1
|
Wu X, Swanson K, Yildirim Z, Liu W, Liao R, Wu JC. Clinical trials in-a-dish for cardiovascular medicine. Eur Heart J 2024; 45:4275-4290. [PMID: 39270727 PMCID: PMC11491156 DOI: 10.1093/eurheartj/ehae519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/20/2024] [Accepted: 07/29/2024] [Indexed: 09/15/2024] Open
Abstract
Cardiovascular diseases persist as a global health challenge that requires methodological innovation for effective drug development. Conventional pipelines relying on animal models suffer from high failure rates due to significant interspecies variation between humans and animal models. In response, the recently enacted Food and Drug Administration Modernization Act 2.0 encourages alternative approaches including induced pluripotent stem cells (iPSCs). Human iPSCs provide a patient-specific, precise, and screenable platform for drug testing, paving the way for cardiovascular precision medicine. This review discusses milestones in iPSC differentiation and their applications from disease modelling to drug discovery in cardiovascular medicine. It then explores challenges and emerging opportunities for the implementation of 'clinical trials in-a-dish'. Concluding, this review proposes a framework for future clinical trial design with strategic incorporations of iPSC technology, microphysiological systems, clinical pan-omics, and artificial intelligence to improve success rates and advance cardiovascular healthcare.
Collapse
Affiliation(s)
- Xuekun Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kyle Swanson
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Greenstone Biosciences, Palo Alto, CA, USA
| | - Zehra Yildirim
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Wenqiang Liu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ronglih Liao
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
2
|
Robertson KV, Rodriguez AS, Cartailler JP, Shrestha S, Schleh MW, Schroeder KR, Valenti AM, Kramer AT, Harrison FE, Hasty AH. Knockdown of microglial iron import gene, Slc11a2, worsens cognitive function and alters microglial transcriptional landscape in a sex-specific manner in the APP/PS1 model of Alzheimer's disease. J Neuroinflammation 2024; 21:238. [PMID: 39334471 PMCID: PMC11438269 DOI: 10.1186/s12974-024-03238-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Microglial cell iron load and inflammatory activation are significant hallmarks of late-stage Alzheimer's disease (AD). In vitro, microglia preferentially upregulate the iron importer, divalent metal transporter 1 (DMT1, gene name Slc11a2) in response to inflammatory stimuli, and excess iron can augment cellular inflammation, suggesting a feed-forward loop between iron import mechanisms and inflammatory signaling. However, it is not understood whether microglial iron import mechanisms directly contribute to inflammatory signaling and chronic disease in vivo. These studies determined the effects of microglial-specific knockdown of Slc11a2 on AD-related cognitive decline and microglial transcriptional phenotype. METHODS In vitro experiments and RT-qPCR were used to assess a role for DMT1 in amyloid-β-associated inflammation. To determine the effects of microglial Slc11a2 knockdown on AD-related phenotypes in vivo, triple-transgenic Cx3cr1Cre-ERT2;Slc11a2flfl;APP/PS1+or - mice were generated and administered corn oil or tamoxifen to induce knockdown at 5-6 months of age. Both sexes underwent behavioral analyses to assess cognition and memory (12-15 months of age). Hippocampal CD11b+ microglia were magnetically isolated from female mice (15-17 months) and bulk RNA-sequencing analysis was conducted. RESULTS DMT1 inhibition in vitro robustly decreased Aβ-induced inflammatory gene expression and cellular iron levels in conditions of excess iron. In vivo, Slc11a2KD APP/PS1 female, but not male, mice displayed a significant worsening of memory function in Morris water maze and a fear conditioning assay, along with significant hyperactivity compared to control WT and APP/PS1 mice. Hippocampal microglia from Slc11a2KD APP/PS1 females displayed significant increases in Enpp2, Ttr, and the iron-export gene, Slc40a1, compared to control APP/PS1 cells. Slc11a2KD cells from APP/PS1 females also exhibited decreased expression of markers associated with subsets of disease-associated microglia (DAMs), such as Apoe, Ctsb, Ly9, Csf1, and Hif1α. CONCLUSIONS This work suggests a sex-specific role for microglial iron import gene Slc11a2 in propagating behavioral and cognitive phenotypes in the APP/PS1 model of AD. These data also highlight an association between loss of a DAM-like phenotype in microglia and cognitive deficits in Slc11a2KD APP/PS1 female mice. Overall, this work illuminates an iron-related pathway in microglia that may serve a protective role during disease and offers insight into mechanisms behind disease-related sex differences.
Collapse
Affiliation(s)
- Katrina Volk Robertson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 702 Light Hall, Nashville, TN, USA
| | - Alec S Rodriguez
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 702 Light Hall, Nashville, TN, USA
| | | | - Shristi Shrestha
- Creative Data Solutions, Vanderbilt Center for Stem Cell Biology, Nashville, TN, USA
| | - Michael W Schleh
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 702 Light Hall, Nashville, TN, USA
| | - Kyle R Schroeder
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 702 Light Hall, Nashville, TN, USA
| | - Arianna M Valenti
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 702 Light Hall, Nashville, TN, USA
| | - Alec T Kramer
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Fiona E Harrison
- Department of Medicine, Vanderbilt University Medical Center, 7465 Medical Research Building IV, 2213 Garland Avenue, Nashville, TN, 37232, USA.
| | - Alyssa H Hasty
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 702 Light Hall, Nashville, TN, USA.
- VA Tennessee Valley Healthcare System, Nashville, TN, USA.
| |
Collapse
|
3
|
Lu C, Gao C, Wei J, Dong D, Sun M. SIRT1-FOXOs signaling pathway: A potential target for attenuating cardiomyopathy. Cell Signal 2024; 124:111409. [PMID: 39277092 DOI: 10.1016/j.cellsig.2024.111409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
Cardiomyopathy constitutes a global health burden. It refers to myocardial injury that causes alterations in cardiac structure and function, ultimately leading to heart failure. Currently, there is no definitive treatment for cardiomyopathy. This is because existing treatments primarily focus on drug interventions to attenuate symptoms rather than addressing the underlying causes of the disease. Notably, the cardiomyocyte loss is one of the key risk factors for cardiomyopathy. This loss can occur through various mechanisms such as metabolic disturbances, cardiac stress (e.g., oxidative stress), apoptosis as well as cell death resulting from disorders in autophagic flux, etc. Sirtuins (SIRTs) are categorized as class III histone deacetylases, with their enzyme activity primarily reliant on the substrate nicotinamide adenine dinucleotide (NAD (+)). Among them, Sirtuin 1 (SIRT1) is the most intensively studied in the cardiovascular system. Forkhead O transcription factors (FOXOs) are the downstream effectors of SIRT1. Several reports have shown that SIRT1 can form a signaling pathway with FOXOs in myocardial tissue, and this pathway plays a key regulatory role in cell loss. Thus, this review describes the basic mechanism of SIRT1-FOXOs in inhibiting cardiomyocyte loss and its favorable role in cardiomyopathy. Additionally, we summarized the SIRT1-FOXOs related regulation factor and prospects the SIRT1-FOXOs potential clinical application, which provide reference for the development of cardiomyopathy treatment.
Collapse
Affiliation(s)
- Changxu Lu
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, China
| | - Can Gao
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, China
| | - Jinwen Wei
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, China
| | - Dan Dong
- College of Basic Medical Science, China Medical University, Shenyang, Liaoning, China.
| | - Mingli Sun
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, China.
| |
Collapse
|
4
|
Fontes A, Jauch AT, Sailer J, Engler J, Azul AM, Zischka H. Metabolic Derangement of Essential Transition Metals and Potential Antioxidant Therapies. Int J Mol Sci 2024; 25:7880. [PMID: 39063122 PMCID: PMC11277342 DOI: 10.3390/ijms25147880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/08/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
Essential transition metals have key roles in oxygen transport, neurotransmitter synthesis, nucleic acid repair, cellular structure maintenance and stability, oxidative phosphorylation, and metabolism. The balance between metal deficiency and excess is typically ensured by several extracellular and intracellular mechanisms involved in uptake, distribution, and excretion. However, provoked by either intrinsic or extrinsic factors, excess iron, zinc, copper, or manganese can lead to cellular damage upon chronic or acute exposure, frequently attributed to oxidative stress. Intracellularly, mitochondria are the organelles that require the tightest control concerning reactive oxygen species production, which inevitably leaves them to be one of the most vulnerable targets of metal toxicity. Current therapies to counteract metal overload are focused on chelators, which often cause secondary effects decreasing patients' quality of life. New therapeutic options based on synthetic or natural antioxidants have proven positive effects against metal intoxication. In this review, we briefly address the cellular metabolism of transition metals, consequences of their overload, and current therapies, followed by their potential role in inducing oxidative stress and remedies thereof.
