3' ends. Meanwhile, their unique covalently-closed structures of circRNA prevent RNA degradation by exonucleases, thereby empowering them with high pharmaceutical stability and biostability relative to current standard-of-care linear mRNA. Natural circRNA can be non-coding RNAs as well as protein-coding RNA, the latter of which was recently discovered. The physiological functions of biogenic circRNAs, which largely remain elusive, include protein and gene sponges, cell activity modulators, and protein translation. The discovery that the circRNA levels can be correlated with some human diseases empowers circRNA with the potential as a novel type of disease biomarkers and a noncanonical class of therapeutic targets. Recently, synthetic circRNA have been engineered to explore their applications as a novel class of mRNA therapeutics and vaccines. In this review, we will discuss the current understanding of the biogenesis and physiological functions of natural circRNAs, the approaches to circRNA synthesis, and current research in the exploration of endogenous circRNAs as novel therapeutic targets and testing circRNAs as an emerging class of RNA therapeutics and vaccines.
Collapse
Affiliation(s)
- Xiang Liu
- Department of Pharmaceutics and Center for Pharmaceutical Engineering and Sciences, School of Pharmacy, Institute for Structural Biology and Drug Discovery, The Developmental Therapeutics Program, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Yu Zhang
- Department of Pharmaceutics and Center for Pharmaceutical Engineering and Sciences, School of Pharmacy, Institute for Structural Biology and Drug Discovery, The Developmental Therapeutics Program, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Shurong Zhou
- Department of Pharmaceutics and Center for Pharmaceutical Engineering and Sciences, School of Pharmacy, Institute for Structural Biology and Drug Discovery, The Developmental Therapeutics Program, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Lauren Dain
- Department of Pharmaceutics and Center for Pharmaceutical Engineering and Sciences, School of Pharmacy, Institute for Structural Biology and Drug Discovery, The Developmental Therapeutics Program, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Lei Mei
- Department of Pharmaceutics and Center for Pharmaceutical Engineering and Sciences, School of Pharmacy, Institute for Structural Biology and Drug Discovery, The Developmental Therapeutics Program, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Guizhi Zhu
- Department of Pharmaceutics and Center for Pharmaceutical Engineering and Sciences, School of Pharmacy, Institute for Structural Biology and Drug Discovery, The Developmental Therapeutics Program, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA.
| |
Collapse
|
19
|
Coorey B, Haase F, Ellaway C, Clarke A, Lisowski L, Gold WA. Gene Editing and Rett Syndrome: Does It Make the Cut? CRISPR J 2022; 5:490-499. [PMID: 35881862 DOI: 10.1089/crispr.2022.0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Rett syndrome (RTT) is a rare neurogenetic disorder caused by pathogenic variants of the Methyl CpG binding protein 2 (MECP2) gene. The RTT is characterized by apparent normal early development followed by regression of communicative and fine motor skills. Comorbidities include epilepsy, severe cognitive impairment, and autonomic and motor dysfunction. Despite almost 60 clinical trials and the promise of a gene therapy, no cure has yet emerged with treatment remaining symptomatic. Advances in understanding RTT has provided insight into the complexity and exquisite control of MECP2 expression, where loss of expression leads to RTT and overexpression leads to MECP2 duplication syndrome. Therapy development requires regulated expression that matches the spatiotemporal endogenous expression of MECP2 in the brain. Gene editing has revolutionized gene therapy and promises an exciting strategy for many incurable monogenic disorders, including RTT, by editing the native locus and retaining endogenous gene expression. Here, we review the literature on the currently available editing technologies and discuss their limitations and applicability to the treatment of RTT.
Collapse
Affiliation(s)
- Bronte Coorey
- Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, Australia.,Molecular Neurobiology Research Laboratory, Kid's Research, Westmead, Australia.,Kids Neuroscience Centre, Kids Research, Children's Hospital at Westmead, Westmead, Australia
| | - Florencia Haase
- Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, Australia.,Molecular Neurobiology Research Laboratory, Kid's Research, Westmead, Australia.,Kids Neuroscience Centre, Kids Research, Children's Hospital at Westmead, Westmead, Australia
| | - Carolyn Ellaway
- Genetic Metabolic Disorders Service, Sydney Children's Hospital Network Sydney, Westmead, Australia.,Discipline of Child and Adolescent Health, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Angus Clarke
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Leszek Lisowski
- Translational Vectorology Research Unit, Children's Medical Research Institute, The University of Sydney, Westmead, Australia.,Vector and Genome Engineering Facility, Children's Medical Research Institute, The University of Sydney, Westmead, Australia.,Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Warsaw, Poland
| | - Wendy A Gold
- Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, Australia.,Molecular Neurobiology Research Laboratory, Kid's Research, Westmead, Australia.,Kids Neuroscience Centre, Kids Research, Children's Hospital at Westmead, Westmead, Australia.,Discipline of Child and Adolescent Health, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia.,Children's Medical Research Institute, Westmead, Australia
| |
Collapse
|
20
|
Xiao Q, Xu Z, Xue Y, Xu C, Han L, Liu Y, Wang F, Zhang R, Han S, Wang X, Li GL, Li H, Yang H, Shu Y. Rescue of autosomal dominant hearing loss by in vivo delivery of mini dCas13X-derived RNA base editor. Sci Transl Med 2022; 14:eabn0449. [PMID: 35857824 DOI: 10.1126/scitranslmed.abn0449] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Programmable RNA editing tools enable the reversible correction of mutant transcripts, reducing the potential risk associated with permanent genetic changes associated with the use of DNA editing tools. However, the potential of these RNA tools to treat disease remains unknown. Here, we evaluated RNA correction therapy with Cas13-based RNA base editors in the myosin VI p.C442Y heterozygous mutation (Myo6C442Y/+) mouse model that recapitulated the phenotypes of human dominant-inherited deafness. We first screened several variants of Cas13-based RNA base editors and guide RNAs (gRNAs) targeting Myo6C442Y in cultured cells and found that mini dCas13X.1-based adenosine base editor (mxABE), composed of truncated Cas13X.1 and the RNA editing enzyme adenosine deaminase acting on RNA 2 deaminase domain variant (ADAR2ddE488Q), exhibited both high efficiency of A > G conversion and low frequency of off-target edits. Single adeno-associated virus (AAV)-mediated delivery of mxABE in the cochlea corrected the mutated Myo6C442Y to Myo6WT allele in homozygous Myo6C442Y/C442Y mice and resulted in increased Myo6WT allele in the injected cochlea of Myo6C442Y/+ mice. The treatment rescued auditory function, including auditory brainstem response and distortion product otoacoustic emission up to 3 months after AAV-mxABE-Myo6 injection in Myo6C442Y/+ mice. We also observed increased survival rate of hair cells and decreased degeneration of hair bundle morphology in the treated compared to untreated control ears. These findings provide a proof-of-concept study for RNA editing tools as a therapeutic treatment for various semidominant forms of hearing loss and other diseases.
