1
|
Tiwari P, Brooks D, Geisbrecht ER. Overexpression of Drosophila NUAK or Constitutively-Active Formin-Like Promotes the Formation of Aberrant Myofibrils. Cytoskeleton (Hoboken) 2025. [PMID: 39876757 DOI: 10.1002/cm.21999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/18/2024] [Accepted: 01/13/2025] [Indexed: 01/30/2025]
Abstract
Muscle development and maintenance is central to the normal functioning of animals. Muscle tissues exhibit high levels of activity and require the dynamic turnover of proteins. An actomyosin scaffold functions with additional proteins comprising the basic contractile subunit of striated muscle, known as the sarcomere. Drosophila muscles are similar to vertebrate muscles in composition and they share a similar mechanism of development. Drosophila NUAK (NUAK) is the homolog of NUAK1 and NUAK2 in vertebrates. NUAK belongs to the family of AMP-activated protein kinases (AMPKs), a group of proteins with broad and overlapping cellular targets. Here we confirm that NUAK dynamically modulates larval muscle sarcomere size as upregulation of NUAK produces longer sarcomeres, including increased thin filament lengths. Furthermore, NUAK overexpression results in aberrant myofibers above the nuclei plane, upregulation of Formin-like (Frl), and an increase in newly synthesized proteins at sites consistent with actin filament assembly. Expression of constitutively-active Frl also produces aberrant myofibers similar to NUAK overexpression. These results taken together strongly suggest a functional link between NUAK and Frl in myofibril formation in an in vivo setting.
Collapse
Affiliation(s)
- Prabhat Tiwari
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA
| | - David Brooks
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA
| | - Erika R Geisbrecht
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
2
|
Zhang H, Chang M, Chen D, Yang J, Zhang Y, Sun J, Yao X, Sun H, Gu X, Li M, Shen Y, Dai B. Congenital myopathies: pathophysiological mechanisms and promising therapies. J Transl Med 2024; 22:815. [PMID: 39223631 PMCID: PMC11370226 DOI: 10.1186/s12967-024-05626-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
Congenital myopathies (CMs) are a kind of non-progressive or slow-progressive muscle diseases caused by genetic mutations, which are currently defined and categorized mainly according to their clinicopathological features. CMs exhibit pleiotropy and genetic heterogeneity. Currently, supportive treatment and pharmacological remission are the mainstay of treatment, with no cure available. Some adeno-associated viruses show promising prospects in the treatment of MTM1 and BIN1-associated myopathies; however, such gene-level therapeutic interventions target only specific mutation types and are not generalizable. Thus, it is particularly crucial to identify the specific causative genes. Here, we outline the pathogenic mechanisms based on the classification of causative genes: excitation-contraction coupling and triadic assembly (RYR1, MTM1, DNM2, BIN1), actin-myosin interaction and production of myofibril forces (NEB, ACTA1, TNNT1, TPM2, TPM3), as well as other biological processes. Furthermore, we provide a comprehensive overview of recent therapeutic advancements and potential treatment modalities of CMs. Despite ongoing research endeavors, targeted strategies and collaboration are imperative to address diagnostic uncertainties and explore potential treatments.
Collapse
Affiliation(s)
- Han Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical College, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Mengyuan Chang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical College, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Daiyue Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical College, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Jiawen Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical College, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Yijie Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical College, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Jiacheng Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical College, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Xinlei Yao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical College, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical College, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical College, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Meiyuan Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical College, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China.
| | - Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical College, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China.
| | - Bin Dai
- Department of Orthopedics, Binhai County People's Hospital, Binhai, Jiangsu Province, 224500, P. R. China.