Collapse
Affiliation(s)
- Adriana Fontes
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, D-85764 Neuherberg, Germany;
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Adrian T. Jauch
- School of Medicine and Health, Institute of Toxicology and Environmental Hygiene, Technical University Munich, D-80802 Munich, Germany
| | - Judith Sailer
- School of Medicine and Health, Institute of Toxicology and Environmental Hygiene, Technical University Munich, D-80802 Munich, Germany
| | - Jonas Engler
- School of Medicine and Health, Institute of Toxicology and Environmental Hygiene, Technical University Munich, D-80802 Munich, Germany
| | - Anabela Marisa Azul
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- IIIUC-Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Hans Zischka
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, D-85764 Neuherberg, Germany;
- School of Medicine and Health, Institute of Toxicology and Environmental Hygiene, Technical University Munich, D-80802 Munich, Germany
| |
Collapse
|
5
|
Robertson KV, Rodriguez AS, Cartailler JP, Shrestha S, Schroeder KR, Valenti AM, Harrison FE, Hasty AH. Knockdown of microglial iron import gene, DMT1, worsens cognitive function and alters microglial transcriptional landscape in a sex-specific manner in the APP/PS1 model of Alzheimer's disease. RESEARCH SQUARE 2024:rs.3.rs-4559940. [PMID: 38978579 PMCID: PMC11230470 DOI: 10.21203/rs.3.rs-4559940/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Background Microglial cell iron load and inflammatory activation are significant hallmarks of late-stage Alzheimer's disease (AD). In vitro, microglia preferentially upregulate the iron importer, divalent metal transporter 1 (DMT1, gene name Slc11a2) in response to inflammatory stimuli, and excess iron can augment cellular inflammation, suggesting a feed-forward loop between iron import mechanisms and inflammatory signaling. However, it is not understood whether microglial iron import mechanisms directly contribute to inflammatory signaling and chronic disease in vivo. These studies determined the effects of microglial-specific knockdown of Slc11a2 on AD-related cognitive decline and microglial transcriptional phenotype. Methods In vitro experiments and RT-qPCR were used to assess a role for DMT1 in amyloid-β-associated inflammation. To determine the effects of microglial Slc11a2 knockdown on AD-related phenotypes in vivo, triple-transgenic Cx3cr1 Cre - ERT2 ;Slc11a2 flfl;APP/PS1 + or - mice were generated and administered corn oil or tamoxifen to induce knockdown at 5-6 months of age. Both sexes underwent behavioral analyses to assess cognition and memory (12-15 months of age). Hippocampal CD11b + microglia were magnetically isolated from female mice (15-17 months) and bulk RNA-sequencing analysis was conducted. Results DMT1 inhibition in vitro robustly decreased Aβ-induced inflammatory gene expression and cellular iron levels in conditions of excess iron. In vivo, Slc11a2 KD APP/PS1 female, but not male, mice displayed a significant worsening of memory function in Morris water maze and a fear conditioning assay, along with significant hyperactivity compared to control WT and APP/PS1 mice. Hippocampal microglia from Slc11a2 KD APP/PS1 females displayed significant increases in Enpp2, Ttr, and the iron-export gene, Slc40a1, compared to control APP/PS1 cells. Slc11a2 KD cells from APP/PS1 females also exhibited decreased expression of markers associated with disease-associated microglia (DAMs), such as Apoe, Ctsb, Csf1, and Hif1α. Conclusions This work suggests a sex-specific role for microglial iron import gene Slc11a2 in propagating behavioral and cognitive phenotypes in the APP/PS1 model of AD. These data also highlight an association between loss of a DAM-like phenotype in microglia and cognitive deficits in Slc11a2 KD APP/PS1 female mice. Overall, this work illuminates an iron-related pathway in microglia that may serve a protective role during disease and offers insight into mechanisms behind disease-related sex differences.
Collapse
|
6
|
Li X, Xu H, Zhao X, Li Y, Lv S, Zhou W, Wang J, Sun Z, Li Y, Guo C. Ferroptosis contributing to cardiomyocyte injury induced by silica nanoparticles via miR-125b-2-3p/HO-1 signaling. Part Fibre Toxicol 2024; 21:17. [PMID: 38561847 PMCID: PMC10983742 DOI: 10.1186/s12989-024-00579-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 03/21/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Amorphous silica nanoparticles (SiNPs) have been gradually proven to threaten cardiac health, but pathogenesis has not been fully elucidated. Ferroptosis is a newly defined form of programmed cell death that is implicated in myocardial diseases. Nevertheless, its role in the adverse cardiac effects of SiNPs has not been described. RESULTS We first reported the induction of cardiomyocyte ferroptosis by SiNPs in both in vivo and in vitro. The sub-chronic exposure to SiNPs through intratracheal instillation aroused myocardial injury, characterized by significant inflammatory infiltration and collagen hyperplasia, accompanied by elevated CK-MB and cTnT activities in serum. Meanwhile, the activation of myocardial ferroptosis by SiNPs was certified by the extensive iron overload, declined FTH1 and FTL, and lipid peroxidation. The correlation analysis among detected indexes hinted ferroptosis was responsible for the SiNPs-aroused myocardial injury. Further, in vitro tests, SiNPs triggered iron overload and lipid peroxidation in cardiomyocytes. Concomitantly, altered expressions of TfR, DMT1, FTH1, and FTL indicated dysregulated iron metabolism of cardiomyocytes upon SiNP stimuli. Also, shrinking mitochondria with ridge fracture and ruptured outer membrane were noticed. To note, the ferroptosis inhibitor Ferrostatin-1 could effectively alleviate SiNPs-induced iron overload, lipid peroxidation, and myocardial cytotoxicity. More importantly, the mechanistic investigations revealed miR-125b-2-3p-targeted HO-1 as a key player in the induction of ferroptosis by SiNPs, probably through regulating the intracellular iron metabolism to mediate iron overload and ensuing lipid peroxidation. CONCLUSIONS Our findings firstly underscored the fact that ferroptosis mediated by miR-125b-2-3p/HO-1 signaling was a contributor to SiNPs-induced myocardial injury, which could be of importance to elucidate the toxicity and provide new insights into the future safety applications of SiNPs-related nano products.
Collapse
Affiliation(s)
- Xueyan Li
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing, 100069, China
- Chaoyang District Center for Disease Control and Prevention, Beijing, 100021, China
| | - Hailin Xu
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing, 100069, China
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing, 100069, China
| | - Xinying Zhao
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing, 100069, China
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing, 100069, China
| | - Yan Li
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing, 100069, China
| | - Songqing Lv
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing, 100069, China
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing, 100069, China
| | - Wei Zhou
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Ji Wang
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing, 100069, China
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing, 100069, China
| | - Zhiwei Sun
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing, 100069, China
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing, 100069, China
| | - Yanbo Li
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing, 100069, China.
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing, 100069, China.
| | - Caixia Guo
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing, 100069, China.
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing, 100069, China.
| |
Collapse
|
7
|
Yang F, Cui X, Wang H, Zhang D, Luo S, Li Y, Dai Y, Yang D, Zhang X, Wang L, Zheng G, Zhang X. Iron overload promotes the progression of MLL-AF9 induced acute myeloid leukemia by upregulation of FOS. Cancer Lett 2024; 583:216652. [PMID: 38242196 DOI: 10.1016/j.canlet.2024.216652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/26/2023] [Accepted: 01/15/2024] [Indexed: 01/21/2024]
Abstract
Systemic iron overload is a common clinical challenge leading to significantly serious complications in patients with acute myeloid leukemia (AML), which affects both the quality of life and the overall survival of patients. Symptoms can be relieved after iron chelation therapy in clinical practice. However, the roles and mechanisms of iron overload on the initiation and progression of leukemia remain elusive. Here we studied the correlation between iron overload and AML clinical outcome, and further explored the role and pathophysiologic mechanism of iron overload in AML by using two mouse models: an iron overload MLL-AF9-induced AML mouse model and a nude xenograft mouse model. Patients with AML had an increased ferritin level, particularly in the myelomonocytic (M4) or monocytic (M5) subtypes. High level of iron expression correlated with a worsened prognosis in AML patients and a shortened survival time in AML mice. Furthermore, iron overload increased the tumor load in the bone marrow (BM) and extramedullary tissues by promoting the proliferation of leukemia cells through the upregulation of FOS. Collectively, our findings provide new insights into the roles of iron overload in AML. Additionally, this study may provide a potential therapeutic target to improve the outcome of AML patients and a rationale for the prospective evaluation of iron chelation therapy in AML.
Collapse
Affiliation(s)
- Feifei Yang
- Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Xiaoxi Cui
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China; Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Hao Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China; Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Dongyue Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China; Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Shulin Luo
- Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Yifei Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China; Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Yibo Dai
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China; Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Dan Yang
- Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Xiuqun Zhang
- Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Lina Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China; Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Guoguang Zheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China; Tianjin Institutes of Health Science, Tianjin, 301600, China.
| | - Xuezhong Zhang
- Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China.
| |
Collapse
|
8
|
Volk Robertson K, Schleh MW, Harrison FE, Hasty AH. Microglial-specific knockdown of iron import gene, Slc11a2, blunts LPS-induced neuroinflammatory responses in a sex-specific manner. Brain Behav Immun 2024; 116:370-384. [PMID: 38141840 PMCID: PMC10874246 DOI: 10.1016/j.bbi.2023.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/07/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023] Open
Abstract
Neuroinflammation and microglial iron load are significant hallmarks found in several neurodegenerative diseases. In in vitro systems, microglia preferentially upregulate the iron importer, divalent metal transporter 1 (DMT1, gene name Slc11a2) in response to inflammatory stimuli, and it has been shown that iron can augment cellular inflammation, suggesting a feed-forward loop between mechanisms involved in iron import and inflammatory signaling. However, it is not understood how microglial iron import mechanisms contribute to inflammation in vivo, or whether altering a microglial iron-related gene affects the inflammatory response. These studies aimed to determine the effect of knocking down microglial iron import gene Slc11a2 on the inflammatory response in vivo. We generated a novel model of tamoxifen-inducible, microglial-specific Slc11a2 knockdown using Cx3cr1Cre-ERT2 mice. Transgenic male and female mice were administered intraperitoneal saline or lipopolysaccharide (LPS) and assessed for sickness behavior post-injection. Plasma cytokines and microglial bulk RNA sequencing (RNASeq) analyses were performed at 4 h post-LPS, and microglia were collected for gene expression analysis after 24 h. A subset of mice was assessed in a behavioral test battery following LPS-induced sickness recovery. Control male, but not female, mice significantly upregulated microglial Slc11a2 at 4 and 24 h following LPS. In Slc11a2 knockdown mice, we observed an improvement in the acute behavioral sickness response post-LPS in male, but not female, animals. Microglia from male, but not female, knockdown animals exhibited a significant decrease in LPS-provoked pro-inflammatory cytokine expression after 24 h. RNASeq data from male knockdown microglia 4 h post-LPS revealed a robust downregulation in inflammatory genes including Il6, Tnfα, and Il1β, and an increase in anti-inflammatory and homeostatic markers (e.g., Tgfbr1, Cx3cr1, and Trem2). This corresponded with a profound decrease in plasma pro-inflammatory cytokines 4 h post-LPS. At 4 h, male knockdown microglia also upregulated expression of markers of iron export, iron recycling, and iron homeostasis and decreased iron storage and import genes, along with pro-oxidant markers such as Cybb, Nos2, and Hif1α. Overall, this work elucidates how manipulating a specific gene involved in iron import in microglia alters acute inflammatory signaling and overall cell activation state in male mice. These data highlight a sex-specific link between a microglial iron import gene and the pro-inflammatory response to LPS in vivo, providing further insight into the mechanisms driving neuroinflammatory disease.