Collapse
Affiliation(s)
- Qingquan Xiao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhijiao Xu
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200032, China
| | - Yuanyuan Xue
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200032, China
| | - Chunlong Xu
- Lingang Laboratory, Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 200032, China
| | - Lei Han
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200032, China
- Department of Otorhinolaryngology, Second Affiliated Hospital, University of South China, Hengyang 421001, China
| | - Yuanhua Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Fang Wang
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200032, China
| | - Runze Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuang Han
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200032, China
- Department of Otolaryngology Head and Neck Surgery, Second Hospital of Jilin University, Changchun 130000, China
| | - Xing Wang
- Huigene Therapeutics Inc., Shanghai 201315, China
| | - Geng-Lin Li
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200032, China
| | - Huawei Li
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200032, China
- Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Hui Yang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yilai Shu
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200032, China
| |
Collapse
|
21
|
Gene-based therapeutics for rare genetic neurodevelopmental psychiatric disorders. Mol Ther 2022; 30:2416-2428. [PMID: 35585789 PMCID: PMC9263284 DOI: 10.1016/j.ymthe.2022.05.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/07/2022] [Accepted: 05/11/2022] [Indexed: 11/23/2022] Open
Abstract
We are in an emerging era of gene-based therapeutics with significant promise for rare genetic disorders. The potential is particularly significant for genetic central nervous system disorders that have begun to achieve Food and Drug Administration approval for select patient populations. This review summarizes the discussions and presentations of the National Institute of Mental Health-sponsored workshop "Gene-Based Therapeutics for Rare Genetic Neurodevelopmental Psychiatric Disorders," which was held in January 2021. Here, we distill the points raised regarding various precision medicine approaches related to neurodevelopmental and psychiatric disorders that may be amenable to gene-based therapies.
Collapse
|
22
|
Baratta AM, Brandner AJ, Plasil SL, Rice RC, Farris SP. Advancements in Genomic and Behavioral Neuroscience Analysis for the Study of Normal and Pathological Brain Function. Front Mol Neurosci 2022; 15:905328. [PMID: 35813067 PMCID: PMC9259865 DOI: 10.3389/fnmol.2022.905328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 06/06/2022] [Indexed: 11/16/2022] Open
Abstract
Psychiatric and neurological disorders are influenced by an undetermined number of genes and molecular pathways that may differ among afflicted individuals. Functionally testing and characterizing biological systems is essential to discovering the interrelationship among candidate genes and understanding the neurobiology of behavior. Recent advancements in genetic, genomic, and behavioral approaches are revolutionizing modern neuroscience. Although these tools are often used separately for independent experiments, combining these areas of research will provide a viable avenue for multidimensional studies on the brain. Herein we will briefly review some of the available tools that have been developed for characterizing novel cellular and animal models of human disease. A major challenge will be openly sharing resources and datasets to effectively integrate seemingly disparate types of information and how these systems impact human disorders. However, as these emerging technologies continue to be developed and adopted by the scientific community, they will bring about unprecedented opportunities in our understanding of molecular neuroscience and behavior.
Collapse
Affiliation(s)
- Annalisa M. Baratta
- Center for Neuroscience, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Adam J. Brandner
- Center for Neuroscience, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Sonja L. Plasil
- Department of Pharmacology & Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Rachel C. Rice
- Center for Neuroscience, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Sean P. Farris
- Center for Neuroscience, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Anesthesiology and Perioperative Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Biomedical Informatics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
23
|
Reshetnikov VV, Chirinskaite AV, Sopova JV, Ivanov RA, Leonova EI. Cas-Based Systems for RNA Editing in Gene Therapy of Monogenic Diseases: In Vitro and in Vivo Application and Translational Potential. Front Cell Dev Biol 2022; 10:903812. [PMID: 35784464 PMCID: PMC9245891 DOI: 10.3389/fcell.2022.903812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/05/2022] [Indexed: 12/12/2022] Open
Abstract
Rare genetic diseases reduce quality of life and can significantly shorten the lifespan. There are few effective treatment options for these diseases, and existing therapeutic strategies often represent only supportive or palliative care. Therefore, designing genetic-engineering technologies for the treatment of genetic diseases is urgently needed. Rapid advances in genetic editing technologies based on programmable nucleases and in the engineering of gene delivery systems have made it possible to conduct several dozen successful clinical trials; however, the risk of numerous side effects caused by off-target double-strand breaks limits the use of these technologies in the clinic. Development of adenine-to-inosine (A-to-I) and cytosine-to-uracil (C-to-U) RNA-editing systems based on dCas13 enables editing at the transcriptional level without double-strand breaks in DNA. In this review, we discuss recent progress in the application of these technologies in in vitro and in vivo experiments. The main strategies for improving RNA-editing tools by increasing their efficiency and specificity are described as well. These data allow us to outline the prospects of base-editing systems for clinical application.