| |
Collapse
|
3
|
Fu Y, Nie JR, Shang P, Zhang B, Yan DW, Hao X, Zhang H. Tumor necrosis factor α deficiency promotes myogenesis and muscle regeneration. Zool Res 2024; 45:951-960. [PMID: 39021083 PMCID: PMC11298682 DOI: 10.24272/j.issn.2095-8137.2024.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/07/2024] [Indexed: 07/20/2024] Open
Abstract
Tumor necrosis factor α (TNFα) exhibits diverse biological functions; however, its regulatory roles in myogenesis are not fully understood. In the present study, we explored the function of TNFα in myoblast proliferation, differentiation, migration, and myotube fusion in primary myoblasts and C2C12 cells. To this end, we constructed TNFα muscle-conditional knockout ( TNFα-CKO) mice and compared them with flox mice to assess the effects of TNFα knockout on skeletal muscles. Results indicated that TNFα-CKO mice displayed phenotypes such as accelerated muscle development, enhanced regenerative capacity, and improved exercise endurance compared to flox mice, with no significant differences observed in major visceral organs or skeletal structure. Using label-free proteomic analysis, we found that TNFα-CKO altered the distribution of several muscle development-related proteins, such as Hira, Casz1, Casp7, Arhgap10, Gas1, Diaph1, Map3k20, Cfl2, and Igf2, in the nucleus and cytoplasm. Gene set enrichment analysis (GSEA) further revealed that TNFα deficiency resulted in positive enrichment in oxidative phosphorylation and MyoD targets and negative enrichment in JAK-STAT signaling. These findings suggest that TNFα-CKO positively regulates muscle growth and development, possibly via these newly identified targets and pathways.
Collapse
Affiliation(s)
- Yu Fu
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing 100193, China
| | - Jing-Ru Nie
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing 100193, China
| | - Peng Shang
- College of Animal Science, Xizang Agricultural and Animal Husbandry University, Linzhi, Xizang 860000, China
| | - Bo Zhang
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing 100193, China
| | - Da-Wei Yan
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Xin Hao
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing 100193, China. E-mail:
| | - Hao Zhang
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing 100193, China. E-mail:
| |
Collapse
|
4
|
Christophers B, Leahy SN, Soffar DB, von Saucken VE, Broadie K, Baylies MK. Muscle cofilin alters neuromuscular junction postsynaptic development to strengthen functional neurotransmission. Development 2024; 151:dev202558. [PMID: 38869008 PMCID: PMC11266751 DOI: 10.1242/dev.202558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 06/05/2024] [Indexed: 06/14/2024]
Abstract
Cofilin, an actin-severing protein, plays key roles in muscle sarcomere addition and maintenance. Our previous work found that Drosophila cofilin (DmCFL) knockdown in muscle causes progressive deterioration of muscle structure and function and produces features seen in nemaline myopathy caused by cofilin mutations. We hypothesized that disruption of actin cytoskeleton dynamics by DmCFL knockdown would impact other aspects of muscle development, and, thus, conducted an RNA-sequencing analysis that unexpectedly revealed upregulated expression of numerous neuromuscular junction (NMJ) genes. We found that DmCFL is enriched in the muscle postsynaptic compartment and that DmCFL muscle knockdown causes F-actin disorganization in this subcellular domain prior to the sarcomere defects observed later in development. Despite NMJ gene expression changes, we found no significant changes in gross presynaptic Bruchpilot active zones or total postsynaptic glutamate receptor levels. However, DmCFL knockdown resulted in mislocalization of GluRIIA class glutamate receptors in more deteriorated muscles and strongly impaired NMJ transmission strength. These findings expand our understanding of the roles of cofilin in muscle to include NMJ structural development and suggest that NMJ defects may contribute to the pathophysiology of nemaline myopathy.
Collapse
Affiliation(s)
- Briana Christophers
- Weill Cornell–Rockefeller–Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10065, USA
- Biochemistry, Cell & Developmental Biology, and Molecular Biology (BCMB) program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering, Cancer Center, New York, NY 10065, USA
| | - Shannon N. Leahy
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN 37235, USA
| | - David B. Soffar
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering, Cancer Center, New York, NY 10065, USA
| | - Victoria E. von Saucken
- Weill Cornell–Rockefeller–Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10065, USA
- Biochemistry, Cell & Developmental Biology, and Molecular Biology (BCMB) program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering, Cancer Center, New York, NY 10065, USA
| | - Kendal Broadie
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN 37235, USA
- Kennedy Center for Research on Human Development, Vanderbilt University and Medical Center, Nashville, TN 37235, USA
- Vanderbilt Brain Institute, Vanderbilt University and Medical Center, Nashville, TN 37235, USA
| | - Mary K. Baylies
- Biochemistry, Cell & Developmental Biology, and Molecular Biology (BCMB) program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering, Cancer Center, New York, NY 10065, USA
| |
Collapse
|
5
|
Christophers B, Leahy SN, Soffar DB, von Saucken VE, Broadie K, Baylies MK. Muscle cofilin alters neuromuscular junction postsynaptic development to strengthen functional neurotransmission. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.21.568166. [PMID: 38045306 PMCID: PMC10690168 DOI: 10.1101/2023.11.21.568166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Cofilin, an actin severing protein, plays critical roles in muscle sarcomere addition and maintenance. Our previous work has shown Drosophila cofilin (DmCFL) knockdown causes progressive deterioration of muscle structure and function and produces features seen in nemaline myopathy (NM) caused by cofilin mutations. We hypothesized that disruption of actin cytoskeleton dynamics by DmCFL knockdown would impact other aspects of muscle development, and, thus, conducted an RNA sequencing analysis which unexpectedly revealed upregulated expression of numerous neuromuscular junction (NMJ) genes. We found that DmCFL is enriched in the muscle postsynaptic compartment and that DmCFL deficiency causes F-actin disorganization in this subcellular domain prior to the sarcomere defects observed later in development. Despite NMJ gene expression changes, we found no significant changes in gross presynaptic Bruchpilot active zones or total postsynaptic glutamate receptor levels. However, DmCFL knockdown results in mislocalization of glutamate receptors containing the GluRIIA subunit in more deteriorated muscles and neurotransmission strength is strongly impaired. These findings expand our understanding of cofilin's roles in muscle to include NMJ structural development and suggest that NMJ defects may contribute to NM pathophysiology.