Collapse
Affiliation(s)
- Katrina Volk Robertson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Michael W Schleh
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Fiona E Harrison
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Alyssa H Hasty
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA; VA Tennessee Valley Healthcare System, Nashville, TN, USA.
| |
Collapse
|
9
|
Colville A, Liu JY, Rodriguez-Mateo C, Thomas S, Ishak HD, Zhou R, Klein JDD, Morgens DW, Goshayeshi A, Salvi JS, Yao D, Spees K, Dixon SJ, Liu C, Rhee JW, Lai C, Wu JC, Bassik MC, Rando TA. Death-seq identifies regulators of cell death and senolytic therapies. Cell Metab 2023; 35:1814-1829.e6. [PMID: 37699398 PMCID: PMC10597643 DOI: 10.1016/j.cmet.2023.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/07/2023] [Accepted: 08/17/2023] [Indexed: 09/14/2023]
Abstract
Selectively ablating damaged cells is an evolving therapeutic approach for age-related disease. Current methods for genome-wide screens to identify genes whose deletion might promote the death of damaged or senescent cells are generally underpowered because of the short timescales of cell death as well as the difficulty of scaling non-dividing cells. Here, we establish "Death-seq," a positive-selection CRISPR screen optimized to identify enhancers and mechanisms of cell death. Our screens identified synergistic enhancers of cell death induced by the known senolytic ABT-263. The screen also identified inducers of cell death and senescent cell clearance in models of age-related diseases by a related compound, ABT-199, which alone is not senolytic but exhibits less toxicity than ABT-263. Death-seq enables the systematic screening of cell death pathways to uncover molecular mechanisms of regulated cell death subroutines and identifies drug targets for the treatment of diverse pathological states such as senescence, cancer, and fibrosis.
Collapse
Affiliation(s)
- Alex Colville
- Paul F. Glenn Center for the Biology of Aging and Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Jie-Yu Liu
- Paul F. Glenn Center for the Biology of Aging and Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Cristina Rodriguez-Mateo
- Paul F. Glenn Center for the Biology of Aging and Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Samantha Thomas
- Paul F. Glenn Center for the Biology of Aging and Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Heather D Ishak
- Paul F. Glenn Center for the Biology of Aging and Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ronghao Zhou
- Paul F. Glenn Center for the Biology of Aging and Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Julian D D Klein
- Paul F. Glenn Center for the Biology of Aging and Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - David W Morgens
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Armon Goshayeshi
- Paul F. Glenn Center for the Biology of Aging and Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jayesh S Salvi
- Paul F. Glenn Center for the Biology of Aging and Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - David Yao
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Kaitlyn Spees
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Scott J Dixon
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Chun Liu
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA
| | - June-Wha Rhee
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA
| | - Celine Lai
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA
| | - Michael C Bassik
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; Chemistry, Engineering, and Medicine for Human Health (ChEM-H), Stanford University, Stanford, CA 94305, USA
| | - Thomas A Rando
- Paul F. Glenn Center for the Biology of Aging and Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Center for Tissue Regeneration, Repair, and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA.
| |
Collapse
|
10
|
Walter S, Mertens C, Muckenthaler MU, Ott C. Cardiac iron metabolism during aging - Role of inflammation and proteolysis. Mech Ageing Dev 2023; 215:111869. [PMID: 37678569 DOI: 10.1016/j.mad.2023.111869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/01/2023] [Accepted: 09/03/2023] [Indexed: 09/09/2023]
Abstract
Iron is the most abundant trace element in the human body. Since iron can switch between its 2-valent and 3-valent form it is essential in various physiological processes such as energy production, proliferation or DNA synthesis. Especially high metabolic organs such as the heart rely on iron-associated iron-sulfur and heme proteins. However, due to switches in iron oxidation state, iron overload exhibits high toxicity through formation of reactive oxygen species, underlining the importance of balanced iron levels. Growing evidence demonstrates disturbance of this balance during aging. While age-associated cardiovascular diseases are often related to iron deficiency, in physiological aging cardiac iron accumulates. To understand these changes, we focused on inflammation and proteolysis, two hallmarks of aging, and their role in iron metabolism. Via the IL-6-hepcidin axis, inflammation and iron status are strongly connected often resulting in anemia accompanied by infiltration of macrophages. This tight connection between anemia and inflammation highlights the importance of the macrophage iron metabolism during inflammation. Age-related decrease in proteolytic activity additionally affects iron balance due to impaired degradation of iron metabolism proteins. Therefore, this review accentuates alterations in iron metabolism during aging with regards to inflammation and proteolysis to draw attention to their implications and associations.
Collapse
Affiliation(s)
- Sophia Walter
- German Institute of Human Nutrition Potsdam-Rehbruecke, Department of Molecular Toxicology, Nuthetal, Germany; TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena, Wuppertal, Germany; DZHK (German Center for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Christina Mertens
- Center for Translational Biomedical Iron Research, Department of Pediatric Oncology, Immunology, and Hematology, University of Heidelberg, Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), Heidelberg, Mannheim, Germany
| | - Martina U Muckenthaler
- Center for Translational Biomedical Iron Research, Department of Pediatric Oncology, Immunology, and Hematology, University of Heidelberg, Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), Heidelberg, Mannheim, Germany; Molecular Medicine Partnership Unit, Heidelberg, Germany; Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Christiane Ott
- German Institute of Human Nutrition Potsdam-Rehbruecke, Department of Molecular Toxicology, Nuthetal, Germany; TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena, Wuppertal, Germany; DZHK (German Center for Cardiovascular Research), partner site Berlin, Berlin, Germany.
| |
Collapse
|
11
|
Mukem S, Sayoh I, Maungchanburi S, Thongbuakaew T. Ebselen, Iron Uptake Inhibitor, Alleviates Iron Overload-Induced Senescence-Like Neuronal Cells SH-SY5Y via Suppressing the mTORC1 Signaling Pathway. Adv Pharmacol Pharm Sci 2023; 2023:6641347. [PMID: 37731679 PMCID: PMC10509000 DOI: 10.1155/2023/6641347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/17/2023] [Accepted: 09/02/2023] [Indexed: 09/22/2023] Open
Abstract
Increasing evidence highlights that excessive iron accumulation in the brain plays a vital role in neuronal senescence and is implicated in the pathogenesis of age-related neurodegenerative diseases, including Alzheimer's disease (AD) and Parkinson's disease (PD). Therefore, the chemical compounds that eliminate an iron overload may provide better protection against oxidative stress conditions that cause the accumulation of senescent cells during brain aging. Ebselen has been identified as a strongly useful compound in the research on redox biology mechanisms. We hypothesized that ebselen could alleviate an iron overload-induced oxidative stress and consequently reverses the senescence-like phenotypes in the neuronal cells. In the present study, SH-SY5Y cells were treated with ferric ammonium citrate (FAC) before ebselen, and the evaluation of the cellular iron homeostasis, the indicators of oxidative stress, and the onset of senescence phenotypes and mechanisms were carried out accordingly. Our findings showed that ebselen ameliorated the FAC-mediated iron overload by decreasing the expression of divalent metal transporter 1 (DMT1) and ferritin light chain (FT-L) proteins. In contrast, it increased the expression of ferroportin 1 (FPN1) protein and its correlation led to a decrease in the expression of the cytosolic labile iron pool (LIP). Furthermore, ebselen significantly reduced reactive oxygen species (ROS) and rescued the mitochondrial membrane potential (ΔΨm). Notably, ebselen restored the biomarkers of cellular senescence by reducing the number of senescence-associated β-galactosidase (SA-β-gal) positive cells and senescence-associated secretory phenotypes (SASP). This also suppressed the expression of p53 protein targeting DNA damage response (DDR)/p21 cyclin-dependent kinase (CDK) inhibitor through a mTORC1 signaling pathway. Potentially, ebselen could be a therapeutic agent for treating brain aging and AD by mitigating iron accumulation and restoring senescence in SH-SY5Y cells.
Collapse
Affiliation(s)
- Sirirak Mukem
- School of Medicine, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Ibrahim Sayoh
- Department of Anatomy, Faculty of Science and Technology, Princess of Naradhiwas University, Narathiwat 96000, Thailand
| | - Saowanee Maungchanburi
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | | |
Collapse
|
12
|
Sheng SY, Li JM, Hu XY, Wang Y. Regulated cell death pathways in cardiomyopathy. Acta Pharmacol Sin 2023; 44:1521-1535. [PMID: 36914852 PMCID: PMC10374591 DOI: 10.1038/s41401-023-01068-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/20/2023] [Indexed: 03/16/2023] Open
Abstract
Heart disease is a worldwide health menace. Both intractable primary and secondary cardiomyopathies contribute to malignant cardiac dysfunction and mortality. One of the key cellular processes associated with cardiomyopathy is cardiomyocyte death. Cardiomyocytes are terminally differentiated cells with very limited regenerative capacity. Various insults can lead to irreversible damage of cardiomyocytes, contributing to progression of cardiac dysfunction. Accumulating evidence indicates that majority of cardiomyocyte death is executed by regulating molecular pathways, including apoptosis, ferroptosis, autophagy, pyroptosis, and necroptosis. Importantly, these forms of regulated cell death (RCD) are cardinal features in the pathogenesis of various cardiomyopathies, including dilated cardiomyopathy, diabetic cardiomyopathy, sepsis-induced cardiomyopathy, and drug-induced cardiomyopathy. The relevance between abnormity of RCD with adverse outcome of cardiomyopathy has been unequivocally evident. Therefore, there is an urgent need to uncover the molecular and cellular mechanisms for RCD in order to better understand the pathogenesis of cardiomyopathies. In this review, we summarize the latest progress from studies on RCD pathways in cardiomyocytes in context of the pathogenesis of cardiomyopathies, with particular emphasis on apoptosis, necroptosis, ferroptosis, autophagy, and pyroptosis. We also elaborate the crosstalk among various forms of RCD in pathologically stressed myocardium and the prospects of therapeutic applications targeted to various cell death pathways.
Collapse
Affiliation(s)
- Shu-Yuan Sheng
- Department of Cardiology, Zhejiang University School of Medicine, Second Affiliated Hospital, Hangzhou, 310009, China
| | - Jia-Min Li
- Department of Cardiology, Zhejiang University School of Medicine, Second Affiliated Hospital, Hangzhou, 310009, China
| | - Xin-Yang Hu
- Department of Cardiology, Zhejiang University School of Medicine, Second Affiliated Hospital, Hangzhou, 310009, China
| | - Yibin Wang
- Department of Cardiology, Zhejiang University School of Medicine, Second Affiliated Hospital, Hangzhou, 310009, China.