Collapse
Affiliation(s)
- Vasiliy V. Reshetnikov
- Department of Biotechnology, Sirius University of Science and Technology, Sochi, Russia
- Department of Molecular Genetics, Institute of Cytology and Genetics, Novosibirsk, Russia
| | - Angelina V. Chirinskaite
- Center of Transgenesis and Genome Editing, St. Petersburg State University, St. Petersburg, Russia
| | - Julia V. Sopova
- Center of Transgenesis and Genome Editing, St. Petersburg State University, St. Petersburg, Russia
- Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg, Russia
| | - Roman A. Ivanov
- Department of Biotechnology, Sirius University of Science and Technology, Sochi, Russia
| | - Elena I. Leonova
- Center of Transgenesis and Genome Editing, St. Petersburg State University, St. Petersburg, Russia
- Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia
| |
Collapse
|
24
|
Katrekar D, Yen J, Xiang Y, Saha A, Meluzzi D, Savva Y, Mali P. Efficient in vitro and in vivo RNA editing via recruitment of endogenous ADARs using circular guide RNAs. Nat Biotechnol 2022; 40:938-945. [PMID: 35145312 PMCID: PMC9232839 DOI: 10.1038/s41587-021-01171-4] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 11/24/2021] [Indexed: 12/14/2022]
Abstract
Recruiting endogenous adenosine deaminases using exogenous guide RNAs to edit cellular RNAs is a promising therapeutic strategy, but editing efficiency and durability remain low using current guide RNA designs. In this study, we engineered circular ADAR-recruiting guide RNAs (cadRNAs) to enable more efficient programmable adenosine-to-inosine RNA editing without requiring co-delivery of any exogenous proteins. Using these cadRNAs, we observed robust and durable RNA editing across multiple sites and cell lines, in both untranslated and coding regions of RNAs, and high transcriptome-wide specificity. Additionally, we increased transcript-level specificity for the target adenosine by incorporating interspersed loops in the antisense domains, reducing bystander editing. In vivo delivery of cadRNAs via adeno-associated viruses enabled 53% RNA editing of the mPCSK9 transcript in C57BL/6J mice livers and 12% UAG-to-UGG RNA correction of the amber nonsense mutation in the IDUA-W392X mouse model of mucopolysaccharidosis type I-Hurler syndrome. cadRNAs enable efficient programmable RNA editing in vivo with diverse protein modulation and gene therapeutic applications.
Collapse
Affiliation(s)
- Dhruva Katrekar
- Department of Bioengineering, University of California, San Diego, San Diego, CA, USA
| | - James Yen
- Department of Bioengineering, University of California, San Diego, San Diego, CA, USA
| | - Yichen Xiang
- Department of Bioengineering, University of California, San Diego, San Diego, CA, USA
| | - Anushka Saha
- Department of Bioengineering, University of California, San Diego, San Diego, CA, USA
| | - Dario Meluzzi
- Department of Medicine, University of California, San Diego, San Diego, CA, USA
| | | | - Prashant Mali
- Department of Bioengineering, University of California, San Diego, San Diego, CA, USA.
| |
Collapse
|
25
|
FitzPatrick L, Bird A. Genetic therapies for neurological disorders. Hum Genet 2022; 141:1085-1091. [PMID: 34807307 PMCID: PMC8607967 DOI: 10.1007/s00439-021-02399-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/03/2021] [Indexed: 11/27/2022]
Abstract
In recent years, it has become increasingly apparent that many neurological disorders are underpinned by a genetic aetiology. This has resulted in considerable efforts to develop therapeutic strategies which can treat the disease-causing mutation, either by supplying a functional copy of the mutated gene or editing the genomic sequence. In this review, we will discuss the main genetic strategies which are currently being explored for the treatment of monogenic neurological disorders, as well as some of the challenges they face. In addition, we will address some of the ethical difficulties which may arise.
Collapse
Affiliation(s)
- Laura FitzPatrick
- Wellcome Centre for Cell Biology, University of Edinburgh, The Michael Swann Building, Max Born Crescent, Edinburgh, EH9 3BF, UK.
| | - Adrian Bird
- Wellcome Centre for Cell Biology, University of Edinburgh, The Michael Swann Building, Max Born Crescent, Edinburgh, EH9 3BF, UK.