Collapse
Affiliation(s)
- Briana Christophers
- Weill Cornell–Rockefeller–Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY, 10065, USA
- Biochemistry, Cell & Developmental Biology, and Molecular Biology (BCMB) program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering, Cancer Center, New York, NY 10065, USA
| | - Shannon N. Leahy
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN 37235, USA
| | - David B. Soffar
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering, Cancer Center, New York, NY 10065, USA
| | - Victoria E. von Saucken
- Weill Cornell–Rockefeller–Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY, 10065, USA
- Biochemistry, Cell & Developmental Biology, and Molecular Biology (BCMB) program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering, Cancer Center, New York, NY 10065, USA
| | - Kendal Broadie
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN 37235, USA
- Kennedy Center for Research on Human Development, Vanderbilt University and Medical Center, Nashville, TN 37235, USA
- Vanderbilt Brain Institute, Vanderbilt University and Medical Center, Nashville, TN 37235, USA
| | - Mary K. Baylies
- Biochemistry, Cell & Developmental Biology, and Molecular Biology (BCMB) program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering, Cancer Center, New York, NY 10065, USA
| |
Collapse
|
6
|
Oosterheert W, Blanc FEC, Roy A, Belyy A, Sanders MB, Hofnagel O, Hummer G, Bieling P, Raunser S. Molecular mechanisms of inorganic-phosphate release from the core and barbed end of actin filaments. Nat Struct Mol Biol 2023; 30:1774-1785. [PMID: 37749275 PMCID: PMC10643162 DOI: 10.1038/s41594-023-01101-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 08/18/2023] [Indexed: 09/27/2023]
Abstract
The release of inorganic phosphate (Pi) from actin filaments constitutes a key step in their regulated turnover, which is fundamental to many cellular functions. The mechanisms underlying Pi release from the core and barbed end of actin filaments remain unclear. Here, using human and bovine actin isoforms, we combine cryo-EM with molecular-dynamics simulations and in vitro reconstitution to demonstrate how actin releases Pi through a 'molecular backdoor'. While constantly open at the barbed end, the backdoor is predominantly closed in filament-core subunits and opens only transiently through concerted amino acid rearrangements. This explains why Pi escapes rapidly from the filament end but slowly from internal subunits. In a nemaline-myopathy-associated actin variant, the backdoor is predominantly open in filament-core subunits, resulting in accelerated Pi release and filaments with drastically shortened ADP-Pi caps. Our results provide the molecular basis for Pi release from actin and exemplify how a disease-linked mutation distorts the nucleotide-state distribution and atomic structure of the filament.
Collapse
Affiliation(s)
- Wout Oosterheert
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Florian E C Blanc
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Ankit Roy
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Alexander Belyy
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Micaela Boiero Sanders
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Oliver Hofnagel
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany.