- Signature Program in Cardiovascular and Metabolic Diseases, DukeNUS Medical School and National Heart Center of Singapore, Singapore, Singapore.
| |
Collapse
|
13
|
Ghazaiean M, Aliasgharian A, Karami H, Darvishi-Khezri H. Ebselen: A promising therapy protecting cardiomyocytes from excess iron in iron-overloaded thalassemia patients. Open Med (Wars) 2023; 18:20230733. [PMID: 37465348 PMCID: PMC10350894 DOI: 10.1515/med-2023-0733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 05/04/2023] [Accepted: 05/14/2023] [Indexed: 07/20/2023] Open
Abstract
Iron-overload-associated cardiomyopathy has been one of the primary causes of mortality in thalassemia patients with iron burden. There is growing evidence citing the beneficial effects of ebselen as an antioxidant selectively blocking the divalent metal transporter 1 (DMT-1) to deter iron ingress into cardiomyocytes, raising internets in viewing this component in this population in order to treat and even prevent cardiomyopathy occurring from iron surplus. In this article, we reviewed the potential advantageous effects of ebselen in thalassemia patients who suffer from iron excess, susceptible to cardiomyopathy induced by iron overload. A systematic search in several databases, including PubMed, Scopus, and Web of Science, was conducted to explore the role of ebselen in controlling iron-overload-related cardiomyopathy in thalassemia patients by the keywords of Ebselen AND iron. The inclusion criteria were English-written preclinical and clinical studies investigating the efficacy and side effects of ebselen in an iron-overload context. After searching the databases, 44 articles were found. Next, of 19 published articles, 3 were included in this article. After reviewing the references of the included studies, no articles were added. In conclusion ebselen can be a promising adjuvant therapy in patients with thalassemia alongside the standard treatment with iron chelators, particularly in severe cases with cardiomyopathy, due to falling iron inflow by inhibiting DMT-1 and increasing ferroportin-1 expression and antioxidant properties. However, clinical studies need to be carried out to reach a definite conclusion.
Collapse
Affiliation(s)
- Mobin Ghazaiean
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Aily Aliasgharian
- Thalassemia Research Center (TRC), Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hossein Karami
- Department of Pediatric, School of Medicine, Thalassemia Research Center (TRC), Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hadi Darvishi-Khezri
- Thalassemia Research Center (TRC), Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
14
|
Dai Y, Ignatyeva N, Xu H, Wali R, Toischer K, Brandenburg S, Lenz C, Pronto J, Fakuade FE, Sossalla S, Zeisberg EM, Janshoff A, Kutschka I, Voigt N, Urlaub H, Rasmussen TB, Mogensen J, Lehnart SE, Hasenfuss G, Ebert A. An Alternative Mechanism of Subcellular Iron Uptake Deficiency in Cardiomyocytes. Circ Res 2023; 133:e19-e46. [PMID: 37313752 DOI: 10.1161/circresaha.122.321157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 05/26/2023] [Indexed: 06/15/2023]
Abstract
BACKGROUND Systemic defects in intestinal iron absorption, circulation, and retention cause iron deficiency in 50% of patients with heart failure. Defective subcellular iron uptake mechanisms that are independent of systemic absorption are incompletely understood. The main intracellular route for iron uptake in cardiomyocytes is clathrin-mediated endocytosis. METHODS We investigated subcellular iron uptake mechanisms in patient-derived and CRISPR/Cas-edited induced pluripotent stem cell-derived cardiomyocytes as well as patient-derived heart tissue. We used an integrated platform of DIA-MA (mass spectrometry data-independent acquisition)-based proteomics and signaling pathway interrogation. We employed a genetic induced pluripotent stem cell model of 2 inherited mutations (TnT [troponin T]-R141W and TPM1 [tropomyosin 1]-L185F) that lead to dilated cardiomyopathy (DCM), a frequent cause of heart failure, to study the underlying molecular dysfunctions of DCM mutations. RESULTS We identified a druggable molecular pathomechanism of impaired subcellular iron deficiency that is independent of systemic iron metabolism. Clathrin-mediated endocytosis defects as well as impaired endosome distribution and cargo transfer were identified as a basis for subcellular iron deficiency in DCM-induced pluripotent stem cell-derived cardiomyocytes. The clathrin-mediated endocytosis defects were also confirmed in the hearts of patients with DCM with end-stage heart failure. Correction of the TPM1-L185F mutation in DCM patient-derived induced pluripotent stem cells, treatment with a peptide, Rho activator II, or iron supplementation rescued the molecular disease pathway and recovered contractility. Phenocopying the effects of the TPM1-L185F mutation into WT induced pluripotent stem cell-derived cardiomyocytes could be ameliorated by iron supplementation. CONCLUSIONS Our findings suggest that impaired endocytosis and cargo transport resulting in subcellular iron deficiency could be a relevant pathomechanism for patients with DCM carrying inherited mutations. Insight into this molecular mechanism may contribute to the development of treatment strategies and risk management in heart failure.
Collapse
Affiliation(s)
- Yuanyuan Dai
- Heart Research Center Goettingen, Clinic for Cardiology and Pneumology, University Medical Center Goettingen, Georg-August University of Goettingen, Germany (Y.D., N.I., H.X., R.W., K.T., S.B., S.S., E.M.Z., S.E.L., G.H., A.E.)
- DZHK (German Center for Cardiovascular Research), partner site Goettingen, Germany (Y.D., N.I., H.X., R.W., K.T., S.B., C.L., J.P., F.E.F., E.M.Z., I.K., N.V., S.E.L., G.H., A.E.)
| | - Nadezda Ignatyeva
- Heart Research Center Goettingen, Clinic for Cardiology and Pneumology, University Medical Center Goettingen, Georg-August University of Goettingen, Germany (Y.D., N.I., H.X., R.W., K.T., S.B., S.S., E.M.Z., S.E.L., G.H., A.E.)
- DZHK (German Center for Cardiovascular Research), partner site Goettingen, Germany (Y.D., N.I., H.X., R.W., K.T., S.B., C.L., J.P., F.E.F., E.M.Z., I.K., N.V., S.E.L., G.H., A.E.)
| | - Hang Xu
- Heart Research Center Goettingen, Clinic for Cardiology and Pneumology, University Medical Center Goettingen, Georg-August University of Goettingen, Germany (Y.D., N.I., H.X., R.W., K.T., S.B., S.S., E.M.Z., S.E.L., G.H., A.E.)
- DZHK (German Center for Cardiovascular Research), partner site Goettingen, Germany (Y.D., N.I., H.X., R.W., K.T., S.B., C.L., J.P., F.E.F., E.M.Z., I.K., N.V., S.E.L., G.H., A.E.)
| | - Ruheen Wali
- Heart Research Center Goettingen, Clinic for Cardiology and Pneumology, University Medical Center Goettingen, Georg-August University of Goettingen, Germany (Y.D., N.I., H.X., R.W., K.T., S.B., S.S., E.M.Z., S.E.L., G.H., A.E.)
- DZHK (German Center for Cardiovascular Research), partner site Goettingen, Germany (Y.D., N.I., H.X., R.W., K.T., S.B., C.L., J.P., F.E.F., E.M.Z., I.K., N.V., S.E.L., G.H., A.E.)
| | - Karl Toischer
- Heart Research Center Goettingen, Clinic for Cardiology and Pneumology, University Medical Center Goettingen, Georg-August University of Goettingen, Germany (Y.D., N.I., H.X., R.W., K.T., S.B., S.S., E.M.Z., S.E.L., G.H., A.E.)
- DZHK (German Center for Cardiovascular Research), partner site Goettingen, Germany (Y.D., N.I., H.X., R.W., K.T., S.B., C.L., J.P., F.E.F., E.M.Z., I.K., N.V., S.E.L., G.H., A.E.)
- Heart Center, Clinic for Cardiology and Pneumology, University Medical Center Goettingen (K.T., S.B., S.S., G.H.), University of Goettingen, Germany
| | - Sören Brandenburg
- Heart Research Center Goettingen, Clinic for Cardiology and Pneumology, University Medical Center Goettingen, Georg-August University of Goettingen, Germany (Y.D., N.I., H.X., R.W., K.T., S.B., S.S., E.M.Z., S.E.L., G.H., A.E.)
- DZHK (German Center for Cardiovascular Research), partner site Goettingen, Germany (Y.D., N.I., H.X., R.W., K.T., S.B., C.L., J.P., F.E.F., E.M.Z., I.K., N.V., S.E.L., G.H., A.E.)
- Heart Center, Clinic for Cardiology and Pneumology, University Medical Center Goettingen (K.T., S.B., S.S., G.H.), University of Goettingen, Germany
| | - Christof Lenz
- DZHK (German Center for Cardiovascular Research), partner site Goettingen, Germany (Y.D., N.I., H.X., R.W., K.T., S.B., C.L., J.P., F.E.F., E.M.Z., I.K., N.V., S.E.L., G.H., A.E.)
- Department of Clinical Chemistry, University Medical Center Goettingen, (C.L., H.U.), University of Goettingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC; C.L., F.E.F., N.V., S.E.L.), University of Goettingen, Germany
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Goettingen (C.L., H.U.)
| | - Julius Pronto
- DZHK (German Center for Cardiovascular Research), partner site Goettingen, Germany (Y.D., N.I., H.X., R.W., K.T., S.B., C.L., J.P., F.E.F., E.M.Z., I.K., N.V., S.E.L., G.H., A.E.)
- Institute of Pharmacology and Toxicology, University Medical Center Goettingen, (J.P., F.E.F., N.V.), University of Goettingen, Germany
| | - Funsho E Fakuade
- DZHK (German Center for Cardiovascular Research), partner site Goettingen, Germany (Y.D., N.I., H.X., R.W., K.T., S.B., C.L., J.P., F.E.F., E.M.Z., I.K., N.V., S.E.L., G.H., A.E.)
- Institute of Pharmacology and Toxicology, University Medical Center Goettingen, (J.P., F.E.F., N.V.), University of Goettingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC; C.L., F.E.F., N.V., S.E.L.), University of Goettingen, Germany
| | - Samuel Sossalla
- Heart Research Center Goettingen, Clinic for Cardiology and Pneumology, University Medical Center Goettingen, Georg-August University of Goettingen, Germany (Y.D., N.I., H.X., R.W., K.T., S.B., S.S., E.M.Z., S.E.L., G.H., A.E.)