| |
Collapse
|
26
|
Katrekar D, Xiang Y, Palmer N, Saha A, Meluzzi D, Mali P. Comprehensive interrogation of the ADAR2 deaminase domain for engineering enhanced RNA editing activity and specificity. eLife 2022; 11:e75555. [PMID: 35044296 PMCID: PMC8809894 DOI: 10.7554/elife.75555] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/18/2022] [Indexed: 11/17/2022] Open
Abstract
Adenosine deaminases acting on RNA (ADARs) can be repurposed to enable programmable RNA editing, however their exogenous delivery leads to transcriptome-wide off-targeting, and additionally, enzymatic activity on certain RNA motifs, especially those flanked by a 5' guanosine is very low thus limiting their utility as a transcriptome engineering toolset. Towards addressing these issues, we first performed a novel deep mutational scan of the ADAR2 deaminase domain, directly measuring the impact of every amino acid substitution across 261 residues, on RNA editing. This enabled us to create a domain-wide mutagenesis map while also revealing a novel hyperactive variant with improved enzymatic activity at 5'-GAN-3' motifs. As overexpression of ADAR enzymes, especially hyperactive variants, can lead to significant transcriptome-wide off-targeting, we next engineered a split-ADAR2 deaminase which resulted in >100-fold more specific RNA editing as compared to full-length deaminase overexpression. Taken together, we anticipate this systematic engineering of the ADAR2 deaminase domain will enable broader utility of the ADAR toolset for RNA biotechnology applications.
Collapse
Affiliation(s)
- Dhruva Katrekar
- Department of Bioengineering, University of California San DiegoSan DiegoUnited States
| | - Yichen Xiang
- Department of Bioengineering, University of California San DiegoSan DiegoUnited States
| | - Nathan Palmer
- Division of Biological Sciences, University of California San DiegoSan DiegoUnited States
| | - Anushka Saha
- Department of Bioengineering, University of California San DiegoSan DiegoUnited States
| | - Dario Meluzzi
- Department of Bioengineering, University of California San DiegoSan DiegoUnited States
| | - Prashant Mali
- Department of Bioengineering, University of California San DiegoSan DiegoUnited States
| |
Collapse
|
27
|
Emerging strategies for the genetic dissection of gene functions, cell types, and neural circuits in the mammalian brain. Mol Psychiatry 2022; 27:422-435. [PMID: 34561609 DOI: 10.1038/s41380-021-01292-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 08/17/2021] [Accepted: 09/08/2021] [Indexed: 02/08/2023]
Abstract
The mammalian brain is composed of a large number of highly diverse cell types with different molecular, anatomical, and functional features. Distinct cellular identities are generated during development under the regulation of intricate genetic programs and manifested through unique combinations of gene expression. Recent advancements in our understanding of the molecular and cellular mechanisms underlying the assembly, function, and pathology of the brain circuitry depend on the invention and application of genetic strategies that engage intrinsic gene regulatory mechanisms. Here we review the strategies for gene regulation on DNA, RNA, and protein levels and their applications in cell type targeting and neural circuit dissection. We highlight newly emerged strategies and emphasize the importance of combinatorial approaches. We also discuss the potential caveats and pitfalls in current methods and suggest future prospects to improve their comprehensiveness and versatility.
Collapse
|
28
|
Collins BE, Neul JL. Rett Syndrome and MECP2 Duplication Syndrome: Disorders of MeCP2 Dosage. Neuropsychiatr Dis Treat 2022; 18:2813-2835. [PMID: 36471747 PMCID: PMC9719276 DOI: 10.2147/ndt.s371483] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/14/2022] [Indexed: 11/30/2022] Open
Abstract
Rett syndrome (RTT) is a neurodevelopmental disorder caused predominantly by loss-of-function mutations in the gene Methyl-CpG-binding protein 2 (MECP2), which encodes the MeCP2 protein. RTT is a MECP2-related disorder, along with MECP2 duplication syndrome (MDS), caused by gain-of-function duplications of MECP2. Nearly two decades of research have advanced our knowledge of MeCP2 function in health and disease. The following review will discuss MeCP2 protein function and its dysregulation in the MECP2-related disorders RTT and MDS. This will include a discussion of the genetic underpinnings of these disorders, specifically how sporadic X-chromosome mutations arise and manifest in specific populations. We will then review current diagnostic guidelines and clinical manifestations of RTT and MDS. Next, we will delve into MeCP2 biology, describing the dual landscapes of methylated DNA and its reader MeCP2 across the neuronal genome as well as the function of MeCP2 as a transcriptional modulator. Following this, we will outline common MECP2 mutations and genotype-phenotype correlations in both diseases, with particular focus on mutations associated with relatively mild disease in RTT. We will also summarize decades of disease modeling and resulting molecular, synaptic, and behavioral phenotypes associated with RTT and MDS. Finally, we list several therapeutics in the development pipeline for RTT and MDS and available evidence of their safety and efficacy.
Collapse
Affiliation(s)
- Bridget E Collins
- Medical Scientist Training Program, Vanderbilt University, Nashville, TN, USA
| | - Jeffrey L Neul
- Vanderbilt Kennedy Center, Departments of Pediatrics, Pharmacology, and Special Education, Vanderbilt University Medical Center and Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
29
|
Weuring W, Geerligs J, Koeleman BPC. Gene Therapies for Monogenic Autism Spectrum Disorders. Genes (Basel) 2021; 12:genes12111667. [PMID: 34828273 PMCID: PMC8617899 DOI: 10.3390/genes12111667] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 12/26/2022] Open
Abstract
Novel genome editing and transient gene therapies have been developed the past ten years, resulting in the first in-human clinical trials for monogenic disorders. Syndromic autism spectrum disorders can be caused by mutations in a single gene. Given the monogenic aspect and severity of syndromic ASD, it is an ideal candidate for gene therapies. Here, we selected 11 monogenic ASD syndromes, validated by animal models, and reviewed current gene therapies for each syndrome. Given the wide variety and novelty of some forms of gene therapy, the best possible option must be decided based on the gene and mutation.