- Institute for Biophysics, Goethe University, Frankfurt am Main, Germany.
| | - Peter Bieling
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany.
| | - Stefan Raunser
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany.
| |
Collapse
|
7
|
Nguyen MT, Dash R, Jeong K, Lee W. Role of Actin-Binding Proteins in Skeletal Myogenesis. Cells 2023; 12:2523. [PMID: 37947600 PMCID: PMC10650911 DOI: 10.3390/cells12212523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023] Open
Abstract
Maintenance of skeletal muscle quantity and quality is essential to ensure various vital functions of the body. Muscle homeostasis is regulated by multiple cytoskeletal proteins and myogenic transcriptional programs responding to endogenous and exogenous signals influencing cell structure and function. Since actin is an essential component in cytoskeleton dynamics, actin-binding proteins (ABPs) have been recognized as crucial players in skeletal muscle health and diseases. Hence, dysregulation of ABPs leads to muscle atrophy characterized by loss of mass, strength, quality, and capacity for regeneration. This comprehensive review summarizes the recent studies that have unveiled the role of ABPs in actin cytoskeletal dynamics, with a particular focus on skeletal myogenesis and diseases. This provides insight into the molecular mechanisms that regulate skeletal myogenesis via ABPs as well as research avenues to identify potential therapeutic targets. Moreover, this review explores the implications of non-coding RNAs (ncRNAs) targeting ABPs in skeletal myogenesis and disorders based on recent achievements in ncRNA research. The studies presented here will enhance our understanding of the functional significance of ABPs and mechanotransduction-derived myogenic regulatory mechanisms. Furthermore, revealing how ncRNAs regulate ABPs will allow diverse therapeutic approaches for skeletal muscle disorders to be developed.
Collapse
Affiliation(s)
- Mai Thi Nguyen
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea; (M.T.N.); (K.J.)
| | - Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea;
- Department of New Biology, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu 42988, Republic of Korea
| | - Kyuho Jeong
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea; (M.T.N.); (K.J.)
| | - Wan Lee
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea; (M.T.N.); (K.J.)
- Channelopathy Research Center, Dongguk University College of Medicine, 32 Dongguk-ro, Ilsan Dong-gu, Goyang 10326, Republic of Korea
| |
Collapse
|
8
|
Zapater I Morales C, Carman PJ, Soffar DB, Windner SE, Dominguez R, Baylies MK. Drosophila Tropomodulin is required for multiple actin-dependent processes within developing myofibers. Development 2023; 150:dev201194. [PMID: 36806912 PMCID: PMC10112908 DOI: 10.1242/dev.201194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 02/09/2023] [Indexed: 02/22/2023]
Abstract
Proper muscle contraction requires the assembly and maintenance of sarcomeres and myofibrils. Although the protein components of myofibrils are generally known, less is known about the mechanisms by which they individually function and together synergize for myofibril assembly and maintenance. For example, it is unclear how the disruption of actin filament (F-actin) regulatory proteins leads to the muscle weakness observed in myopathies. Here, we show that knockdown of Drosophila Tropomodulin (Tmod), results in several myopathy-related phenotypes, including reduction of muscle cell (myofiber) size, increased sarcomere length, disorganization and misorientation of myofibrils, ectopic F-actin accumulation, loss of tension-mediating proteins at the myotendinous junction, and misshaped and internalized nuclei. Our findings support and extend the tension-driven self-organizing myofibrillogenesis model. We show that, like its mammalian counterpart, Drosophila Tmod caps F-actin pointed-ends, and we propose that this activity is crucial for cellular processes in different locations within the myofiber that directly and indirectly contribute to the maintenance of muscle function. Our findings provide significant insights to the role of Tmod in muscle development, maintenance and disease.