- Heart Center, Clinic for Cardiology and Pneumology, University Medical Center Goettingen (K.T., S.B., S.S., G.H.), University of Goettingen, Germany
- Department for Internal Medicine II, University Medical Center Regensburg (S.S.)
| | - Elisabeth M Zeisberg
- Heart Research Center Goettingen, Clinic for Cardiology and Pneumology, University Medical Center Goettingen, Georg-August University of Goettingen, Germany (Y.D., N.I., H.X., R.W., K.T., S.B., S.S., E.M.Z., S.E.L., G.H., A.E.)
- DZHK (German Center for Cardiovascular Research), partner site Goettingen, Germany (Y.D., N.I., H.X., R.W., K.T., S.B., C.L., J.P., F.E.F., E.M.Z., I.K., N.V., S.E.L., G.H., A.E.)
| | - Andreas Janshoff
- Institute for Physical Chemistry (A.J.), University of Goettingen, Germany
| | - Ingo Kutschka
- DZHK (German Center for Cardiovascular Research), partner site Goettingen, Germany (Y.D., N.I., H.X., R.W., K.T., S.B., C.L., J.P., F.E.F., E.M.Z., I.K., N.V., S.E.L., G.H., A.E.)
- Department of Thoracic and Cardiovascular Surgery, University Medical Center Göttingen (I.K.)
| | - Niels Voigt
- DZHK (German Center for Cardiovascular Research), partner site Goettingen, Germany (Y.D., N.I., H.X., R.W., K.T., S.B., C.L., J.P., F.E.F., E.M.Z., I.K., N.V., S.E.L., G.H., A.E.)
- Institute of Pharmacology and Toxicology, University Medical Center Goettingen, (J.P., F.E.F., N.V.), University of Goettingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC; C.L., F.E.F., N.V., S.E.L.), University of Goettingen, Germany
| | - Henning Urlaub
- Department of Clinical Chemistry, University Medical Center Goettingen, (C.L., H.U.), University of Goettingen, Germany
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Goettingen (C.L., H.U.)
| | | | - Jens Mogensen
- Department of Cardiology, Aalborg University Hospital, Denmark (J.M.)
| | - Stephan E Lehnart
- Heart Research Center Goettingen, Clinic for Cardiology and Pneumology, University Medical Center Goettingen, Georg-August University of Goettingen, Germany (Y.D., N.I., H.X., R.W., K.T., S.B., S.S., E.M.Z., S.E.L., G.H., A.E.)
- DZHK (German Center for Cardiovascular Research), partner site Goettingen, Germany (Y.D., N.I., H.X., R.W., K.T., S.B., C.L., J.P., F.E.F., E.M.Z., I.K., N.V., S.E.L., G.H., A.E.)
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC; C.L., F.E.F., N.V., S.E.L.), University of Goettingen, Germany
| | - Gerd Hasenfuss
- Heart Research Center Goettingen, Clinic for Cardiology and Pneumology, University Medical Center Goettingen, Georg-August University of Goettingen, Germany (Y.D., N.I., H.X., R.W., K.T., S.B., S.S., E.M.Z., S.E.L., G.H., A.E.)
- DZHK (German Center for Cardiovascular Research), partner site Goettingen, Germany (Y.D., N.I., H.X., R.W., K.T., S.B., C.L., J.P., F.E.F., E.M.Z., I.K., N.V., S.E.L., G.H., A.E.)
- Heart Center, Clinic for Cardiology and Pneumology, University Medical Center Goettingen (K.T., S.B., S.S., G.H.), University of Goettingen, Germany
| | - Antje Ebert
- Heart Research Center Goettingen, Clinic for Cardiology and Pneumology, University Medical Center Goettingen, Georg-August University of Goettingen, Germany (Y.D., N.I., H.X., R.W., K.T., S.B., S.S., E.M.Z., S.E.L., G.H., A.E.)
- DZHK (German Center for Cardiovascular Research), partner site Goettingen, Germany (Y.D., N.I., H.X., R.W., K.T., S.B., C.L., J.P., F.E.F., E.M.Z., I.K., N.V., S.E.L., G.H., A.E.)
| |
Collapse
|
15
|
Pan J, Xiong W, Zhang A, Zhang H, Lin H, Gao L, Ke J, Huang S, Zhang J, Gu J, Chang ACY, Wang C. The Imbalance of p53-Park7 Signaling Axis Induces Iron Homeostasis Dysfunction in Doxorubicin-Challenged Cardiomyocytes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206007. [PMID: 36967569 DOI: 10.1002/advs.202206007] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 02/23/2023] [Indexed: 05/27/2023]
Abstract
Doxorubicin (DOX)-induced cardiotoxicity (DoIC) is a major side effect for cancer patients. Recently, ferroptosis, triggered by iron overload, is demonstrated to play a role in DoIC. How iron homeostasis is dysregulated in DoIC remains to be elucidated. Here, the authors demonstrate that DOX challenge exhibits reduced contractile function and induction of ferroptosis-related phenotype in cardiomyocytes, evidenced by iron overload, lipid peroxide accumulation, and mitochondrial dysfunction. Compared to Ferric ammonium citrate (FAC) induced secondary iron overload, DOX-challenged cardiomyocytes show a dysfunction of iron homeostasis, with decreased cytoplasmic and mitochondrial iron-sulfur (FeS) cluster-mediated aconitase activity and abnormal expression of iron homeostasis-related proteins. Mechanistically, mass spectrometry analysis identified DOX-treatment induces p53-dependent degradation of Parkinsonism associated deglycase (Park7) which results in iron homeostasis dysregulation. Park7 counteracts iron overload by regulating iron regulatory protein family transcription while blocking mitochondrial iron uptake. Knockout of p53 or overexpression of Park7 in cardiomyocytes remarkably restores the activity of FeS cluster and iron homeostasis, inhibits ferroptosis, and rescues cardiac function in DOX treated animals. These results demonstrate that the iron homeostasis plays a key role in DoIC ferroptosis. Targeting of the newly identified p53-Park7 signaling axis may provide a new approach to prevent DoIC.
Collapse
Affiliation(s)
- Jianan Pan
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University school of Medicine, Shanghai, 200001, P. R. China
| | - Weiyao Xiong
- Department of Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai JiaoTong University school of Medicine, Shanghai, 200135, P. R. China
| | - Alian Zhang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University school of Medicine, Shanghai, 200001, P. R. China
| | - Hui Zhang
- Department of Echocardiography, Zhongshan Hospital, Fudan University, Shanghai, 200030, P. R. China
| | - Hao Lin
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University school of Medicine, Shanghai, 200001, P. R. China
| | - Lin Gao
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University school of Medicine, Shanghai, 200001, P. R. China
| | - Jiahan Ke
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University school of Medicine, Shanghai, 200001, P. R. China
| | - Shuying Huang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University school of Medicine, Shanghai, 200001, P. R. China
| | - Junfeng Zhang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University school of Medicine, Shanghai, 200001, P. R. China
| | - Jun Gu
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University school of Medicine, Shanghai, 200001, P. R. China
| | - Alex Chia Yu Chang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University school of Medicine, Shanghai, 200001, P. R. China
- Department of Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai JiaoTong University school of Medicine, Shanghai, 200135, P. R. China
| | - Changqian Wang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University school of Medicine, Shanghai, 200001, P. R. China
| |
Collapse
|
16
|
Huang Z, Chen G, Wu H, Huang X, Xu R, Deng F, Li Y. Ebselen restores peri-implantitis-induced osteogenic inhibition via suppressing BMSCs ferroptosis. Exp Cell Res 2023; 427:113612. [PMID: 37116735 DOI: 10.1016/j.yexcr.2023.113612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/12/2023] [Accepted: 04/21/2023] [Indexed: 04/30/2023]
Abstract
It is hard to reconstruct bone defects in peri-implantitis due to osteogenesis inhibited by excessive ROS. Ferroptosis, a recently identified regulated cell death characterized by iron- and reactive oxygen species- (ROS-) dependent lipid peroxidation, provides us with a new explanation. Our study aims to explore whether ferroptosis is involved in peri-implantitis-inhibited osteogenesis and confirm ebselen, an antioxidant with glutathione peroxidase (GPx)-like activity, could inhibit ferroptosis and promote osteogenesis in peri-implantitis. In this study, we used LPS to mimic the microenvironment of peri-implantitis. The osteogenic differentiation of bone-marrow-derived mesenchymal stem cells (BMSCs) was assessed by alkaline phosphatase (ALP), Alizarin Red S, and mRNA and protein expression of osteogenic-related markers. Ferroptosis index analysis included iron metabolism, ROS production, lipid peroxidation and mitochondrial morphological changes. Iron overload, reduced antioxidant capability, excessive ROS, lipid peroxidation and the characteristic mitochondrial morphological changes of ferroptosis were observed in LPS-treated BMSCs, and adding Ferrostatin-1 (Fer-1) restored the inhibitory effect of ferroptosis on osteogenic differentiation of BMSCs. Furthermore, ebselen ameliorated LPS-induced ferroptosis and osteogenic inhibition, which was reversed by erastin. Our results demonstrated that ferroptosis is involved in osteogenic inhibition in peri-implantitis and ebselen could attenuate osteogenic dysfunction of BMSCs via inhibiting ferroptosis.
Collapse
Affiliation(s)
- Ziqing Huang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China
| | - Guanhui Chen
- Department of Stomatology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Hiokuan Wu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China
| | - Xiaoqiong Huang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China
| | - Ruogu Xu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China
| | - Feilong Deng
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China.
| | - Yiming Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China.
| |
Collapse
|
17
|
Clinical and Molecular Aspects of Iron Metabolism in Failing Myocytes. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081203. [PMID: 36013382 PMCID: PMC9409945 DOI: 10.3390/life12081203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/15/2022] [Accepted: 07/22/2022] [Indexed: 11/16/2022]
Abstract
Heart failure (HF) is a common disease that causes significant limitations on the organism's capacity and, in extreme cases, leads to death. Clinically, iron deficiency (ID) plays an essential role in heart failure by deteriorating the patient's condition and is a prognostic marker indicating poor clinical outcomes. Therefore, in HF patients, supplementation of iron is recommended. However, iron treatment may cause adverse effects by increasing iron-related apoptosis and the production of oxygen radicals, which may cause additional heart damage. Furthermore, many knowledge gaps exist regarding the complex interplay between iron deficiency and heart failure. Here, we describe the current, comprehensive knowledge about the role of the proteins involved in iron metabolism. We will focus on the molecular and clinical aspects of iron deficiency in HF. We believe that summarizing the new advances in the translational and clinical research regarding iron deficiency in heart failure should broaden clinicians' awareness of this comorbidity.