Collapse
|
30
|
Khosravi HM, Jantsch MF. Site-directed RNA editing: recent advances and open challenges. RNA Biol 2021; 18:41-50. [PMID: 34569891 PMCID: PMC8677011 DOI: 10.1080/15476286.2021.1983288] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 08/25/2021] [Accepted: 09/16/2021] [Indexed: 12/19/2022] Open
Abstract
RNA editing by cytosine and adenosine deaminases changes the identity of the edited bases. While cytosines are converted to uracils, adenines are converted to inosines. If coding regions of mRNAs are affected, the coding potential of the RNA can be changed, depending on the codon affected. The recoding potential of nucleotide deaminases has recently gained attention for their ability to correct genetic mutations by either reverting the mutation itself or by manipulating processing steps such as RNA splicing. In contrast to CRISPR-based DNA-editing approaches, RNA editing events are transient in nature, therefore reducing the risk of long-lasting inadvertent side-effects. Moreover, some RNA-based therapeutics are already FDA approved and their use in targeting multiple cells or organs to restore genetic function has already been shown. In this review, we provide an overview on the current status and technical differences of site-directed RNA-editing approaches. We also discuss advantages and challenges of individual approaches.
Collapse
Affiliation(s)
- Hamid Mansouri Khosravi
- Center of Anatomy & Cell Biology Division of Cell & Developmental Biology Medical, Unviersity of Vienna SchwarzspanierstrasseVienna, Austria
| | - Michael F. Jantsch
- Center of Anatomy & Cell Biology Division of Cell & Developmental Biology Medical, Unviersity of Vienna SchwarzspanierstrasseVienna, Austria
| |
Collapse
|
31
|
Ojha N, Diaz Quiroz JF, Rosenthal JJC. In vitro and in cellula site-directed RNA editing using the λNDD-BoxB system. Methods Enzymol 2021; 658:335-358. [PMID: 34517953 DOI: 10.1016/bs.mie.2021.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Site-directed RNA editing (SDRE) exploits the enzymatic activity of Adenosine Deaminases Acting on RNAs (ADAR) to program changes in genetic information as it passes through RNA. ADARs convert adenosine (A) to inosine (I) through a hydrolytic deamination and since I can be read as guanosine (G) during translation, this change can regulate gene function and correct G→A genetic mutations. In SDRE, ADARs are redirected to convert user-defined A's to I's. SDRE also has certain advantages over genome editing because the changes in RNA are reversible and thus safer. In addition, ADARs are endogenously expressed in humans and therefore unlikely to provoke immunological complications when administered. Recently, a variety of systems for SDRE have been developed. Some rely on harnessing endogenously expressed ADARs and other deliver engineered versions of ADAR's catalytic domain. All systems are currently under refinement, and there are still challenges associated with raising their efficiency and specificity to levels that are adequate for therapeutics. This chapter provides a detailed protocol for in vitro and in cellula editing assays using the λNDD-BoxB system, one of the first systems developed for SDRE. The λNDD-BoxB system relies on gRNAs that are linked to the catalytic domain of human ADAR2 through a small RNA binding protein-RNA stem/loop interaction. We provide step-by-step protocols for (a) the construction of guide RNAs and editing enzyme plasmids, and (b) their use in vitro and in cellula for editing assays using a fluorescent protein-based reporter system containing a premature termination codon that can be corrected by editing.
Collapse
Affiliation(s)
- Namrata Ojha
- The Eugene Bell Center, The Marine Biological Laboratory, Woods Hole, MA, United States
| | | | - Joshua J C Rosenthal
- The Eugene Bell Center, The Marine Biological Laboratory, Woods Hole, MA, United States.
| |
Collapse
|
32
|
Stroppel AS, Lappalainen R, Stafforst T. Controlling Site-Directed RNA Editing by Chemically Induced Dimerization. Chemistry 2021; 27:12300-12304. [PMID: 34169589 PMCID: PMC8456898 DOI: 10.1002/chem.202101985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Indexed: 11/24/2022]
Abstract
Various RNA‐targeting approaches have been engineered to modify specific sites on endogenous transcripts, breaking new ground for a variety of basic research tools and promising clinical applications in the future. Here, we combine site‐directed adenosine‐to‐inosine RNA editing with chemically induced dimerization. Specifically, we achieve tight and dose‐dependent control of the editing reaction with gibberellic acid, and obtain editing yields up to 20 % and 44 % in the endogenous STAT1 and GAPDH transcript in cell culture. Furthermore, the disease‐relevant MECP2 R106Q mutation was repaired with editing yields up to 42 %. The introduced principle will enable new applications where temporal or spatiotemporal control of an RNA‐targeting mechanism is desired.
Collapse
Affiliation(s)
- Anna S Stroppel
- Interfaculty Institute of Biochemistry, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Ruth Lappalainen
- Interfaculty Institute of Biochemistry, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Thorsten Stafforst
- Interfaculty Institute of Biochemistry, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| |
Collapse
|
33
|
D'Souza L, Channakkar AS, Muralidharan B. Chromatin remodelling complexes in cerebral cortex development and neurodevelopmental disorders. Neurochem Int 2021; 147:105055. [PMID: 33964373 PMCID: PMC7611358 DOI: 10.1016/j.neuint.2021.105055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 04/11/2021] [Accepted: 04/24/2021] [Indexed: 12/19/2022]
Abstract
The diverse number of neurons in the cerebral cortex are generated during development by neural stem cells lining the ventricle, and they continue maturing postnatally. Dynamic chromatin regulation in these neural stem cells is a fundamental determinant of the emerging property of the functional neural network, and the chromatin remodellers are critical determinants of this process. Chromatin remodellers participate in several steps of this process from proliferation, differentiation, migration leading to complex network formation which forms the basis of higher-order functions of cognition and behaviour. Here we review the role of these ATP-dependent chromatin remodellers in cortical development in health and disease and highlight several key mouse mutants of the subunits of the complexes which have revealed how the remodelling mechanisms control the cortical stem cell chromatin landscape for expression of stage-specific transcripts. Consistent with their role in cortical development, several putative risk variants in the subunits of the remodelling complexes have been identified as the underlying causes of several neurodevelopmental disorders. A basic understanding of the detailed molecular mechanism of their action is key to understating how mutations in the same networks lead to disease pathologies and perhaps pave the way for therapeutic development for these complex multifactorial disorders.