Collapse
Affiliation(s)
- Carolina Zapater I Morales
- Biochemistry, Cell & Developmental Biology, and Molecular Biology (BCMB) program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering, Cancer Center, New York, NY 10065, USA
| | - Peter J Carman
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David B Soffar
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering, Cancer Center, New York, NY 10065, USA
| | - Stefanie E Windner
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering, Cancer Center, New York, NY 10065, USA
| | - Roberto Dominguez
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mary K Baylies
- Biochemistry, Cell & Developmental Biology, and Molecular Biology (BCMB) program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering, Cancer Center, New York, NY 10065, USA
| |
Collapse
|
9
|
Pueyo JI, Salazar J, Grincho C, Berni J, Towler BP, Newbury SF. Purriato is a conserved small open reading frame gene that interacts with the CASA pathway to regulate muscle homeostasis and epithelial tissue growth in Drosophila. Front Cell Dev Biol 2023; 11:1117454. [PMID: 36968202 PMCID: PMC10036370 DOI: 10.3389/fcell.2023.1117454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/24/2023] [Indexed: 03/12/2023] Open
Abstract
Recent advances in proteogenomic techniques and bioinformatic pipelines have permitted the detection of thousands of translated small Open Reading Frames (smORFs), which contain less than 100 codons, in eukaryotic genomes. Hundreds of these actively translated smORFs display conserved sequence, structure and evolutionary signatures indicating that the translated peptides could fulfil important biological roles. Despite their abundance, only tens of smORF genes have been fully characterised; these act mainly as regulators of canonical proteins involved in essential cellular processes. Importantly, some of these smORFs display conserved functions with their mutations being associated with pathogenesis. Thus, investigating smORF roles in Drosophila will not only expand our understanding of their functions but it may have an impact in human health. Here we describe the function of a novel and essential Drosophila smORF gene named purriato (prto). prto belongs to an ancient gene family whose members have expanded throughout the Protostomia clade. prto encodes a transmembrane peptide which is localized in endo-lysosomes and perinuclear and plasma membranes. prto is dynamically expressed in mesodermal tissues and imaginal discs. Targeted prto knockdown (KD) in these organs results in changes in nuclear morphology and endo-lysosomal distributions correlating with the loss of sarcomeric homeostasis in muscles and reduction of mitosis in wing discs. Consequently, prto KD mutants display severe reduction of motility, and shorter wings. Finally, our genetic interaction experiments show that prto function is closely associated to the CASA pathway, a conserved mechanism involved in turnover of mis-folded proteins and linked to muscle dystrophies and neurodegenerative diseases. Thus, this study shows the relevance of smORFs in regulating important cellular functions and supports the systematic characterisation of this class of genes to understand their functions and evolution.
Collapse
Affiliation(s)
- Jose I. Pueyo
- Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| | - Jorge Salazar
- Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| | - Carolina Grincho
- Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| | - Jimena Berni
- Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| | - Benjamin P. Towler
- Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Sarah F. Newbury
- Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| |
Collapse
|
10
|
Kapoor A, Padmavathi A, Madhwal S, Mukherjee T. Dual control of dopamine in Drosophila myeloid-like progenitor cell proliferation and regulation of lymph gland growth. EMBO Rep 2022; 23:e52951. [PMID: 35476897 PMCID: PMC9171693 DOI: 10.15252/embr.202152951] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 03/17/2022] [Accepted: 03/30/2022] [Indexed: 11/09/2022] Open
Abstract
In Drosophila, definitive haematopoiesis takes place in a specialized organ termed "lymph gland". It harbours multi-potent stem-like blood progenitor cells whose development controls overall growth of this haematopoietic tissue and formation of mature blood cells. With respect to its development, neurotransmitters have emerged as potent regulators of blood-progenitor cell development and function. In this study, we extend our understanding of neurotransmitters and show that progenitors are self-sufficient with regard to synthesizing dopamine, a well-established neurotransmitter. These cells also have modules for dopamine sensing through the receptor and transporter. We found that modulating expression of these components in progenitor cells affected lymph gland growth, which suggested growth-promoting function of dopamine in blood-progenitor cells. Cell-cycle analysis of developing lymph glands revealed an unexpected requirement for intracellular dopamine in moderating the progression of early progenitor cells from S to G2 phase of the cell cycle, while activation of dopamine receptor signalling later in development regulated their progression from G2 and entry into mitosis. The dual capacity in which dopamine operated, first intracellularly to coordinate S/G2 transition and later extracellularly in G2/M transition, was critical for the growth of the lymph gland. Overall, the data presented highlight a novel non-canonical use of dopamine in the myeloid system that reveals an uncharacterized function of intracellular dopamine in cell-cycle phasing with outcomes on haematopoietic growth and immunity as well.