Collapse
|
18
|
Mohr E, Thum T, Bär C. Accelerating Cardiovascular Research: Recent Advances in Translational 2D and 3D Heart Models. Eur J Heart Fail 2022; 24:1778-1791. [PMID: 35867781 DOI: 10.1002/ejhf.2631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/30/2022] [Accepted: 07/20/2022] [Indexed: 11/11/2022] Open
Abstract
In vitro modelling the complex (patho-) physiological conditions of the heart is a major challenge in cardiovascular research. In recent years, methods based on three-dimensional (3D) cultivation approaches have steadily evolved to overcome the major limitations of conventional adherent monolayer cultivation (2D). These 3D approaches aim to study, reproduce or modify fundamental native features of the heart such as tissue organization and cardiovascular microenvironment. Therefore, these systems have great potential for (patient-specific) disease research, for the development of new drug screening platforms, and for the use in regenerative and replacement therapy applications. Consequently, continuous improvement and adaptation is required with respect to fundamental limitations such as cardiomyocyte maturation, scalability, heterogeneity, vascularization, and reproduction of native properties. In this review, 2D monolayer culturing and the 3D in vitro systems of cardiac spheroids, organoids, engineered cardiac microtissue and bioprinting as well as the ex vivo technique of myocardial slicing are introduced with their basic concepts, advantages, and limitations. Furthermore, recent advances of various new approaches aiming to extend as well as to optimize these in vitro and ex vivo systems are presented. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Elisa Mohr
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl-Neuberg-Str.1, 30625, Hannover, Germany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl-Neuberg-Str.1, 30625, Hannover, Germany.,REBIRTH Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany.,Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | - Christian Bär
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl-Neuberg-Str.1, 30625, Hannover, Germany.,REBIRTH Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany.,Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| |
Collapse
|
19
|
Abstract
An ensemble of in vitro cardiac tissue models has been developed over the past several decades to aid our understanding of complex cardiovascular disorders using a reductionist approach. These approaches often rely on recapitulating single or multiple clinically relevant end points in a dish indicative of the cardiac pathophysiology. The possibility to generate disease-relevant and patient-specific human induced pluripotent stem cells has further leveraged the utility of the cardiac models as screening tools at a large scale. To elucidate biological mechanisms in the cardiac models, it is critical to integrate physiological cues in form of biochemical, biophysical, and electromechanical stimuli to achieve desired tissue-like maturity for a robust phenotyping. Here, we review the latest advances in the directed stem cell differentiation approaches to derive a wide gamut of cardiovascular cell types, to allow customization in cardiac model systems, and to study diseased states in multiple cell types. We also highlight the recent progress in the development of several cardiovascular models, such as cardiac organoids, microtissues, engineered heart tissues, and microphysiological systems. We further expand our discussion on defining the context of use for the selection of currently available cardiac tissue models. Last, we discuss the limitations and challenges with the current state-of-the-art cardiac models and highlight future directions.
Collapse
Affiliation(s)
- Dilip Thomas
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA (D.T., C.A., J.C.W.).,Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA (D.T., C.A., J.C.W.)
| | - Suji Choi
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA (S.C., K.K.P.)
| | - Christina Alamana
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA (D.T., C.A., J.C.W.).,Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA (D.T., C.A., J.C.W.)
| | - Kevin Kit Parker
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA (S.C., K.K.P.).,Harvard Stem Cell Institute, Harvard University, Cambridge, MA, Wyss Institute for Biologically Inspired Engineering, Boston, MA (K.K.P.)
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA (D.T., C.A., J.C.W.).,Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA (D.T., C.A., J.C.W.).,Greenstone Biosciences, Palo Alto, CA (J.C.W.)
| |
Collapse
|
20
|
Abstract
Purpose of Review The advent of induced pluripotent stem cells (iPSC) has paved the way for new in vitro models of human cardiomyopathy. Herein, we will review existing models of disease as well as strengths and limitations of the system. Recent Findings Preclinical studies have now demonstrated that iPSCs generated from patients with both acquired or heritable genetic diseases retain properties of the disease in vitro and can be used as a model to study novel therapeutics. iPSCs can be differentiated in vitro into the cardiomyocyte lineage into cells resembling adult ventricular myocytes that retain properties of cardiovascular disease from their respective donor. iPSC pluripotency allows for them to be frozen, stored, and continually used to generate iPSC-derived myocytes for future experiments without need for invasive procedures or repeat myocyte isolations to obtain animal or human cardiac tissues. Summary While not without their limitations, iPSC models offer new ways for studying patient-specific cardiomyopathies. iPSCs offer a high-throughput avenue for drug development, modeling of disease pathophysiology in vitro, and enabling experimental repair strategies without need for invasive procedures to obtain cardiac tissues.
Collapse
|
21
|
Opportunities and challenges in cardiac tissue engineering from an analysis of two decades of advances. Nat Biomed Eng 2022; 6:327-338. [PMID: 35478227 DOI: 10.1038/s41551-022-00885-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 03/08/2022] [Indexed: 12/20/2022]
Abstract
Engineered human cardiac tissues facilitate progress in regenerative medicine, disease modelling and drug development. In this Perspective, we reflect on the most notable advances in cardiac tissue engineering from the past two decades by analysing pivotal studies and critically examining the most consequential developments. This retrospective analysis led us to identify key milestones and to outline a set of opportunities, along with their associated challenges, for the further advancement of engineered human cardiac tissues.
Collapse
|
22
|
Sayles NM, Southwell N, McAvoy K, Kim K, Pesini A, Anderson CJ, Quinzii C, Cloonan S, Kawamata H, Manfredi G. Mutant CHCHD10 causes an extensive metabolic rewiring that precedes OXPHOS dysfunction in a murine model of mitochondrial cardiomyopathy. Cell Rep 2022; 38:110475. [PMID: 35263592 PMCID: PMC9013208 DOI: 10.1016/j.celrep.2022.110475] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 11/01/2021] [Accepted: 02/10/2022] [Indexed: 12/13/2022] Open
Abstract
Mitochondrial cardiomyopathies are fatal diseases, with no effective treatment. Alterations of heart mitochondrial function activate the mitochondrial integrated stress response (ISRmt), a transcriptional program affecting cell metabolism, mitochondrial biogenesis, and proteostasis. In humans, mutations in CHCHD10, a mitochondrial protein with unknown function, were recently associated with dominant multi-system mitochondrial diseases, whose pathogenic mechanisms remain to be elucidated. Here, in CHCHD10 knockin mutant mice, we identify an extensive cardiac metabolic rewiring triggered by proteotoxic ISRmt. The stress response arises early on, before the onset of bioenergetic impairments, triggering a switch from oxidative to glycolytic metabolism, enhancement of transsulfuration and one carbon (1C) metabolism, and widespread metabolic imbalance. In parallel, increased NADPH oxidases elicit antioxidant responses, leading to heme depletion. As the disease progresses, the adaptive metabolic stress response fails, resulting in fatal cardiomyopathy. Our findings suggest that early interventions to counteract metabolic imbalance could ameliorate mitochondrial cardiomyopathy associated with proteotoxic ISRmt. Sayles et al. report that mutant CHCHD10 proteotoxicity activates the mitochondrial integrated stress response (ISRmt) in a mouse model of mitochondrial cardiomyopathy. Chronic ISRmt causes profound metabolic imbalances, culminating in oxidative stress and iron dysregulation, ultimately resulting in mitochondrial dysfunction and contributing to disease pathogenesis.
Collapse
Affiliation(s)
- Nicole M Sayles
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, USA; Neuroscience Graduate Program, Weill Cornell Graduate School of Medical Sciences, 1300 York Avenue, New York, NY 10065, USA
| | - Nneka Southwell
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, USA; Neuroscience Graduate Program, Weill Cornell Graduate School of Medical Sciences, 1300 York Avenue, New York, NY 10065, USA
| | - Kevin McAvoy
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, USA
| | - Kihwan Kim
- Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Alba Pesini
- Department of Neurology, Columbia University, 710 West 168th Street, New York, NY 10032, USA
| | - Corey J Anderson
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, USA
| | - Catarina Quinzii
- Department of Neurology, Columbia University, 710 West 168th Street, New York, NY 10032, USA
| | - Suzanne Cloonan
- Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; The School of Medicine, Trinity Biomedical Science Institute, Trinity College Dublin, Pearse St, Dublin 2 52-160, Ireland; Tallaght University Hospital, Tallaght, Dublin 24 D24 NR0A, Ireland
| | - Hibiki Kawamata
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, USA
| | - Giovanni Manfredi
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, USA.
| |
Collapse
|
23
|
Moreira JD, Gopal DM, Kotton DN, Fetterman JL. Gaining Insight into Mitochondrial Genetic Variation and Downstream Pathophysiology: What Can i(PSCs) Do? Genes (Basel) 2021; 12:1668. [PMID: 34828274 PMCID: PMC8624338 DOI: 10.3390/genes12111668] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 12/14/2022] Open
Abstract
Mitochondria are specialized organelles involved in energy production that have retained their own genome throughout evolutionary history. The mitochondrial genome (mtDNA) is maternally inherited and requires coordinated regulation with nuclear genes to produce functional enzyme complexes that drive energy production. Each mitochondrion contains 5-10 copies of mtDNA and consequently, each cell has several hundreds to thousands of mtDNAs. Due to the presence of multiple copies of mtDNA in a mitochondrion, mtDNAs with different variants may co-exist, a condition called heteroplasmy. Heteroplasmic variants can be clonally expanded, even in post-mitotic cells, as replication of mtDNA is not tied to the cell-division cycle. Heteroplasmic variants can also segregate during germ cell formation, underlying the inheritance of some mitochondrial mutations. Moreover, the uneven segregation of heteroplasmic variants is thought to underlie the heterogeneity of mitochondrial variation across adult tissues and resultant differences in the clinical presentation of mitochondrial disease. Until recently, however, the mechanisms mediating the relation between mitochondrial genetic variation and disease remained a mystery, largely due to difficulties in modeling human mitochondrial genetic variation and diseases. The advent of induced pluripotent stem cells (iPSCs) and targeted gene editing of the nuclear, and more recently mitochondrial, genomes now provides the ability to dissect how genetic variation in mitochondrial genes alter cellular function across a variety of human tissue types. This review will examine the origins of mitochondrial heteroplasmic variation and propagation, and the tools used to model mitochondrial genetic diseases. Additionally, we discuss how iPSC technologies represent an opportunity to advance our understanding of human mitochondrial genetics in disease.