Collapse
Affiliation(s)
- Leora D'Souza
- Brain Development and Disease Mechanisms, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore Life Science Cluster, Bangalore, India
| | - Asha S Channakkar
- Brain Development and Disease Mechanisms, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore Life Science Cluster, Bangalore, India
| | - Bhavana Muralidharan
- Brain Development and Disease Mechanisms, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore Life Science Cluster, Bangalore, India.
| |
Collapse
|
34
|
Fry LE, McClements ME, MacLaren RE. Analysis of Pathogenic Variants Correctable With CRISPR Base Editing Among Patients With Recessive Inherited Retinal Degeneration. JAMA Ophthalmol 2021; 139:319-328. [PMID: 33507217 DOI: 10.1001/jamaophthalmol.2020.6418] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Importance Many common inherited retinal diseases are not easily treated with gene therapy. Gene editing with base editors may allow the targeted repair of single-nucleotide transition variants in DNA and RNA. It is unknown how many patients have pathogenic variants that are correctable with a base editing strategy. Objective To assess the prevalence and spectrum of pathogenic single-nucleotide variants amenable to base editing in common large recessively inherited genes that are associated with inherited retinal degeneration. Design, Setting, and Participants In this retrospective cross-sectional study, nonidentifiable records of patients with biallelic pathogenic variants of genes associated with inherited retinal degeneration between July 2013 and December 2019 were analyzed using data from the Oxford University Hospitals Medical Genetics Laboratories, the Leiden Open Variation Database, and previously published studies. Six candidate genes (ABCA4, CDH23, CEP290, EYS, MYO7A, and USH2A), which were determined to be the most common recessive genes with coding sequences not deliverable in a single adeno-associated viral vector, were examined. Data were analyzed from April 16 to May 11, 2020. Main Outcomes and Measures Proportion of alleles with a pathogenic transition variant that is potentially correctable with a base editing strategy and proportion of patients with a base-editable allele. Results A total of 12 369 alleles from the Leiden Open Variation Database and 179 patients who received diagnoses through the genetic service of the Oxford University Hospitals Medical Genetics Laboratories were analyzed. Editable variants accounted for 53% of all pathogenic variants in the candidate genes contained in the Leiden Open Variation Database. The proportion of pathogenic alleles that were editable varied by gene; 63.1% of alleles in ABCA4, 62.7% of alleles in CDH23, 53.8% of alleles in MYO7A, 41.6% of alleles in CEP290, 37.3% of alleles in USH2A, and 22.2% of alleles in EYS were editable. The 5 most common editable pathogenic variants of each gene accounted for a mean (SD) of 19.1% (9.5%) of all pathogenic alleles within each gene. In the Oxford cohort, 136 of 179 patients (76.0%) had at least 1 editable allele. A total of 53 of 107 patients (49.5%) with biallelic pathogenic variants in the gene ABCA4 and 16 of 56 patients (28.6%) with biallelic pathogenic variants in the gene USH2A had 1 of the 5 most common editable alleles. Conclusions and Relevance This study found that pathogenic variants amenable to base editing commonly occur in inherited retinal degeneration. These findings, if generalized to other cohorts, provide an approach for developing base editing therapies to treat retinal degeneration not amenable to gene therapy.
Collapse
Affiliation(s)
- Lewis E Fry
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.,Oxford Eye Hospital, Oxford University Hospitals National Health Service Foundation Trust, Oxford, United Kingdom
| | - Michelle E McClements
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.,Oxford Eye Hospital, Oxford University Hospitals National Health Service Foundation Trust, Oxford, United Kingdom
| | - Robert E MacLaren
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.,Oxford Eye Hospital, Oxford University Hospitals National Health Service Foundation Trust, Oxford, United Kingdom
| |
Collapse
|
35
|
Liu H, Rauch S, Dickinson BC. Programmable technologies to manipulate gene expression at the RNA level. Curr Opin Chem Biol 2021; 64:27-37. [PMID: 33930627 DOI: 10.1016/j.cbpa.2021.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 12/26/2022]
Abstract
RNA has long been an enticing therapeutic target, but is now garnering increased attention, largely driven by clinical successes of RNA interference-based drugs. While gene knockdown by well-established RNA interference- and other oligonucleotide-based strategies continues to advance in the clinic, the repertoire of targetable effectors capable of altering gene expression at the RNA level is also rapidly expanding. In this review, we focus on several recently developed bifunctional molecular technologies that both interact with and act upon a target RNA. These new approaches for programmable RNA knockdown, editing, splicing, translation, and chemical modifications stand to provide impactful new modalities for therapeutic development in the coming decades.