Collapse
Affiliation(s)
- Ankita Kapoor
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, India.,Manipal Academy of Higher Education, Manipal, India
| | - Achalla Padmavathi
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, India
| | - Sukanya Madhwal
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, India.,Manipal Academy of Higher Education, Manipal, India
| | - Tina Mukherjee
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, India
| |
Collapse
|
11
|
Ajayi PT, Katti P, Zhang Y, Willingham TB, Sun Y, Bleck CKE, Glancy B. Regulation of the evolutionarily conserved muscle myofibrillar matrix by cell type dependent and independent mechanisms. Nat Commun 2022; 13:2661. [PMID: 35562354 PMCID: PMC9106682 DOI: 10.1038/s41467-022-30401-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 04/29/2022] [Indexed: 12/29/2022] Open
Abstract
Skeletal muscles play a central role in human movement through forces transmitted by contraction of the sarcomere. We recently showed that mammalian sarcomeres are connected through frequent branches forming a singular, mesh-like myofibrillar matrix. However, the extent to which myofibrillar connectivity is evolutionarily conserved as well as mechanisms which regulate the specific architecture of sarcomere branching remain unclear. Here, we demonstrate the presence of a myofibrillar matrix in the tubular, but not indirect flight (IF) muscles within Drosophila melanogaster. Moreover, we find that loss of transcription factor H15 increases sarcomere branching frequency in the tubular jump muscles, and we show that sarcomere branching can be turned on in IF muscles by salm-mediated conversion to tubular muscles. Finally, we demonstrate that neurochondrin misexpression results in myofibrillar connectivity in IF muscles without conversion to tubular muscles. These data indicate an evolutionarily conserved myofibrillar matrix regulated by both cell-type dependent and independent mechanisms.
Collapse
Affiliation(s)
- Peter T Ajayi
- Muscle Energetics Laboratory, NHLBI, NIH, Bethesda, MD, 20892, USA
| | - Prasanna Katti
- Muscle Energetics Laboratory, NHLBI, NIH, Bethesda, MD, 20892, USA
| | - Yingfan Zhang
- Muscle Energetics Laboratory, NHLBI, NIH, Bethesda, MD, 20892, USA
| | | | - Ye Sun
- Electron Microscopy Core, NHLBI, NIH, Bethesda, MD, 20892, USA
| | | | - Brian Glancy
- Muscle Energetics Laboratory, NHLBI, NIH, Bethesda, MD, 20892, USA.
- NIAMS, NIH, Bethesda, MD, 20892, USA.
| |
Collapse
|
12
|
Szikora S, Görög P, Mihály J. The Mechanisms of Thin Filament Assembly and Length Regulation in Muscles. Int J Mol Sci 2022; 23:5306. [PMID: 35628117 PMCID: PMC9140763 DOI: 10.3390/ijms23105306] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 02/01/2023] Open
Abstract
The actin containing tropomyosin and troponin decorated thin filaments form one of the crucial components of the contractile apparatus in muscles. The thin filaments are organized into densely packed lattices interdigitated with myosin-based thick filaments. The crossbridge interactions between these myofilaments drive muscle contraction, and the degree of myofilament overlap is a key factor of contractile force determination. As such, the optimal length of the thin filaments is critical for efficient activity, therefore, this parameter is precisely controlled according to the workload of a given muscle. Thin filament length is thought to be regulated by two major, but only partially understood mechanisms: it is set by (i) factors that mediate the assembly of filaments from monomers and catalyze their elongation, and (ii) by factors that specify their length and uniformity. Mutations affecting these factors can alter the length of thin filaments, and in human cases, many of them are linked to debilitating diseases such as nemaline myopathy and dilated cardiomyopathy.
Collapse
Affiliation(s)
- Szilárd Szikora
- Institute of Genetics, Biological Research Centre, H-6726 Szeged, Hungary;
| | - Péter Görög
- Institute of Genetics, Biological Research Centre, H-6726 Szeged, Hungary;
- Doctoral School of Multidisciplinary Medical Science, Faculty of Medicine, University of Szeged, H-6725 Szeged, Hungary
| | - József Mihály
- Institute of Genetics, Biological Research Centre, H-6726 Szeged, Hungary;
- Department of Genetics, University of Szeged, H-6726 Szeged, Hungary
| |
Collapse
|
13
|
Fernando DD, Korhonen PK, Gasser RB, Fischer K. An RNA Interference Tool to Silence Genes in Sarcoptes scabiei Eggs. Int J Mol Sci 2022; 23:ijms23020873. [PMID: 35055058 PMCID: PMC8777771 DOI: 10.3390/ijms23020873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/05/2022] [Accepted: 01/11/2022] [Indexed: 12/10/2022] Open
Abstract
In a quest for new interventions against scabies-a highly significant skin disease of mammals, caused by a parasitic mite Sarcoptes scabiei-we are focusing on finding new intervention targets. RNA interference (RNAi) could be an efficient functional genomics approach to identify such targets. The RNAi pathway is present in S. scabiei and operational in the female adult mite, but other developmental stages have not been assessed. Identifying potential intervention targets in the egg stage is particularly important because current treatments do not kill this latter stage. Here, we established an RNAi tool to silence single-copy genes in S. scabiei eggs. Using sodium hypochlorite pre-treatment, we succeeded in rendering the eggshell permeable to dsRNA without affecting larval hatching. We optimised the treatment of eggs with gene-specific dsRNAs to three single-copy target genes (designated Ss-Cof, Ss-Ddp, and Ss-Nan) which significantly and repeatedly suppressed transcription by ~66.6%, 74.3%, and 84.1%, respectively. Although no phenotypic alterations were detected in dsRNA-treated eggs for Ss-Cof and Ss-Nan, the silencing of Ss-Ddp resulted in a 38% reduction of larval hatching. This RNAi method is expected to provide a useful tool for larger-scale functional genomic investigations for the identification of essential genes as potential drug targets.