Collapse
Affiliation(s)
- Jesse D. Moreira
- Evans Department of Medicine and the Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA; (J.D.M.); (D.M.G.)
| | - Deepa M. Gopal
- Evans Department of Medicine and the Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA; (J.D.M.); (D.M.G.)
- Cardiovascular Medicine Section, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Darrell N. Kotton
- Boston Medical Center, Center for Regenerative Medicine of Boston University, Boston, MA 02118, USA;
- The Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Jessica L. Fetterman
- Evans Department of Medicine and the Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA; (J.D.M.); (D.M.G.)
| |
Collapse
|
24
|
Chronic Ethanol Exposure Induces Deleterious Changes in Cardiomyocytes Derived from Human Induced Pluripotent Stem Cells. Stem Cell Rev Rep 2021; 17:2314-2331. [PMID: 34564802 DOI: 10.1007/s12015-021-10267-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2021] [Indexed: 10/20/2022]
Abstract
Chronic alcohol consumption in adults can induce cardiomyopathy, arrhythmias, and heart failure. In newborns, prenatal alcohol exposure can increase the risk of congenital heart diseases. Understanding biological mechanisms involved in the long-term alcohol exposure-induced cardiotoxicity is pivotal to the discovery of therapeutic strategies. In this study, cardiomyocytes derived from human pluripotent stem cells (hiPSC-CMs) were treated with clinically relevant doses of ethanol for various durations up to 5 weeks. The treated cells were characterized for their cellular properties and functions, and global proteomic profiling was conducted to understand the molecular changes associated with long-term ethanol exposure. Increased cell death, oxidative stress, deranged Ca2+ handling, abnormal action potential, altered contractility, and suppressed structure development were observed in ethanol-treated cells. Many dysregulated proteins identified by global proteomic profiling were involved in apoptosis, heart contraction, and extracellular collagen matrix. In addition, several signaling pathways including the Wnt and TGFβ signaling pathways were affected due to long-term ethanol treatment. Therefore, chronic ethanol treatment of hiPSC-CMs induces cardiotoxicity, impairs cardiac functions, and alters protein expression and signaling pathways. This study demonstrates the utility of hiPSC-CMs as a novel model for chronic alcohol exposure study and provides the molecular mechanisms associated with long-term alcohol exposure in human cardiomyocytes.
Collapse
|
25
|
Modeling Cardiomyopathies in a Dish: State-of-the-Art and Novel Perspectives on hiPSC-Derived Cardiomyocytes Maturation. BIOLOGY 2021; 10:biology10080730. [PMID: 34439963 PMCID: PMC8389603 DOI: 10.3390/biology10080730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/21/2021] [Accepted: 07/24/2021] [Indexed: 12/23/2022]
Abstract
The stem cell technology and the induced pluripotent stem cells (iPSCs) production represent an excellent alternative tool to study cardiomyopathies, which overcome the limitations associated with primary cardiomyocytes (CMs) access and manipulation. CMs from human iPSCs (hiPSC-CMs) are genetically identical to patient primary cells of origin, with the main electrophysiological and mechanical features of CMs. The key issue to be solved is to achieve a degree of structural and functional maturity typical of adult CMs. In this perspective, we will focus on the main differences between fetal-like hiPSC-CMs and adult CMs. A viewpoint is given on the different approaches used to improve hiPSC-CMs maturity, spanning from long-term culture to complex engineered heart tissue. Further, we outline limitations and future developments needed in cardiomyopathy disease modeling.
Collapse
|
26
|
Teles D, Kim Y, Ronaldson-Bouchard K, Vunjak-Novakovic G. Machine Learning Techniques to Classify Healthy and Diseased Cardiomyocytes by Contractility Profile. ACS Biomater Sci Eng 2021; 7:3043-3052. [PMID: 34152732 DOI: 10.1021/acsbiomaterials.1c00418] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cardiomyocytes derived from human induced pluripotent stem (iPS) cells enable the study of cardiac physiology and the developmental testing of new therapeutic drugs in a human setting. In parallel, machine learning methods are being applied to biomedical science in unprecedented ways. Machine learning has been used to distinguish healthy from diseased cardiomyocytes using calcium (Ca2+) transient signals. Most Ca2+ transient signals are obtained via terminal assays that do not permit longitudinal studies, although some recently developed options can circumvent these concerns. Here, we describe the use of machine learning to identify healthy and diseased cardiomyocytes according to their contractility profiles, which are derived from brightfield videos. This noncontact, label-free approach allows for the continued cultivation of cells after they have been evaluated for use in other assays and can be readily extended to organs-on-chip. To demonstrate utility, we assessed contractility profiles of cardiomyocytes obtained from patients with Timothy Syndrome (TS), a long QT disease which can lead to fatal arrhythmias, and from healthy individuals. The videos were processed and classified using machine learning methods and their performance was evaluated according to several parameters. The trained algorithms were able to distinguish the TS cardiomyocytes from healthy controls and classify two different healthy controls. The proposed computational machine learning evaluation of human iPS cell-derived cardiomyocytes' contractility profiles has the potential to identify other genetic proarrhythmic events, screen therapeutic agents for inducing or suppressing long QT events, and predict drug-target interactions. The same approach could be readily extended to the evaluation of engineered cardiac tissues within single-tissue and multi-tissue organs-on-chip.
Collapse
Affiliation(s)
- Diogo Teles
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States.,Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimara̅es, Braga, Portugal
| | - Youngbin Kim
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
| | - Kacey Ronaldson-Bouchard
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
| | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States.,Department of Medicine, Columbia University, New York, New York 10032, United States
| |
Collapse
|
27
|
Weinmann K, Werner J, Rottbauer W, Keßler M. Immunoadsorption for heart failure is associated with normalization of iron metabolism. Biomarkers 2021; 26:395-400. [PMID: 33843393 DOI: 10.1080/1354750x.2021.1904001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AIMS In heart failure (HF) patients, early stages are associated with increased iron levels, whereas iron deficiency is a common feature of chronic HF. We investigated the acute and long-term changes in iron metabolism in HF patients after immunoadsorption treatment and intravenous immunoglobulin (IVIG) administration. METHODS AND RESULTS Twenty-seven patients with HF with reduced ejection fraction (HFrEF) received a single cycle of immunoadsorption followed by IVIG administration. Left ventricular ejection fraction (LVEF) and iron biomarker (ferritin, hepcidin and interleukin-6) were evaluated at baseline, after immunoadsorption and during long-term follow-up of 29.3 months. LVEF improved significantly after immunoadsorption treatment from baseline 27% to 43% at long-term follow-up. Ferritin decreased from baseline 300.2 to 201.3 ng/mL (p < 0.0001) during immunoadsorption treatment and normalized during long-term to 207.9 ng/mL. Hepcidin showed a V-shaped course, with a significant decrease after immunoadsorption and normalization during long-term. Interleukin-6 levels showed no relevant inflammation. CONCLUSIONS Our data suggest that initial high serum ferritin and hepcidin levels indicate elevated iron levels characteristic of early stages of HFrEF, without inflammation. Normalization of hepcidin and ferritin was paralleled by restoration of systolic cardiac function after immunoadsorption treatment, without development of iron deficiency, as usually observed in chronic HF.
Collapse
Affiliation(s)
- Karolina Weinmann
- Department of Internal Medicine II - Cardiology, University of Ulm Medical Center, Ulm, Germany
| | - Jakob Werner
- Department of Internal Medicine II - Cardiology, University of Ulm Medical Center, Ulm, Germany
| | - Wolfgang Rottbauer
- Department of Internal Medicine II - Cardiology, University of Ulm Medical Center, Ulm, Germany
| | - Mirjam Keßler
- Department of Internal Medicine II - Cardiology, University of Ulm Medical Center, Ulm, Germany
| |
Collapse
|
28
|
Cho S, Lee C, Skylar-Scott MA, Heilshorn SC, Wu JC. Reconstructing the heart using iPSCs: Engineering strategies and applications. J Mol Cell Cardiol 2021; 157:56-65. [PMID: 33895197 DOI: 10.1016/j.yjmcc.2021.04.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/07/2021] [Accepted: 04/19/2021] [Indexed: 12/14/2022]
Abstract
Induced pluripotent stem cells (iPSCs) have emerged as a key component of cardiac tissue engineering, enabling studies of cardiovascular disease mechanisms, drug responses, and developmental processes in human 3D tissue models assembled from isogenic cells. Since the very first engineered heart tissues were introduced more than two decades ago, a wide array of iPSC-derived cardiac spheroids, organoids, and heart-on-a-chip models have been developed incorporating the latest available technologies and materials. In this review, we will first outline the fundamental biological building blocks required to form a functional unit of cardiac muscle, including iPSC-derived cells differentiated by soluble factors (e.g., small molecules), extracellular matrix scaffolds, and exogenous biophysical maturation cues. We will then summarize the different fabrication approaches and strategies employed to reconstruct the heart in vitro at varying scales and geometries. Finally, we will discuss how these platforms, with continued improvements in scalability and tissue maturity, can contribute to both basic cardiovascular research and clinical applications in the future.