Collapse
Affiliation(s)
- Huachun Liu
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Simone Rauch
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Bryan C Dickinson
- Department of Chemistry, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
36
|
Sharifi O, Yasui DH. The Molecular Functions of MeCP2 in Rett Syndrome Pathology. Front Genet 2021; 12:624290. [PMID: 33968128 PMCID: PMC8102816 DOI: 10.3389/fgene.2021.624290] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 02/08/2021] [Indexed: 12/13/2022] Open
Abstract
MeCP2 protein, encoded by the MECP2 gene, binds to DNA and affects transcription. Outside of this activity the true range of MeCP2 function is still not entirely clear. As MECP2 gene mutations cause the neurodevelopmental disorder Rett syndrome in 1 in 10,000 female births, much of what is known about the biologic function of MeCP2 comes from studying human cell culture models and rodent models with Mecp2 gene mutations. In this review, the full scope of MeCP2 research available in the NIH Pubmed (https://pubmed.ncbi.nlm.nih.gov/) data base to date is considered. While not all original research can be mentioned due to space limitations, the main aspects of MeCP2 and Rett syndrome research are discussed while highlighting the work of individual researchers and research groups. First, the primary functions of MeCP2 relevant to Rett syndrome are summarized and explored. Second, the conflicting evidence and controversies surrounding emerging aspects of MeCP2 biology are examined. Next, the most obvious gaps in MeCP2 research studies are noted. Finally, the most recent discoveries in MeCP2 and Rett syndrome research are explored with a focus on the potential and pitfalls of novel treatments and therapies.
Collapse
Affiliation(s)
- Osman Sharifi
- LaSalle Laboratory, Department of Medical Microbiology and Immunology, UC Davis School of Medicine, Davis, CA, United States
| | - Dag H Yasui
- LaSalle Laboratory, Department of Medical Microbiology and Immunology, UC Davis School of Medicine, Davis, CA, United States
| |
Collapse
|
37
|
Good KV, Vincent JB, Ausió J. MeCP2: The Genetic Driver of Rett Syndrome Epigenetics. Front Genet 2021; 12:620859. [PMID: 33552148 PMCID: PMC7859524 DOI: 10.3389/fgene.2021.620859] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/05/2021] [Indexed: 12/24/2022] Open
Abstract
Mutations in methyl CpG binding protein 2 (MeCP2) are the major cause of Rett syndrome (RTT), a rare neurodevelopmental disorder with a notable period of developmental regression following apparently normal initial development. Such MeCP2 alterations often result in changes to DNA binding and chromatin clustering ability, and in the stability of this protein. Among other functions, MeCP2 binds to methylated genomic DNA, which represents an important epigenetic mark with broad physiological implications, including neuronal development. In this review, we will summarize the genetic foundations behind RTT, and the variable degrees of protein stability exhibited by MeCP2 and its mutated versions. Also, past and emerging relationships that MeCP2 has with mRNA splicing, miRNA processing, and other non-coding RNAs (ncRNA) will be explored, and we suggest that these molecules could be missing links in understanding the epigenetic consequences incurred from genetic ablation of this important chromatin modifier. Importantly, although MeCP2 is highly expressed in the brain, where it has been most extensively studied, the role of this protein and its alterations in other tissues cannot be ignored and will also be discussed. Finally, the additional complexity to RTT pathology introduced by structural and functional implications of the two MeCP2 isoforms (MeCP2-E1 and MeCP2-E2) will be described. Epigenetic therapeutics are gaining clinical popularity, yet treatment for Rett syndrome is more complicated than would be anticipated for a purely epigenetic disorder, which should be taken into account in future clinical contexts.
Collapse
Affiliation(s)
- Katrina V. Good
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - John B. Vincent
- Molecular Neuropsychiatry & Development (MiND) Lab, Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Juan Ausió
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
38
|
Erdmann EA, Mahapatra A, Mukherjee P, Yang B, Hundley HA. To protect and modify double-stranded RNA - the critical roles of ADARs in development, immunity and oncogenesis. Crit Rev Biochem Mol Biol 2020; 56:54-87. [PMID: 33356612 DOI: 10.1080/10409238.2020.1856768] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Adenosine deaminases that act on RNA (ADARs) are present in all animals and function to both bind double-stranded RNA (dsRNA) and catalyze the deamination of adenosine (A) to inosine (I). As inosine is a biological mimic of guanosine, deamination by ADARs changes the genetic information in the RNA sequence and is commonly referred to as RNA editing. Millions of A-to-I editing events have been reported for metazoan transcriptomes, indicating that RNA editing is a widespread mechanism used to generate molecular and phenotypic diversity. Loss of ADARs results in lethality in mice and behavioral phenotypes in worm and fly model systems. Furthermore, alterations in RNA editing occur in over 35 human pathologies, including several neurological disorders, metabolic diseases, and cancers. In this review, a basic introduction to ADAR structure and target recognition will be provided before summarizing how ADARs affect the fate of cellular RNAs and how researchers are using this knowledge to engineer ADARs for personalized medicine. In addition, we will highlight the important roles of ADARs and RNA editing in innate immunity and cancer biology.