Collapse
Affiliation(s)
- Deepani D. Fernando
- Infectious Diseases Program, Cell and Molecular Biology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia;
| | - Pasi K. Korhonen
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC 3052, Australia; (P.K.K.); (R.B.G.)
| | - Robin B. Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC 3052, Australia; (P.K.K.); (R.B.G.)
| | - Katja Fischer
- Infectious Diseases Program, Cell and Molecular Biology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia;
- Correspondence:
| |
Collapse
|
14
|
Junion G, Jagla K. Diversification of muscle types in Drosophila embryos. Exp Cell Res 2022; 410:112950. [PMID: 34838813 DOI: 10.1016/j.yexcr.2021.112950] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 12/31/2022]
Abstract
Drosophila embryonic somatic muscles represent a simple and tractable model system to study the gene regulatory networks that control diversification of cell types. Somatic myogenesis in Drosophila is initiated by intrinsic action of the mesodermal master gene twist, which activates a cascade of transcriptional outputs including myogenic differentiation factor Mef2, which triggers all aspects of the myogenic differentiation program. In parallel, the expression of a combinatorial code of identity transcription factors (iTFs) defines discrete particular features of each muscle fiber, such as number of fusion events, and specific attachment to tendon cells or innervation, thus ensuring diversification of muscle types. Here, we take the example of a subset of lateral transverse (LT) muscles and discuss how the iTF code and downstream effector genes progressively define individual LT properties such as fusion program, attachment and innervation. We discuss new challenges in the field including the contribution of posttranscriptional and epitranscriptomic regulation of gene expression in the diversification of cell types.
Collapse
Affiliation(s)
- Guillaume Junion
- Genetics Reproduction and Development Institute (iGReD), CNRS UMR6293, INSERM U1103, University of Clermont Auvergne, Clermont-Ferrand, France
| | - Krzysztof Jagla
- Genetics Reproduction and Development Institute (iGReD), CNRS UMR6293, INSERM U1103, University of Clermont Auvergne, Clermont-Ferrand, France.
| |
Collapse
|
15
|
Transcriptomic adaptation during skeletal muscle habituation to eccentric or concentric exercise training. Sci Rep 2021; 11:23930. [PMID: 34907264 PMCID: PMC8671437 DOI: 10.1038/s41598-021-03393-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/19/2021] [Indexed: 12/20/2022] Open
Abstract
Eccentric (ECC) and concentric (CON) contractions induce distinct muscle remodelling patterns that manifest early during exercise training, the causes of which remain unclear. We examined molecular signatures of early contraction mode-specific muscle adaptation via transcriptome-wide network and secretome analyses during 2 weeks of ECC- versus CON-specific (downhill versus uphill running) exercise training (exercise 'habituation'). Despite habituation attenuating total numbers of exercise-induced genes, functional gene-level profiles of untrained ECC or CON were largely unaltered post-habituation. Network analysis revealed 11 ECC-specific modules, including upregulated extracellular matrix and immune profiles plus downregulated mitochondrial pathways following untrained ECC. Of 3 CON-unique modules, 2 were ribosome-related and downregulated post-habituation. Across training, 376 ECC-specific and 110 CON-specific hub genes were identified, plus 45 predicted transcription factors. Secreted factors were enriched in 3 ECC- and/or CON-responsive modules, with all 3 also being under the predicted transcriptional control of SP1 and KLF4. Of 34 candidate myokine hubs, 1 was also predicted to have elevated expression in skeletal muscle versus other tissues: THBS4, of a secretome-enriched module upregulated after untrained ECC. In conclusion, distinct untrained ECC and CON transcriptional responses are dampened after habituation without substantially shifting molecular functional profiles, providing new mechanistic candidates into contraction-mode specific muscle regulation.