Collapse
Affiliation(s)
- Sangkyun Cho
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94025, USA; Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94025, USA
| | - Chelsea Lee
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94025, USA; Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94025, USA
| | - Mark A Skylar-Scott
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94025, USA; Betty Irene Moore Children's Heart Center, Stanford Children's Health, Stanford, CA 94025, USA
| | - Sarah C Heilshorn
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94025, USA; Department of Materials Science and Engineering, Stanford University, Stanford, CA 94025, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94025, USA; Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94025, USA.
| |
Collapse
|
29
|
Liu C, Ameen M, Himmati S, Thomas D, Sayed N. Generation of Human iPSCs by Protein Reprogramming and Stimulation of TLR3 Signaling. Methods Mol Biol 2021; 2239:153-162. [PMID: 33226618 DOI: 10.1007/978-1-0716-1084-8_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The discovery of induced pluripotent stem cells (iPSCs) allows for establishment of human embryonic stem-like cells from various adult human somatic cells (e.g., fibroblasts), without the need for destruction of human embryos. This provides an unprecedented opportunity where patient-specific iPSCs can be subsequently differentiated to many cell types, e.g., cardiac cells and neurons, so that we can use these iPSC-derived cells to study patient-specific disease mechanisms and conduct drug testing and screening. Critically, these cells have unlimited therapeutic potentials, and there are many ongoing clinical trials to investigate the regenerative potentials of these iPSC-derivatives in humans. However, the traditional iPSC reprogramming methods have problem of insertional mutagenesis because of use of the integrating viral vectors. While a number of advances have been made to mitigate this issue, including the use of chemicals, excisable and non-integrating vectors, and use of the modified mRNA, safety remains a concern. Both integrating and non-integrating methods also suffer from many other limitations including low efficiency, variability, and tumorigenicity. The non-integrating mRNA reprogramming is of high efficiency, but it is sensitive to reagents and need approaches to reduce the immunogenic reaction. An alternative non-integrating and safer way of generating iPSCs is via direct delivery of recombinant cell-penetrating reprogramming proteins into the cells to be reprogrammed, but reprogramming efficiency of the protein-based approach is extremely low compared to the conventional virus-based nuclear reprogramming. Herein, we describe detailed steps for efficient generation of human iPSCs by protein-based reprogramming in combination with stimulation of the Toll-like receptor 3 (TLR3) innate immune pathway.
Collapse
Affiliation(s)
- Chun Liu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.,Division of Cardiology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Mohamed Ameen
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.,Division of Cardiology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Sukaina Himmati
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Dilip Thomas
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.,Division of Cardiology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Nazish Sayed
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA. .,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA. .,Division of Cardiology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA. .,, Palo Alto, CA, USA.
| |
Collapse
|
30
|
Generation of three induced pluripotent stem cell lines, SCVIi003-A, SCVIi004-A, SCVIi005-A, from patients with ARVD/C caused by heterozygous mutations in the PKP2 gene. Stem Cell Res 2021; 53:102284. [PMID: 33743362 PMCID: PMC8457924 DOI: 10.1016/j.scr.2021.102284] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/03/2021] [Accepted: 03/06/2021] [Indexed: 01/04/2023] Open
Abstract
Arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVD/C) is an inherited heart disease which can cause life-threatening ventricular arrhythmias and cardiac dysfunction. The autosomal dominant form of ARVD/C is caused by mutations in the cardiac desmosome, such as those in the plakoglobin plakophilin-2 (PKP2) gene. Here, we generated three human induced pluripotent stem cell (iPSC) lines from the peripheral blood mononuclear cells (PBMCs) of three ARVD/C patients carrying pathogenic variants in their PKP2 genes (c.2065_2070delinsG; c.235C>T; c.1725_1728dup). All lines show the typical morphology of pluripotent stem cells, demonstrate high expression of pluripotent markers, display normal karyotype, and differentiate into all three germ layers in vitro. These lines are valuable resources for studying the pathological mechanisms of ARVD/C caused by PKP2 mutation.
Collapse
|
31
|
Lam CK, Wu JC. Clinical Trial in a Dish: Using Patient-Derived Induced Pluripotent Stem Cells to Identify Risks of Drug-Induced Cardiotoxicity. Arterioscler Thromb Vasc Biol 2021; 41:1019-1031. [PMID: 33472401 PMCID: PMC11006431 DOI: 10.1161/atvbaha.120.314695] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Drug-induced cardiotoxicity is a significant clinical issue, with many drugs in the market being labeled with warnings on cardiovascular adverse effects. Treatments are often prematurely halted when cardiotoxicity is observed, which limits their therapeutic potential. Moreover, cardiotoxicity is a major reason for abandonment during drug development, reducing available treatment options for diseases and creating a significant financial burden and disincentive for drug developers. Thus, it is important to minimize the cardiotoxic effects of medications that are in use or in development. To this end, identifying patients at a higher risk of developing cardiovascular adverse effects for the drug of interest may be an effective strategy. The discovery of human induced pluripotent stem cells has enabled researchers to generate relevant cell types that retain a patient's own genome and examine patient-specific disease mechanisms, paving the way for precision medicine. Combined with the rapid development of pharmacogenomic analysis, the ability of induced pluripotent stem cell-derivatives to recapitulate patient-specific drug responses provides a powerful platform to identify subsets of patients who are particularly vulnerable to drug-induced cardiotoxicity. In this review, we will discuss the current use of patient-specific induced pluripotent stem cells in identifying populations who are at risk to drug-induced cardiotoxicity and their potential applications in future precision medicine practice. Graphic Abstract: A graphic abstract is available for this article.
Collapse
Affiliation(s)
- Chi Keung Lam
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA
- Department of Biological Sciences, University of Delaware, Newark, DE
| | - Joseph C. Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA
- Department of Radiology, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
32
|
Thomas D, Shenoy S, Sayed N. Building Multi-Dimensional Induced Pluripotent Stem Cells-Based Model Platforms to Assess Cardiotoxicity in Cancer Therapies. Front Pharmacol 2021; 12:607364. [PMID: 33679396 PMCID: PMC7930625 DOI: 10.3389/fphar.2021.607364] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 01/06/2021] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular disease (CVD) complications have contributed significantly toward poor survival of cancer patients worldwide. These complications that result in myocardial and vascular damage lead to long-term multisystemic disorders. In some patient cohorts, the progression from acute to symptomatic CVD state may be accelerated due to exacerbation of underlying comorbidities such as obesity, diabetes and hypertension. In such situations, cardio-oncologists are often left with a clinical predicament in finding the optimal therapeutic balance to minimize cardiovascular risks and maximize the benefits in treating cancer. Hence, prognostically there is an urgent need for cost-effective, rapid, sensitive and patient-specific screening platform to allow risk-adapted decision making to prevent cancer therapy related cardiotoxicity. In recent years, momentous progress has been made toward the successful derivation of human cardiovascular cells from induced pluripotent stem cells (iPSCs). This technology has not only provided deeper mechanistic insights into basic cardiovascular biology but has also seamlessly integrated within the drug screening and discovery programs for early efficacy and safety evaluation. In this review, we discuss how iPSC-derived cardiovascular cells have been utilized for testing oncotherapeutics to pre-determine patient predisposition to cardiovascular toxicity. Lastly, we highlight the convergence of tissue engineering technologies and precision medicine that can enable patient-specific cardiotoxicity prognosis and treatment on a multi-organ level.
Collapse
Affiliation(s)
- Dilip Thomas
- Stanford Cardiovascular Institute, Stanford, CA, United States.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA, United States
| | - Sushma Shenoy
- Stanford Cardiovascular Institute, Stanford, CA, United States
| | - Nazish Sayed
- Stanford Cardiovascular Institute, Stanford, CA, United States.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA, United States.,Division of Vascular Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
33
|
Siri-Angkul N, Song Z, Fefelova N, Gwathmey JK, Chattipakorn SC, Qu Z, Chattipakorn N, Xie LH. Activation of TRPC (Transient Receptor Potential Canonical) Channel Currents in Iron Overloaded Cardiac Myocytes. Circ Arrhythm Electrophysiol 2021; 14:e009291. [PMID: 33417472 DOI: 10.1161/circep.120.009291] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND Arrhythmias and heart failure are common cardiac complications leading to substantial morbidity and mortality in patients with hemochromatosis, yet mechanistic insights remain incomplete. We investigated the effects of iron (Fe) on electrophysiological properties and intracellular Ca2+ (Ca2+i) handling in mouse left ventricular cardiomyocytes. METHODS Cardiomyocytes were isolated from the left ventricle of mouse hearts and were superfused with Fe3+/8-hydroxyquinoline complex (5-100 μM). Membrane potential and ionic currents including TRPC (transient receptor potential canonical) were recorded using the patch-clamp technique. Ca2+i was evaluated by using Fluo-4. Cell contraction was measured with a video-based edge detection system. The role of TRPCs in the genesis of arrhythmias was also investigated by using a mathematical model of a mouse ventricular myocyte with the incorporation of the TRPC component. RESULTS We observed prolongation of the action potential duration and induction of early and delayed afterdepolarizations in myocytes superfused with 15 µmol/L Fe3+/8-hydroxyquinoline complex. Iron treatment decreased the peak amplitude of the L-type Ca2+ current and total K+ current, altered Ca2+i dynamics, and decreased cell contractility. During the final phase of Fe treatment, sustained Ca2+i waves and repolarization failure occurred and ventricular cells became unexcitable. Gadolinium abolished Ca2+i waves and restored the resting membrane potential to the normal range. The involvement of TRPC activation was confirmed by TRPC channel current recordings in the absence or presence of functional TRPC channel antibodies. Computer modeling captured the same action potential and Ca2+i dynamics and provided additional mechanistic insights. CONCLUSIONS We conclude that iron overload induces cardiac dysfunction that is associated with TRPC channel activation and alterations in membrane potential and Ca2+i dynamics.
Collapse
Affiliation(s)
- Natthaphat Siri-Angkul
- Department of Cell Biology and Molecular Medicine, Rutgers University, New Jersey Medical School, Newark (N.S.-A., N.F., J.K.G., L.-H.X.).,Cardiac Electrophysiology Research and Training Center (N.S.-A., S.C.C., N.C.), Chiang Mai University, Thailand.,Department of Physiology, Faculty of Medicine (N.S.-A., N.C.), Chiang Mai University, Thailand
| | - Zhen Song
- Department of Medicine (Cardiology), University of California, Los Angeles (Z.S., Z.Q.)
| | - Nadezhda Fefelova
- Department of Cell Biology and Molecular Medicine, Rutgers University, New Jersey Medical School, Newark (N.S.-A., N.F., J.K.G., L.-H.X.)
| | - Judith K Gwathmey
- Department of Cell Biology and Molecular Medicine, Rutgers University, New Jersey Medical School, Newark (N.S.-A., N.F., J.K.G., L.-H.X.)
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center (N.S.-A., S.C.C., N.C.), Chiang Mai University, Thailand
| | - Zhilin Qu
- Department of Medicine (Cardiology), University of California, Los Angeles (Z.S., Z.Q.)
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center (N.S.-A., S.C.C., N.C.), Chiang Mai University, Thailand.,Department of Physiology, Faculty of Medicine (N.S.-A., N.C.), Chiang Mai University, Thailand
| | - Lai-Hua Xie
- Department of Cell Biology and Molecular Medicine, Rutgers University, New Jersey Medical School, Newark (N.S.-A., N.F., J.K.G., L.-H.X.)
| |
Collapse
|