Collapse
Affiliation(s)
- Emily A Erdmann
- Department of Biology, Indiana University, Bloomington, IN, USA
| | | | - Priyanka Mukherjee
- Medical Sciences Program, Indiana University School of Medicine-Bloomington, Bloomington, IN, USA
| | - Boyoon Yang
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, USA
| | - Heather A Hundley
- Medical Sciences Program, Indiana University School of Medicine-Bloomington, Bloomington, IN, USA
| |
Collapse
|
39
|
Lau CH, Tin C, Suh Y. CRISPR-based strategies for targeted transgene knock-in and gene correction. Fac Rev 2020; 9:20. [PMID: 33659952 PMCID: PMC7886068 DOI: 10.12703/r/9-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The last few years have seen tremendous advances in CRISPR-mediated genome editing. Great efforts have been made to improve the efficiency, specificity, editing window, and targeting scope of CRISPR/Cas9-mediated transgene knock-in and gene correction. In this article, we comprehensively review recent progress in CRISPR-based strategies for targeted transgene knock-in and gene correction in both homology-dependent and homology-independent approaches. We cover homology-directed repair (HDR), synthesis-dependent strand annealing (SDSA), microhomology-mediated end joining (MMEJ), and homology-mediated end joining (HMEJ) pathways for a homology-dependent strategy and alternative DNA repair pathways such as non-homologous end joining (NHEJ), base excision repair (BER), and mismatch repair (MMR) for a homology-independent strategy. We also discuss base editing and prime editing that enable direct conversion of nucleotides in genomic DNA without damaging the DNA or requiring donor DNA. Notably, we illustrate the key mechanisms and design principles for each strategy, providing design guidelines for multiplex, flexible, scarless gene insertion and replacement at high efficiency and specificity. In addition, we highlight next-generation base editors that provide higher editing efficiency, fewer undesired by-products, and broader targeting scope.
Collapse
Affiliation(s)
- Cia-Hin Lau
- Department of Biomedical Engineering, Academic 1, 83 Tat Chee Avenue, City University of Hong Kong, Hong Kong
| | - Chung Tin
- Department of Biomedical Engineering, Academic 1, 83 Tat Chee Avenue, City University of Hong Kong, Hong Kong
| | - Yousin Suh
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY 10032, USA
- Department of Genetics and Development, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY 10032, USA
| |
Collapse
|
40
|
Rauch S, Jones KA, Dickinson BC. Small Molecule-Inducible RNA-Targeting Systems for Temporal Control of RNA Regulation. ACS CENTRAL SCIENCE 2020; 6:1987-1996. [PMID: 33274276 PMCID: PMC7706094 DOI: 10.1021/acscentsci.0c00537] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Indexed: 06/12/2023]
Abstract
All aspects of mRNA lifetime and function, including its stability, translation into protein, and trafficking through the cell, are tightly regulated through coordinated post-transcriptional modifications and interactions with a multitude of RNA effector proteins. Despite the increasing recognition of RNA regulation as a critical layer of mammalian gene expression control and its increasing excitement as a therapeutic target, tools to study and control RNA regulatory mechanisms with temporal precision in their endogenous environment are lacking. Here, we present small molecule-inducible RNA-targeting effectors based on our previously developed CRISPR/Cas-inspired RNA targeting system (CIRTS). The CIRTS biosensor platform is based on guide RNA (gRNA)-dependent RNA binding domains that interact with a target transcript using Watson-Crick-Franklin base pair interactions. Addition of a small molecule recruits an RNA effector to the target transcript, thereby eliciting a local effect on the transcript. In this work, we showcase that these CIRTS biosensors can trigger inducible RNA editing, degradation, or translation on target transcripts in a small molecule-dependent manner. We further go on to show that the CIRTS RNA base editor biosensor can induce RNA base editing in a small molecule-controllable manner in vivo. Collectively this work provides a new set of tools to probe the dynamics of RNA regulatory systems and control gene expression at the RNA level.
Collapse
Affiliation(s)
- Simone Rauch
- Department
of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
- Department
of Biochemistry and Molecular Biology, The
University of Chicago, Chicago, Illinois 60637, United States
| | - Krysten A. Jones
- Department
of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Bryan C. Dickinson
- Department
of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
41
|
Turner TJ, Zourray C, Schorge S, Lignani G. Recent advances in gene therapy for neurodevelopmental disorders with epilepsy. J Neurochem 2020; 157:229-262. [PMID: 32880951 PMCID: PMC8436749 DOI: 10.1111/jnc.15168] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 12/14/2022]
Abstract
Neurodevelopmental disorders can be caused by mutations in neuronal genes fundamental to brain development. These disorders have severe symptoms ranging from intellectually disability, social and cognitive impairments, and a subset are strongly linked with epilepsy. In this review, we focus on those neurodevelopmental disorders that are frequently characterized by the presence of epilepsy (NDD + E). We loosely group the genes linked to NDD + E with different neuronal functions: transcriptional regulation, intrinsic excitability and synaptic transmission. All these genes have in common a pivotal role in defining the brain architecture and function during early development, and when their function is altered, symptoms can present in the first stages of human life. The relationship with epilepsy is complex. In some NDD + E, epilepsy is a comorbidity and in others seizures appear to be the main cause of the pathology, suggesting that either structural changes (NDD) or neuronal communication (E) can lead to these disorders. Furthermore, grouping the genes that cause NDD + E, we review the uses and limitations of current models of the different disorders, and how different gene therapy strategies are being developed to treat them. We highlight where gene replacement may not be a treatment option, and where innovative therapeutic tools, such as CRISPR‐based gene editing, and new avenues of delivery are required. In general this group of genetically defined disorders, supported increasing knowledge of the mechanisms leading to neurological dysfunction serve as an excellent collection for illustrating the translational potential of gene therapy, including newly emerging tools.
Collapse
Affiliation(s)
- Thomas J Turner
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Clara Zourray
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK.,Department of Pharmacology, UCL School of Pharmacy, London, UK
| | | | - Gabriele Lignani
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|