Collapse
|
16
|
Graca FA, Sheffield N, Puppa M, Finkelstein D, Hunt LC, Demontis F. A large-scale transgenic RNAi screen identifies transcription factors that modulate myofiber size in Drosophila. PLoS Genet 2021; 17:e1009926. [PMID: 34780463 PMCID: PMC8629395 DOI: 10.1371/journal.pgen.1009926] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 11/29/2021] [Accepted: 11/04/2021] [Indexed: 02/07/2023] Open
Abstract
Myofiber atrophy occurs with aging and in many diseases but the underlying mechanisms are incompletely understood. Here, we have used >1,100 muscle-targeted RNAi interventions to comprehensively assess the function of 447 transcription factors in the developmental growth of body wall skeletal muscles in Drosophila. This screen identifies new regulators of myofiber atrophy and hypertrophy, including the transcription factor Deaf1. Deaf1 RNAi increases myofiber size whereas Deaf1 overexpression induces atrophy. Consistent with its annotation as a Gsk3 phosphorylation substrate, Deaf1 and Gsk3 induce largely overlapping transcriptional changes that are opposed by Deaf1 RNAi. The top category of Deaf1-regulated genes consists of glycolytic enzymes, which are suppressed by Deaf1 and Gsk3 but are upregulated by Deaf1 RNAi. Similar to Deaf1 and Gsk3 overexpression, RNAi for glycolytic enzymes reduces myofiber growth. Altogether, this study defines the repertoire of transcription factors that regulate developmental myofiber growth and the role of Gsk3/Deaf1/glycolysis in this process.
Collapse
Affiliation(s)
- Flavia A. Graca
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Natalie Sheffield
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Melissa Puppa
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - David Finkelstein
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Liam C. Hunt
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Fabio Demontis
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
17
|
Balakrishnan M, Sisso WJ, Baylies MK. Analyzing muscle structure and function throughout the larval instars in live Drosophila. STAR Protoc 2021; 2:100291. [PMID: 33532738 PMCID: PMC7821049 DOI: 10.1016/j.xpro.2020.100291] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Drosophila larval musculature is a genetically and optically accessible system to study muscle development. Each larval muscle is a single fiber with conserved cytoarchitecture, including its sarcomere structure and composition. Here, we present a workflow for systematically analyzing muscle structure and function at discrete larval stages, as well as throughout the larval instars, using both newly developed and adapted methods. For complete details on the use and execution of this protocol, please refer to Balakrishnan et al. (2020). Detailed methods for preparation and analysis of Drosophila larval muscle structure Methods for muscle structure and function analysis in the same larva over time Steps for analyzing sarcomere size and organization Pitfalls and troubleshooting approaches described
Collapse
Affiliation(s)
- Mridula Balakrishnan
- Biochemistry, Cell & Developmental Biology, and Molecular Biology (BCMB) program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA.,Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Whitney J Sisso
- Biochemistry, Cell & Developmental Biology, and Molecular Biology (BCMB) program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA.,Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Mary K Baylies
- Biochemistry, Cell & Developmental Biology, and Molecular Biology (BCMB) program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA.,Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
18
|
The actin polymerization factor Diaphanous and the actin severing protein Flightless I collaborate to regulate sarcomere size. Dev Biol 2021; 469:12-25. [PMID: 32980309 DOI: 10.1016/j.ydbio.2020.09.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 09/15/2020] [Accepted: 09/19/2020] [Indexed: 12/22/2022]
Abstract
The sarcomere is the basic contractile unit of muscle, composed of repeated sets of actin thin filaments and myosin thick filaments. During muscle development, sarcomeres grow in size to accommodate the growth and function of muscle fibers. Failure in regulating sarcomere size results in muscle dysfunction; yet, it is unclear how the size and uniformity of sarcomeres are controlled. Here we show that the formin Diaphanous is critical for the growth and maintenance of sarcomere size: Dia sets sarcomere length and width through regulation of the number and length of the actin thin filaments in the Drosophila flight muscle. To regulate thin filament length and sarcomere size, Dia interacts with the Gelsolin superfamily member Flightless I (FliI). We suggest that these actin regulators, by controlling actin dynamics and turnover, generate uniformly sized sarcomeres tuned for the muscle contractions required for flight.
Collapse
|